EP3292311A1 - Coolant pump for an internal combustion engine - Google Patents

Coolant pump for an internal combustion engine

Info

Publication number
EP3292311A1
EP3292311A1 EP16736764.8A EP16736764A EP3292311A1 EP 3292311 A1 EP3292311 A1 EP 3292311A1 EP 16736764 A EP16736764 A EP 16736764A EP 3292311 A1 EP3292311 A1 EP 3292311A1
Authority
EP
European Patent Office
Prior art keywords
flow
axis
rotation
inlet channel
influencing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16736764.8A
Other languages
German (de)
French (fr)
Other versions
EP3292311B1 (en
Inventor
Robert Pöschl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVL List GmbH
Original Assignee
AVL List GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVL List GmbH filed Critical AVL List GmbH
Publication of EP3292311A1 publication Critical patent/EP3292311A1/en
Application granted granted Critical
Publication of EP3292311B1 publication Critical patent/EP3292311B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • F04D15/0022Control, e.g. regulation, of pumps, pumping installations or systems by using valves throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4293Details of fluid inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers

Definitions

  • the invention relates to a coolant pump for an internal combustion engine, having a housing cover having a housing, in which a rotatable about a rotation axis impeller is arranged, which coaxially to the axis of rotation has a suction port, wherein the housing forms at least one substantially normal to the rotational axis formed inlet channel to Lead coolant from one of the rotational axis spaced side pump inlet to the suction port, wherein the inlet channel has at least one flow-influencing element.
  • Coolant pumps are usually attached to the front side of internal combustion engines and equipped with cantilever feed channels to the wheels in order to achieve the most homogeneous possible flow of the wheels and good efficiencies.
  • the drive takes place, for example mechanically via a traction means by a crankshaft or a camshaft.
  • Extensive inlet channels have the disadvantage that in the direction of the axis of rotation of the impeller of the coolant pump relatively much space is needed.
  • the publications CN 101 782 081 A and CN 103 267 018 A each disclose a coolant pump with a lateral pump inlet, wherein between the pump inlet and the suction port of the impeller of the coolant pump is formed a substantially in a normal plane extending on the axis of rotation of the impeller inlet channel.
  • a flow-influencing element formed by a guide rib is provided in the region of the suction mouth.
  • the object of the invention is to develop a coolant pump, which on the one hand requires little space and on the other hand allows a homogeneous flow of the impeller.
  • At least one flow-influencing element is arranged in the region of a longitudinal central axis of the inlet channel, which is preferably designed to run normally on the axis of rotation and / or through the axis of rotation.
  • the at least one flow-influencing element which is designed for example as a cross-sectional reduction device, flow dividing device or flow homogenizing device, the flow in Feed channel evenly distributed over the entire available flow cross section.
  • a homogeneous, uniform flow of the suction and high-efficiency operation of the impeller is achieved.
  • only a small extension of the water pump in the axial direction of an internal combustion engine is possible in the assembled state, whereby space can be saved.
  • At least one flow-influencing element is formed symmetrically to the longitudinal center axis of the inlet channel.
  • a particularly good homogenization of the flow can be achieved if at least one first flow-influencing element is arranged in the inlet channel between the pump inlet and the suction mouth.
  • the first flow-influencing element can have, for example-viewed in the direction of the axis of rotation-the shape of a flow divider or an arrowhead facing the flow direction.
  • the first flow-influencing element arranged in the region of the longitudinal central axis homogenizes the flow through the inlet channel by passing a portion of the coolant flow drawn in through the pump inlet from the region of the longitudinal central axis to the remote outer channel walls.
  • the shape of the flow divider or the arrowhead favors this flow guidance.
  • the first flow-influencing element thus has the task of achieving a fanning of the main flow, so that a part of the flow is forced outwards and divided around the circumference of the suction mouth.
  • a second flow-influencing element is arranged in the inlet channel in the region of the suction mouth of the impeller.
  • the second flow-influencing element is preferably rotationally symmetrical and arranged coaxially with the axis of rotation.
  • the second flow-influencing element may have the shape of a circle whose diameter preferably corresponds to at least one hub diameter of the impeller and / or at least the diameter of the suction mouth.
  • the flow-influencing element protrudes into the inlet channel as a circular disc lying opposite the suction mouth.
  • the Running channel ends outside of the circular disc in an annular opening to an opening angle of more than 180 ° extending annular channel which is fluidly connected in the radial direction with the suction port via an annular gap formed by the second flow-influencing element.
  • the annular gap is formed by the distance between the second flow-influencing element and the suction mouth.
  • the inlet channel has at least one first inlet channel wall which includes access to the suction mouth and a second inlet channel wall which runs opposite the first inlet channel wall and a third inlet channel wall which connects the first and the second inlet channel wall.
  • a particularly effective and simple embodiment of the invention provides that at least one flow-influencing element is formed by a bulge of an inlet channel wall projecting into the inlet channel in the direction of the axis of rotation.
  • this is the first or second inlet channel wall, wherein preferably the bulge is formed by the housing, particularly preferably by the housing cover.
  • the second inlet channel wall is part of the housing cover.
  • the first flow-influencing element may be formed by a first bulge and the second flow-influencing element by a second bulge.
  • a flank surface of the first flow-influencing element or the outer edge of the bulge to the maximum formation of the bulge
  • at least one opposite inlet channel wall eg, the first and second An inlet channel connecting third inlet channel wall
  • the inlet opening in the impeller of the coolant pump - so at least one flow-influencing element is provided.
  • This flow-influencing element can be considered in the flow be executed in the inlet channel protruding bulge or indentation, which reduces the flow in direct connection - but are also possible two or more such bulges or dents.
  • the aim is to create a flow resistance and to distribute the flow of the coolant pump from one side to the entire circumference.
  • the indentation or bulge of the first flow-influencing element preferably does not extend all the way to the opposite channel wall of the inlet channel, but can also be underflowed, wherein between the bulge and the opposite channel wall, a first smallest distance is formed.
  • This first distance below the bulge of the remaining inlet channel is related to the second smallest distance which is measured in a projection in the direction of the axis of rotation on a normal plane of the axis of rotation between the first bulge and the suction mouth of the impeller: the smaller the first distance, the larger the second distance must be in order to allow after the underflow of the first bulge, a convergence of the coolant and a uniform flow around the suction mouth of the impeller.
  • the housing over the suction mouth of the impeller may have a designed as a circular bulge second Strömungsbeeinlendes element which causes a deflection of the cooling liquid in the direction of the impeller. If the second flow-influencing element has a diameter corresponding to the hub diameter of the impeller, a particularly good and largely swirl-free inflow of the impeller of the coolant pump can be achieved.
  • flow-influencing guide walls for example baffles, guide ribs or the like, may be provided in the flow path, which supply the flow to the suction mouth in a targeted manner.
  • baffles can be arranged in a variant of the invention also directly on the edge of the suction mouth.
  • at least one guide wall can be arranged directly in the region of the circumference of the suction mouth of the impeller and be formed straight or slightly helical in order to achieve a corresponding deflection of the cooling liquid.
  • at least one guide wall can also be arranged in the region between the suction mouth and the pump inlet in the inlet channel.
  • two guide walls facing away from one another form a double spiral and are arranged on the side of the suction mouth facing away from the pump inlet such that the two partial flows of the coolant flowing to the suction mouth in the circumferential direction on both sides of the suction mouth are particularly favorable be guided.
  • the double spiral diverts the coolant, which flows tangentially past the suction mouth of the impeller, in the direction of the suction mouth.
  • this double spiral can be embodied substantially symmetrically with respect to a plane spanned by the longitudinal central axis of the inlet channel and the axis of rotation or asymmetrically.
  • the coolant is first fanned out by the first flow-influencing element in the direction of the jacket of the housing and then radially, so twist-free fed radially to the suction mouth before it flows axially through the suction mouth in the blade channels of the impeller.
  • the inlet channel has a flow cross-section extending widening between an inlet-side first end and a suction-mouth-side second end. The flow cross-section thus increases steadily or continuously from the pump inlet to the suction mouth. Due to the widening cross section, the flow velocity is reduced, which supports the homogenization of the flow.
