EP3292311B1 - Coolant pump for an internal combustion engine - Google Patents

Coolant pump for an internal combustion engine Download PDF

Info

Publication number
EP3292311B1
EP3292311B1 EP16736764.8A EP16736764A EP3292311B1 EP 3292311 B1 EP3292311 B1 EP 3292311B1 EP 16736764 A EP16736764 A EP 16736764A EP 3292311 B1 EP3292311 B1 EP 3292311B1
Authority
EP
European Patent Office
Prior art keywords
flow
axis
rotation
influencing element
intake channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16736764.8A
Other languages
German (de)
French (fr)
Other versions
EP3292311A1 (en
Inventor
Robert Pöschl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVL List GmbH
Original Assignee
AVL List GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVL List GmbH filed Critical AVL List GmbH
Publication of EP3292311A1 publication Critical patent/EP3292311A1/en
Application granted granted Critical
Publication of EP3292311B1 publication Critical patent/EP3292311B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • F04D15/0022Control, e.g. regulation, of pumps, pumping installations or systems by using valves throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4293Details of fluid inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers

Definitions

  • the invention relates to a coolant pump for an internal combustion engine, with a housing having a housing cover, in which an impeller is arranged which can be rotated about an axis of rotation and which has a suction mouth coaxial to the axis of rotation, the housing forming at least one inlet channel which is configured essentially normal to the axis of rotation in order to conducting coolant from a lateral pump inlet at a distance from the axis of rotation to the suction mouth, with the inlet channel having at least one flow-influencing element, with the at least one flow-influencing element being arranged in the region of a longitudinal central axis of the inlet channel that extends normal to the axis of rotation and/or through the axis of rotation, and wherein at least one first flow-influencing element is arranged in the inlet channel between the pump inlet and the suction mouth, and at least one second flow-influencing element is arranged in the inlet channel in the area of the suction mouth, wherein the second flow-influencing element is designed to be rotationally symmetric
  • Coolant pumps are usually attached to the front of internal combustion engines and are equipped with expansive inlet ducts to the impellers in order to achieve the most homogeneous possible flow to the impellers and good efficiencies.
  • the drive takes place, for example, mechanically via a traction means by a crankshaft or a camshaft.
  • Overhanging inlet channels have the disadvantage that a relatively large amount of installation space is required in the direction of the axis of rotation of the impeller of the coolant pump.
  • the pamphlets CN 101 782 081 A and CN 103 267 018 A each disclose a coolant pump with a lateral pump inlet, with an inlet channel running essentially in a normal plane to the axis of rotation of the rotor being formed between the pump inlet and the suction mouth of the impeller of the coolant pump.
  • a flow-influencing element formed by a guide rib is provided in the area of the suction mouth.
  • the CN 103 541 803 A discloses a coolant pump with a flow-influencing valve arrangement arranged in the inlet channel. Further indicates CN 202 117 753 A a coolant pump with a flow influencing rib in the inlet channel.
  • the object of the invention is to develop a coolant pump which, on the one hand, requires little installation space and, on the other hand, enables a homogeneous flow onto the impeller.
  • At least one flow-influencing element is formed by a bulge of an inflow channel wall protruding into the inflow channel in the direction of the axis of rotation.
  • the flow in the inlet channel is evenly distributed over the entire available flow cross section by the at least one flow-influencing element, which is designed, for example, as a cross-section reduction device, flow dividing device or flow homogenization device.
  • This achieves a homogeneous, uniform flow to the suction mouth and highly efficient operation of the impeller.
  • only a small extension of the water pump in the axial direction of an internal combustion engine is made possible in the assembled state, as a result of which installation space can be saved.
  • At least one flow-influencing element is designed symmetrically to the longitudinal central axis of the inlet channel.
  • a particularly good homogenization of the flow can be achieved if at least one first flow-influencing element is arranged in the inlet channel between the pump inlet and the suction port.
  • the first flow-influencing element can, for example--viewed in the direction of the axis of rotation--have the shape of a flow divider or an arrowhead pointing counter to the direction of flow.
  • an embodiment with two arrow or flow part elements arranged next to one another, which are arranged symmetrically to the longitudinal central axis, is also possible.
  • the first flow-influencing element arranged in the area of the longitudinal center axis homogenizes the flow through the inlet duct by directing part of the coolant flow drawn in through the pump inlet from the area of the longitudinal center axis to the distant outer duct walls.
  • the shape of the flow divider or the arrowhead favors this flow guidance.
  • the first flow-influencing element therefore has the task of fanning out the main flow so that part of the flow is pushed outwards and divided around the circumference of the suction mouth.
  • the second flow-influencing element can have the shape of a circle viewed in the direction of the axis of rotation of the impeller, the diameter of which preferably corresponds to at least one hub diameter of the impeller and/or at least the diameter of the suction mouth.
  • the flow-influencing element protrudes into the inlet channel as a circular disc opposite the suction mouth.
  • the inlet channel ends outside of the circular disk in an annular channel extending through an opening angle of more than 180°, which is flow-connected in the radial direction to the suction mouth via an annular gap formed by the second flow-influencing element.
  • the annular gap is formed by the distance between the second flow-influencing element and the suction mouth.
  • the inlet duct has at least one first inlet duct wall encompassing the access to the suction mouth and a second inlet duct wall running opposite the first inlet duct wall and a third inlet duct wall connecting the first and second inlet duct walls.
  • the inflow channel wall having the bulge is favorably the first or second inflow channel wall, the bulge preferably being formed by the housing, particularly preferably by the housing cover.
  • the second inlet channel wall is part of the housing cover.
  • the first flow-influencing element can be formed by a first bulge and the second flow-influencing element by a second bulge.
  • a first smallest distance is formed, which preferably is at least 10% of the width of the inlet channel, measured in the direction of the axis of rotation, immediately adjacent (eg downstream or upstream) to the bulge.
  • At least one flow-influencing element is provided in the direct connection between the pump inlet or the housing supply line and the suction mouth of the impeller—the inlet opening in the impeller of the coolant pump—therefore at least one flow-influencing element is provided.
  • This flow-influencing element can be designed as a bulge or indentation projecting into the flow of the inlet channel, which reduces the flow in a direct connection—but two or more such bulges or indentations are also possible.
  • the aim is to create a flow resistance and to distribute the inflow of the coolant pump from one side over the entire circumference.
  • the indentation or bulge of the first flow-influencing element preferably does not reach all the way to the opposite duct wall of the inlet duct, but can also be underflowed, with a first smallest distance being formed between the bulge and the opposite duct wall.
  • This first distance below the bulge of the remaining inlet channel is related to the second smallest distance which is measured in a projection in the direction of the axis of rotation onto a normal plane of the axis of rotation between the first bulge and the suction mouth of the impeller: the smaller the first distance is, the greater the second distance must be in order to allow the coolant to converge after flowing under the first bulge and to enable the suction mouth of the impeller to flow uniformly.
  • the housing can have a second flow-influencing element above the suction mouth of the impeller, designed as a circular bulge, which causes the cooling liquid to be deflected in the direction of the impeller. If the second flow-influencing element has a diameter that corresponds to the hub diameter of the impeller, a particularly good and largely twist-free flow onto the impeller of the coolant pump can be achieved.
  • flow-influencing guide walls for example guide plates, guide ribs or the like, can be provided in the flow path, which feed the flow in a targeted manner to the suction mouth.
  • these baffles can also be arranged directly on the edge of the suction mouth.
  • at least one guide wall can be arranged directly in the area of the circumference of the suction mouth of the impeller and can be straight or slightly spiral-shaped in order to provide a corresponding deflection to achieve the coolant.
  • at least a guide wall can also be arranged in the area between the suction mouth and the pump inlet in the inlet channel.
  • two guide walls facing away from each other form a double spiral and are arranged on the side of the suction mouth facing away from the pump inlet in such a way that the two partial flows of the coolant flowing in the circumferential direction on both sides of the suction mouth are guided to the suction mouth.
  • the coolant flowing tangentially past the suction mouth of the impeller is diverted in the direction of the suction mouth by the double spiral.
  • this double spiral can be designed essentially symmetrically to a plane spanned by the longitudinal center axis of the inlet channel and the axis of rotation, or asymmetrically.
  • the coolant is first fanned out by the first flow-influencing element in the direction of the jacket of the housing and then fed homogeneously, i.e. without twisting, radially to the suction mouth before it flows axially through the suction mouth into the blade channels of the impeller.
  • the inlet channel has a flow cross section that widens between a first end on the inlet side and a second end on the suction mouth side. The flow cross-section thus increases steadily or continuously from the pump inlet to the suction port. The flow velocity is reduced by the widening cross-section, which supports the homogenization of the flow.
  • a particularly uniform inflow to the suction mouth can be achieved if—viewed in the direction of the axis of rotation—the second end of the inlet channel on the suction mouth side is designed as a circular sector concentric to the suction mouth, with the circular sector preferably extending at an angle of about 180°.
