EP3293427B1 - Method and device for adjusting the temperature of the air blown into a building - Google Patents

Method and device for adjusting the temperature of the air blown into a building Download PDF

Info

Publication number
EP3293427B1
EP3293427B1 EP17187166.8A EP17187166A EP3293427B1 EP 3293427 B1 EP3293427 B1 EP 3293427B1 EP 17187166 A EP17187166 A EP 17187166A EP 3293427 B1 EP3293427 B1 EP 3293427B1
Authority
EP
European Patent Office
Prior art keywords
temperature
duty factor
parameter representative
value
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17187166.8A
Other languages
German (de)
French (fr)
Other versions
EP3293427A1 (en
Inventor
Clément LAFFETER
Mireille RAHMEH
Julien ESCAICH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ventilairsec SARL
Original Assignee
Ventilairsec SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ventilairsec SARL filed Critical Ventilairsec SARL
Publication of EP3293427A1 publication Critical patent/EP3293427A1/en
Application granted granted Critical
Publication of EP3293427B1 publication Critical patent/EP3293427B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/065Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit fan combined with single duct; mounting arrangements of a fan in a duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • the invention relates to a method and a device for regulating the temperature of the air blown into a building.
  • a regulation device comprising air blowing means comprising at least one air circulation circuit and at least one fan arranged on said air circulation circuit, a heat exchanger between the blown air and a heat-transfer fluid circuit such as water, a valve for adjusting the flow rate of the heat-transfer fluid entering the heat exchanger, a shut-off member of the valve, an actuator of said shut-off member for the movement of said closure member between a closed position and an open position of the valve and a system for defining a setpoint temperature of the blown air.
  • air blowing means comprising at least one air circulation circuit and at least one fan arranged on said air circulation circuit, a heat exchanger between the blown air and a heat-transfer fluid circuit such as water, a valve for adjusting the flow rate of the heat-transfer fluid entering the heat exchanger, a shut-off member of the valve, an actuator of said shut-off member for the movement of said closure member between a closed position and an open position of the valve and a system for defining a setpoint temperature of the
  • the temperature of this fresh air can be regulated in different ways.
  • a first solution consists in varying the flow of air passing through the heat exchanger, by regulating the speed of the fan, the flow rate and the temperature of the water being kept constant. This solution is noisy, in particular at high fan speed, and generates discomfort for the occupant of the building, the temperature being difficult to regulate.
  • a second solution consists in maintaining the air flow rate constant, but in varying the flow rate and / or the temperature of the water circulating in the heat exchanger.
  • the use of a three-way valve at the exchanger inlet makes it possible, at constant water flow, to finely regulate the water temperature, and consequently the temperature of the blown air, the opening of the valve being controlled as a function of the outside temperature or of the ambient temperature, and of the setpoint temperature.
  • This solution has good results, but is expensive, due to the presence of a three-way valve.
  • EP-2.863.130 A solution of a thermal regulation installation incorporating such a 3-way valve is described in particular in the patent. EP-2.863.130 .
  • the three-way valve is used to switch from an operating mode where the air / water heat exchanger is supplied with water to an operating mode where the heat exchanger is not supplied with water, the regulation of the temperature of the air passing through the heat exchanger operating using an air / refrigerant heat exchanger.
  • thermosensitive valve As illustrated by the patent US 4,973,024 .
  • An object of the invention is to provide a regulation device whose The design makes it possible, at low cost, to overcome the drawbacks of the state of the art.
  • the invention relates to a device for regulating the temperature of the air blown into a building comprising air blowing means comprising an air circulation circuit and at least one fan arranged on said circuit. air circulation; a heat exchanger between the blown air and a heat transfer fluid circuit such as water; a valve for adjusting the flow rate of the heat transfer fluid in the heat exchanger; a valve closure member; an actuator of said shutter member for moving said shutter member between a closed position and an open position of the valve and a system for defining a setpoint temperature of the blown air, characterized in that the valve is a two-way valve, in that the actuator comprises a thermosensitive element capable of deforming and / or moving under the effect of heat and an electric heating element of the thermosensitive element, and in that the device comprises a device for measuring the temperature of the blown air arranged inside the air circulation circuit, at the outlet of the heat exchanger and a control unit for the electrical supply of the configured electrical heating element to control the power supply to the electric heating element as a function of at least
  • the unit for controlling the power supply of the electric heating element is configured to control powering the electric heating element by controlling the width of periodic pulses, said control unit comprising a duty cycle calculation module configured to calculate a parameter representative of the duty cycle as a function of at least the setpoint temperature and the measured temperature of the blown air, and a power supply control module configured to control the power supply to the electric heating element according to the value of said parameter representative of the calculated duty cycle.
  • the driver unit is configured to drive the power supply to the electric heating element by controlling the width of periodic pulses, with a pulse control cycle in duration which can be divided into time. deactivation and in time of activation.
  • the activation time is a period during which the current feeds the electric heating element and the deactivation time is a period during which the current does not feed the electric heating element.
  • the duty cycle corresponds to the ratio of the activation time over the total duration of the cycle, also called period and formed by the sum of the activation and deactivation times of said cycle over said period. Indeed, the modulation cycle is repeated periodically.
  • the variation of the duty cycle as a function of the setpoint temperature and the measured temperature of the blown air makes it possible to supply the electric heating element, according to the value of said ratio, and therefore to control the opening / closing of the valve according to the value of said ratio, thus obtaining fine adjustment of the water flow, using a simple two-way valve.
  • the duty cycle allows the two-way valve to occupy an intermediate position.
  • the result is thus control of the opening / closing of the valve by adjusting the characteristics of the electrical supply to the valve, directly linked to the setpoint temperature and to the measured temperature of the blown air.
  • the duty cycle calculation module is configured to calculate the parameter representative of the duty cycle as a function at least of the setpoint temperature and of the change in the measured temperature of the blown air.
  • the duty cycle calculation module is configured to calculate the slope of the curve of the measured temperature of the blown air as a function of time, at a first given point of this curve, define a straight line passing through said first point and of slope equal to that calculated, and selecting on the right a second point of time abscissa greater than the time abscissa of the first point and determining the temperature ordinate of this second point called the anticipated temperature.
  • the duty cycle calculation module comprises means for comparing the anticipated temperature and the setpoint temperature of the blown air, and means for calculating or determining the value of the parameter representative of the ratio. cyclical depending on the result of the comparison.
  • thermosensitive element is capable of deforming under the effect of heat for the passage of the closure member of the valve from the closed position, or respectively open, to the open position, or respectively closed, of the valve during a temperature rise and in that the device comprises means for returning the closure member in closed position, or respectively open.
  • the means for calculating or determining the value of the parameter representative of the duty cycle are configured to modify the value of the parameter representative of the duty cycle in the sense of an increase in the parameter representative of the duty cycle when the temperature anticipated temperature is lower than the setpoint temperature and in the sense of a reduction in the value of the parameter representative of the duty cycle when the anticipated temperature is greater than the setpoint temperature in the case of a normally closed valve, and in that the means for calculating or determining the value of the parameter representative of the duty cycle are configured to modify the value of the parameter representative of the duty cycle in the direction of a reduction of the parameter representative of the duty cycle when the anticipated temperature is lower than the temperature setpoint and in the direction of an increase in the value of the e representative of the duty cycle when the anticipated temperature is higher than the set point temperature in the case of a normally open valve.
  • the means for calculating or determining the value of the parameter representative of the duty cycle are configured to, when the anticipated temperature is lower than the setpoint temperature, increase the value of the parameter representative of the duty cycle and, when the anticipated temperature is higher than the set point temperature, reduce the value of the parameter representative of the duty cycle.
  • the means for calculating or determining the value of the parameter representative of the duty cycle are configured to, when the anticipated temperature is lower than the setpoint temperature, reduce the value of the parameter. representative of the duty cycle and, when the anticipated temperature is higher than the set point temperature, increase the value of the parameter representative of the duty cycle.
  • the duty cycle calculation module is configured for, when the calculated value of the parameter representative of the duty cycle is greater than a predetermined high threshold value called max duty cycle, assigning to the value of said parameter representative of the ratio cyclic, said high threshold value, and when the calculated value of the parameter representative of the duty cycle is less than a predetermined low threshold value called min duty cycle, assigning the value of said parameter representative of the duty cycle to said low threshold value.
  • thermosensitive element is capable of deforming under the effect of heat for the passage of the closure member of the valve from the closed position to the open position of the valve during a temperature rise and in that the device comprises means for returning the closure member to the closed position.
  • thermosensitive element of the actuator capable of deforming under the effect of heat is a wax and the electric heating element is a resistive element.
  • the system for defining a setpoint temperature of the blown air is formed by data input means of a man / machine interface capable of communicating by wireless link with the control unit. piloting.
  • a further subject of the invention is a method for regulating the temperature of the air blown from a building, using a device for regulating the temperature of the air blown into a building, characterized in that the set point temperature of the blown air having been defined, said method comprises a step of measuring the temperature of the air blown inside the air circulation circuit, at the outlet of the heat exchanger and a step control of the power supply to the electric heating element by control of the width of periodic pulses, said control step comprising a phase of calculating the value of a parameter representative of the duty cycle as a function at least of the setpoint temperature and of the measured temperature of the blown air, and a phase of controlling the power supply to the electric heating element according to the value of said parameter representative of the calculated duty cycle.
  • the subject of the invention is a device 1 for regulating the temperature of the air blown into a building consisting of any construction.
  • This regulation device 1 is generally installed at least partially in the attic of the building.
  • This regulation device 1 comprises means for blowing air inside the building, to cool and heat the interior volume of said building.
  • These air blowing means comprise an air circulation circuit 20 and a fan 2 arranged on the air circulation circuit 20 between the inlet (s) and the outlet (s) of said air circulation circuit 20.
  • the air circulation circuit 20 comprises an inlet or intake 17 for outside air, which is generally fixed to the roof of the building and two outlets. Fresh air is therefore introduced via this air intake 17, into the fan 2.
  • This air is blown into a heat exchanger 3 arranged on the air circulation circuit to be heated or cooled there, before reaching the heat exchanger.
  • interior volume of the construction using a network of supply ducts, as shown in figure 1 these blowing ducts constituting a part of the air circulation circuit 20.
  • the air blown by the fan cools or heats up by heat exchange, with a heat transfer fluid circuit, in this case a water circuit, the heat exchanger 3 being a water / air exchanger.
  • This heat exchanger 3 is for example in the form of a parallelepipedal body housing part of the water circuit, and inside which circulates the air coming from the fan.
  • the water is brought into said body by means of a pipe 31 connecting a water source shown at 10 to the figure 1 to the part of the water circuit located in the body.
  • This source of water may be a source of cold water or a source of hot water heated by means of thermal panels, a heat pump, a boiler or the like.
  • a valve 4 for adjusting the flow rate of water entering the heat exchanger 3.
  • the water which leaves the body of the heat exchanger 3 is brought here by a so-called return pipe 32, to the source 10 of water supply to the body, for a loop circulation of the water inside said body.
  • the valve 4 placed at the inlet of the heat exchanger 3 therefore makes it possible to regulate the flow of water entering the heat exchanger 3, and consequently, the temperature of the blown air circulating in said heat exchanger 3.
  • This valve 4 is a two-way valve, that is to say it allows the supply and absence of water supply to the heat exchanger 3, but it does not have a third way which would allow divert part of the incoming flow to the return pipe of the heat exchanger 3.
  • This valve 4 is provided with a closure member 5 and an actuator 6 of said closure member 5, for the movement of said closure member 5 between a closed position and an open position of the valve 4.
  • the duct delimited by the valve body 4 is closed or opened by means of a valve movable axially and constituting said closure member 5.
  • the actuator 6 comprises a thermosensitive element 7 capable of deforming and / or of moving under the effect of heat, and an element 8 for electric heating of the thermosensitive element 7.
  • thermosensitive element 7 is capable of deforming under the effect of heat, for the passage of the member 5 of closure of the valve 4 from the closed position to the open position of the valve 4 when the temperature is raised, and the device comprises means 9 for returning the closure member 5 to the closed position.
  • thermosensitive element 7 of the actuator capable of deforming under the effect of heat is a wax housed in a capsule
  • electric heating element 8 a resistive element such as an electrical resistance supplied by an electrical supply circuit shown at 11 in the figures.
  • the heating of the wax causes a deformation, in particular an expansion, of the wax and, consequently, a displacement of the member 5 shutter from the closed position to the open position of the valve.
  • the heating element 8 As soon as the heating element 8 is no longer electrically supplied, the temperature of the wax decreases and the return means 9 formed here by a helical spring tend to return the closure member 5 to the closed position of the valve.
  • valve 4 could have been a normally open valve.
  • the regulation device 1 further comprises a system 16 for defining a setpoint temperature of the blown air, and a member 15 for measuring the temperature of the blown air at the outlet of the heat exchanger 3.
  • the system 16 for defining a setpoint temperature T c of the blown air is formed by data input means of a man / machine interface capable of communicating by wireless link with the steering unit 12.
  • This interface can be formed by a screen displaying the setpoint temperature, this screen being equipped with buttons capable of allowing an increase or a decrease in the setpoint temperature displayed and corresponding to the desired setpoint temperature.
  • the device 15 for measuring the temperature of the blown air may be formed by a temperature sensor arranged at least partially inside the air circulation circuit 20, in the part of the circuit arranged downstream of the air circulation circuit. heat exchanger 3 taken in the direction of air circulation inside the heat exchanger 3. This part of the circuit corresponds to the portion of the circuit to be understood by the expression "at the outlet of the exchanger" Thus, the temperature measured is that of the blown air and not that of the ambient air.
  • the device 1 further comprises a unit 12 for controlling the power supply to the electric heating element 8 configured to control the power supply to the electric heating element 8 by pulse width modulation.
  • This control unit 12 comprises a module 13 for calculating the duty cycle configured to calculate a parameter representative of the duty cycle as a function of at least the setpoint temperature T c and the measured temperature T m of the blown air and a module 14 power supply control configured to control the power supply to the electric heating element 8 according to the value of said parameter representative of the calculated duty cycle.
  • the power supply signal is a periodic signal which can be of fixed or variable frequency.
  • the duty cycle corresponds to the ratio of the duration of a pulse in the high or non-zero state over the period of said signal. This ratio therefore varies as a function of the setpoint temperature and the measured temperature of the supply air.
  • the power control module is therefore configured to generate a power signal as a sequence of pulses with an assigned frequency and with a duration or pulse width dependent on the calculated duty cycle.
  • the duty cycle is equal to the t / p ratio, with t corresponding to the time during which the signal is active, and p to the total period of the signal.
  • the period of the supply signal which is a periodic signal, being equal for example to 1 s
  • the duty cycle is equal to 0.5 or 50%
  • the duty cycle calculation module 13 is therefore configured to calculate the parameter representative of the duty cycle as a function at least of the setpoint temperature T c , and of the change in the measured temperature T m of the blown air.
  • the duty cycle calculation module 13 is configured to calculate the slope of the curve of the measured temperature T m of the blown air as a function of time, at a first given point of this curve, define a straight line passing through said first point and of slope equal to that calculated, and selecting on the line a second point of time abscissa greater than the time abscissa of the first point and determining the temperature ordinate of this second point called the anticipated temperature T a .
  • the duty cycle calculation module 13 comprises means 132 for comparing the anticipated temperature T a and the set point temperature T c of the blown air, and means 131 for calculating or determining the value of the parameter representative of the supply air. duty cycle as a function of the result of the comparison.
  • the means for calculating or determining the value of the parameter representative of the duty cycle are configured to, when the anticipated temperature is lower than the set temperature, increase the value of the parameter representative of the duty cycle and when the anticipated temperature is higher. at the setpoint temperature, reduce the value of the parameter representative of the duty cycle.
  • the difference between the setpoint temperature and the anticipated temperature is 3 C. It is noted that the anticipated temperature is higher than the set temperature. Since the valve is a normally closed valve, as shown in figures 2 and 3 , the duty cycle value is then lowered, to obtain a supply signal with a reduced high signal duration to limit the supply of the resistive element and, consequently, the heating of the thermosensitive element, in particular the wax, to cause a displacement of the closure member in the direction of at least partial closure of the valve.
  • the setpoint temperature is equal to 20 ° C.
  • the temperature T m' of the air measured at the outlet of the exchanger is 19.5 ° C.
  • the slope of the change in air temperature measured over a period of time called t Evolution, and which corresponds to the interval t o '/ t 1 ', is calculated. Thanks to this slope, we estimate the temperature of the air measured after a predetermined time interval called here t Anticipation.
  • the anticipated temperature measured is equal to 15 ° C.
  • the difference between the setpoint temperature and the calculated temperature T a ' is 5 ° C.
  • the anticipation temperature T a' is lower than the set temperature.
  • the duty cycle value is then increased, to obtain a supply signal with a high signal duration increased, to increase the supply time of the resistive element and, consequently, the heating of the thermosensitive element, in particular the wax, to cause a displacement of the closure member in the direction of an opening at least partial of the valve.
  • the duty cycle calculation module 13 is configured for, when the calculated value of the parameter representative of the duty cycle is greater than a predetermined high threshold value called the max duty cycle, assigning to the value of said parameter representative of the ratio duty cycle, said high threshold value, and when the calculated value of the parameter representative of the duty cycle is less than a predetermined low threshold value called min duty cycle, assigning the value of said parameter representative of the duty cycle to said low threshold value.
  • the functions and steps described above can be implemented as a computer program or through hardware components (eg programmable gate arrays).
  • the functions and steps performed by the power supply control unit can be carried out at least in part by sets of instructions or computer modules implemented in a processor or controller or be carried out by dedicated electronic components or components.
  • FPGA or ASIC type It is also possible to combine computer parts and electronic parts.
  • control unit can be produced in the form of an electronic and computer unit.
  • control module can be produced in the form of software running on a microcontroller.
  • the power supply control module can be designed as an electronic control circuit. power, for example of the MOSFET type, which generates the power supply signal as a function of the cycle ratio calculated by the control module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Description