  • a particularly uniform inflow to the suction mouth can be achieved if - viewed in the direction of the rotation axis - the suction mouth side second end of the inlet channel is designed as a circular sector concentric with the suction mouth, preferably extending the circular sector by an angle of about 180 °.
  • the circular sector-shaped second end of the inlet channel forms a flow-calming collecting space in which turbulence and swirl components in the coolant flow are reduced.
  • the invention allows both a reduction in the axial extent of the coolant pump, as well as an optimal efficiency homogenous supply of the cooling liquid to the suction mouth of the impeller. Since the supply of the cooling liquid is not carried out in the direction of the axis of rotation, but normal thereto, smaller space requirements can be met.
  • Show in it 1 shows a part of an internal combustion engine with a coolant pump according to the invention in an oblique view
  • FIGS. 1 and 2 shows the drive of the coolant pump of FIGS. 1 and 2
  • Fig. 1 shows an internal combustion engine 1 with a cylinder head 2 and a cylinder block 3.
  • coolant pump 4 On the front side of the cylinder head 2 designed as a radial pump according to the invention coolant pump 4 is attached.
  • the coolant pump 4 has a housing 5 with a housing cover 6, in which an impeller 8 designed as a radial impeller or semi-axial impeller and arranged rotatably about a rotation axis 7 is arranged.
  • the drive 13 of the impeller shaft 9 of the impeller 8 takes place in the present case by a camshaft 10 via a toothed belt 11, as shown in FIG. 3 can be seen.
  • Reference numeral 12 denotes the cover of the drive.
  • the coolant flows via a feed line 14 into the pump inlet 15, and flows through the coolant pump 4 and is conveyed by the latter through an overflow channel 16 into the cylinder head 2.
  • a thermostatic valve can be arranged in the region of the pump inlet 15. After flowing through the cooling chambers of the cylinder head 2, not shown, the coolant leaves the cylinder head 2 via a drain 17 and is directed to a not further illustrated radiator.
  • the housing 5 of the coolant pump 4 forms an inlet channel 18 which extends at least between the pump inlet 15 and the suction mouth 19 of the Impeller 8 extends.
  • the inlet channel walls 18a, 18b, 18c of the inlet channel 18 in this case have access to the suction mouth 19 comprehensive first inlet channel wall 18b, one of the first inlet channel wall opposite extending second inlet channel wall 18c and the first 18b and second inlet channel wall 18c connecting third inlet channel wall 18a.
  • These are formed by the housing jacket 5a, by the housing bottom 5b (third inlet channel wall 18a) and by the housing cover 6 (second inlet channel wall 18c).
  • the flow cross-section of the inlet channel 18 expands (or continuously continuously).
  • the suction-mouth-side second end 182 of the inlet channel 18 is designed as a circular sector 182 ' concentric with the suction mouth 19, which circular sector 182 ' extends through an angle ⁇ of approximately 180 °, as can be clearly seen in FIG.
  • a first flow-influencing element 20 formed by a first protrusion 20a of the second inlet channel wall 18c of the housing cover 6 is formed, which - viewed in the direction of the rotation axis 7 - substantially the shape of a counter to the coolant flow S in the inlet channel 18 directed arrowhead.
  • the first bulge 20a is formed by the housing cover 6 in the exemplary embodiments.
  • a first distance h is measured, measured in the direction of the axis of rotation 7, which at least 10% of the width b of the inlet channel 18 measured in the direction of the axis of rotation 7 is immediately adjacent, e.g. downstream or upstream of the first flow influencing element 20 ( Figures 6, 6a).
  • the first distance h extends between the maximum shape of the bulge 20a and the first inlet channel wall 18b.
  • a flank surface 20b of the first flow-influencing element 20 and at least one opposite inflow channel wall is further in a normal plane ⁇ .
  • the inlet channel wall 18a measured second distance k, which is at least 40% of the diameter D of the suction mouth 19 (Fig. 4).
  • the flank surface 20b the region from the outer edge of the bulge 20a or the first flow-influencing element 20 for maximum formation is e.g. the bulge 20a.
  • the first flow-influencing element 20 is at a distance from the suction mouth 19 (or arranged between the pump inlet 15 and the suction mouth 19), where at a - measured in a normal plane ⁇ 2 on the axis of rotation 7 - third distance x between the first flow-influencing element 20 and the suction mouth 19 at least twice the diameter D of the suction mouth 19.
  • the second flow-influencing element 21 has - viewed in the direction of the axis of rotation 7 of the impeller 8 - the shape of a circular disc whose diameter D 2 i at least the hub diameter d of the impeller 8 corresponds. In particular, it is favorable if the diameter D 2 ib of the dome 19 facing the dome 21 b of the second bulge 21 a is about the same as the hub diameter d.
  • the inlet geometry formed by the housing bottom 5b to the impeller 8 has in the region of the suction mouth 19 a defined radius r for the flow-favorable axial deflection of the radial inlet flow S.
  • the region of the housing bottom 5 b surrounding the suction mouth 19 can form an annular bead 51 narrowing the radial flow cross-section, which is arranged between the surrounding annular space 183 in the outer region of the second end 182 of the inlet channel 18 and the suction mouth 19.
  • the bead 51 may be formed circumferentially, or have radial interruptions or projections, which serve as the suction port 19 directed radial flow guide.
  • the bead 51 increases the freedom of design for the outer contour of the housing 5.
  • the interruptions, projections or indentations provide radial guide ribs 52 or vanes, which guide the flow from the surrounding annular space 183 to the suction port 19.
  • Individual such guide ribs 52 which are indicated only schematically in FIG. 4, can be distributed uniformly around the circumference around the suction mouth 19.
  • the first flow-influencing element 20 is also at a distance from the second flow-influencing element 21, wherein the fourth distance y between the first flow-influencing element 20 and the second flow-influencing element 21, measured in a normal plane ⁇ 2 on the axis of rotation 7, amounts to at least 40%.
  • the diameter D of the suction mouth 19 is (Fig. 6. 6a).
  • Fig. 7 shows a coolant pump without additional guide surfaces.
  • the housing cover is removed, therefore, first and second flow influencing elements not apparent.
  • the impeller 8 is indicated schematically by dashed lines.
  • the partial flows Si, S 2 formed by the flow-influencing elements 20, 21 flow along the circumference of the suction mouth 19.
  • FIG. 8 differs from FIG. 7 in that in the area of the suction mouth-side second end 182 of the inlet channel 18, two guide walls 22a, 22b facing away from one another and forming a double spiral 22 on the side of the suction mouth 19 facing away from the pump inlet 15 are arranged so that the two in the circumferential direction on both sides of the suction mouth 19 flowing partial flows Si, S 2 of the coolant to the suction port 19 are performed.
  • the double spiral 22 the tangentially flowing past the suction mouth 19 of the impeller 8 coolant in the direction of the suction mouth 19 is redirected.
  • the baffles 22a, 22b are formed in the embodiment substantially symmetrical to a plane defined by the longitudinal central axis 18 'of the inlet channel 18 and the axis of rotation 7 ⁇ 3 .
  • the longitudinal central axis 18 ' can - viewed in the direction of the axis of rotation 7 - form an axis of symmetry of the inlet channel 18. If an input twist is desired on entering the suction mouth 19, the guide walls 22a, 22b may also be designed asymmetrically.
  • the coolant is first fanned out by the first flow-influencing element 20 in the direction of the housing jacket 5a and then supplied to the suction mouth 19 substantially radially with respect to the axis of rotation 7, ie homogeneously, ie without swirling or at least with little twist. Thereafter, it flows axially, ie in the direction of the axis of rotation 7, through the suction mouth 19 into the blade channels of the rotor 8.
  • the circular sector-shaped second end 182 of the inlet channel 18 forms a flow-calming collecting space in which turbulence and swirl components in the coolant flow are reduced.