  • the second end of the inlet duct designed in the shape of a sector of a circle, forms a flow-calming collection space in which turbulence and swirl components in the coolant flow are reduced.
  • the invention allows both a reduction in the axial extent of the coolant pump and a homogeneous supply of the coolant to the suction mouth of the impeller that is optimal in terms of efficiency. Since the coolant is not supplied in the direction of the axis of rotation, but rather in the normal direction, lower installation space requirements can be met.
  • FIG. 1 1 shows an internal combustion engine 1 with a cylinder head 2 and a cylinder block 3.
  • a coolant pump 4 according to the invention, designed as a radial pump, is attached to the end face of the cylinder head 2.
  • the coolant pump 4 has a housing 5 with a housing cover 6 in which an impeller 8 designed as a radial impeller or mixed flow impeller and rotatably mounted about an axis of rotation 7 is arranged.
  • the impeller shaft 9 of the impeller 8 is driven in the present case by a camshaft 10 via a toothed belt 11, as shown in FIG 3 can be seen.
  • Reference number 12 designates the cover of the drive.
  • the coolant flows via a supply line 14 into the pump inlet 15 and flows through the coolant pump 4 and is conveyed by the pump through an overflow channel 16 into the cylinder head 2 .
  • a thermostatic valve can be arranged in the area of the pump inlet 15 . After flowing through the cooling chambers of the cylinder head 2 (not shown in detail), the coolant leaves the cylinder head 2 via a discharge line 17 and is routed to a radiator (not shown in detail).
  • the housing 5 of the coolant pump 4 forms an inlet channel 18, which extends at least between the pump inlet 15 and the suction mouth 19 of the Impeller 8 extends.
  • the inlet channel walls 18a, 18b, 18c of the inlet channel 18 have a first inlet channel wall 18b that encompasses the access to the suction mouth 19, a second inlet channel wall 18c that runs opposite the first inlet channel wall, and a third inlet channel wall 18a that connects the first inlet channel wall 18b and the second inlet channel wall 18c. These are formed by the housing jacket 5a, by the housing base 5b (third inlet channel wall 18a) and by the housing cover 6 (second inlet channel wall 18c).
  • the flow cross section of the inlet channel 18 widens continuously (or continuously).
  • the second end 182 of the inlet channel 18 on the suction mouth side is designed as a circular sector 182' concentrically with the suction mouth 19, which circular sector 182' extends at an angle ⁇ of about 180°, as well 4 is recognizable.
  • the first bulge 20a is formed by the housing cover 6 in the exemplary embodiments.
  • first distance h between the first flow-influencing element 20 and the opposite first inlet channel wall 18b, which is immediately adjacent, e.g. downstream or upstream of the first flow-influencing element 20 is ( Figures 6, 6a ).
  • the first distance h extends between the maximum shape of the bulge 20a and the first inlet channel wall 18b.
  • flank surface 20b of the first flow-influencing element 20 and at least one opposite inflow duct wall there is also a second distance k, measured in a normal plane ⁇ 1 on the inflow duct wall 18a, which is at least 40% of the Diameter D of the suction mouth 19 is ( 4 ).
  • flank surface 20b The area from the outer edge of the bulge 20a or of the first flow-influencing element 20 to the maximum formation, for example of the bulge 20a, is referred to here as flank surface 20b.
  • the first flow-influencing element 20 is spaced from the suction port 19 (or arranged between the pump inlet 15 and the suction port 19), wherein a third distance x, measured in a normal plane ⁇ 2 to the axis of rotation 7 , between the first flow-influencing element 20 and the suction mouth 19 is at least twice the diameter D of the suction mouth 19 .
  • a second flow-influencing element 21 embodied as a second bulge 21a of the duct wall 18c of the inlet duct 18 protrudes into the flow S of the inlet duct 18 , which element 21 is also formed here by the housing cover 6 .
  • the second flow-influencing element 21 has the shape of a circular disc whose diameter D 21 corresponds at least to the hub diameter d of the impeller 8 .
  • D 21b of the tip 21b of the second bulge 21a facing the suction mouth 19 is approximately the same as the hub diameter d.
  • the inlet geometry formed by the housing base 5b to the impeller 8 has a defined radius r in the area of the suction mouth 19 for the streamlined axial deflection of the radial inlet flow S.
  • the area of the housing base 5b surrounding the suction mouth 19 can form an annular bead 51 narrowing the radial flow cross section, which is arranged between the surrounding annular space 183 in the outer area of the second end 182 of the inlet channel 18 and the suction mouth 19.
  • the bead 51 can be formed circumferentially, or it can have radial interruptions or projections, which serve as radial flow guide surfaces directed towards the suction mouth 19 .
  • the bead 51 increases the design freedom for the outer contour of the housing 5.
  • individual local radial indentations can also be provided.
  • radial guide ribs 52 or guide vanes which guide the flow from the surrounding annular space 183 to the suction mouth 19, in addition to or instead of the bead 51, the interruptions, projections or indentations.
  • Individual guide ribs 52 of this type which 4 are indicated only schematically, can be indicated distributed evenly over the circumference around the suction mouth 19 .
  • the first flow-influencing element 20 is also at a distance from the second flow-influencing element 21, the fourth distance y - measured in a normal plane ⁇ 2 to the axis of rotation 7 - between the first flow-influencing element 20 and the second flow-influencing element 21 being at least 40% of the diameter D of the suction mouth is 19 ( Figure 6.6a ).
  • the housing cover is removed, so there are first and second flow-affecting elements not apparent.
  • the impeller 8 is indicated schematically by dashed lines.
  • the partial flows Si, S2 formed by the flow-influencing elements 20, 21 flow along the circumference of the suction mouth 19.
  • the 8 illustrated embodiment of the invention differs from 7 in that in the region of the second end 182 of the inlet channel 18 on the suction mouth side, two guide walls 22a, 22b that face away from one another and form a double spiral 22 are arranged on the side of the suction mouth 19 that faces away from the pump inlet 15 in such a way that the two partial flows flowing in the circumferential direction on both sides of the suction mouth 19 Si, S 2 of the coolant to the suction port 19 are performed.
  • the coolant flowing tangentially past the suction mouth 19 of the impeller 8 is diverted in the direction of the suction mouth 19 by the double spiral 22 .
  • the baffles 22a, 22b are designed essentially symmetrically to a plane ⁇ 3 spanned by the longitudinal center axis 18 ′ of the inlet channel 18 and the axis of rotation 7 . Viewed in the direction of the axis of rotation 7 , the longitudinal central axis 18 ′ can form an axis of symmetry of the inflow channel 18 . If an input twist is desired when entering the suction mouth 19, the guide walls 22a, 22b can also be designed asymmetrically.
  • the coolant is first fanned out in the direction of the housing casing 5a by the first flow-influencing element 20 and then fed homogeneously, ie without twisting or at least with little twisting, to the suction mouth 19 essentially radially with respect to the axis of rotation 7 . It then flows axially, i.e. in the direction of the axis of rotation 7, through the suction mouth 19 into the blade channels of the impeller 8.
  • the second end 182 of the inlet channel 18, which is designed in the shape of a sector of a circle, forms a flow-calming collection chamber in which turbulence and swirl components in the coolant flow are reduced.
  • the coolant pump 4 enables both a reduction in the installation space in the direction of the axis of rotation 7 and an efficient, homogeneous supply of the coolant to the suction mouth 19 of the impeller 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft eine Kühlmittelpumpe für eine Brennkraftmaschine, mit einem einen Gehäusedeckel aufweisenden Gehäuse, in welchem ein um eine Drehachse drehbares Laufrad angeordnet ist, welches koaxial zur Drehachse einen Saugmund aufweist, wobei das Gehäuse zumindest einen im Wesentlichen normal zur Drehachse ausgebildeten Zulaufkanal ausbildet, um Kühlmittel von einem von der Drehachse beabstandeten seitlichen Pumpeneintritt zum Saugmund zu führen, wobei der Zulaufkanal zumindest ein strömungsbeeinflussendes Element aufweist, wobei das zumindest eine strömungsbeeinflussende Element im Bereich einer normal auf die Drehachse und/oder durch die Drehachse verlaufend ausgebildeten Längsmittelachse des Zulaufkanales angeordnet ist, und wobei zumindest ein erstes strömungsbeeinflussendes Element im Zulaufkanal zwischen dem Pumpeneintritt und dem Saugmund angeordnet ist, und zumindest ein zweites strömungsbeeinflussendes Element im Zulaufkanal im Bereich des Saugmundes angeordnet ist, wobei das zweite strömungsbeeinflussende Element drehsymmetrisch ausgebildet und koaxial zur Drehachse angeordnet ist. Kühlmittelpumpen sind üblicherweise stirnseitig an Brennkraftmaschinen befestigt und mit ausladenden Zulaufkanälen zu den Laufrädern ausgestattet, um eine möglichst homogene Anströmung der Laufräder und gute Wirkungsgrade zu verwirklichen. Der Antrieb erfolgt beispielsweise mechanisch über ein Zugmittel durch eine Kurbelwelle oder eine Nockenwelle. Ausladende Zulaufkanäle haben den Nachteil, dass in Richtung der Drehachse des Laufrades der Kühlmittelpumpe relativ viel Bauraum benötigt wird.The invention relates to a coolant pump for an internal combustion engine, with a housing having a housing cover, in which an impeller is arranged which can be rotated about an axis of rotation and which has a suction mouth coaxial to the axis of rotation, the housing forming at least one inlet channel which is configured essentially normal to the axis of rotation in order to conducting coolant from a lateral pump inlet at a distance from the axis of rotation to the suction mouth, with the inlet channel having at least one flow-influencing element, with the at least one flow-influencing element being arranged in the region of a longitudinal central axis of the inlet channel that extends normal to the axis of rotation and/or through the axis of rotation, and wherein at least one first flow-influencing element is arranged in the inlet channel between the pump inlet and the suction mouth, and at least one second flow-influencing element is arranged in the inlet channel in the area of the suction mouth, wherein the second flow-influencing element is designed to be rotationally symmetrical and is arranged coaxially to the axis of rotation. Coolant pumps are usually attached to the front of internal combustion engines and are equipped with expansive inlet ducts to the impellers in order to achieve the most homogeneous possible flow to the impellers and good efficiencies. The drive takes place, for example, mechanically via a traction means by a crankshaft or a camshaft. Overhanging inlet channels have the disadvantage that a relatively large amount of installation space is required in the direction of the axis of rotation of the impeller of the coolant pump.