DOMAINE DE L'INVENTIONFIELD OF THE INVENTION

L'invention concerne un procédé et un dispositif de régulation de la température de l'air soufflé dans un bâtiment.The invention relates to a method and a device for regulating the temperature of the air blown into a building.

Elle concerne plus particulièrement un dispositif de régulation comprenant des moyens de soufflage d'air comprenant au moins un circuit de circulation d'air et au moins un ventilateur disposé sur ledit circuit de circulation d'air, un échangeur thermique entre l'air soufflé et un circuit de fluide caloporteur tel que de l'eau, une vanne de réglage du débit d'entrée du fluide caloporteur dans l'échangeur thermique, un organe d'obturation de la vanne, un actionneur dudit organe d'obturation pour le déplacement dudit organe d'obturation entre une position fermée et une position ouverte de la vanne et un système de définition d'une température de consigne de l'air soufflé.It relates more particularly to a regulation device comprising air blowing means comprising at least one air circulation circuit and at least one fan arranged on said air circulation circuit, a heat exchanger between the blown air and a heat-transfer fluid circuit such as water, a valve for adjusting the flow rate of the heat-transfer fluid entering the heat exchanger, a shut-off member of the valve, an actuator of said shut-off member for the movement of said closure member between a closed position and an open position of the valve and a system for defining a setpoint temperature of the blown air.