  • the coolant pump 4 allows both a reduction of the installation space in the direction of the axis of rotation 7, as well as an optimal homogeneous homogenous supply of the cooling liquid to the suction port 19 of the impeller eighth

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The invention relates to a coolant pump (4) for an internal combustion engine (1), having a housing (5) which has a housing cover (6) and in which an impeller (8) is arranged which is rotatable about an axis of rotation (7) and has a suction nozzle (19). The housing (5) forms at least one intake channel (18) substantially normal with respect to the axis of rotation (7), in order to guide coolant from a lateral pump inlet (15) spaced apart from the rotary shaft (7) to the suction nozzle (19), wherein the intake channel (18) has at least one element (20, 21) which influences the flow. In order to take up very little installation space and to enable a homogeneous flow onto the impeller, according to the invention the at least one element (20, 21) which influences the flow - viewed in the direction of the axis of rotation (7) - is arranged in the region of a longitudinal central axis (18') of the intake channel (18) preferably normal with respect to the axis of rotation (7) and/or extending through the axis of rotation (7).

Description

Kühlmittelpumpe für eine Brennkraftmaschine  Coolant pump for an internal combustion engine
Die Erfindung betrifft eine Kühlmittelpumpe für eine Brennkraftmaschine, mit einem einen Gehäusedeckel aufweisenden Gehäuse, in welchem ein um eine Drehachse drehbares Laufrad angeordnet ist, welches koaxial zur Drehachse einen Saugmund aufweist, wobei das Gehäuse zumindest einen im Wesentlichen normal zur Drehachse ausgebildeten Zulaufkanal ausbildet, um Kühlmittel von einem von der Drehachse beabstandeten seitlichen Pumpeneintritt zum Saugmund zu führen, wobei der Zulaufkanal zumindest ein Strömungsbeeinflussendes Element aufweist. The invention relates to a coolant pump for an internal combustion engine, having a housing cover having a housing, in which a rotatable about a rotation axis impeller is arranged, which coaxially to the axis of rotation has a suction port, wherein the housing forms at least one substantially normal to the rotational axis formed inlet channel to Lead coolant from one of the rotational axis spaced side pump inlet to the suction port, wherein the inlet channel has at least one flow-influencing element.
Kühlmittelpumpen sind üblicherweise stirnseitig an Brennkraftmaschinen befestigt und mit ausladenden Zulaufkanälen zu den Laufrädern ausgestattet, um eine möglichst homogene Anströmung der Laufräder und gute Wirkungsgrade zu verwirklichen. Der Antrieb erfolgt beispielsweise mechanisch über ein Zugmittel durch eine Kurbelwelle oder eine Nockenwelle. Ausladende Zulaufkanäle haben den Nachteil, dass in Richtung der Drehachse des Laufrades der Kühlmittelpumpe relativ viel Bauraum benötigt wird. Coolant pumps are usually attached to the front side of internal combustion engines and equipped with cantilever feed channels to the wheels in order to achieve the most homogeneous possible flow of the wheels and good efficiencies. The drive takes place, for example mechanically via a traction means by a crankshaft or a camshaft. Extensive inlet channels have the disadvantage that in the direction of the axis of rotation of the impeller of the coolant pump relatively much space is needed.
Die Druckschriften CN 101 782 081 A und CN 103 267 018 A offenbaren jeweils eine Kühlmittelpumpe mit einem seitlichen Pumpeneintritt, wobei zwischen dem Pumpeneintritt und dem Saugmund des Laufrades der Kühlmittelpumpe ein im Wesentlichen in einer Normalebene auf die Drehachse des Laufrades verlaufender Zulaufkanal ausgebildet ist. Dabei ist im Bereich des Saugmundes ein durch eine Leitrippe gebildetes Strömungsbeeinflussendes Element vorgesehen. Derartige Pumpen weisen zwar eine geringere axiale Erstreckung auf, allerdings ist eine homogene Anströmung der Laufräder nicht gewährleistet. The publications CN 101 782 081 A and CN 103 267 018 A each disclose a coolant pump with a lateral pump inlet, wherein between the pump inlet and the suction port of the impeller of the coolant pump is formed a substantially in a normal plane extending on the axis of rotation of the impeller inlet channel. In this case, a flow-influencing element formed by a guide rib is provided in the region of the suction mouth. Although such pumps have a smaller axial extent, but a homogeneous flow of the wheels is not guaranteed.
Aufgabe der Erfindung ist es, eine Kühlmittelpumpe zu entwickeln, welche einerseits wenig Bauraum benötigt und andererseits eine homogene Anströmung des Laufrades ermöglicht. The object of the invention is to develop a coolant pump, which on the one hand requires little space and on the other hand allows a homogeneous flow of the impeller.
Erfindungsgemäß wird dies dadurch erreicht, dass zumindest ein Strömungsbeeinflussendes Element im Bereich einer vorzugsweise normal auf die Drehachse und/oder durch die Drehachse verlaufend ausgebildeten Längsmittelachse des Zulaufkanales angeordnet ist. According to the invention, this is achieved in that at least one flow-influencing element is arranged in the region of a longitudinal central axis of the inlet channel, which is preferably designed to run normally on the axis of rotation and / or through the axis of rotation.
Durch das zumindest eine Strömungsbeeinflussende Element, das beispielsweise als Querschnittsverminderungseinrichtung, Strömungsteilungseinrichtung oder Strömungshomogenisierungseinrichtung ausgeführt ist, wird die Strömung im Zulaufkanal über den gesamten verfügbaren Strömungsquerschnitt gleichmäßig verteilt. Dadurch wird eine homogene, gleichförmige Anströmung des Saugmundes und hocheffizienter Betrieb des Laufrades erreicht. Gleichzeitig wird im montierten Zustand eine nur geringe Erstreckung der Wasserpumpe in axialer Richtung eines Verbrennungsmotors ermöglicht, wodurch Bauraum eingespart werden kann. By the at least one flow-influencing element, which is designed for example as a cross-sectional reduction device, flow dividing device or flow homogenizing device, the flow in Feed channel evenly distributed over the entire available flow cross section. As a result, a homogeneous, uniform flow of the suction and high-efficiency operation of the impeller is achieved. At the same time only a small extension of the water pump in the axial direction of an internal combustion engine is possible in the assembled state, whereby space can be saved.
Dabei ist es vorteilhaft, wenn - in Richtung der Drehachse betrachtet - zumindest ein Strömungsbeeinflussendes Element symmetrisch zur Längsmittelachse des Zulaufkanals ausgebildet ist. It is advantageous if - viewed in the direction of the axis of rotation - at least one flow-influencing element is formed symmetrically to the longitudinal center axis of the inlet channel.
Eine besonders gute Homogenisierung der Strömung lässt sich erreichen, wenn zumindest ein erstes Strömungsbeeinflussendes Element im Zulaufkanal zwischen dem Pumpeneintritt und dem Saugmund angeordnet ist. Das erste strö- mungsbeeinflussende Element kann dabei beispielsweise - in Richtung der Drehachse betrachtet - die Form eines Strömungsteilers oder einer entgegen der Strömungsrichtung gewandten Pfeilspitze aufweisen. In einer Variante der Erfindung ist auch eine Ausführung mit zwei nebeneinander angeordneten Pfeil- oder Strömungsteilelementen, die symmetrisch zur Längsmittelachse angeordnet sind, möglich A particularly good homogenization of the flow can be achieved if at least one first flow-influencing element is arranged in the inlet channel between the pump inlet and the suction mouth. In this case, the first flow-influencing element can have, for example-viewed in the direction of the axis of rotation-the shape of a flow divider or an arrowhead facing the flow direction. In a variant of the invention, an embodiment with two juxtaposed arrow or flow sub-elements, which are arranged symmetrically to the longitudinal center axis, possible
Das im Bereich der Längsmittelachse angeordnete erste strömungsbeeinflussen- de Element homogenisiert die Strömung durch den Zulaufkanal, indem ein Teil der durch den Pumpeneintritt angesaugten Kühlmittelströmung aus dem Bereich der Längsmittelachse zu den entfernten äußeren Kanalwänden geleitet wird. Die Form des Strömungsteilers oder der Pfeilspitze begünstigt diese Strömungsführung. The first flow-influencing element arranged in the region of the longitudinal central axis homogenizes the flow through the inlet channel by passing a portion of the coolant flow drawn in through the pump inlet from the region of the longitudinal central axis to the remote outer channel walls. The shape of the flow divider or the arrowhead favors this flow guidance.