Die Druckschriften CN 101 782 081 A und CN 103 267 018 A offenbaren jeweils eine Kühlmittelpumpe mit einem seitlichen Pumpeneintritt, wobei zwischen dem Pumpeneintritt und dem Saugmund des Laufrades der Kühlmittelpumpe ein im Wesentlichen in einer Normalebene auf die Drehachse des Laufrades verlaufender Zulaufkanal ausgebildet ist. Dabei ist im Bereich des Saugmundes ein durch eine Leitrippe gebildetes strömungsbeeinflussendes Element vorgesehen. Derartige Pumpen weisen zwar eine geringere axiale Erstreckung auf, allerdings ist eine homogene Anströmung der Laufräder nicht gewährleistet.The pamphlets CN 101 782 081 A and CN 103 267 018 A each disclose a coolant pump with a lateral pump inlet, with an inlet channel running essentially in a normal plane to the axis of rotation of the rotor being formed between the pump inlet and the suction mouth of the impeller of the coolant pump. A flow-influencing element formed by a guide rib is provided in the area of the suction mouth. Although pumps of this type have a smaller axial extent, a homogeneous flow onto the impellers is not guaranteed.

Die CN 103 541 803 A offenbart eine Kühlmittelpumpe mit einer im Zulaufkanal angeordneten, die Strömung beeinflussenden Ventilanordnung. Des Weiteren zeigt CN 202 117 753 A eine Kühlmittelpumpe mit einer die Strömung beeinflussenden Rippe im Zulaufkanal.the CN 103 541 803 A discloses a coolant pump with a flow-influencing valve arrangement arranged in the inlet channel. Further indicates CN 202 117 753 A a coolant pump with a flow influencing rib in the inlet channel.

Aufgabe der Erfindung ist es, eine Kühlmittelpumpe zu entwickeln, welche einerseits wenig Bauraum benötigt und andererseits eine homogene Anströmung des Laufrades ermöglicht.The object of the invention is to develop a coolant pump which, on the one hand, requires little installation space and, on the other hand, enables a homogeneous flow onto the impeller.

Erfindungsgemäß wird dies dadurch erreicht, dass zumindest ein strömungsbeeinflussendes Element durch eine in Richtung der Drehachse in den Zulaufkanal hineinragende Ausbuchtung einer Zulaufkanalwand gebildet ist.According to the invention, this is achieved in that at least one flow-influencing element is formed by a bulge of an inflow channel wall protruding into the inflow channel in the direction of the axis of rotation.

Durch das zumindest eine strömungsbeeinflussende Element, das beispielsweise als Querschnittsverminderungseinrichtung, Strömungsteilungseinrichtung oder Strömungshomogenisierungseinrichtung ausgeführt ist, wird die Strömung im Zulaufkanal über den gesamten verfügbaren Strömungsquerschnitt gleichmäßig verteilt. Dadurch wird eine homogene, gleichförmige Anströmung des Saugmundes und ein hocheffizienter Betrieb des Laufrades erreicht. Gleichzeitig wird im montierten Zustand eine nur geringe Erstreckung der Wasserpumpe in axialer Richtung eines Verbrennungsmotors ermöglicht, wodurch Bauraum eingespart werden kann.The flow in the inlet channel is evenly distributed over the entire available flow cross section by the at least one flow-influencing element, which is designed, for example, as a cross-section reduction device, flow dividing device or flow homogenization device. This achieves a homogeneous, uniform flow to the suction mouth and highly efficient operation of the impeller. At the same time, only a small extension of the water pump in the axial direction of an internal combustion engine is made possible in the assembled state, as a result of which installation space can be saved.

Dabei ist es vorteilhaft, wenn - in Richtung der Drehachse betrachtet - zumindest ein strömungsbeeinflussendes Element symmetrisch zur Längsmittelachse des Zulaufkanals ausgebildet ist.It is advantageous if—viewed in the direction of the axis of rotation—at least one flow-influencing element is designed symmetrically to the longitudinal central axis of the inlet channel.

Eine besonders gute Homogenisierung der Strömung lässt sich erreichen, wenn zumindest ein erstes strömungsbeeinflussendes Element im Zulaufkanal zwischen dem Pumpeneintritt und dem Saugmund angeordnet ist. Das erste strömungsbeeinflussende Element kann dabei beispielsweise - in Richtung der Drehachse betrachtet - die Form eines Strömungsteilers oder einer entgegen der Strömungsrichtung gewandten Pfeilspitze aufweisen. In einer Variante der Erfindung ist auch eine Ausführung mit zwei nebeneinander angeordneten Pfeil- oder Strömungsteilelementen, die symmetrisch zur Längsmittelachse angeordnet sind, möglich.A particularly good homogenization of the flow can be achieved if at least one first flow-influencing element is arranged in the inlet channel between the pump inlet and the suction port. The first flow-influencing element can, for example--viewed in the direction of the axis of rotation--have the shape of a flow divider or an arrowhead pointing counter to the direction of flow. In a variant of the invention, an embodiment with two arrow or flow part elements arranged next to one another, which are arranged symmetrically to the longitudinal central axis, is also possible.

Das im Bereich der Längsmittelachse angeordnete erste strömungsbeeinflussende Element homogenisiert die Strömung durch den Zulaufkanal, indem ein Teil der durch den Pumpeneintritt angesaugten Kühlmittelströmung aus dem Bereich der Längsmittelachse zu den entfernten äußeren Kanalwänden geleitet wird. Die Form des Strömungsteilers oder der Pfeilspitze begünstigt diese Strömungsführung.The first flow-influencing element arranged in the area of the longitudinal center axis homogenizes the flow through the inlet duct by directing part of the coolant flow drawn in through the pump inlet from the area of the longitudinal center axis to the distant outer duct walls. The shape of the flow divider or the arrowhead favors this flow guidance.

Das erste strömungsbeeinflussende Element hat also die Aufgabe, eine Auffächerung der Hauptströmung zu erreichen, sodass ein Teil der Strömung nach außen gedrängt und um den Umfang des Saugmundes aufgeteilt wird.The first flow-influencing element therefore has the task of fanning out the main flow so that part of the flow is pushed outwards and divided around the circumference of the suction mouth.

Beispielsweise kann das zweite strömungsbeeinflussende Element - in Richtung der Drehachse des Laufrades betrachtet die Form eines Kreises aufweisen, dessen Durchmesser vorzugsweise mindestens einem Nabendurchmesser des Laufrades und/oder mindestens dem Durchmesser des Saugmundes entspricht. Das strömungsbeeinflussende Element ragt als eine dem Saugmund gegenüberliegende Kreisscheibe in den Zulaufkanal hinein. Der Zulaufkanal endet außerhalb der Kreisscheibe in einen sich um einen Öffnungswinkel von mehr 180° erstreckenden Ringkanal, welcher in radialer Richtung mit dem Saugmund über einen durch das zweite strömungsbeeinflussende Element gebildeten Ringspalt strömungsverbunden ist. Der Ringspalt wird dabei durch den Abstand zwischen dem zweiten strömungsbeeinflussenden Element und dem Saugmund gebildet.For example, the second flow-influencing element can have the shape of a circle viewed in the direction of the axis of rotation of the impeller, the diameter of which preferably corresponds to at least one hub diameter of the impeller and/or at least the diameter of the suction mouth. The flow-influencing element protrudes into the inlet channel as a circular disc opposite the suction mouth. The inlet channel ends outside of the circular disk in an annular channel extending through an opening angle of more than 180°, which is flow-connected in the radial direction to the suction mouth via an annular gap formed by the second flow-influencing element. The annular gap is formed by the distance between the second flow-influencing element and the suction mouth.