ART ANTÉRIEURPRIOR ART

La qualité de l'air intérieur, son effet sur la santé humaine et ses coûts économiques et sociaux préoccupent de plus en plus la population, les chercheurs et les décideurs. Plusieurs études ont montré qu'il est primordial de ventiler les locaux fermés en apportant de l'air neuf de l'extérieur qui est plus propre que celui de l'intérieur afin d'assurer une ambiance saine. Cependant, le renouvellement d'air présente un coût énergétique. Plus le taux de renouvellement d'air est important, plus la qualité de l'air intérieur est bonne, mais plus la facture énergétique est élevée. En outre, les occupants sont parfois amenés à fermer les entrées d'air pour éviter l'inconfort thermique ou réduire la consommation énergétique ce qui dégrade la qualité de l'air intérieur en causant des effets nocifs sur leur santé et de la dégradation de la structure du bâtiment. Il est donc important, pour répondre aux enjeux énergétiques et aux exigences des réglementations thermiques liées aux bâtiments, de réguler la température de l'air neuf à moindre coût.The quality of indoor air, its effect on human health and its economic and social costs are of increasing concern to the public, researchers and decision-makers. Several studies have shown that it is essential to ventilate closed rooms by bringing in fresh air from the outside which is cleaner than that from the inside in order to ensure a healthy atmosphere. However, air renewal has an energy cost. The higher the air renewal rate, the better the indoor air quality, but the higher the energy bill. In addition, occupants are sometimes required to close the air intakes to avoid thermal discomfort or reduce energy consumption, which degrades the quality of the indoor air. causing harmful effects on their health and degradation of the building structure. It is therefore important, in order to meet the energy challenges and the requirements of thermal regulations related to buildings, to regulate the temperature of the fresh air at a lower cost.

Il est connu de réaliser le traitement thermique (chauffage et rafraîchissement de cet air neuf) à l'aide d'un échangeur thermique eau/air.It is known to carry out the heat treatment (heating and cooling of this fresh air) using a water / air heat exchanger.

La régulation de la température de cet air neuf peut s'opérer de différentes manières.The temperature of this fresh air can be regulated in different ways.

Une première solution consiste à faire varier le débit d'air passant dans l'échangeur thermique, par régulation de la vitesse du ventilateur, le débit et la température de l'eau étant maintenus constants. Cette solution est bruyante, notamment à vitesse élevée du ventilateur, et génère un inconfort pour l'occupant du bâtiment, la température étant difficile à réguler.A first solution consists in varying the flow of air passing through the heat exchanger, by regulating the speed of the fan, the flow rate and the temperature of the water being kept constant. This solution is noisy, in particular at high fan speed, and generates discomfort for the occupant of the building, the temperature being difficult to regulate.

Une deuxième solution consiste à maintenir le débit d'air constant, mais à faire varier le débit et/ou la température de l'eau circulant dans l'échangeur thermique. L'utilisation d'une vanne trois voies en entrée d'échangeur permet, à débit d'eau constant, de réguler finement la température de l'eau, et par suite, la température de l'air soufflé, l'ouverture de la vanne étant pilotée en fonction de la température extérieure ou de la température ambiante, et de la température de consigne. Cette solution présente de bons résultats, mais est onéreuse, du fait de la présence d'une vanne trois voies.A second solution consists in maintaining the air flow rate constant, but in varying the flow rate and / or the temperature of the water circulating in the heat exchanger. The use of a three-way valve at the exchanger inlet makes it possible, at constant water flow, to finely regulate the water temperature, and consequently the temperature of the blown air, the opening of the valve being controlled as a function of the outside temperature or of the ambient temperature, and of the setpoint temperature. This solution has good results, but is expensive, due to the presence of a three-way valve.

Une solution d'une installation de régulation thermique intégrant une telle vanne 3 voies est notamment décrite dans le brevet EP-2.863.130 . Dans ce brevet EP-2.863.130 , la vanne trois voies est utilisée pour commuter d'un mode de fonctionnement où l'échangeur de chaleur air/eau est alimenté en eau à un mode de fonctionnement où l'échangeur de chaleur n'est pas alimenté en eau, la régulation de la température de l'air traversant l'échangeur de chaleur s'opérant à l'aide d'un échangeur de chaleur air/fluide de frigorigène.A solution of a thermal regulation installation incorporating such a 3-way valve is described in particular in the patent. EP-2.863.130 . In this patent EP-2.863.130 , the three-way valve is used to switch from an operating mode where the air / water heat exchanger is supplied with water to an operating mode where the heat exchanger is not supplied with water, the regulation of the temperature of the air passing through the heat exchanger operating using an air / refrigerant heat exchanger.

Il est, par ailleurs, connu une valve thermosensible comme l'illustre le brevet US 4.973.024 .It is, moreover, known a thermosensitive valve as illustrated by the patent US 4,973,024 .

BUT ET RÉSUMÉPURPOSE AND SUMMARY

Un but de l'invention est de proposer un dispositif de régulation dont la conception permet, à faible coût, de surmonter les inconvénients de l'état de la technique.An object of the invention is to provide a regulation device whose The design makes it possible, at low cost, to overcome the drawbacks of the state of the art.

À cet effet, l'invention a pour objet un dispositif de régulation de la température de l'air soufflé dans un bâtiment comprenant des moyens de soufflage d'air comprenant un circuit de circulation d'air et au moins un ventilateur disposé sur ledit circuit de circulation d'air ; un échangeur thermique entre l'air soufflé et un circuit de fluide caloporteur tel que de l'eau ; une vanne de réglage du débit d'entrée du fluide caloporteur dans l'échangeur thermique ; un organe d'obturation de la vanne ; un actionneur dudit organe d'obturation pour le déplacement dudit organe d'obturation entre une position fermée et une position ouverte de la vanne et un système de définition d'une température de consigne de l'air soufflé, caractérisé en ce que la vanne est une vanne deux voies, en ce que l'actionneur comprend un élément thermosensible apte à se déformer et/ou se déplacer sous l'effet de la chaleur et un élément de chauffe électrique de l'élément thermosensible, et en ce que le dispositif comprend un organe de mesure de la température de l'air soufflé disposé à l'intérieur du circuit de circulation d'air, en sortie de l'échangeur thermique et une unité de pilotage de l'alimentation électrique de l'élément de chauffe électrique configurée pour piloter l'alimentation de l'élément de chauffe électrique en fonction au moins de la température de consigne et de la température mesurée de l'air soufflé.To this end, the invention relates to a device for regulating the temperature of the air blown into a building comprising air blowing means comprising an air circulation circuit and at least one fan arranged on said circuit. air circulation; a heat exchanger between the blown air and a heat transfer fluid circuit such as water; a valve for adjusting the flow rate of the heat transfer fluid in the heat exchanger; a valve closure member; an actuator of said shutter member for moving said shutter member between a closed position and an open position of the valve and a system for defining a setpoint temperature of the blown air, characterized in that the valve is a two-way valve, in that the actuator comprises a thermosensitive element capable of deforming and / or moving under the effect of heat and an electric heating element of the thermosensitive element, and in that the device comprises a device for measuring the temperature of the blown air arranged inside the air circulation circuit, at the outlet of the heat exchanger and a control unit for the electrical supply of the configured electrical heating element to control the power supply to the electric heating element as a function of at least the setpoint temperature and the measured temperature of the blown air.

L'utilisation de la température de l'air soufflé et non de l'air ambiant comme élément de mesure permet une meilleure régulation.The use of the supply air temperature and not of the ambient air as a measuring element allows better regulation.

L'utilisation d'une vanne 2 voies dont l'obturation s'opère grâce à la présence d'un élément thermosensible permet une simplification de l'installation sans nuire aux performances de l'installation.The use of a 2-way valve, the closure of which is effected by the presence of a thermosensitive element, simplifies the installation without affecting the performance of the installation.

Selon un mode de réalisation de l'invention, l'unité de pilotage de l'alimentation électrique de l'élément de chauffe électrique est configurée pour piloter l'alimentation de l'élément de chauffe électrique par contrôle de la largeur d'impulsions périodiques, ladite unité de pilotage comprenant un module de calcul de rapport cyclique configuré pour calculer un paramètre représentatif du rapport cyclique en fonction au moins de la température de consigne et de la température mesurée de l'air soufflé, et un module de commande d'alimentation configuré pour commander l'alimentation électrique de l'élément de chauffe électrique selon la valeur dudit paramètre représentatif du rapport cyclique calculé.According to one embodiment of the invention, the unit for controlling the power supply of the electric heating element is configured to control powering the electric heating element by controlling the width of periodic pulses, said control unit comprising a duty cycle calculation module configured to calculate a parameter representative of the duty cycle as a function of at least the setpoint temperature and the measured temperature of the blown air, and a power supply control module configured to control the power supply to the electric heating element according to the value of said parameter representative of the calculated duty cycle.

L'utilisation d'une vanne deux voies pilotée de manière quasi-proportionnelle, en fonction d'au moins une température de consigne et non pas de la température de l'air ambiant, mais de la température de l'air soufflé, permet une régulation réactive, offrant un confort à l'occupant du bâtiment et ce, à faible coût.The use of a two-way valve controlled in a quasi-proportional manner, as a function of at least one setpoint temperature and not of the ambient air temperature, but of the temperature of the supply air, allows a reactive regulation, offering comfort to the occupant of the building at low cost.