Das erste Strömungsbeeinflussende Element hat also die Aufgabe, eine Auffächerung der Hauptströmung zu erreichen, sodass ein Teil der Strömung nach außen gedrängt und um den Umfang des Saugmundes aufgeteilt wird. The first flow-influencing element thus has the task of achieving a fanning of the main flow, so that a part of the flow is forced outwards and divided around the circumference of the suction mouth.
In einer vorteilhaften Ausführungsvariante der Erfindung ist weiters vorgesehen, dass ein zweites Strömungsbeeinflussendes Element im Zulaufkanal im Bereich des Saugmundes des Laufrades angeordnet ist. Das zweite strömungsbeeinflus- sende Element ist bevorzugt drehsymmetrisch ausgebildet und koaxial zur Drehachse angeordnet. Beispielsweise kann das zweite Strömungsbeeinflussende Element - in Richtung der Drehachse des Laufrades betrachtet die Form eines Kreises aufweisen, dessen Durchmesser vorzugsweise mindestens einem Nabendurchmesser des Laufrades und/oder mindestens dem Durchmesser des Saugmundes entspricht. Das Strömungsbeeinflussende Element ragt als eine dem Saugmund gegenüberliegende Kreisscheibe in den Zulaufkanal hinein. Der Zu- laufkanal endet außerhalb der Kreisscheibe in einen sich um einen Öffnungswinkel von mehr 180° erstreckenden Ringkanal, welcher in radialer Richtung mit dem Saugmund über einen durch das zweite Strömungsbeeinflussende Element gebildeten Ringspalt strömungsverbunden ist. Der Ringspalt wird dabei durch den Abstand zwischen dem zweiten Strömungsbeeinflussenden Element und dem Saugmund gebildet. In an advantageous embodiment of the invention it is further provided that a second flow-influencing element is arranged in the inlet channel in the region of the suction mouth of the impeller. The second flow-influencing element is preferably rotationally symmetrical and arranged coaxially with the axis of rotation. For example, viewed in the direction of the rotational axis of the impeller, the second flow-influencing element may have the shape of a circle whose diameter preferably corresponds to at least one hub diameter of the impeller and / or at least the diameter of the suction mouth. The flow-influencing element protrudes into the inlet channel as a circular disc lying opposite the suction mouth. The Running channel ends outside of the circular disc in an annular opening to an opening angle of more than 180 ° extending annular channel which is fluidly connected in the radial direction with the suction port via an annular gap formed by the second flow-influencing element. The annular gap is formed by the distance between the second flow-influencing element and the suction mouth.
Der Zulaufkanal weist zumindest eine den Zugang zum Saugmund umfassende erste Zulaufkanalwand und eine der ersten Zulaufkanalwand gegenüberliegend verlaufende zweite Zulaufkanalwand und eine die erste und die zweite Zulaufkanalwand verbindende dritte Zulaufkanalwand auf. The inlet channel has at least one first inlet channel wall which includes access to the suction mouth and a second inlet channel wall which runs opposite the first inlet channel wall and a third inlet channel wall which connects the first and the second inlet channel wall.
Eine besonders effektive und einfache Ausführung der Erfindung sieht vor, dass zumindest ein Strömungsbeeinflussendes Element durch eine in Richtung der Drehachse in den Zulaufkanal hineinragende Ausbuchtung einer Zulaufkanalwand gebildet ist. Günstigerweise handelt es sich dabei um die erste oder zweite Zulaufkanalwand, wobei vorzugsweise die Ausbuchtung durch das Gehäuse, besonders vorzugsweise durch den Gehäusedeckels gebildet ist. Die zweite Zulaufkanalwand ist dabei Teil des Gehäusedeckels. Das erste Strömungsbeeinflussende Element kann dabei durch eine erste Ausbuchtung und das zweite Strömungsbeeinflussende Element durch eine zweite Ausbuchtung gebildet sein. A particularly effective and simple embodiment of the invention provides that at least one flow-influencing element is formed by a bulge of an inlet channel wall projecting into the inlet channel in the direction of the axis of rotation. Conveniently, this is the first or second inlet channel wall, wherein preferably the bulge is formed by the housing, particularly preferably by the housing cover. The second inlet channel wall is part of the housing cover. The first flow-influencing element may be formed by a first bulge and the second flow-influencing element by a second bulge.
Günstigerweise ist - in einer durch die Drehachse und die Längsmittelachse des Zulaufkanals aufgespannten Schnittebene betrachtet - zwischen der Ausbuchtung (bzw. der maximalen Ausformung der Ausbuchtung) und der gegenüberliegenden Zulaufkanalwand ein - in einer Richtung parallel zur Drehachse gemessener - erster kleinster Abstand ausgebildet, welcher vorzugsweise mindestens 10% der in Richtung der Drehachse gemessenen Breite des Zulaufkanals unmittelbar benachbart (z. B. stromab- oder stromauf) der Ausbuchtung beträgt. Weiters ist es vorteilhaft, wenn - in einer Normalebene auf die Drehachse - zwischen einer Flankenfläche des ersten Strömungsbeeinflussenden Elements (bzw. dem Außenrand der Ausbuchtung bis zur maximalen Ausformung der Ausbuchtung) und zumindest einer gegenüberliegenden Zulaufkanalwand (z. B. die die erste und zweite Zulaufkanalwand verbindende dritte Zulaufkanalwand) ein in einer Normalebene auf die Zulaufkanalwand gemessener zweiter kleinster Abstand ausgebildet ist, welcher vorzugsweise mindestens 40% des Durchmessers des Saugmundes beträgt. Conveniently - viewed in a plane defined by the axis of rotation and the longitudinal central axis of the inlet channel cutting plane - between the bulge (or the maximum formation of the bulge) and the opposite inlet channel wall - formed in a direction parallel to the axis of rotation - first smallest distance formed, which is preferably at least 10% of the width of the inlet channel measured in the direction of the axis of rotation is immediately adjacent (eg downstream or upstream) of the bulge. Furthermore, it is advantageous if-in a normal plane to the axis of rotation-between a flank surface of the first flow-influencing element (or the outer edge of the bulge to the maximum formation of the bulge) and at least one opposite inlet channel wall (eg, the first and second An inlet channel connecting third inlet channel wall) is formed in a normal plane to the inlet channel wall second smallest distance, which is preferably at least 40% of the diameter of the suction mouth.
In der direkten Verbindung zwischen dem Pumpeneintritt bzw. der Gehäusezuleitung und dem Saugmund des Laufrades - der Eintrittsöffnung in das Laufrad der Kühlmittelpumpe - ist also zumindest ein Strömungsbeeinflussendes Element vorgesehen. Dieses Strömungsbeeinflussende Element kann als in die Strömung des Zulaufkanals ragende Ausbuchtung bzw. Eindellung ausgeführt sein, die die Strömung in direkter Verbindung reduziert - möglich sind aber auch zwei oder mehrere derartige Ausbuchtungen bzw. Eindellungen. Ziel ist es, einen Strömungswiderstand zu erzeugen und die Anströmung der Kühlmittelpumpe von einer Seite auf den gesamten Umfang zu verteilen. Die Eindellung bzw. Ausbuchtung des ersten Strömungsbeeinflussenden Elementes reicht dabei bevorzugt nicht ganz bis zur gegenüberliegenden Kanalwand des Zulaufkanals, sondern kann auch unterströmt werden, wobei zwischen der Ausbuchtung und der gegenüberliegenden Kanalwand ein erster kleinster Abstand ausgebildet ist. Dieser erste Abstand unter der Ausbuchtung des verbleibenden Zulaufkanals steht dabei in Zusammenhang mit dem zweiten kleinsten Abstand welcher in einer Projektion in Richtung der Drehachse auf eine Normalebene der Drehachse zwischen der ersten Ausbuchtung und dem Saugmund des Laufrades gemessen wird : Je kleiner der erste Abstand ist, desto größer muss der zweite Abstand sein, um nach dem Unterströmen der ersten Ausbuchtung ein Zusammenlaufen des Kühlmittels und ein gleichmäßiges Anströmen des Saugmundes des Laufrades zu ermöglichen. In the direct connection between the pump inlet or the housing feed line and the suction mouth of the impeller - the inlet opening in the impeller of the coolant pump - so at least one flow-influencing element is provided. This flow-influencing element can be considered in the flow be executed in the inlet channel protruding bulge or indentation, which reduces the flow in direct connection - but are also possible two or more such bulges or dents. The aim is to create a flow resistance and to distribute the flow of the coolant pump from one side to the entire circumference. The indentation or bulge of the first flow-influencing element preferably does not extend all the way to the opposite channel wall of the inlet channel, but can also be underflowed, wherein between the bulge and the opposite channel wall, a first smallest distance is formed. This first distance below the bulge of the remaining inlet channel is related to the second smallest distance which is measured in a projection in the direction of the axis of rotation on a normal plane of the axis of rotation between the first bulge and the suction mouth of the impeller: the smaller the first distance, the larger the second distance must be in order to allow after the underflow of the first bulge, a convergence of the coolant and a uniform flow around the suction mouth of the impeller.