Der Zulaufkanal weist zumindest eine den Zugang zum Saugmund umfassende erste Zulaufkanalwand und eine der ersten Zulaufkanalwand gegenüberliegend verlaufende zweite Zulaufkanalwand und eine die erste und die zweite Zulaufkanalwand verbindende dritte Zulaufkanalwand auf.The inlet duct has at least one first inlet duct wall encompassing the access to the suction mouth and a second inlet duct wall running opposite the first inlet duct wall and a third inlet duct wall connecting the first and second inlet duct walls.

Günstigerweise handelt es sich bei der die Ausbuchtung aufweisenden Zulaufkanalwand um die erste oder zweite Zulaufkanalwand, wobei vorzugsweise die Ausbuchtung durch das Gehäuse, besonders vorzugsweise durch den Gehäusedeckel gebildet ist. Die zweite Zulaufkanalwand ist dabei Teil des Gehäusedeckels. Das erste strömungsbeeinflussende Element kann dabei durch eine erste Ausbuchtung und das zweite strömungsbeeinflussende Element durch eine zweite Ausbuchtung gebildet sein.The inflow channel wall having the bulge is favorably the first or second inflow channel wall, the bulge preferably being formed by the housing, particularly preferably by the housing cover. The second inlet channel wall is part of the housing cover. The first flow-influencing element can be formed by a first bulge and the second flow-influencing element by a second bulge.

Günstigerweise ist - in einer durch die Drehachse und die Längsmittelachse des Zulaufkanals aufgespannten Schnittebene betrachtet - zwischen der Ausbuchtung (bzw. der maximalen Ausformung der Ausbuchtung) und der gegenüberliegenden Zulaufkanalwand ein - in einer Richtung parallel zur Drehachse gemessener - erster kleinster Abstand ausgebildet, welcher vorzugsweise mindestens 10% der in Richtung der Drehachse gemessenen Breite des Zulaufkanals unmittelbar benachbart (z.B. stromab oder stromauf) der Ausbuchtung beträgt. Weiters ist es vorteilhaft, wenn - in einer Normalebene auf die Drehachse - zwischen einer Flankenfläche des ersten strömungsbeeinflussenden Elements (bzw. dem Außenrand der Ausbuchtung bis zur maximalen Ausformung der Ausbuchtung) und zumindest einer gegenüberliegenden Zulaufkanalwand (z.B. die die erste und zweite Zulaufkanalwand verbindende dritte Zulaufkanalwand) ein in einer Normalebene auf die Zulaufkanalwand gemessener zweiter kleinster Abstand ausgebildet ist, welcher vorzugsweise mindestens 40% des Durchmessers des Saugmundes beträgt.Advantageously - viewed in a sectional plane spanned by the axis of rotation and the longitudinal center axis of the inflow channel - between the bulge (or the maximum formation of the bulge) and the opposite inflow channel wall - measured in a direction parallel to the axis of rotation - a first smallest distance is formed, which preferably is at least 10% of the width of the inlet channel, measured in the direction of the axis of rotation, immediately adjacent (eg downstream or upstream) to the bulge. It is also advantageous if - in a normal plane to the axis of rotation - between a flank surface of the first flow-influencing element (or the outer edge of the bulge up to the maximum formation of the bulge) and at least one opposite inlet duct wall (e.g. the third inlet duct wall connecting the first and second Inlet duct wall) formed a second smallest distance measured in a plane normal to the inflow duct wall is, which is preferably at least 40% of the diameter of the suction mouth.

In der direkten Verbindung zwischen dem Pumpeneintritt bzw. der Gehäusezuleitung und dem Saugmund des Laufrades - der Eintrittsöffnung in das Laufrad der Kühlmittelpumpe - ist also zumindest ein strömungsbeeinflussendes Element vorgesehen. Dieses strömungsbeeinflussende Element kann als in die Strömung des Zulaufkanals ragende Ausbuchtung bzw. Eindellung ausgeführt sein, die die Strömung in direkter Verbindung reduziert - möglich sind aber auch zwei oder mehrere derartige Ausbuchtungen bzw. Eindellungen. Ziel ist es, einen Strömungswiderstand zu erzeugen und die Anströmung der Kühlmittelpumpe von einer Seite auf den gesamten Umfang zu verteilen. Die Eindellung bzw. Ausbuchtung des ersten strömungsbeeinflussenden Elementes reicht dabei bevorzugt nicht ganz bis zur gegenüberliegenden Kanalwand des Zulaufkanals, sondern kann auch unterströmt werden, wobei zwischen der Ausbuchtung und der gegenüberliegenden Kanalwand ein erster kleinster Abstand ausgebildet ist. Dieser erste Abstand unter der Ausbuchtung des verbleibenden Zulaufkanals steht dabei in Zusammenhang mit dem zweiten kleinsten Abstand welcher in einer Projektion in Richtung der Drehachse auf eine Normalebene der Drehachse zwischen der ersten Ausbuchtung und dem Saugmund des Laufrades gemessen wird: Je kleiner der erste Abstand ist, desto größer muss der zweite Abstand sein, um nach dem Unterströmen der ersten Ausbuchtung ein Zusammenlaufen des Kühlmittels und ein gleichmäßiges Anströmen des Saugmundes des Laufrades zu ermöglichen.In the direct connection between the pump inlet or the housing supply line and the suction mouth of the impeller—the inlet opening in the impeller of the coolant pump—therefore at least one flow-influencing element is provided. This flow-influencing element can be designed as a bulge or indentation projecting into the flow of the inlet channel, which reduces the flow in a direct connection—but two or more such bulges or indentations are also possible. The aim is to create a flow resistance and to distribute the inflow of the coolant pump from one side over the entire circumference. The indentation or bulge of the first flow-influencing element preferably does not reach all the way to the opposite duct wall of the inlet duct, but can also be underflowed, with a first smallest distance being formed between the bulge and the opposite duct wall. This first distance below the bulge of the remaining inlet channel is related to the second smallest distance which is measured in a projection in the direction of the axis of rotation onto a normal plane of the axis of rotation between the first bulge and the suction mouth of the impeller: the smaller the first distance is, the greater the second distance must be in order to allow the coolant to converge after flowing under the first bulge and to enable the suction mouth of the impeller to flow uniformly.

Zusätzlich kann das Gehäuse über dem Saugmund des Laufrades ein als kreisrunde Ausbuchtung ausgebildetes zweites strömungsbeeinflussendes Element aufweisen, das ein Umlenken der Kühlflüssigkeit in Richtung des Laufrades bewirkt. Wenn das zweite strömungsbeeinflussende Element einen dem Nabendurchmesser des Laufrades entsprechenden Durchmesser aufweist, kann eine besonders gute und weitgehend drallfreie Anströmung des Laufrades der Kühlmittelpumpe erzielt werden.In addition, the housing can have a second flow-influencing element above the suction mouth of the impeller, designed as a circular bulge, which causes the cooling liquid to be deflected in the direction of the impeller. If the second flow-influencing element has a diameter that corresponds to the hub diameter of the impeller, a particularly good and largely twist-free flow onto the impeller of the coolant pump can be achieved.

In einer weiteren Variante können im Strömungsweg strömungsbeeinflussende Leitwände, beispielsweise Leitbleche, Leitrippen oder dergleichen, vorgesehen sein, welche die Strömung gezielt dem Saugmund zuführen. Diese Leitwände können in einer Variante der Erfindung auch unmittelbar am Rand des Saugmunds angeordnet sein. Beispielsweise kann zumindest eine Leitwand direkt im Bereich des Umfanges des Saugmundes des Laufrades angeordnet sein und gerade oder leicht spiralformig ausgebildet sein, um eine entsprechende Umlenkung der Kühlflüssigkeit zu erzielen. Zusätzlich oder alternativ dazu kann zumindest eine Leitwand auch im Bereich zwischen dem Saugmund und dem Pumpeneintritt im Zulaufkanal angeordnet sein.In a further variant, flow-influencing guide walls, for example guide plates, guide ribs or the like, can be provided in the flow path, which feed the flow in a targeted manner to the suction mouth. In a variant of the invention, these baffles can also be arranged directly on the edge of the suction mouth. For example, at least one guide wall can be arranged directly in the area of the circumference of the suction mouth of the impeller and can be straight or slightly spiral-shaped in order to provide a corresponding deflection to achieve the coolant. In addition or as an alternative to this, at least a guide wall can also be arranged in the area between the suction mouth and the pump inlet in the inlet channel.