Dans une telle conception, l'unité de pilotage est configurée pour piloter l'alimentation de l'élément de chauffage électrique par contrôle de la largeur d'impulsions périodiques, avec un cycle de contrôle d'impulsions en durée pouvant être divisé en temps de désactivation et en temps d'activation. Le temps d'activation est une durée durant laquelle le courant alimente l'élément de chauffe électrique et le temps de désactivation est une durée durant laquelle le courant n'alimente pas l'élément de chauffe électrique.In such a design, the driver unit is configured to drive the power supply to the electric heating element by controlling the width of periodic pulses, with a pulse control cycle in duration which can be divided into time. deactivation and in time of activation. The activation time is a period during which the current feeds the electric heating element and the deactivation time is a period during which the current does not feed the electric heating element.

Le rapport cyclique correspond au rapport du temps d'activation sur la durée totale du cycle, encore appelée période et formée par la somme des temps d'activation et de désactivation dudit cycle sur ladite période. En effet, le cycle de modulation se répète de manière périodique.The duty cycle corresponds to the ratio of the activation time over the total duration of the cycle, also called period and formed by the sum of the activation and deactivation times of said cycle over said period. Indeed, the modulation cycle is repeated periodically.

La variation du rapport cyclique en fonction de la température de consigne et de la température mesurée de l'air soufflé permet d'alimenter l'élément de chauffe électrique, selon la valeur dudit rapport, et donc de piloter l'ouverture/fermeture de la vanne selon la valeur dudit rapport, obtenant ainsi un réglage fin du débit d'eau, à l'aide d'une simple vanne deux voies. Le rapport cyclique permet à la vanne deux voies d'occuper une position intermédiaire.The variation of the duty cycle as a function of the setpoint temperature and the measured temperature of the blown air makes it possible to supply the electric heating element, according to the value of said ratio, and therefore to control the opening / closing of the valve according to the value of said ratio, thus obtaining fine adjustment of the water flow, using a simple two-way valve. The duty cycle allows the two-way valve to occupy an intermediate position.

Il en résulte ainsi un pilotage de l'ouverture/fermeture de la vanne en jouant sur les caractéristiques de l'alimentation électrique de la vanne, directement lié à la température de consigne et à la température mesurée de l'air soufflé.The result is thus control of the opening / closing of the valve by adjusting the characteristics of the electrical supply to the valve, directly linked to the setpoint temperature and to the measured temperature of the blown air.

Selon un mode de réalisation, le module de calcul de rapport cyclique est configuré pour calculer le paramètre représentatif du rapport cyclique en fonction au moins de la température de consigne et de l'évolution de la température mesurée de l'air soufflé.According to one embodiment, the duty cycle calculation module is configured to calculate the parameter representative of the duty cycle as a function at least of the setpoint temperature and of the change in the measured temperature of the blown air.

Selon un mode de réalisation, le module de calcul de rapport cyclique est configuré pour calculer la pente de la courbe de la température mesurée de l'air soufflé en fonction du temps, en un premier point donné de cette courbe, définir une droite passant par ledit premier point et de pente égale à celle calculée, et sélectionner sur la droite un second point d'abscisse de temps supérieure à l'abscisse de temps du premier point et déterminer l'ordonnée de température de ce second point appelée température anticipée.According to one embodiment, the duty cycle calculation module is configured to calculate the slope of the curve of the measured temperature of the blown air as a function of time, at a first given point of this curve, define a straight line passing through said first point and of slope equal to that calculated, and selecting on the right a second point of time abscissa greater than the time abscissa of the first point and determining the temperature ordinate of this second point called the anticipated temperature.

Selon un mode de réalisation, le module de calcul de rapport cyclique comprend des moyens de comparaison de la température anticipée et de la température de consigne de l'air soufflé, et des moyens de calcul ou de détermination de la valeur du paramètre représentatif du rapport cyclique en fonction du résultat de la comparaison.According to one embodiment, the duty cycle calculation module comprises means for comparing the anticipated temperature and the setpoint temperature of the blown air, and means for calculating or determining the value of the parameter representative of the ratio. cyclical depending on the result of the comparison.

Selon un mode de réalisation, l'élément thermosensible est apte à se déformer sous l'effet de la chaleur pour le passage de l'organe d'obturation de la vanne de la position fermée, ou respectivement ouverte, vers la position ouverte, ou respectivement fermée, de la vanne lors d'une élévation de température et en ce que le dispositif comprend des moyens de rappel de l'organe d'obturation en position fermée, ou respectivement ouverte.According to one embodiment, the thermosensitive element is capable of deforming under the effect of heat for the passage of the closure member of the valve from the closed position, or respectively open, to the open position, or respectively closed, of the valve during a temperature rise and in that the device comprises means for returning the closure member in closed position, or respectively open.

Selon un mode de réalisation, les moyens de calcul ou de détermination de la valeur du paramètre représentatif du rapport cyclique sont configurés pour modifier la valeur du paramètre représentatif du rapport cyclique dans le sens d'une augmentation du paramètre représentatif du rapport cyclique lorsque la température anticipée est inférieure à la température de consigne et dans le sens d'une réduction de la valeur du paramètre représentatif du rapport cyclique lorsque la température anticipée est supérieure à la température de consigne dans le cas d'une vanne normalement fermée, et en ce que les moyens de calcul ou de détermination de la valeur du paramètre représentatif du rapport cyclique sont configurés pour modifier la valeur du paramètre représentatif du rapport cyclique dans le sens d'une réduction du paramètre représentatif du rapport cyclique lorsque la température anticipée est inférieure à la température de consigne et dans le sens d'une augmentation de la valeur du paramètre représentatif du rapport cyclique lorsque la température anticipée est supérieure à la température de consigne dans le cas d'une vanne normalement ouverte.According to one embodiment, the means for calculating or determining the value of the parameter representative of the duty cycle are configured to modify the value of the parameter representative of the duty cycle in the sense of an increase in the parameter representative of the duty cycle when the temperature anticipated temperature is lower than the setpoint temperature and in the sense of a reduction in the value of the parameter representative of the duty cycle when the anticipated temperature is greater than the setpoint temperature in the case of a normally closed valve, and in that the means for calculating or determining the value of the parameter representative of the duty cycle are configured to modify the value of the parameter representative of the duty cycle in the direction of a reduction of the parameter representative of the duty cycle when the anticipated temperature is lower than the temperature setpoint and in the direction of an increase in the value of the e representative of the duty cycle when the anticipated temperature is higher than the set point temperature in the case of a normally open valve.

En d'autres termes, dans le cas d'une vanne normalement fermée, les moyens de calcul ou de détermination de la valeur du paramètre représentatif du rapport cyclique sont configurés pour, lorsque la température anticipée est inférieure à la température de consigne, augmenter la valeur du paramètre représentatif du rapport cyclique et, lorsque la température anticipée est supérieure à la température de consigne, réduire la valeur du paramètre représentatif du rapport cyclique. De même, dans le cas d'une vanne normalement ouverte, les moyens de calcul ou de détermination de la valeur du paramètre représentatif du rapport cyclique sont configurés pour, lorsque la température anticipée est inférieure à la température de consigne, réduire la valeur du paramètre représentatif du rapport cyclique et, lorsque la température anticipée est supérieure à la température de consigne, augmenter la valeur du paramètre représentatif du rapport cyclique.In other words, in the case of a normally closed valve, the means for calculating or determining the value of the parameter representative of the duty cycle are configured to, when the anticipated temperature is lower than the setpoint temperature, increase the value of the parameter representative of the duty cycle and, when the anticipated temperature is higher than the set point temperature, reduce the value of the parameter representative of the duty cycle. Likewise, in the case of a normally open valve, the means for calculating or determining the value of the parameter representative of the duty cycle are configured to, when the anticipated temperature is lower than the setpoint temperature, reduce the value of the parameter. representative of the duty cycle and, when the anticipated temperature is higher than the set point temperature, increase the value of the parameter representative of the duty cycle.

Selon un mode de réalisation, le module de calcul de rapport cyclique est configuré pour, lorsque la valeur calculée du paramètre représentatif du rapport cyclique est supérieure à une valeur de seuil haut prédéterminée appelée rapport cyclique max, affecter à la valeur dudit paramètre représentatif du rapport cyclique, ladite valeur de seuil haut, et lorsque la valeur calculée du paramètre représentatif du rapport cyclique est inférieure à une valeur de seuil bas prédéterminée appelée rapport cyclique min, affecter à la valeur dudit paramètre représentatif du rapport cyclique, ladite valeur de seuil bas.According to one embodiment, the duty cycle calculation module is configured for, when the calculated value of the parameter representative of the duty cycle is greater than a predetermined high threshold value called max duty cycle, assigning to the value of said parameter representative of the ratio cyclic, said high threshold value, and when the calculated value of the parameter representative of the duty cycle is less than a predetermined low threshold value called min duty cycle, assigning the value of said parameter representative of the duty cycle to said low threshold value.

Selon un mode de réalisation, l'élément thermosensible est apte à se déformer sous l'effet de la chaleur pour le passage de l'organe d'obturation de la vanne de la position fermée vers la position ouverte de la vanne lors d'une élévation de température et en ce que le dispositif comprend des moyens de rappel de l'organe d'obturation en position fermée.According to one embodiment, the thermosensitive element is capable of deforming under the effect of heat for the passage of the closure member of the valve from the closed position to the open position of the valve during a temperature rise and in that the device comprises means for returning the closure member to the closed position.

Selon un mode de réalisation, l'élément thermosensible de l'actionneur apte à se déformer sous l'effet de la chaleur est une cire et l'élément de chauffe électrique un élément résistif.According to one embodiment, the thermosensitive element of the actuator capable of deforming under the effect of heat is a wax and the electric heating element is a resistive element.