Zusätzlich kann das Gehäuse über dem Saugmund des Laufrades eine als kreisrunde Ausbuchtung ausgebildete zweites Strömungsbeeinflussendes Element aufweisen, das ein Umlenken der Kühlflüssigkeit in Richtung des Laufrades bewirkt. Wenn das zweite Strömungsbeeinflussende Element einen dem Nabendurchmesser des Laufrades entsprechenden Durchmesser aufweist, kann eine besonders gute und weitgehend drallfreie Anströmung des Laufrades der Kühlmittelpumpe erzielt werden. In addition, the housing over the suction mouth of the impeller may have a designed as a circular bulge second Strömungsbeeinflussendes element which causes a deflection of the cooling liquid in the direction of the impeller. If the second flow-influencing element has a diameter corresponding to the hub diameter of the impeller, a particularly good and largely swirl-free inflow of the impeller of the coolant pump can be achieved.
In einer weiteren Variante können im Strömungsweg Strömungsbeeinflussende Leitwände, beispielsweise Leitbleche, Leitrippen oder dergleichen, vorgesehen sein, welche die Strömung gezielt dem Saugmund zuführen. Diese Leitwände können in einer Variante der Erfindung auch unmittelbar am Rand des Saugmunds angeordnet sein . Beispielsweise kann zumindest eine Leitwand direkt im Bereich des Umfanges des Saugmundes des Laufrades angeordnet sein und gerade oder leicht spiralförmig ausgebildet sein, um eine entsprechende Umlen- kung der Kühlflüssigkeit zu erzielen. Zusätzlich oder alternativ dazu kann zumindest eine Leitwand auch im Bereich zwischen dem Saugmund und dem Pumpeneintritt im Zulaufkanal angeordnet sein. In a further variant flow-influencing guide walls, for example baffles, guide ribs or the like, may be provided in the flow path, which supply the flow to the suction mouth in a targeted manner. These baffles can be arranged in a variant of the invention also directly on the edge of the suction mouth. For example, at least one guide wall can be arranged directly in the region of the circumference of the suction mouth of the impeller and be formed straight or slightly helical in order to achieve a corresponding deflection of the cooling liquid. Additionally or alternatively, at least one guide wall can also be arranged in the region between the suction mouth and the pump inlet in the inlet channel.
Besonders günstig ist es, wenn zwei voneinander abgewandte Leitwände eine Doppelspirale bilden und auf der dem Pumpeneintritt abgewandten Seite des Saugmundes so angeordnet sind, dass die beiden in Umfangsrichtung beidseits des Saugmundes strömenden Teilströmungen des Kühlmittels zum Saugmund geführt werden. Durch die Doppelspirale wird das tangential am Saugmund des Laufrades vorbeiströmende Kühlmittel in Richtung des Saugmundes umgeleitet. Diese Doppelspirale kann dabei je nach gewünschtem Drall im Wesentlichen symmetrisch zu einer durch die Längsmittelachse des Zulaufkanals und die Drehachse aufgespannten Ebene oder asymmetrisch ausgeführt sein. It is particularly favorable if two guide walls facing away from one another form a double spiral and are arranged on the side of the suction mouth facing away from the pump inlet such that the two partial flows of the coolant flowing to the suction mouth in the circumferential direction on both sides of the suction mouth are particularly favorable be guided. The double spiral diverts the coolant, which flows tangentially past the suction mouth of the impeller, in the direction of the suction mouth. Depending on the desired twist, this double spiral can be embodied substantially symmetrically with respect to a plane spanned by the longitudinal central axis of the inlet channel and the axis of rotation or asymmetrically.
Das Kühlmittel wird durch das erste Strömungsbeeinflussende Element zuerst in Richtung des Mantels der Gehäuses aufgefächert und danach homogen, also drallfrei dem Saugmund radial zugeführt, bevor es axial durch den Saugmund in die Schaufelkanäle des Laufrades strömt. Besonders vorteilhaft ist es dabei, wenn der Zulaufkanal einen sich zwischen einem eintrittsseitigen ersten Ende und einem saugmundseitigen zweiten Ende verlaufend erweiternden Strömungsquerschnitt aufweist. Der Strömungsquerschnitt nimmt also vom Pumpeneintritt zum Saugmund stetig bzw. kontinuierlich zu. Durch den sich erweiternden Querschnitt wird die Strömungsgeschwindigkeit reduziert, was die Homogenisierung der Strömung unterstützt. Eine besonders gleichmäßige Zuströmung zum Saugmund kann erreicht werden, wenn - in Richtung der Drehachse betrachtet - das saugmundseitige zweite Ende des Zulaufkanals als Kreissektor konzentrisch zum Saugmund ausgeführt ist, wobei sich vorzugsweise der Kreissektor um einen Winkel von etwa 180° erstreckt. Das kreissektorförmig gestaltete zweite Ende des Zulaufkanals bildet einen strömungsberuhigenden Sammelraum, in welchem Turbulenzen und Drallkomponenten in der Kühlmittelströmung abgebaut werden. The coolant is first fanned out by the first flow-influencing element in the direction of the jacket of the housing and then radially, so twist-free fed radially to the suction mouth before it flows axially through the suction mouth in the blade channels of the impeller. In this case, it is particularly advantageous if the inlet channel has a flow cross-section extending widening between an inlet-side first end and a suction-mouth-side second end. The flow cross-section thus increases steadily or continuously from the pump inlet to the suction mouth. Due to the widening cross section, the flow velocity is reduced, which supports the homogenization of the flow. A particularly uniform inflow to the suction mouth can be achieved if - viewed in the direction of the rotation axis - the suction mouth side second end of the inlet channel is designed as a circular sector concentric with the suction mouth, preferably extending the circular sector by an angle of about 180 °. The circular sector-shaped second end of the inlet channel forms a flow-calming collecting space in which turbulence and swirl components in the coolant flow are reduced.
Im Vergleich zu aus dem Stand der Technik bekannten Ausführungen erlaubt die Erfindung sowohl eine Verringerung der axialen Erstreckung der Kühlmittelpumpe, als auch eine wirkungsgradoptimale homogene Zuführung der Kühlflüssigkeit zum Saugmund des Laufrades. Da die Zuführung der Kühlflüssigkeit nicht in Richtung der Drehachse, sondern normal dazu erfolgt, können geringere Bauraumanforderungen erfüllt werden. Compared to known from the prior art embodiments, the invention allows both a reduction in the axial extent of the coolant pump, as well as an optimal efficiency homogenous supply of the cooling liquid to the suction mouth of the impeller. Since the supply of the cooling liquid is not carried out in the direction of the axis of rotation, but normal thereto, smaller space requirements can be met.
Durch die homogene Zuführung des Kühlmittels zum Saugmund wird eine weitgehend drallfreie Anströmung des Laufrades der Kühlmittelpumpe erreicht. Dies ermöglicht wiederum eine gleichförmige Leistung bei unterschiedlichen Betriebsbereichen. Durch die gleichförmige Verteilung der Kühlmittelmasse auf den gesamten Umfang der Wasserpumpengeometrie werden gleichzeitig alle Pumpenschaufeln der Kühlmittelpumpe hinsichtlich Schwingung und Pumpeffizienz im optimalen Bereich betrieben. Due to the homogeneous supply of the coolant to the suction mouth, a largely swirl-free flow of the impeller of the coolant pump is achieved. This in turn allows a uniform performance at different operating ranges. Due to the uniform distribution of the coolant mass over the entire circumference of the water pump geometry all pump blades of the coolant pump are simultaneously operated in terms of vibration and pump efficiency in the optimum range.