Besonders günstig ist es, wenn zwei voneinander abgewandte Leitwände eine Doppelspirale bilden und auf der dem Pumpeneintritt abgewandten Seite des Saugmundes so angeordnet sind, dass die beiden in Umfangsrichtung beidseits des Saugmundes strömenden Teilströmungen des Kühlmittels zum Saugmund geführt werden. Durch die Doppelspirale wird das tangential am Saugmund des Laufrades vorbeiströmende Kühlmittel in Richtung des Saugmundes umgeleitet. Diese Doppelspirale kann dabei je nach gewünschtem Drall im Wesentlichen symmetrisch zu einer durch die Längsmittelachse des Zulaufkanals und die Drehachse aufgespannten Ebene oder asymmetrisch ausgeführt sein.It is particularly favorable if two guide walls facing away from each other form a double spiral and are arranged on the side of the suction mouth facing away from the pump inlet in such a way that the two partial flows of the coolant flowing in the circumferential direction on both sides of the suction mouth are guided to the suction mouth. The coolant flowing tangentially past the suction mouth of the impeller is diverted in the direction of the suction mouth by the double spiral. Depending on the desired twist, this double spiral can be designed essentially symmetrically to a plane spanned by the longitudinal center axis of the inlet channel and the axis of rotation, or asymmetrically.

Das Kühlmittel wird durch das erste strömungsbeeinflussende Element zuerst in Richtung des Mantels des Gehäuses aufgefächert und danach homogen, also drallfrei dem Saugmund radial zugeführt, bevor es axial durch den Saugmund in die Schaufelkanäle des Laufrades strömt. Besonders vorteilhaft ist es dabei, wenn der Zulaufkanal einen sich zwischen einem eintrittsseitigen ersten Ende und einem saugmundseitigen zweiten Ende verlaufend erweiternden Strömungsquerschnitt aufweist. Der Strömungsquerschnitt nimmt also vom Pumpeneintritt zum Saugmund stetig bzw. kontinuierlich zu. Durch den sich erweiternden Querschnitt wird die Strömungsgeschwindigkeit reduziert, was die Homogenisierung der Strömung unterstützt. Eine besonders gleichmäßige Zuströmung zum Saugmund kann erreicht werden, wenn - in Richtung der Drehachse betrachtet - das saugmundseitige zweite Ende des Zulaufkanals als Kreissektor konzentrisch zum Saugmund ausgeführt ist, wobei sich vorzugsweise der Kreissektor um einen Winkel von etwa 180° erstreckt. Das kreissektorförmig gestaltete zweite Ende des Zulaufkanals bildet einen strömungsberuhigenden Sammelraum, in welchem Turbulenzen und Drallkomponenten in der Kühlmittelströmung abgebaut werden.The coolant is first fanned out by the first flow-influencing element in the direction of the jacket of the housing and then fed homogeneously, i.e. without twisting, radially to the suction mouth before it flows axially through the suction mouth into the blade channels of the impeller. It is particularly advantageous if the inlet channel has a flow cross section that widens between a first end on the inlet side and a second end on the suction mouth side. The flow cross-section thus increases steadily or continuously from the pump inlet to the suction port. The flow velocity is reduced by the widening cross-section, which supports the homogenization of the flow. A particularly uniform inflow to the suction mouth can be achieved if—viewed in the direction of the axis of rotation—the second end of the inlet channel on the suction mouth side is designed as a circular sector concentric to the suction mouth, with the circular sector preferably extending at an angle of about 180°. The second end of the inlet duct, designed in the shape of a sector of a circle, forms a flow-calming collection space in which turbulence and swirl components in the coolant flow are reduced.

Im Vergleich zu aus dem Stand der Technik bekannten Ausführungen erlaubt die Erfindung sowohl eine Verringerung der axialen Erstreckung der Kühlmittelpumpe, als auch eine wirkungsgradoptimale homogene Zuführung der Kühlflüssigkeit zum Saugmund des Laufrades. Da die Zuführung der Kühlflüssigkeit nicht in Richtung der Drehachse, sondern normal dazu erfolgt, können geringere Bauraumanforderungen erfüllt werden.Compared to designs known from the prior art, the invention allows both a reduction in the axial extent of the coolant pump and a homogeneous supply of the coolant to the suction mouth of the impeller that is optimal in terms of efficiency. Since the coolant is not supplied in the direction of the axis of rotation, but rather in the normal direction, lower installation space requirements can be met.

Durch die homogene Zuführung des Kühlmittels zum Saugmund wird eine weitgehend drallfreie Anströmung des Laufrades der Kühlmittelpumpe erreicht. Dies ermöglicht wiederum eine gleichförmige Leistung bei unterschiedlichen Betriebsbereichen. Durch die gleichförmige Verteilung der Kühlmittelmasse auf den gesamten Umfang der Wasserpumpengeometrie werden gleichzeitig alle Pumpenschaufeln der Kühlmittelpumpe hinsichtlich Schwingung und Pumpeffizienz im optimalen Bereich betrieben.Due to the homogeneous supply of the coolant to the suction mouth, a largely twist-free flow onto the impeller of the coolant pump is achieved. This in turn, enables uniform performance at different operating ranges. Due to the uniform distribution of the coolant mass over the entire circumference of the water pump geometry, all pump blades of the coolant pump are operated in the optimum range in terms of vibration and pumping efficiency.

Die Erfindung wird im Folgenden anhand der nicht einschränkenden Figuren näher erläutert. Darin zeigen

  • Fig. 1 einen Teil einer Brennkraftmaschine mit einer erfindungsgemäßen Kühlmittelpumpe in einer Schrägansicht,
  • Fig. 2 die Brennkraftmaschine in einer stirnseitigen Ansicht,
  • Fig. 3 den Antrieb der Kühlmittelpumpe aus Fig. 1 und 2,
  • Fig. 4 die erfindungsgemäße Kühlmittelpumpe in einer Vorderansicht,
  • Fig. 5 die Kühlmittelpumpe in einer Draufsicht,
  • Fig. 6 die Kühlmittelpumpe in einem Schnitt gemäß der Linie VI - VI in Fig. 4,
  • Fig. 6a die Kühlmittelpumpe in einem Schnitt analog zu Fig. 6, in einer Variante,
  • Fig. 7 die Kühlmittelpumpe in einem Schnitt gemäß der Linie VII - VII in Fig. 5 in einer ersten erfindungsgemäßen Ausführungsvariante und
  • Fig. 8 die Kühlmittelpumpe in einem Schnitt gemäß der Linie VII - VII in Fig. 5 in einer zweiten erfindungsgemäßen Ausführungsvariante.
The invention is explained in more detail below with reference to the non-limiting figures. show in it
  • 1 part of an internal combustion engine with a coolant pump according to the invention in an oblique view,
  • 2 the internal combustion engine in a front view,
  • 3 the coolant pump drive Figures 1 and 2 ,
  • 4 the coolant pump according to the invention in a front view,
  • figure 5 the coolant pump in a plan view,
  • 6 the coolant pump in a section according to the line VI - VI in 4 ,
  • Figure 6a the coolant pump in a section analogous to 6 , in a variant,
  • 7 the coolant pump in a section according to the line VII - VII in figure 5 in a first embodiment variant according to the invention and
  • 8 the coolant pump in a section according to the line VII - VII in figure 5 in a second embodiment variant according to the invention.

Funktionsgleiche Teile sind in den Ausführungsvarianten mit gleichen Bezugszeichen versehen.Parts with the same function are provided with the same reference symbols in the design variants.

Fig. 1 zeigt eine Brennkraftmaschine 1 mit einem Zylinderkopf 2 und einem Zylinderblock 3. An der Stirnseite des Zylinderkopfes 2 ist eine als Radialpumpe ausgebildete erfindungsgemäße Kühlmittelpumpe 4 angebracht. Die Kühlmittelpumpe 4 weist ein Gehäuse 5 mit einem Gehäusedeckel 6 auf, in welchem ein als Radiallaufrad oder Halbaxiallaufrad ausgebildetes und um eine Drehachse 7 drehbar gelagertes Laufrad 8 angeordnet ist. Der Antrieb 13 der Laufradwelle 9 des Laufrades 8 erfolgt im vorliegenden Fall durch eine Nockenwelle 10 über einen Zahnriemen 11, wie aus Fig. 3 zu entnehmen ist. Mit Bezugszeichen 12 ist die Abdeckung des Antriebes bezeichnet. 1 1 shows an internal combustion engine 1 with a cylinder head 2 and a cylinder block 3. A coolant pump 4 according to the invention, designed as a radial pump, is attached to the end face of the cylinder head 2. The coolant pump 4 has a housing 5 with a housing cover 6 in which an impeller 8 designed as a radial impeller or mixed flow impeller and rotatably mounted about an axis of rotation 7 is arranged. The impeller shaft 9 of the impeller 8 is driven in the present case by a camshaft 10 via a toothed belt 11, as shown in FIG 3 can be seen. Reference number 12 designates the cover of the drive.

Das Kühlmittel strömt über eine Zuleitung 14 in den Pumpeneintritt 15, und durchströmt die Kühlmittelpumpe 4 und wird von dieser durch einen Überströmkanal 16 in den Zylinderkopf 2 gefördert. Gegebenenfalls kann im Bereich des Pumpeneintritts 15 ein Thermostatventil angeordnet sein. Nach Durchströmen der nicht weiter dargestellten Kühlräume des Zylinderkopfes 2 verlässt das Kühlmittel den Zylinderkopf 2 über eine Ableitung 17 und wird zu einem nicht weiterdargestellten Radiator geleitet.The coolant flows via a supply line 14 into the pump inlet 15 and flows through the coolant pump 4 and is conveyed by the pump through an overflow channel 16 into the cylinder head 2 . If necessary, a thermostatic valve can be arranged in the area of the pump inlet 15 . After flowing through the cooling chambers of the cylinder head 2 (not shown in detail), the coolant leaves the cylinder head 2 via a discharge line 17 and is routed to a radiator (not shown in detail).