Selon un mode de réalisation, le système de définition d'une température de consigne de l'air soufflé est formé par des moyens d'entrée de données d'une interface homme/machine apte à communiquer par liaison sans fil avec l'unité de pilotage.According to one embodiment, the system for defining a setpoint temperature of the blown air is formed by data input means of a man / machine interface capable of communicating by wireless link with the control unit. piloting.

L'invention a encore pour objet un procédé de régulation de la température de l'air soufflé d'un bâtiment, à l'aide d'un dispositif de régulation de la température de l'air soufflé dans un bâtiment, caractérisé en ce que la température de consigne de l'air soufflé ayant été définie, ledit procédé comprend une étape de mesure de la température de l'air soufflé à l'intérieur du circuit de circulation d'air, en sortie de l'échangeur thermique et une étape de pilotage de l'alimentation électrique de l'élément de chauffe électrique par contrôle de la largeur d'impulsions périodiques, ladite étape de pilotage comprenant une phase de calcul de la valeur d'un paramètre représentatif du rapport cyclique en fonction au moins de la température de consigne et de la température mesurée de l'air soufflé, et une phase de commande de l'alimentation électrique de l'élément de chauffe électrique selon la valeur dudit paramètre représentatif du rapport cyclique calculé.A further subject of the invention is a method for regulating the temperature of the air blown from a building, using a device for regulating the temperature of the air blown into a building, characterized in that the set point temperature of the blown air having been defined, said method comprises a step of measuring the temperature of the air blown inside the air circulation circuit, at the outlet of the heat exchanger and a step control of the power supply to the electric heating element by control of the width of periodic pulses, said control step comprising a phase of calculating the value of a parameter representative of the duty cycle as a function at least of the setpoint temperature and of the measured temperature of the blown air, and a phase of controlling the power supply to the electric heating element according to the value of said parameter representative of the calculated duty cycle.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

  • La figure 1 représente une vue schématique d'ensemble d'un dispositif de régulation de la température de l'air soufflé conforme à l'invention.The figure 1 represents an overall schematic view of a device for regulating the temperature of the blown air in accordance with the invention.
  • La figure 2 représente une vue schématique de la vanne, de l'actionneur de l'organe d'obturation de la vanne et de l'unité de pilotage de l'alimentation électrique de l'élément thermosensible de l'actionneur, en position ouverte de la vanne.The figure 2 shows a schematic view of the valve, of the actuator of the shut-off member of the valve and of the control unit for the electrical supply of the thermosensitive element of the actuator, in the open position of the valve .
  • La figure 3 représente une vue schématique de la vanne, de l'actionneur de l'organe d'obturation de la vanne et de l'unité de pilotage de l'alimentation électrique de l'élément thermosensible de l'actionneur, en position fermée de la vanne.The figure 3 shows a schematic view of the valve, of the actuator of the shut-off member of the valve and of the control unit for the electrical supply of the thermosensitive element of the actuator, in the closed position of the valve .
  • La figure 4 représente une courbe de l'évolution de la température mesurée de l'air soufflé, en fonction du temps.The figure 4 represents a curve of the evolution of the measured temperature of the blown air, as a function of time.
DESCRIPTION DÉTAILLÉEDETAILED DESCRIPTION

Comme mentionné ci-dessus, l'invention a pour objet un dispositif 1 de régulation de la température de l'air soufflé dans un bâtiment constitué par une construction quelconque.As mentioned above, the subject of the invention is a device 1 for regulating the temperature of the air blown into a building consisting of any construction.

Ce dispositif 1 de régulation est généralement installé au moins partiellement dans les combles du bâtiment. Ce dispositif 1 de régulation comprend des moyens de soufflage d'air à l'intérieur du bâtiment, pour refroidir et réchauffer le volume intérieur dudit bâtiment.This regulation device 1 is generally installed at least partially in the attic of the building. This regulation device 1 comprises means for blowing air inside the building, to cool and heat the interior volume of said building.

Ces moyens de soufflage d'air comprennent un circuit 20 de circulation d'air et un ventilateur 2 disposé sur le circuit 20 de circulation d'air entre la ou les entrées et la ou les sorties dudit circuit 20 de circulation d'air. Dans l'exemple représenté, le circuit 20 de circulation d'air comprend une entrée ou prise 17 d'air extérieur, qui est généralement fixée sur la toiture du bâtiment et deux sorties. De l'air neuf est donc introduit via cette prise 17 d'air, dans le ventilateur 2. Cet air est soufflé dans un échangeur 3 thermique disposé sur le circuit de circulation d'air pour y être réchauffé ou refroidi, avant de parvenir au volume intérieur de la construction à l'aide d'un réseau de gaines de soufflage, comme illustré à la figure 1, ces gaines de soufflage constituant une partie du circuit 20 de circulation d'air.These air blowing means comprise an air circulation circuit 20 and a fan 2 arranged on the air circulation circuit 20 between the inlet (s) and the outlet (s) of said air circulation circuit 20. In the example shown, the air circulation circuit 20 comprises an inlet or intake 17 for outside air, which is generally fixed to the roof of the building and two outlets. Fresh air is therefore introduced via this air intake 17, into the fan 2. This air is blown into a heat exchanger 3 arranged on the air circulation circuit to be heated or cooled there, before reaching the heat exchanger. interior volume of the construction using a network of supply ducts, as shown in figure 1 , these blowing ducts constituting a part of the air circulation circuit 20.

Au niveau de l'échangeur 3 thermique, l'air soufflé par le ventilateur se refroidit ou se réchauffe par échange de calories, avec un circuit de fluide caloporteur, en l'occurrence ici un circuit d'eau, l'échangeur 3 thermique étant un échangeur eau/air.At the heat exchanger 3, the air blown by the fan cools or heats up by heat exchange, with a heat transfer fluid circuit, in this case a water circuit, the heat exchanger 3 being a water / air exchanger.

Cet échangeur 3 thermique se présente par exemple sous forme d'un corps parallélépipédique logeant une partie du circuit d'eau, et à l'intérieur duquel circule l'air issu du ventilateur. L'eau est amenée dans ledit corps à l'aide d'une conduite 31 reliant une source d'eau représentée en 10 à la figure 1 à la partie du circuit d'eau disposée dans le corps. Cette source 10 d'eau peut être une source d'eau froide ou une source d'eau chaude chauffée à l'aide de panneaux thermiques, de pompe à chaleur, de chaudière ou autres.This heat exchanger 3 is for example in the form of a parallelepipedal body housing part of the water circuit, and inside which circulates the air coming from the fan. The water is brought into said body by means of a pipe 31 connecting a water source shown at 10 to the figure 1 to the part of the water circuit located in the body. This source of water may be a source of cold water or a source of hot water heated by means of thermal panels, a heat pump, a boiler or the like.

Sur cette partie de conduit alimentant le corps de l'échangeur en eau est disposée une vanne 4 de réglage du débit d'entrée d'eau dans l'échangeur 3 thermique. L'eau qui sort du corps de l'échangeur 3 thermique est ici ramenée par une conduite 32 dite de retour, à la source 10 d'alimentation en eau du corps, pour une circulation en boucle de l'eau à l'intérieur dudit corps.On this part of the pipe supplying the body of the exchanger with water is arranged a valve 4 for adjusting the flow rate of water entering the heat exchanger 3. The water which leaves the body of the heat exchanger 3 is brought here by a so-called return pipe 32, to the source 10 of water supply to the body, for a loop circulation of the water inside said body.

La vanne 4 placée en entrée de l'échangeur 3 thermique permet donc de réguler le débit d'eau entrant dans l'échangeur 3 thermique, et par suite, la température de l'air soufflé circulant dans ledit échangeur 3 thermique. Cette vanne 4 est une vanne deux voies, c'est-à-dire qu'elle permet l'alimentation et l'absence d'alimentation en eau de l'échangeur 3 thermique, mais elle ne présente pas une troisième voie qui permettrait de détourner une partie du flux entrant vers la conduite de retour de l'échangeur 3 thermique.The valve 4 placed at the inlet of the heat exchanger 3 therefore makes it possible to regulate the flow of water entering the heat exchanger 3, and consequently, the temperature of the blown air circulating in said heat exchanger 3. This valve 4 is a two-way valve, that is to say it allows the supply and absence of water supply to the heat exchanger 3, but it does not have a third way which would allow divert part of the incoming flow to the return pipe of the heat exchanger 3.

Cette vanne 4 est munie d'un organe 5 d'obturation et d'un actionneur 6 dudit organe 5 d'obturation, pour le déplacement dudit organe 5 d'obturation entre une position fermée et une position ouverte de la vanne 4.This valve 4 is provided with a closure member 5 and an actuator 6 of said closure member 5, for the movement of said closure member 5 between a closed position and an open position of the valve 4.

Dans l'exemple représenté, le conduit délimité par le corps de vanne 4 est fermé ou ouvert à l'aide d'un clapet déplaçable axialement et constituant ledit organe 5 d'obturation.In the example shown, the duct delimited by the valve body 4 is closed or opened by means of a valve movable axially and constituting said closure member 5.

Pour permettre le déplacement dudit organe 5 d'obturation entre une position fermée et une position ouverte de la vanne, l'actionneur 6 comprend un élément 7 thermosensible apte à se déformer et/ou à se déplacer sous l'effet de la chaleur, et un élément 8 de chauffe électrique de l'élément 7 thermosensible.To allow the movement of said closure member 5 between a closed position and an open position of the valve, the actuator 6 comprises a thermosensitive element 7 capable of deforming and / or of moving under the effect of heat, and an element 8 for electric heating of the thermosensitive element 7.