Die Erfindung wird im Folgenden anhand der nicht einschränkenden Figuren näher erläutert. Darin zeigen Fig. 1 einen Teil einer Brennkraftmaschine mit einer erfindungsgemäßen Kühlmittelpumpe in einer Schrägansicht, The invention is explained in more detail below with reference to the non-limiting figures. Show in it 1 shows a part of an internal combustion engine with a coolant pump according to the invention in an oblique view,
Fig. 2 die Brennkraftmaschine in einer stirnseitigen Ansicht, 2 shows the internal combustion engine in a front view,
Fig. 3 den Antrieb der Kühlmittelpumpe aus Fig. 1 und 2, 3 shows the drive of the coolant pump of FIGS. 1 and 2,
Fig. 4 die erfindungsgemäße Kühlmittelpumpe in einer Vorderansicht, 4 shows the coolant pump according to the invention in a front view,
Fig. 5 die Kühlmittelpumpe in einer Draufsicht, 5 shows the coolant pump in a plan view,
Fig. 6 die Kühlmittelpumpe in einem Schnitt gemäß der Linie VI - VI in Fig. 4, 6 shows the coolant pump in a section along the line VI - VI in Fig. 4,
Fig. 6a die Kühlmittelpumpe in einem Schnitt analog zu Fig. 6, in einer Variante, 6a, the coolant pump in a section analogous to FIG. 6, in a variant,
Fig. 7 die Kühlmittelpumpe in einem Schnitt gemäß der Linie VII - VII in Fig. 5 in einer ersten erfindungsgemäßen Ausführungsvariante und Fig. 7, the coolant pump in a section along the line VII - VII in Fig. 5 in a first embodiment of the invention and
Fig. 8 die Kühlmittelpumpe in einem Schnitt gemäß der Linie VII - VII in Fig. 5 in einer zweiten erfindungsgemäßen Ausführungsvariante. Fig. 8, the coolant pump in a section along the line VII - VII in Fig. 5 in a second embodiment of the invention.
Funktionsgleiche Teile sind in den Ausführungsvarianten mit gleichen Bezugszeichen versehen. Functionally identical parts are provided in the embodiment variants with the same reference numerals.
Fig. 1 zeigt eine Brennkraftmaschine 1 mit einem Zylinderkopf 2 und einem Zylinderblock 3. An der Stirnseite des Zylinderkopfes 2 ist eine als Radialpumpe ausgebildete erfindungsgemäße Kühlmittelpumpe 4 angebracht. Die Kühlmittelpumpe 4 weist ein Gehäuse 5 mit einem Gehäusedeckel 6 auf, in welchem ein als Radiallaufrad oder Halbaxiallaufrad ausgebildetes und um eine Drehachse 7 drehbar gelagertes Laufrad 8 angeordnet ist. Der Antrieb 13 der Laufradwelle 9 des Laufrades 8 erfolgt im vorliegenden Fall durch eine Nockenwelle 10 über einen Zahnriemen 11, wie aus Fig. 3 zu entnehmen ist. Mit Bezugszeichen 12 ist die Abdeckung des Antriebes bezeichnet. Fig. 1 shows an internal combustion engine 1 with a cylinder head 2 and a cylinder block 3. On the front side of the cylinder head 2 designed as a radial pump according to the invention coolant pump 4 is attached. The coolant pump 4 has a housing 5 with a housing cover 6, in which an impeller 8 designed as a radial impeller or semi-axial impeller and arranged rotatably about a rotation axis 7 is arranged. The drive 13 of the impeller shaft 9 of the impeller 8 takes place in the present case by a camshaft 10 via a toothed belt 11, as shown in FIG. 3 can be seen. Reference numeral 12 denotes the cover of the drive.
Das Kühlmittel strömt über eine Zuleitung 14 in den Pumpeneintritt 15, und durchströmt die Kühlmittelpumpe 4 und wird von dieser durch einen Überströmkanal 16 in den Zylinderkopf 2 gefördert. Gegebenenfalls kann im Bereich des Pumpeneintritts 15 ein Thermostatventil angeordnet sein. Nach Durchströmen der nicht weiter dargestellten Kühlräume des Zylinderkopfes 2 verlässt das Kühlmittel den Zylinderkopf 2 über eine Ableitung 17 und wird zu einem nicht weiterdargestellten Radiator geleitet. The coolant flows via a feed line 14 into the pump inlet 15, and flows through the coolant pump 4 and is conveyed by the latter through an overflow channel 16 into the cylinder head 2. If appropriate, a thermostatic valve can be arranged in the region of the pump inlet 15. After flowing through the cooling chambers of the cylinder head 2, not shown, the coolant leaves the cylinder head 2 via a drain 17 and is directed to a not further illustrated radiator.
Das Gehäuse 5 der Kühlmittelpumpe 4 bildet einen Zulaufkanal 18 aus, welcher sich zumindest zwischen dem Pumpeneintritt 15 und dem Saugmund 19 des Laufrades 8 erstreckt. Die Zulaufkanalwände 18a, 18b, 18c des Zulaufkanals 18 weisen dabei eine den Zugang zum Saugmund 19 umfassende erste Zulaufkanalwand 18b, eine der ersten Zulaufkanalwand gegenüberliegend verlaufende zweite Zulaufkanalwand 18c und eine die erste 18b und zweite Zulaufkanalwand 18c verbindende dritte Zulaufkanalwand 18a auf. Diese werden durch den Gehäusemantel 5a, durch den Gehäuseboden 5b (dritte Zulaufkanalwand 18a) und durch den Gehäusedeckel 6 (zweite Zulaufkanalwand 18c) gebildet. Zwischen einem eintrittseitigen ersten Ende 181 und einem saugmundseitigen zweiten Ende 182 des Zulaufkanals 18 erweitert sich der Strömungsquerschnitt des Zulaufkanals 18 verlaufend (bzw. stetig kontinuierlich). In Richtung der Drehachse 7 betrachtet ist das saugmundseitige zweite Ende 182 des Zulaufkanals 18 als Kreissektor 182 ' konzentrisch zum Saugmund 19 ausgeführt, welcher Kreissektor 182 ' sich um einen Winkel α von etwa 180° erstreckt, wie gut aus Fig. 4 erkennbar ist. The housing 5 of the coolant pump 4 forms an inlet channel 18 which extends at least between the pump inlet 15 and the suction mouth 19 of the Impeller 8 extends. The inlet channel walls 18a, 18b, 18c of the inlet channel 18 in this case have access to the suction mouth 19 comprehensive first inlet channel wall 18b, one of the first inlet channel wall opposite extending second inlet channel wall 18c and the first 18b and second inlet channel wall 18c connecting third inlet channel wall 18a. These are formed by the housing jacket 5a, by the housing bottom 5b (third inlet channel wall 18a) and by the housing cover 6 (second inlet channel wall 18c). Between an inlet-side first end 181 and a suction-mouth-side second end 182 of the inlet channel 18, the flow cross-section of the inlet channel 18 expands (or continuously continuously). Viewed in the direction of the axis of rotation 7, the suction-mouth-side second end 182 of the inlet channel 18 is designed as a circular sector 182 ' concentric with the suction mouth 19, which circular sector 182 ' extends through an angle α of approximately 180 °, as can be clearly seen in FIG.
Im Zulaufkanal 18 ist ein durch eine in den Zulaufkanal 18 ragende erste Ausbuchtung 20a der zweiten Zulaufkanalwand 18c des Gehäusedeckels 6 gebildetes erstes Strömungsbeeinflussendes Element 20 angeordnet, welches - in Richtung auf die Drehachse 7 betrachtet - im Wesentlichen die Form einer entgegen der Kühlmittelströmung S im Zulaufkanal 18 gerichteten Pfeilspitze aufweist. Die erste Ausbuchtung 20a wird in den Ausführungsbeispielen durch den Gehäusedeckel 6 gebildet. In the inlet channel 18, a first flow-influencing element 20 formed by a first protrusion 20a of the second inlet channel wall 18c of the housing cover 6 is formed, which - viewed in the direction of the rotation axis 7 - substantially the shape of a counter to the coolant flow S in the inlet channel 18 directed arrowhead. The first bulge 20a is formed by the housing cover 6 in the exemplary embodiments.