Das Gehäuse 5 der Kühlmittelpumpe 4 bildet einen Zulaufkanal 18 aus, welcher sich zumindest zwischen dem Pumpeneintritt 15 und dem Saugmund 19 des Laufrades 8 erstreckt. Die Zulaufkanalwände 18a, 18b, 18c des Zulaufkanals 18 weisen dabei eine den Zugang zum Saugmund 19 umfassende erste Zulaufkanalwand 18b, eine der ersten Zulaufkanalwand gegenüberliegend verlaufende zweite Zulaufkanalwand 18c und eine die erste 18b und zweite Zulaufkanalwand 18c verbindende dritte Zulaufkanalwand 18a auf. Diese werden durch den Gehäusemantel 5a, durch den Gehäuseboden 5b (dritte Zulaufkanalwand 18a) und durch den Gehäusedeckel 6 (zweite Zulaufkanalwand 18c) gebildet. Zwischen einem eintrittseitigen ersten Ende 181 und einem saugmundseitigen zweiten Ende 182 des Zulaufkanals 18 erweitert sich der Strömungsquerschnitt des Zulaufkanals 18 verlaufend (bzw. stetig kontinuierlich). In Richtung der Drehachse 7 betrachtet ist das saugmundseitige zweite Ende 182 des Zulaufkanals 18 als Kreissektor 182' konzentrisch zum Saugmund 19 ausgeführt, welcher Kreissektor 182' sich um einen Winkel α von etwa 180° erstreckt, wie gut aus Fig. 4 erkennbar ist.The housing 5 of the coolant pump 4 forms an inlet channel 18, which extends at least between the pump inlet 15 and the suction mouth 19 of the Impeller 8 extends. The inlet channel walls 18a, 18b, 18c of the inlet channel 18 have a first inlet channel wall 18b that encompasses the access to the suction mouth 19, a second inlet channel wall 18c that runs opposite the first inlet channel wall, and a third inlet channel wall 18a that connects the first inlet channel wall 18b and the second inlet channel wall 18c. These are formed by the housing jacket 5a, by the housing base 5b (third inlet channel wall 18a) and by the housing cover 6 (second inlet channel wall 18c). Between a first end 181 on the inlet side and a second end 182 of the inlet channel 18 on the suction mouth side, the flow cross section of the inlet channel 18 widens continuously (or continuously). Viewed in the direction of the axis of rotation 7, the second end 182 of the inlet channel 18 on the suction mouth side is designed as a circular sector 182' concentrically with the suction mouth 19, which circular sector 182' extends at an angle α of about 180°, as well 4 is recognizable.

Im Zulaufkanal 18 ist ein durch eine in den Zulaufkanal 18 ragende erste Ausbuchtung 20a der zweiten Zulaufkanalwand 18c des Gehäusedeckels 6 gebildetes erstes strömungsbeeinflussendes Element 20 angeordnet, welches - in Richtung auf die Drehachse 7 betrachtet - im Wesentlichen die Form einer entgegen der Kühlmittelströmung S im Zulaufkanal 18 gerichteten Pfeilspitze aufweist. Die erste Ausbuchtung 20a wird in den Ausführungsbeispielen durch den Gehäusedeckel 6 gebildet.A first flow-influencing element 20 formed by a first bulge 20a of the second inlet duct wall 18c of the housing cover 6, which protrudes into the inlet duct 18, is arranged in the inlet duct 18; 18 directed arrowhead. The first bulge 20a is formed by the housing cover 6 in the exemplary embodiments.

Zwischen dem ersten strömungsbeeinflussenden Element 20 und der gegenüberliegenden ersten Zulaufkanalwand 18b ist - in Richtung der Drehachse 7 gemessen - ein erster Abstand h ausgebildet, welcher mindestens 10% der in Richtung der Drehachse 7 gemessenen Breite b des Zulaufkanals 18 unmittelbar benachbart, z.B. stromab- oder stromauf des ersten strömungsbeeinflussenden Elements 20 beträgt (Fig. 6, 6a). Der erste Abstand h erstreckt sich dabei zwischen der maximalen Ausformung der Ausbuchtung 20a und der ersten Zulaufkanalwand 18b. Zwischen einer Flankenfläche 20b des ersten strömungsbeeinflussenden Element 20 und zumindest einer gegenüberliegenden Zulaufkanalwand (hier z.B. der dritten Zulaufkanalwand 18a, dem Gehäusemantel 5a) ist weiters ein in einer Normalebene ε1 auf die Zulaufkanalwand 18a gemessener zweiter Abstand k ausgebildet ist, welcher mindestens 40% des Durchmessers D des Saugmundes 19 beträgt (Fig. 4). Als Flankenfläche 20b wird hier der Bereich vom Außenrand der Ausbuchtung 20a bzw. des ersten strömungsbeeinflussenden Elements 20 zur maximalen Ausformung z.B. der Ausbuchtung 20a bezeichnet.Measured in the direction of the axis of rotation 7, there is a first distance h between the first flow-influencing element 20 and the opposite first inlet channel wall 18b, which is immediately adjacent, e.g. downstream or upstream of the first flow-influencing element 20 is ( Figures 6, 6a ). The first distance h extends between the maximum shape of the bulge 20a and the first inlet channel wall 18b. Between a flank surface 20b of the first flow-influencing element 20 and at least one opposite inflow duct wall (here, for example, the third inflow duct wall 18a, the housing shell 5a), there is also a second distance k, measured in a normal plane ε 1 on the inflow duct wall 18a, which is at least 40% of the Diameter D of the suction mouth 19 is ( 4 ). The area from the outer edge of the bulge 20a or of the first flow-influencing element 20 to the maximum formation, for example of the bulge 20a, is referred to here as flank surface 20b.

Das erste strömungsbeeinflussende Element 20 ist vom Saugmund 19 beabstandet, (bzw. zwischen Pumpeneintritt 15 und Saugmund 19 angeordnet), wobei ein - in einer Normalebene ε2 auf die Drehachse 7 gemessener - dritter Abstand x zwischen dem ersten strömungsbeeinflussenden Element 20 und dem Saugmund 19 mindestens dem doppelten Durchmesser D des Saugmundes 19 beträgt.The first flow-influencing element 20 is spaced from the suction port 19 (or arranged between the pump inlet 15 and the suction port 19), wherein a third distance x, measured in a normal plane ε 2 to the axis of rotation 7 , between the first flow-influencing element 20 and the suction mouth 19 is at least twice the diameter D of the suction mouth 19 .

Weiters ragt in die Strömung S des Zulaufkanals 18 ein als zweite Ausbuchtung 21a der Kanalwand 18c des Zulaufkanals 18 ausgebildetes zweites strömungsbeeinflussendes Element 21, welches hier ebenfalls durch den Gehäusedeckels 6 geformt ist. Das zweite strömungsbeeinflussende Element 21 weist - in Richtung der Drehachse 7 des Laufrades 8 betrachtet - die Form einer Kreisscheibe auf, deren Durchmesser D21 zumindest dem Nabendurchmesser d des Laufrades 8 entspricht. Insbesondere ist es günstig, wenn der Durchmesser D21b der dem Saugmund 19 zugewandten Kuppe 21b der zweiten Ausbuchtung 21a etwa gleich ist wie der Nabendurchmesser d. Die durch den Gehäuseboden 5b gebildete Zulaufgeometrie zum Laufrad 8 weist im Bereich des Saugmundes 19 einen definierten Radius r zur strömungsgünstigen axialen Umlenkung der radialen Zulaufströmung S auf. Wie in Fig. 6a gezeigt ist, kann der den Saugmund 19 umgebende Bereich des Gehäusebodens 5b einen den radialen Strömungsquerschnitt verengenden ringartigen Wulst 51 ausbilden, welcher zwischen dem umgebenden Ringraum 183 im Außenbereich des zweiten Endes 182 des Zulaufkanals 18 und dem Saugmund 19 angeordnet ist. Der Wulst 51 kann dabei umlaufend ausgebildet sein, oder aber radiale Unterbrechungen oder Vorsprünge aufweisen, welche als zum Saugmund 19 gerichtete radiale Strömungsleitflächen dienen. Der Wulst 51 erhöht die Gestaltungsfreiheit für die äußere Kontur des Gehäuses 5. An Stelle des Wulstes 51 können auch einzelne lokale radiale Eindellungen vorgesehen sein. Selbstverständlich ist es auch möglich, zusätzlich oder an Stelle des Wulstes 51, der Unterbrechungen, Vorsprünge oder Eindellungen radiale Leitrippen 52 oder Leitschaufeln vorzusehen, welche die Strömung aus dem umgebenden Ringraum 183 zum Saugmund 19 führen. Einzelne derartige Leitrippen 52, welche in Fig. 4 nur schematisch angedeutet sind, können gleichmäßig über den Umfang verteilt um den Saugmund 19 angedeutet sein.Furthermore, a second flow-influencing element 21 embodied as a second bulge 21a of the duct wall 18c of the inlet duct 18 protrudes into the flow S of the inlet duct 18 , which element 21 is also formed here by the housing cover 6 . Viewed in the direction of the axis of rotation 7 of the impeller 8 , the second flow-influencing element 21 has the shape of a circular disc whose diameter D 21 corresponds at least to the hub diameter d of the impeller 8 . In particular, it is favorable if the diameter D 21b of the tip 21b of the second bulge 21a facing the suction mouth 19 is approximately the same as the hub diameter d. The inlet geometry formed by the housing base 5b to the impeller 8 has a defined radius r in the area of the suction mouth 19 for the streamlined axial deflection of the radial inlet flow S. As in Figure 6a is shown, the area of the housing base 5b surrounding the suction mouth 19 can form an annular bead 51 narrowing the radial flow cross section, which is arranged between the surrounding annular space 183 in the outer area of the second end 182 of the inlet channel 18 and the suction mouth 19. The bead 51 can be formed circumferentially, or it can have radial interruptions or projections, which serve as radial flow guide surfaces directed towards the suction mouth 19 . The bead 51 increases the design freedom for the outer contour of the housing 5. Instead of the bead 51, individual local radial indentations can also be provided. Of course, it is also possible to provide radial guide ribs 52 or guide vanes, which guide the flow from the surrounding annular space 183 to the suction mouth 19, in addition to or instead of the bead 51, the interruptions, projections or indentations. Individual guide ribs 52 of this type, which 4 are indicated only schematically, can be indicated distributed evenly over the circumference around the suction mouth 19 .