Dans le cas d'une vanne 4 normalement fermée, comme illustré, le principe de fonctionnement est le suivant : l'élément 7 thermosensible est apte à se déformer sous l'effet de la chaleur, pour le passage de l'organe 5 d'obturation de la vanne 4 de la position fermée à la position ouverte de la vanne 4 lors d'une élévation de température, et le dispositif comprend des moyens 9 de rappel de l'organe 5 d'obturation en position fermée.In the case of a normally closed valve 4, as illustrated, the operating principle is as follows: the thermosensitive element 7 is capable of deforming under the effect of heat, for the passage of the member 5 of closure of the valve 4 from the closed position to the open position of the valve 4 when the temperature is raised, and the device comprises means 9 for returning the closure member 5 to the closed position.

Dans l'exemple représenté aux figures, l'élément 7 thermosensible de l'actionneur apte à se déformer sous l'effet de la chaleur est une cire logée dans une capsule, et l'élément 8 de chauffe électrique un élément résistif tel qu'une résistance électrique alimentée par un circuit électrique d'alimentation représenté en 11 aux figures.In the example shown in the figures, the thermosensitive element 7 of the actuator capable of deforming under the effect of heat is a wax housed in a capsule, and the electric heating element 8 a resistive element such as an electrical resistance supplied by an electrical supply circuit shown at 11 in the figures.

Le chauffage de la cire, sous l'action de l'élément de chauffe, à l'état alimenté de ce dernier, entraîne une déformation, en particulier une dilatation, de la cire et, par suite, un déplacement de l'organe 5 d'obturation de la position fermée à la position ouverte de la vanne.The heating of the wax, under the action of the heating element, in the supplied state of the latter, causes a deformation, in particular an expansion, of the wax and, consequently, a displacement of the member 5 shutter from the closed position to the open position of the valve.

Dès que l'élément 8 de chauffe n'est plus alimenté électriquement, la température de la cire diminue et les moyens 9 de rappel formés ici par un ressort hélicoïdal tendent à ramener l'organe 5 d'obturation en position fermée de la vanne.As soon as the heating element 8 is no longer electrically supplied, the temperature of the wax decreases and the return means 9 formed here by a helical spring tend to return the closure member 5 to the closed position of the valve.

Bien évidemment, la vanne 4 aurait pu être une vanne normalement ouverte. Le dispositif 1 de régulation comprend encore un système 16 de définition d'une température de consigne de l'air soufflé, et un organe 15 de mesure de la température de l'air soufflé en sortie de l'échangeur 3 thermique.Obviously, valve 4 could have been a normally open valve. The regulation device 1 further comprises a system 16 for defining a setpoint temperature of the blown air, and a member 15 for measuring the temperature of the blown air at the outlet of the heat exchanger 3.

Dans l'exemple représenté, le système 16 de définition d'une température de consigne Tc de l'air soufflé est formé par des moyens d'entrée de données d'une interface homme/machine apte à communiquer par liaison sans fil avec l'unité 12 de pilotage. Cette interface peut être formée par un écran affichant la température de consigne, cet écran étant équipé de boutons aptes à permettre une augmentation ou une diminution de la température de consigne affichée et correspondant à la température de consigne souhaitée.In the example shown, the system 16 for defining a setpoint temperature T c of the blown air is formed by data input means of a man / machine interface capable of communicating by wireless link with the steering unit 12. This interface can be formed by a screen displaying the setpoint temperature, this screen being equipped with buttons capable of allowing an increase or a decrease in the setpoint temperature displayed and corresponding to the desired setpoint temperature.

L'organe 15 de mesure de la température de l'air soufflé peut être formé par un capteur de température disposé au moins partiellement à l'intérieur du circuit 20 de circulation d'air, dans la partie du circuit disposée en aval de l'échangeur 3 thermique pris dans le sens de circulation de l'air à l'intérieur de l'échangeur 3 thermique. Cette partie du circuit correspond à la portion de circuit devant être entendue par l'expression « en sortie de l'échangeur » Ainsi, la température mesurée est celle de l'air soufflé et non celle de l'air ambiant. Le dispositif 1 comprend encore une unité 12 de pilotage de l'alimentation électrique de l'élément 8 de chauffe électrique configuré pour piloter l'alimentation de l'élément 8 de chauffe électrique par modulation de largeur d'impulsions.The device 15 for measuring the temperature of the blown air may be formed by a temperature sensor arranged at least partially inside the air circulation circuit 20, in the part of the circuit arranged downstream of the air circulation circuit. heat exchanger 3 taken in the direction of air circulation inside the heat exchanger 3. This part of the circuit corresponds to the portion of the circuit to be understood by the expression "at the outlet of the exchanger" Thus, the temperature measured is that of the blown air and not that of the ambient air. The device 1 further comprises a unit 12 for controlling the power supply to the electric heating element 8 configured to control the power supply to the electric heating element 8 by pulse width modulation.

Cette unité 12 de pilotage comprend un module 13 de calcul de rapport cyclique configuré pour calculer un paramètre représentatif du rapport cyclique en fonction au moins de la température Tc de consigne et de la température Tm mesurée de l'air soufflé et un module 14 de commande d'alimentation configuré pour commander l'alimentation électrique de l'élément 8 de chauffe électrique selon la valeur dudit paramètre représentatif du rapport cyclique calculé.This control unit 12 comprises a module 13 for calculating the duty cycle configured to calculate a parameter representative of the duty cycle as a function of at least the setpoint temperature T c and the measured temperature T m of the blown air and a module 14 power supply control configured to control the power supply to the electric heating element 8 according to the value of said parameter representative of the calculated duty cycle.

Le signal d'alimentation électrique est un signal périodique qui peut être de fréquence fixe ou variable. Le rapport cyclique correspond au ratio de la durée d'une impulsion à l'état haut ou non nul sur la période dudit signal. Ce rapport varie donc en fonction de la température de consigne et de la température mesurée de l'air soufflé.The power supply signal is a periodic signal which can be of fixed or variable frequency. The duty cycle corresponds to the ratio of the duration of a pulse in the high or non-zero state over the period of said signal. This ratio therefore varies as a function of the setpoint temperature and the measured temperature of the supply air.

Le module de commande d'alimentation est donc configuré pour générer un signal d'alimentation en tant qu'une séquence d'impulsions avec une fréquence affectée et avec une durée ou largeur d'impulsions fonction du rapport cyclique calculé.The power control module is therefore configured to generate a power signal as a sequence of pulses with an assigned frequency and with a duration or pulse width dependent on the calculated duty cycle.

Le rapport cyclique est égal au rapport t/p, avec t correspondant au temps pendant lequel le signal est actif, et p à la période totale du signal. Ainsi, la période du signal d'alimentation, qui est un signal périodique, étant égale par exemple à 1 s, lorsque le rapport cyclique est égal à 0,3 ou 30 %, le temps d'application d'une tension électrique au niveau de l'élément de chauffe est égal à 1000 x 0,3 = 300 ms sur ladite période. Lorsque le rapport cyclique est égal à 0,5 ou 50 %, le temps d'application d'une tension électrique au niveau de l'élément de chauffe est égal à 1000 x 0,5 = 500 ms sur ladite période.The duty cycle is equal to the t / p ratio, with t corresponding to the time during which the signal is active, and p to the total period of the signal. Thus, the period of the supply signal, which is a periodic signal, being equal for example to 1 s, when the duty cycle is equal to 0.3 or 30%, the time of application of an electric voltage at the level of the heating element is equal to 1000 x 0.3 = 300 ms over said period. When the duty cycle is equal to 0.5 or 50%, the time of application of an electric voltage at the level of the heating element is equal to 1000 x 0.5 = 500 ms over said period.

Ainsi, l'augmentation du rapport cyclique entraîne une augmentation du temps d'application d'une tension au niveau de l'élément de chauffe, tandis que la réduction de ce rapport entraîne une réduction du temps d'application d'une tension au niveau de l'élément de chauffe, pendant une période de temps prédéterminée correspondant à la période dudit signal.Thus, increasing the duty cycle results in an increase in the time of applying a voltage to the heating element, while reducing this ratio results in a reduction in the time of applying a voltage to the heating element. of the heating element, for a predetermined period of time corresponding to the period of said signal.

Le module 13 de calcul de rapport cyclique est donc configuré pour calculer le paramètre représentatif du rapport cyclique en fonction au moins de la température Tc de consigne, et de l'évolution de la température Tm mesurée de l'air soufflé.The duty cycle calculation module 13 is therefore configured to calculate the parameter representative of the duty cycle as a function at least of the setpoint temperature T c , and of the change in the measured temperature T m of the blown air.

Le module 13 de calcul de rapport cyclique est configuré pour calculer la pente de la courbe de la température Tm mesurée de l'air soufflé en fonction du temps, en un premier point donné de cette courbe, définir une droite passant par ledit premier point et de pente égale à celle calculée, et sélectionner sur la droite un second point d'abscisse de temps supérieure à l'abscisse de temps du premier point et déterminer l'ordonnée de température de ce second point appelée température anticipée Ta.The duty cycle calculation module 13 is configured to calculate the slope of the curve of the measured temperature T m of the blown air as a function of time, at a first given point of this curve, define a straight line passing through said first point and of slope equal to that calculated, and selecting on the line a second point of time abscissa greater than the time abscissa of the first point and determining the temperature ordinate of this second point called the anticipated temperature T a .

Le module 13 de calcul de rapport cyclique comprend des moyens 132 de comparaison de la température Ta anticipée et de la température Tc de consigne de l'air soufflé, et des moyens 131 de calcul ou de détermination de la valeur du paramètre représentatif du rapport cyclique en fonction du résultat de la comparaison.The duty cycle calculation module 13 comprises means 132 for comparing the anticipated temperature T a and the set point temperature T c of the blown air, and means 131 for calculating or determining the value of the parameter representative of the supply air. duty cycle as a function of the result of the comparison.