Zwischen dem ersten Strömungsbeeinflussenden Element 20 und der gegenüberliegenden ersten Zulaufkanalwand 18b ist - in Richtung der Drehachse 7 gemessen - ein erster Abstand h ausgebildet, welcher mindestens 10% der in Richtung der Drehachse 7 gemessenen Breite b des Zulaufkanals 18 unmittelbar benachbart, z.B. stromab- oder stromauf des ersten Strömungsbeeinflussenden Elements 20 beträgt (Fig. 6, 6a). Der erste Abstand h erstreckt sich dabei zwischen der maximalen Ausformung der Ausbuchtung 20a und der ersten Zulaufkanalwand 18b. Zwischen einer Flankenfläche 20b des ersten strömungsbeeinflussen- den Element 20 und zumindest einer gegenüberliegenden Zulaufkanalwand (hier z. B. der dritten Zulaufkanalwand 18a, dem Gehäusemantel 5a) ist weiters ein in einer Normalebene ε. auf die Zulaufkanalwand 18a gemessener zweiter Abstand k ausgebildet ist, welcher mindestens 40% des Durchmessers D des Saugmundes 19 beträgt (Fig. 4). Als Flankenfläche 20b wird hier der Bereich vom Außenrand der Ausbuchtung 20a bzw. des ersten Strömungsbeeinflussenden Elements 20 zur maximalen Ausformung z.B. der Ausbuchtung 20a bezeichnet. Between the first flow-influencing element 20 and the opposite first inlet channel wall 18b, a first distance h is measured, measured in the direction of the axis of rotation 7, which at least 10% of the width b of the inlet channel 18 measured in the direction of the axis of rotation 7 is immediately adjacent, e.g. downstream or upstream of the first flow influencing element 20 (Figures 6, 6a). The first distance h extends between the maximum shape of the bulge 20a and the first inlet channel wall 18b. Between a flank surface 20b of the first flow-influencing element 20 and at least one opposite inflow channel wall (in this case, for example, the third inflow channel wall 18a, the housing shell 5a) is further in a normal plane ε. is formed on the inlet channel wall 18a measured second distance k, which is at least 40% of the diameter D of the suction mouth 19 (Fig. 4). Here, as the flank surface 20b, the region from the outer edge of the bulge 20a or the first flow-influencing element 20 for maximum formation is e.g. the bulge 20a.
Das erste Strömungsbeeinflussende Element 20 ist vom Saugmund 19 beabstandet, (bzw. zwischen Pumpeneintritt 15 und Saugmund 19 angeordnet), wo- bei ein - in einer Normalebene ε2 auf die Drehachse 7 gemessener - dritter Abstand x zwischen dem ersten Strömungsbeeinflussenden Element 20 und dem Saugmund 19 mindestens dem doppelten Durchmesser D des Saugmundes 19 beträgt. The first flow-influencing element 20 is at a distance from the suction mouth 19 (or arranged between the pump inlet 15 and the suction mouth 19), where at a - measured in a normal plane ε 2 on the axis of rotation 7 - third distance x between the first flow-influencing element 20 and the suction mouth 19 at least twice the diameter D of the suction mouth 19.
Weiters ragt in die Strömung S des Zulaufkanals 18 ein als zweite Ausbuchtung 21a der Kanalwand 18c des Zulaufkanals 18 ausgebildetes zweites Strömungsbeeinflussendes Element 21, welches hier ebenfalls durch den Gehäusedeckels 6 geformt ist. Das zweite Strömungsbeeinflussende Element 21 weist - in Richtung der Drehachse 7 des Laufrades 8 betrachtet - die Form einer Kreisscheibe auf, deren Durchmesser D2i zumindest dem Nabendurchmesser d des Laufrades 8 entspricht. Insbesondere ist es günstig, wenn der Durchmesser D2ib der dem Saugmund 19 zugewandten Kuppe 21b der zweiten Ausbuchtung 21a etwa gleich ist wie der Nabendurchmesser d. Die durch den Gehäuseboden 5b gebildete Zulaufgeometrie zum Laufrad 8 weist im Bereich des Saugmundes 19 einen definierten Radius r zur strömungsgünstigen axialen Umlenkung der radialen Zulaufströmung S auf. Wie in Fig. 6a gezeigt ist, kann der den Saugmund 19 umgebende Bereich des Gehäusebodens 5b einen den radialen Strömungsquerschnitt verengenden ringartigen Wulst 51 ausbilden, welcher zwischen dem umgebenden Ringraum 183 im Außenbereich des zweiten Endes 182 des Zulaufkanals 18 und dem Saugmund 19 angeordnet ist. Der Wulst 51 kann dabei umlaufend ausgebildet sein, oder aber radiale Unterbrechungen oder Vorsprünge aufweisen, welche als zum Saugmund 19 gerichtete radiale Strömungsleitflächen dienen. Der Wulst 51 erhöht die Gestaltungsfreiheit für die äußere Kontur des Gehäuses 5. An Stelle des Wulstes 51 können auch einzelne lokale radiale Eindel- lungen vorgesehen sein. Selbstverständlich ist es auch möglich, zusätzlich oder an Stelle des Wulstes 51, der Unterbrechungen, Vorsprünge oder Eindellungen radiale Leitrippen 52 oder Leitschaufeln vorzusehen, welche die Strömung aus dem umgebenden Ringraum 183 zum Saugmund 19 führen. Einzelne derartige Leitrippen 52, welche in Fig. 4 nur schematisch angedeutet sind, können gleichmäßig über den Umfang verteilt um den Saugmund 19 angedeutet sein. Furthermore protrudes into the flow S of the inlet channel 18 as a second recess 21a of the channel wall 18c of the inlet channel 18 formed second Strömungsbeeinflussendes element 21, which is also formed here by the housing cover 6. The second flow-influencing element 21 has - viewed in the direction of the axis of rotation 7 of the impeller 8 - the shape of a circular disc whose diameter D 2 i at least the hub diameter d of the impeller 8 corresponds. In particular, it is favorable if the diameter D 2 ib of the dome 19 facing the dome 21 b of the second bulge 21 a is about the same as the hub diameter d. The inlet geometry formed by the housing bottom 5b to the impeller 8 has in the region of the suction mouth 19 a defined radius r for the flow-favorable axial deflection of the radial inlet flow S. As shown in FIG. 6 a, the region of the housing bottom 5 b surrounding the suction mouth 19 can form an annular bead 51 narrowing the radial flow cross-section, which is arranged between the surrounding annular space 183 in the outer region of the second end 182 of the inlet channel 18 and the suction mouth 19. The bead 51 may be formed circumferentially, or have radial interruptions or projections, which serve as the suction port 19 directed radial flow guide. The bead 51 increases the freedom of design for the outer contour of the housing 5. Instead of the bead 51, individual local radial engagements can also be provided. Of course, it is also possible to additionally or instead of the bead 51, the interruptions, projections or indentations provide radial guide ribs 52 or vanes, which guide the flow from the surrounding annular space 183 to the suction port 19. Individual such guide ribs 52, which are indicated only schematically in FIG. 4, can be distributed uniformly around the circumference around the suction mouth 19.
Das erste Strömungsbeeinflussende Element 20 ist auch vom zweiten strö- mungsbeeinflussenden Element 21 beabstandet, wobei der - in einer Normalebene ε2 auf die Drehachse 7 gemessene - vierte Abstand y zwischen dem ersten Strömungsbeeinflussenden Element 20 und dem zweiten strömungsbeeinflus- senden Element 21 mindestens 40% des Durchmessers D des Saugmundes 19 beträgt (Fig. 6. 6a). The first flow-influencing element 20 is also at a distance from the second flow-influencing element 21, wherein the fourth distance y between the first flow-influencing element 20 and the second flow-influencing element 21, measured in a normal plane ε 2 on the axis of rotation 7, amounts to at least 40%. the diameter D of the suction mouth 19 is (Fig. 6. 6a).