Das erste strömungsbeeinflussende Element 20 ist auch vom zweiten strömungsbeeinflussenden Element 21 beabstandet, wobei der - in einer Normalebene ε2 auf die Drehachse 7 gemessene - vierte Abstand y zwischen dem ersten strömungsbeeinflussenden Element 20 und dem zweiten strömungsbeeinflussenden Element 21 mindestens 40% des Durchmessers D des Saugmundes 19 beträgt (Fig. 6. 6a).The first flow-influencing element 20 is also at a distance from the second flow-influencing element 21, the fourth distance y - measured in a normal plane ε 2 to the axis of rotation 7 - between the first flow-influencing element 20 and the second flow-influencing element 21 being at least 40% of the diameter D of the suction mouth is 19 ( Figure 6.6a ).

Fig. 7 zeigt eine Kühlmittelpumpe ohne zusätzliche Leitflächen. Der Gehäusedeckel ist entfernt, daher sind erste und zweite strömungsbeeinflussende Elemente nicht ersichtlich. Das Laufrad 8 ist durch strichlierte Linien schematisch angedeutet. Die durch die strömungsbeeinflussenden Elemente 20, 21 gebildeten Teilströme Si, S2 strömen entlang des Umfangs des Saugmunds 19. 7 shows a coolant pump without additional guide surfaces. The housing cover is removed, so there are first and second flow-affecting elements not apparent. The impeller 8 is indicated schematically by dashed lines. The partial flows Si, S2 formed by the flow-influencing elements 20, 21 flow along the circumference of the suction mouth 19.

Die in Fig. 8 dargestellte Ausführungsvariante der Erfindung unterscheidet sich von Fig. 7 dadurch, dass im Bereich des saugmundseitigen zweiten Endes 182 des Zulaufkanals 18 zwei voneinander abgewandte und eine Doppelspirale 22 ausbildende Leitwände 22a, 22b auf der dem Pumpeneintritt 15 abgewandten Seite des Saugmundes 19 so angeordnet sind, dass die beiden in Umfangsrichtung beidseits des Saugmundes 19 strömenden Teilströmungen Si, S2 des Kühlmittels zum Saugmund 19 geführt werden. Durch die Doppelspirale 22 wird das tangential am Saugmund 19 des Laufrades 8 vorbeiströmende Kühlmittel in Richtung des Saugmundes 19 umgeleitet. Die Leitwände 22a, 22b sind im Ausführungsbeispiel im Wesentlichen symmetrisch zu einer durch die Längsmittelachse 18'des Zulaufkanals 18 und die Drehachse 7 aufgespannten Ebene ε3 ausgebildet. Die Längsmittelachse 18'kann - in Richtung der Drehachse 7 betrachtet - eine Symmetrieachse des Zulaufkanals 18 ausbilden. Falls ein Eingangsdrall beim Eintritt in den Saugmund 19 gewünscht ist, können die Leitwände 22a, 22b auch asymmetrisch gestaltet sein.In the 8 illustrated embodiment of the invention differs from 7 in that in the region of the second end 182 of the inlet channel 18 on the suction mouth side, two guide walls 22a, 22b that face away from one another and form a double spiral 22 are arranged on the side of the suction mouth 19 that faces away from the pump inlet 15 in such a way that the two partial flows flowing in the circumferential direction on both sides of the suction mouth 19 Si, S 2 of the coolant to the suction port 19 are performed. The coolant flowing tangentially past the suction mouth 19 of the impeller 8 is diverted in the direction of the suction mouth 19 by the double spiral 22 . In the exemplary embodiment, the baffles 22a, 22b are designed essentially symmetrically to a plane ε 3 spanned by the longitudinal center axis 18 ′ of the inlet channel 18 and the axis of rotation 7 . Viewed in the direction of the axis of rotation 7 , the longitudinal central axis 18 ′ can form an axis of symmetry of the inflow channel 18 . If an input twist is desired when entering the suction mouth 19, the guide walls 22a, 22b can also be designed asymmetrically.

Das Kühlmittel wird durch das erste strömungsbeeinflussende Element 20 zuerst in Richtung des Gehäusemantels 5a aufgefächert und danach homogen, also drallfrei oder zumindest drallarm, dem Saugmund 19 im Wesentlichen radial bezüglich der Drehachse 7 zugeführt. Danach strömt es axial, also in Richtung der Drehachse 7, durch den Saugmund 19 in die Schaufelkanäle des Laufrades 8. Das kreissektorförmig gestaltete zweite Ende 182 des Zulaufkanals 18 bildet einen strömungsberuhigenden Sammelraum, in welchem Turbulenzen und Drallkomponenten in der Kühlmittelströmung abgebaut werden.The coolant is first fanned out in the direction of the housing casing 5a by the first flow-influencing element 20 and then fed homogeneously, ie without twisting or at least with little twisting, to the suction mouth 19 essentially radially with respect to the axis of rotation 7 . It then flows axially, i.e. in the direction of the axis of rotation 7, through the suction mouth 19 into the blade channels of the impeller 8. The second end 182 of the inlet channel 18, which is designed in the shape of a sector of a circle, forms a flow-calming collection chamber in which turbulence and swirl components in the coolant flow are reduced.

Die erfindungsgemäße Kühlmittelpumpe 4 ermöglicht sowohl eine Verringerung des Bauraumes in Richtung der Drehachse 7, als auch eine wirkungsgradoptimale homogene Zuführung der Kühlflüssigkeit zum Saugmund 19 des Laufrades 8.The coolant pump 4 according to the invention enables both a reduction in the installation space in the direction of the axis of rotation 7 and an efficient, homogeneous supply of the coolant to the suction mouth 19 of the impeller 8.

Durch die homogene Zuführung des Kühlmittels zum Saugmund 19 wird eine weitgehend drallfreie Anströmung des Laufrades 8 der Kühlmittelpumpe 4 erreicht. Dies ermöglicht wiederum eine gleichförmige Leistung bei unterschiedlichen Betriebsbereichen. Durch die gleichförmige Verteilung der Kühlmittelmasse auf den gesamten Umfang der Wasserpumpengeometrie werden gleichzeitig alle Pumpenschaufeln der Kühlmittelpumpe 4 hinsichtlich Schwingung und Pumpeffizienz im optimalen Bereich betrieben.Due to the homogeneous supply of the coolant to the suction port 19, a largely swirl-free flow onto the impeller 8 of the coolant pump 4 is achieved. This in turn allows for consistent performance across different operating regimes. Due to the uniform distribution of the coolant mass over the entire circumference of the water pump geometry, all pump blades of the coolant pump 4 are operated in the optimum range with regard to vibration and pumping efficiency.