Généralement, les moyens de calcul ou de détermination de la valeur du paramètre représentatif du rapport cyclique sont configurés pour, lorsque la température anticipée est inférieure à la température de consigne, augmenter la valeur du paramètre représentatif du rapport cyclique et lorsque la température anticipée est supérieure à la température de consigne, réduire la valeur du paramètre représentatif du rapport cyclique.Generally, the means for calculating or determining the value of the parameter representative of the duty cycle are configured to, when the anticipated temperature is lower than the set temperature, increase the value of the parameter representative of the duty cycle and when the anticipated temperature is higher. at the setpoint temperature, reduce the value of the parameter representative of the duty cycle.

Ainsi, dans l'exemple représenté à la figure 4, qui représente la courbe d'évolution de la température Tm d'air soufflé en fonction du temps, si l'on considère la première onde, on suppose que l'utilisateur a choisi une température de consigne égale à 20° C. À l'instant to, la température Tm de l'air mesurée à la sortie de l'échangeur est de 18° C. On calcule la pente de l'évolution de la température de l'air mesurée sur une durée appelée t Évolution, et qui correspond à l'intervalle to/t1. Grâce à cette pente, on estime la température de l'air mesurée après un intervalle de temps prédéterminé appelé ici t Anticipation. La température anticipée calculée est appelée Ta et est égale à 23 C. La différence entre la température de consigne et la température anticipée est de 3 C. On constate que la température anticipée est supérieure à la température de consigne. La vanne étant une vanne normalement fermée, comme illustré aux figures 2 et 3, la valeur de rapport cyclique est alors abaissée, pour obtenir un signal d'alimentation avec une durée de signal haut réduite pour limiter l'alimentation de l'élément résistif et, par suite, le chauffage de l'élément thermosensible, en particulier la cire, pour provoquer un déplacement de l'organe d'obturation dans le sens d'une fermeture au moins partielle de la vanne.Thus, in the example shown in figure 4 , which represents the curve of the temperature T m of blown air as a function of time, if the first wave is considered, it is assumed that the user has chosen a setpoint temperature equal to 20 ° C. At instant t o , the temperature T m of the air measured at the outlet of the exchanger is 18 ° C. The slope of the change in the temperature of the air measured over a period of time called t Evolution is calculated , and which corresponds to the interval t o / t 1 . Thanks to this slope, we estimate the temperature of the air measured after a predetermined time interval called here t Anticipation. The calculated anticipated temperature is called T a and is equal to 23 C. The difference between the setpoint temperature and the anticipated temperature is 3 C. It is noted that the anticipated temperature is higher than the set temperature. Since the valve is a normally closed valve, as shown in figures 2 and 3 , the duty cycle value is then lowered, to obtain a supply signal with a reduced high signal duration to limit the supply of the resistive element and, consequently, the heating of the thermosensitive element, in particular the wax, to cause a displacement of the closure member in the direction of at least partial closure of the valve.

À l'inverse, si l'on considère la troisième onde de la figure 4 et si l'on procède comme précédemment, on suppose à nouveau que la température de consigne est égale à 20° C. À l'instant to', la température Tm' de l'air mesurée à la sortie de l'échangeur est de 19,5° C. On calcule la pente de l'évolution de la température de l'air mesurée sur une durée appelée t Évolution, et qui correspond à l'intervalle to '/t1'. Grâce à cette pente, on estime la température de l'air mesurée après un intervalle de temps prédéterminé appelé ici t Anticipation. La température anticipée mesurée est égale à 15° C. La différence entre la température de consigne et la température Ta' calculée est de 5° C. On constate que la température d'anticipation Ta' est inférieure à la température de consigne. La valeur de rapport cyclique est alors augmentée, pour obtenir un signal d'alimentation avec une durée de signal haut augmentée, pour accroître le temps d'alimentation de l'élément résistif et, par suite, le chauffage de l'élément thermosensible, en particulier la cire, pour provoquer un déplacement de l'organe d'obturation dans le sens d'une ouverture au moins partielle de la vanne.Conversely, if we consider the third wave of the figure 4 and if we proceed as previously, we assume again that the setpoint temperature is equal to 20 ° C. At the instant t o ', the temperature T m' of the air measured at the outlet of the exchanger is 19.5 ° C. The slope of the change in air temperature measured over a period of time called t Evolution, and which corresponds to the interval t o '/ t 1 ', is calculated. Thanks to this slope, we estimate the temperature of the air measured after a predetermined time interval called here t Anticipation. The anticipated temperature measured is equal to 15 ° C. The difference between the setpoint temperature and the calculated temperature T a ' is 5 ° C. It is noted that the anticipation temperature T a' is lower than the set temperature. The duty cycle value is then increased, to obtain a supply signal with a high signal duration increased, to increase the supply time of the resistive element and, consequently, the heating of the thermosensitive element, in particular the wax, to cause a displacement of the closure member in the direction of an opening at least partial of the valve.

Bien évidemment, dans le cas d'une vanne normalement ouverte, la fermeture de la vanne s'obtient, à l'inverse, par augmentation de la valeur de rapport cyclique.Obviously, in the case of a normally open valve, the closing of the valve is obtained, conversely, by increasing the value of the duty cycle.

Il doit être noté que le module 13 de calcul de rapport cyclique est configuré pour, lorsque la valeur calculée du paramètre représentatif du rapport cyclique est supérieure à une valeur de seuil haut prédéterminée appelée rapport cyclique max, affecter à la valeur dudit paramètre représentatif du rapport cyclique, ladite valeur de seuil haut, et lorsque la valeur calculée du paramètre représentatif du rapport cyclique est inférieure à une valeur de seuil bas prédéterminée appelée rapport cyclique min, affecter à la valeur dudit paramètre représentatif du rapport cyclique, ladite valeur de seuil bas.It should be noted that the duty cycle calculation module 13 is configured for, when the calculated value of the parameter representative of the duty cycle is greater than a predetermined high threshold value called the max duty cycle, assigning to the value of said parameter representative of the ratio duty cycle, said high threshold value, and when the calculated value of the parameter representative of the duty cycle is less than a predetermined low threshold value called min duty cycle, assigning the value of said parameter representative of the duty cycle to said low threshold value.

Les fonctions et étapes décrites ci-dessus peuvent être mises en œuvre sous forme de programme informatique ou via des composants matériels (par exemple des réseaux de portes programmables). En particulier, les fonctions et étapes opérées par l'unité de pilotage d'alimentation peuvent être réalisées au moins en partie par des jeux d'instructions ou modules informatiques implémentés dans un processeur ou contrôleur ou être réalisées par des composants électroniques dédiés ou des composants de type FPGA ou ASIC. Il est aussi possible de combiner des parties informatiques et des parties électroniques.The functions and steps described above can be implemented as a computer program or through hardware components (eg programmable gate arrays). In particular, the functions and steps performed by the power supply control unit can be carried out at least in part by sets of instructions or computer modules implemented in a processor or controller or be carried out by dedicated electronic components or components. FPGA or ASIC type. It is also possible to combine computer parts and electronic parts.

Ainsi, l'unité de pilotage peut être réalisée sous forme d'une unité électronique et informatique. En particulier, le module de commande peut être réalisé sous forme d'un logiciel tournant sur microcontrôleur. Le module de commande d'alimentation peut être réalisé sous forme d'un circuit électronique de puissance, par exemple de type MOSFET, qui génère le signal d'alimentation électrique en fonction du rapport de cycle calculé par le module de commande. Enfin, le terme « comprenant » n'exclut pas d'autres éléments ou étapes. En outre, des caractéristiques ou étapes qui ont été décrites en référence à l'un des modes de réalisation exposés ci-dessus peuvent également être utilisées en combinaison avec d'autres caractéristiques ou étapes d'autres modes de réalisation exposés ci-dessus, dans la limite de l'étendue de la protection telle que définie par les revendications.Thus, the control unit can be produced in the form of an electronic and computer unit. In particular, the control module can be produced in the form of software running on a microcontroller. The power supply control module can be designed as an electronic control circuit. power, for example of the MOSFET type, which generates the power supply signal as a function of the cycle ratio calculated by the control module. Finally, the term "comprising" does not exclude other elements or steps. In addition, features or steps which have been described with reference to one of the embodiments set forth above can also be used in combination with other features or steps of other embodiments set forth above, in the limit of the scope of protection as defined by the claims.

Claims (11)

  1. A device (1) for adjusting the temperature of the air blown into a building, comprising:
    - means for blowing air, comprising an air circulation circuit (20) and at least one fan (2) arranged on said air circulation circuit (20),
    - a heat exchanger (3) between the blown air and a heat transfer fluid circuit such as water,
    - a valve (4) for adjusting the entering flow rate of the heat transfer fluid into the heat exchanger (3),
    - a member (5) for closing the valve (4),
    - an actuator (6) of said closing member (5) in order to move said closing member (5) between a closed position and an open position of the valve (4),
    - a system (16) for defining a setpoint temperature (Tc) of the blown air,
    characterized in that the valve (4) is a two-way valve, in that the actuator (6) comprises a heat-sensitive element (7) capable of deforming and/or moving under the effect of the heat and an electric heating element (8) of the heat-sensitive element (7), and in that the device (1) comprises a member (15) for measuring the temperature (Tm) of the air blown inside the air circulation circuit (20), at the outlet of the heat exchanger (3), and a unit (12) for controlling the power supply of the electric heating element (8) configured to control the supply of the electric heating element (8) as a function at least of the setpoint temperature (Tc) and of the measured temperature (Tm) of the blown air.
  2. The adjustment device (1) according to the preceding claim, characterized in that the unit (12) for controlling the power supply of the electric heating element (8) is configured to control the power supply of the electric heating element (8) by controlling the periodic pulse width, said control unit (12) comprising:
    - a module (13) for calculating the duty factor configured to calculate a parameter representative of the duty factor as a function at least of the setpoint temperature (Tc) and of the measured temperature (Tm) of the blown air, and
    - a power supply control module (14) configured to control the power supply of the electric heating element (8) according to the value of said parameter representative of the calculated duty factor.
  3. The adjustment device (1) according to the preceding claim, characterized in that the module (13) for calculating the duty factor is configured to calculate the parameter representative of the duty factor as a function at least of the setpoint temperature (Tc) and of the evolution of the measured temperature (Tm) of the blown air.
  4. The adjustment device (1) according to one of claims 2 or 3, characterized in that the module (13) for calculating the duty factor is configured to:
    - calculate the slope of the curve of the measured temperature (Tm) of the blown air as a function of time, at a first given point of this curve,
    - define a straight line passing through said first point and with a slope equal to the calculated slope,
    - select a second point on the straight line with a time greater than the time x-axis of the first point and determine the temperature y-axis of this second point called anticipated temperature (Ta).
  5. The adjustment device (1) according to the preceding claim, characterized in that the module (13) for calculating the duty factor comprises means (132) for comparing the anticipated temperature (Ta) and the setpoint temperature (Tc) of the blown air, and means (131) for calculating or determining the value of the parameter representative of the duty factor as a function of the result of the comparison.
  6. The adjustment device (1) according to one of the preceding claims, characterized in that the heat-sensitive element (7) is capable of deforming under the effect of heat for the passage of the closing member (5) of the valve (4) from the closed, or respectively open, position to the open, or respectively closed, position of the valve (4) during a temperature increase and in that the device comprises means (9) for returning the closing member (5) to the closed, or respectively open, position.
  7. The adjustment device (1) according to the preceding claim in combination with claim 5, characterized in that the means (13) for calculating or determining the value of the parameter representative of the duty factor are configured to modify the value of the parameter representative of the duty factor in the sense of an increase of the parameter representative of the duty factor when the anticipated temperature (Ta) is less than the setpoint temperature (Tc) and in the sense of a decrease in the value of the parameter representative of the duty factor when the anticipated temperature (Ta) is greater than the setpoint temperature (Tc) in the case of a valve (4) which is normally closed, and in that the means (13) for calculating or determining the value of the parameter representative of the duty factor are configured to modify the value of the parameter representative of the duty factor in the sense of a decrease in the parameter representative of the duty factor when the anticipated temperature (Ta) is less than the setpoint temperature (Tc) and in the sense of an increase in the value of the parameter representative of the duty factor when the anticipated temperature (Ta) is greater than the setpoint temperature (Tc) in the case of a valve (4) which is normally open.
  8. The adjustment device (1) according to one of claims 2 to 5 or 7, characterized in that the module (13) for calculating the duty factor is configured, when the calculated value of the parameter representative of the duty factor is greater than a predetermined upper threshold value called max duty cycle, to assign said upper threshold value to the value of said parameter representative of the duty factor, and when the calculated value of the parameter representative of the duty factor is below a predetermined low threshold value, called min duty factor, to assign said low threshold value to the value of said parameter representative of the duty factor.
  9. The adjustment device (1) according to one of the preceding claims, characterized in that the heat-sensitive element (7) of the actuator which is capable of deforming under the effect of heat is a wax and the electric heating element (8) is a resistive element.
  10. The adjustment device (1) according to one of the preceding claims, characterized in that the system (16) for defining a setpoint temperature (Tc) of the blown air is formed by data entry means of a man/machine interface capable of communicating wirelessly with the control unit (12).
  11. A method for adjusting the temperature of the blown air of a building, using a device (1) for adjusting the temperature of the air blown into a building according to one of claims 1 to 10, characterized in that the setpoint temperature (Tc) of the blown air having been defined, said method comprises a step for measuring the temperature (Tm) of the blown air inside the air circulation circuit, at the outlet of the heat exchanger (3), and a step for controlling the power supply (11) of the electric heating element (8) by controlling the periodic pulse width, said control step comprising:
    - a phase for calculating the value of a parameter representative of the duty factor as a function at least of the setpoint temperature (Tc) and the measured temperature (Tm) of the blown air, and
    - a phase for controlling the power supply of the electric heating element (8) according to the value of said parameter representative of the calculated duty factor.
EP17187166.8A 2016-08-26 2017-08-22 Method and device for adjusting the temperature of the air blown into a building Active EP3293427B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1657965A FR3055406B1 (en) 2016-08-26 2016-08-26 METHOD AND DEVICE FOR REGULATING THE TEMPERATURE OF BREATH AIR IN A BUILDING

Publications (2)

Publication Number Publication Date
EP3293427A1 EP3293427A1 (en) 2018-03-14
EP3293427B1 true EP3293427B1 (en) 2021-09-29

Family

ID=57190148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17187166.8A Active EP3293427B1 (en) 2016-08-26 2017-08-22 Method and device for adjusting the temperature of the air blown into a building

Country Status (2)

Country Link
EP (1) EP3293427B1 (en)
FR (1) FR3055406B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973024A (en) * 1989-09-26 1990-11-27 Toki Corporation Kabushiki Kaisha Valve driven by shape memory alloy
FR2799696B1 (en) * 1999-10-19 2002-01-18 Valeo Climatisation HEATING OR AIR CONDITIONING DEVICE OF A MOTOR VEHICLE INTERIOR, PROVIDED WITH AN ADDITIONAL HEATING SOURCE WITH COUPLED CONTROL
FR3011913B1 (en) * 2013-10-16 2018-03-30 Societe Muller & Cie THERMAL REGULATION INSTALLATION OF A BUILDING

Also Published As

Publication number Publication date
FR3055406B1 (en) 2018-09-07
EP3293427A1 (en) 2018-03-14
FR3055406A1 (en) 2018-03-02

Similar Documents

Publication Publication Date Title
US10876766B2 (en) Gas heater for water and a gas water heater
EP2743600A1 (en) Heating apparatus comprising a fan-coil unit and an electric heating device, and corresponding method
EP3404334B1 (en) Method and facility for energy storage using a water heater
EP3293427B1 (en) Method and device for adjusting the temperature of the air blown into a building
EP0148700B1 (en) Method and device to control a space heating installation, comprising a plurality of heat generators
EP0612964A1 (en) Device for controlling air conditioning
EP0188972B1 (en) Fan heater
FR3016090A1 (en) POWER CONTROLLER WITH LINEAR CURRENT LIMITATION CONTROL AND SHORT CIRCUIT PROTECTION
EP2353054B1 (en) Automatic control device for an electrical heating appliance
FR3013638A1 (en) DEVICE FOR CONTROLLING HEATING IN A VEHICLE
CH635713A5 (en) TEMPERATURE REGULATING DEVICE FOR ELECTRIC HEATING APPARATUS.
FR2545424A1 (en) ASSEMBLY FOR CONTROLLING THE COOLING AND HEATING POWER OF MOTOR VEHICLES
WO2010082005A2 (en) Cooking appliance with a safety device
EP3614876B1 (en) Hair-dryer with automatic speed control
FR2993641A1 (en) DEVICE FOR INDIRECTLY ESTIMATING THE TEMPERATURE IN AN AIR-SUPPLIED ENCLOSURE TREATED BY A HEATING / AIR CONDITIONING INSTALLATION
US20230375183A1 (en) Electric grill with improved convective heat transfer
US9726398B2 (en) System and method for control of a fluid heating apparatus
EP1146292B1 (en) Air generating device having controlled temperature in particular for livestock breeding
FR2505989A1 (en) Electronic control circuit for supplementary heat pump - uses circuits which compare exterior and heating water temperature against set levels and provide switching control to heat pump compressor
FR3026172A1 (en) METHOD FOR CONTROLLING A HEATING, VENTILATION AND / OR AIR CONDITIONING INSTALLATION AND CORRESPONDING INSTALLATION, WITH LIMITATION OF AIR FLOW
FR3026173A1 (en) METHOD FOR CONTROLLING A HEATING, VENTILATION AND / OR AIR CONDITIONING INSTALLATION AND CORRESPONDING INSTALLATION, USING AN ELECTRIC HEATING DEVICE
FR2799696A1 (en) HEATING OR AIR CONDITIONING DEVICE OF A MOTOR VEHICLE INTERIOR, PROVIDED WITH AN ADDITIONAL HEATING SOURCE WITH COUPLED CONTROL
FR2977778A1 (en) Method for controlling vapor content in cooking chamber of cooking appliance that is utilized in e.g. restaurant, involves controlling air intake flap of cooking appliance in dependence of determined quantity of vapor in condensation box
FR2965331A1 (en) Method for controlling operation of baking oven i.e. domestic baking oven, involves controlling starting and stopping of cooling ventilator according to crossing of predetermined temperature threshold of baking oven
FR2690734A1 (en) Air conditioning system esp. for industrial buildings - has forced draught fan unit with heating, cooling and humidifying facilities and programmable operating cycle.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180911

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F24F 110/10 20180101ALI20210407BHEP

Ipc: F24F 11/76 20180101ALI20210407BHEP

Ipc: F24F 7/06 20060101ALI20210407BHEP

Ipc: F16K 31/00 20060101AFI20210407BHEP

INTG Intention to grant announced

Effective date: 20210428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1434487

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017046665

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210929

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1434487

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220131

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017046665

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017046665

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220822

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220822

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230825

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929