Claims (12)

  1. Coolant pump (4) for an internal combustion engine (1), having a housing (5) which has a housing cover (6) and in which an impeller (8) is arranged which can rotate about an axis of rotation (7) and which has a suction orifice (19) coaxial with the axis of rotation (7), wherein the housing (5) forms at least one intake channel (18) designed substantially normal to the axis of rotation (7), in order to guide coolant from a lateral pump inlet (15), which is spaced apart from the axis of rotation (7), to the suction orifice (19), and wherein the intake channel (18) has at least one flow-influencing element (20, 21), wherein the at least one flow-influencing element (20, 21) is arranged in the region of a longitudinal central axis (18') of the intake channel (18), which longitudinal central axis (18') is designed to extend normal to the axis of rotation (7) and/or through the axis of rotation (7), wherein at least one first flow-influencing element (20) is arranged in the intake channel (18) between the pump inlet (15) and the suction orifice (19), and wherein at least one second flow-influencing element (21) is arranged in the intake channel (18) in the region of the suction orifice (19), wherein the second flow-influencing element (21) is of rotationally symmetrical design and is arranged coaxially with respect to the axis of rotation (7), characterised in that at least one flow-influencing element (20, 21) is formed by a bulge (20a, 21a), projecting in the direction of the axis of rotation (7) into the intake channel (18), of an intake channel wall (18c).
  2. Coolant pump (4) according to claim 1, characterised in that at least one flow-influencing element (20, 21) is formed symmetrically with respect to the longitudinal central axis (18') of the intake channel (18).
  3. Coolant pump (4) according to claim 1 or 2, characterised in that, as viewed in the direction of the axis of rotation (7), the second flow-influencing element (21) has the shape of a circle, wherein the diameter (D21) of the circle preferably corresponds to at least one hub diameter (d) of the impeller (8).
  4. Coolant pump (4) according to one of the claims 1 to 3, characterised in that, as viewed in a sectional plane (ε3) spanned by the axis of rotation (7) and the longitudinal central axis (18') of the intake channel (18), a first smallest distance (h), as measured in a direction parallel to the axis of rotation (7) is formed between the first flow-influencing element (20) and the opposite intake channel wall (18b), which is preferably at least 10% of the width (b), as measured in a direction parallel to the axis of rotation (7), of the intake channel (18) immediately adjacent to the first flow-influencing element (20).
  5. Coolant pump (4) according to claim 4, characterised in that, as viewed in a normal plane (ε2) to the axis of rotation (7), between a flank surface (20b) of the first flow-influencing element (20) and at least one opposite intake channel wall (18a) there is formed a second smallest distance (k), as measured in a normal plane (ε1) to the intake channel wall (18a), which is preferably at least 40% of the diameter (d) of the suction orifice (19).
  6. Coolant pump (4) according to one of claims 1 to 5, characterised in that the first flow-influencing element (20) is spaced from the suction orifice (19) and/or from the second flow-influencing element (21).
  7. Coolant pump (4) according to one of claims 1 to 6, characterised in that a third smallest distance (x) between the first flow-influencing element (20) and the suction orifice (19) in a normal plane (ε2) to the axis of rotation (7) is at least twice the diameter (d) of the suction orifice (19).
  8. Coolant pump (4) according to one of claims 1 to 7, characterised in that, as measured in a normal plane (ε2) to the axis of rotation (7), a fourth smallest distance (y) between a first flow-influencing element (20) and a second flow-influencing element (21) is at least 40% of the diameter (d) of the suction orifice (19).
  9. Coolant pump (4) according to one of claims 1 to 8, characterised in that at least one guide wall (22a, 22b) directing the coolant in the direction of the suction orifice (19) is arranged in the intake channel (18).
  10. Coolant pump (4) according to claim 9, characterised in that two guide walls (22a, 22b) facing away from one another form a double spiral (22) and are arranged on the side of the suction orifice (19) facing away from the pump inlet (15), preferably essentially symmetrically with respect to a plane (ε3) spanned by the longitudinal central axis (18') of the intake channel (18) and the axis of rotation (7) of the impeller (8).
  11. Coolant pump (4) according to one of the claims 1 to 10, characterised in that the intake channel (18) has a flow cross-section widening between an intake-side first end (181) and a suction-orifice-side second end (182).
  12. Coolant pump (4) according to claim 11, characterised in that the suction-orifice-side second end (182) of the intake channel (18) is designed as a circular sector (182') with the same axis as the suction orifice (19), wherein the circular sector (182') preferably extends through an angle (α) of approximately 180°.
EP16736764.8A 2015-05-07 2016-05-09 Coolant pump for an internal combustion engine Active EP3292311B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50375/2015A AT517125B1 (en) 2015-05-07 2015-05-07 COOLANT PUMP FOR A COMBUSTION ENGINE
PCT/AT2016/050133 WO2016176712A1 (en) 2015-05-07 2016-05-09 Coolant pump for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP3292311A1 EP3292311A1 (en) 2018-03-14
EP3292311B1 true EP3292311B1 (en) 2022-08-03

Family

ID=56403914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16736764.8A Active EP3292311B1 (en) 2015-05-07 2016-05-09 Coolant pump for an internal combustion engine

Country Status (3)

Country Link
EP (1) EP3292311B1 (en)
AT (1) AT517125B1 (en)
WO (1) WO2016176712A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3055151B1 (en) * 2016-08-16 2019-07-19 Renault S.A.S CLOSURE ELEMENT FOR A HOUSING OF A HEAT PUMP PUMP INCLUDED IN A MOTOR
FR3093135B1 (en) * 2019-02-26 2022-07-08 Renault Sas Heat engine comprising a heat transfer fluid pump
DE102020116359A1 (en) 2020-06-22 2021-12-23 Man Truck & Bus Se Device for conveying a coolant

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB180823A (en) * 1921-03-31 1922-06-08 George Ure Reid Improvements in centrifugal pumps
DE19510812A1 (en) * 1995-03-24 1996-09-26 Klein Schanzlin & Becker Ag Centrifugal pump
JP3684859B2 (en) * 1998-09-11 2005-08-17 いすゞ自動車株式会社 Engine cooling system with suction pipe
DE102007048019A1 (en) * 2007-10-06 2009-04-09 Bayerische Motoren Werke Aktiengesellschaft Liquid pump i.e. coolant pump, for internal-combustion engine, has radially inward projecting flow guide rib aligned towards rotation axis and provided in housing and/or section of suction pipe that is adjoined to transport wheel
CN101782081A (en) 2009-01-16 2010-07-21 湖北飞剑泵业有限公司 High-efficiency semi-spiral water absorption chamber internal-combustion engine cooling water pump
CN201771822U (en) * 2010-08-23 2011-03-23 湖北飞剑泵业有限公司 Through equal-spoke pulley water pump
DE102010054084B4 (en) * 2010-12-10 2023-04-06 Volkswagen Aktiengesellschaft coolant pump
CN202117753U (en) * 2011-07-05 2012-01-18 浙江三工汽车零部件有限公司 Automobile water pump assembly with sleeved impeller
CN103267018A (en) 2013-06-03 2013-08-28 高邮市高农机械配件有限公司 Internal combustion engine cooling water pump water suction chamber runner
CN103541803A (en) * 2013-11-01 2014-01-29 湖北飞剑泵业有限公司 Flow temperature-controlling internal combustion engine cooling water pump

Also Published As

Publication number Publication date
EP3292311A1 (en) 2018-03-14
WO2016176712A1 (en) 2016-11-10
AT517125B1 (en) 2019-07-15
AT517125A1 (en) 2016-11-15

Similar Documents

Publication Publication Date Title
DE60125267T2 (en) Method and device for expanding the operating area of a centrifugal compressor
EP1778953B1 (en) Exhaust turbine cleaning device
DE102012015449A1 (en) Gas turbine combustion chamber with mixed air openings and air guide elements in a modular design
EP2800892B1 (en) Mixing valve
DE112016006410B4 (en) CENTRIFUGAL COMPRESSOR
DE112016000888T5 (en) Twin screw mixing system
EP2495425A2 (en) Jet engine device with a bypass flow channel
EP3292311B1 (en) Coolant pump for an internal combustion engine
DE112014005001T5 (en) Centrifugal compressor and turbocharger
WO2018095633A1 (en) Diagonal fan
EP3009682A1 (en) Axial fan having outer and inner diffuser
DE102008053144B4 (en) Cooking appliance with fan arrangement
DE10024741B4 (en) Side channel pump
EP3303845B1 (en) Self-priming pump assembly
EP2225467B1 (en) Swirl-generating apparatus and turbocharger with such a swirl-generating apparatus
DE112017005661T5 (en) Variable nozzle unit and turbocharger
DE102015014900A1 (en) Radial turbine housing
DE102010044483B4 (en) Flower mixer and turbomachine with such a flower mixer
EP2513483B1 (en) Fuel pump
DE102018120126A1 (en) Double-flow turbocharger
DE4340011A1 (en) Peripheral pump supplying fuel to vehicle IC engine
EP2960481A1 (en) Mixing device for charge air supply and exhaust gas recirculation
EP3023592A1 (en) Diffuser of a thermal energy machine and thermal energy machine
DE202018101699U1 (en) Turbine with adjusting ring
DE102012015452A1 (en) Gas turbine combustion chamber wall for gas turbine engine, has mixed air openings formed by tubular air guide elements, which are fastened at wall and penetrate shingles arranged at inner side of wall

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210303

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220406

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1508959

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016015137

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016015137

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

26N No opposition filed

Effective date: 20230504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230509

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240522

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240517

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1508959

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240522

Year of fee payment: 9