Fig. 7 zeigt eine Kühlmittelpumpe ohne zusätzliche Leitflächen. Der Gehäusedeckel ist entfernt, daher sind erste und zweite Strömungsbeeinflussende Elemente nicht ersichtlich. Das Laufrad 8 ist durch strichlierte Linien schematisch angedeutet. Die durch die Strömungsbeeinflussenden Elemente 20, 21 gebildeten Teilströme Si, S2 strömen entlang des Umfangs des Saugmunds 19. Fig. 7 shows a coolant pump without additional guide surfaces. The housing cover is removed, therefore, first and second flow influencing elements not apparent. The impeller 8 is indicated schematically by dashed lines. The partial flows Si, S 2 formed by the flow-influencing elements 20, 21 flow along the circumference of the suction mouth 19.
Die in Fig. 8 dargestellte Ausführungsvariante der Erfindung unterscheidet sich von Fig. 7 dadurch, dass im Bereich des saugmundseitigen zweiten Endes 182 des Zulaufkanals 18 zwei voneinander abgewandte und eine Doppelspirale 22 ausbildende Leitwände 22a, 22b auf der dem Pumpeneintritt 15 abgewandten Seite des Saugmundes 19 so angeordnet sind, dass die beiden in Umfangsrich- tung beidseits des Saugmundes 19 strömenden Teilströmungen Si, S2 des Kühlmittels zum Saugmund 19 geführt werden. Durch die Doppelspirale 22 wird das tangential am Saugmund 19 des Laufrades 8 vorbeiströmende Kühlmittel in Richtung des Saugmundes 19 umgeleitet. Die Leitwände 22a, 22b sind im Ausführungsbeispiel im Wesentlichen symmetrisch zu einer durch die Längsmittelachse 18 'des Zulaufkanals 18 und die Drehachse 7 aufgespannten Ebene ε3 ausgebildet. Die Längsmittelachse 18 ' kann - in Richtung der Drehachse 7 betrachtet - eine Symmetrieachse des Zulaufkanals 18 ausbilden. Falls ein Eingangsdrall beim Eintritt in den Saugmund 19 gewünscht ist, können die Leitwände 22a, 22b auch asymmetrisch gestaltet sein. The embodiment of the invention shown in FIG. 8 differs from FIG. 7 in that in the area of the suction mouth-side second end 182 of the inlet channel 18, two guide walls 22a, 22b facing away from one another and forming a double spiral 22 on the side of the suction mouth 19 facing away from the pump inlet 15 are arranged so that the two in the circumferential direction on both sides of the suction mouth 19 flowing partial flows Si, S 2 of the coolant to the suction port 19 are performed. By the double spiral 22, the tangentially flowing past the suction mouth 19 of the impeller 8 coolant in the direction of the suction mouth 19 is redirected. The baffles 22a, 22b are formed in the embodiment substantially symmetrical to a plane defined by the longitudinal central axis 18 'of the inlet channel 18 and the axis of rotation 7 ε 3 . The longitudinal central axis 18 ' can - viewed in the direction of the axis of rotation 7 - form an axis of symmetry of the inlet channel 18. If an input twist is desired on entering the suction mouth 19, the guide walls 22a, 22b may also be designed asymmetrically.
Das Kühlmittel wird durch das erste Strömungsbeeinflussende Element 20 zuerst in Richtung des Gehäusemantels 5a aufgefächert und danach homogen, also drallfrei oder zumindest drallarm, dem Saugmund 19 im Wesentlichen radial bezüglich der Drehachse 7 zugeführt. Danach strömt es axial, also in Richtung der Drehachse 7, durch den Saugmund 19 in die Schaufelkanäle des Laufrades 8. Das kreissektorförmig gestaltete zweite Ende 182 des Zulaufkanals 18 bildet einen strömungsberuhigenden Sammelraum, in welchem Turbulenzen und Drallkomponenten in der Kühlmittelströmung abgebaut werden. The coolant is first fanned out by the first flow-influencing element 20 in the direction of the housing jacket 5a and then supplied to the suction mouth 19 substantially radially with respect to the axis of rotation 7, ie homogeneously, ie without swirling or at least with little twist. Thereafter, it flows axially, ie in the direction of the axis of rotation 7, through the suction mouth 19 into the blade channels of the rotor 8. The circular sector-shaped second end 182 of the inlet channel 18 forms a flow-calming collecting space in which turbulence and swirl components in the coolant flow are reduced.
Die erfindungsgemäße Kühlmittelpumpe 4 ermöglicht sowohl eine Verringerung des Bauraumes in Richtung der Drehachse 7, als auch eine wirkungsgradoptimale homogene Zuführung der Kühlflüssigkeit zum Saugmund 19 des Laufrades 8. The coolant pump 4 according to the invention allows both a reduction of the installation space in the direction of the axis of rotation 7, as well as an optimal homogeneous homogenous supply of the cooling liquid to the suction port 19 of the impeller eighth
Durch die homogene Zuführung des Kühlmittels zum Saugmund 19 wird eine weitgehend drallfreie Anströmung des Laufrades 8 der Kühlmittelpumpe 4 erreicht. Dies ermöglicht wiederum eine gleichförmige Leistung bei unterschiedlichen Betriebsbereichen. Durch die gleichförmige Verteilung der Kühlmittelmasse auf den gesamten Umfang der Wasserpumpengeometrie werden gleichzeitig alle Pumpenschaufeln der Kühlmittelpumpe 4 hinsichtlich Schwingung und Pumpeffizienz im optimalen Bereich betrieben. Due to the homogeneous supply of the coolant to the suction port 19, a largely swirl-free flow of the impeller 8 of the coolant pump 4 is achieved. This in turn allows a uniform performance at different operating ranges. Due to the uniform distribution of the coolant mass over the entire circumference of the water pump geometry all pump blades of the coolant pump 4 are simultaneously operated in terms of vibration and pumping efficiency in the optimum range.

Claims

P A T E N T A N S P R Ü C H E PATENT APPLICATIONS
1. Kühlmittelpumpe (4) für eine Brennkraftmaschine (1), mit einem einen Gehäusedeckel (6) aufweisenden Gehäuse (5), in welchem ein um eine Drehachse (7) drehbares Laufrad (8) angeordnet ist, welches koaxial zur Drehachse (7) einen Saugmund (19) aufweist, wobei das Gehäuse (5) zumindest einen im Wesentlichen normal zur Drehachse (7) ausgebildeten Zulaufkanal (19) ausbildet, um Kühlmittel von einem von der Drehachse (7) beabstan- deten seitlichen Pumpeneintritt (15) zum Saugmund (19) zu führen, und wobei der Zulaufkanal (18) zumindest ein Strömungsbeeinflussendes Element (20, 21) aufweist, dadurch gekennzeichnet, dass zumindest ein Strömungsbeeinflussendes Element (20, 21) im Bereich einer vorzugsweise normal auf die Drehachse (7) und/oder durch die Drehachse (7) verlaufend ausgebildeten Längsmittelachse (18 ' ) des Zulaufkanales (18) angeordnet ist. 1. Coolant pump (4) for an internal combustion engine (1), with a housing cover (6) comprising a housing (5) in which a about an axis of rotation (7) rotatable impeller (8) is arranged, which coaxial with the axis of rotation (7) a suction mouth (19), wherein the housing (5) at least one substantially normal to the axis of rotation (7) formed inlet channel (19) forms to coolant from one of the rotation axis (7) spaced apart from the side pump inlet (15) to the suction mouth (19), and wherein the inlet channel (18) has at least one flow-influencing element (20, 21), characterized in that at least one flow-influencing element (20, 21) in the region of a preferably normal to the axis of rotation (7) and / or by the axis of rotation (7) extending formed longitudinal central axis (18 ' ) of the inlet channel (18) is arranged.
2. Kühlmittepumpe (4) nach Anspruch 1, dadurch gekennzeichnet, dass zumindest ein Strömungsbeeinflussende Element (20, 21) symmetrisch zur Längsmittelachse (18 ' ) des Zulaufkanals (18) ausgebildet ist. Second coolant pump (4) according to claim 1, characterized in that at least one flow-influencing element (20, 21) is formed symmetrically to the longitudinal central axis (18 ' ) of the inlet channel (18).
3. Kühlmittepumpe (4) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zumindest ein erstes Strömungsbeeinflussendes Element (20) im Zulaufkanal (18) zwischen dem Pumpeneintritt (15) und dem Saugmund (19) angeordnet ist. 3. Coolant pump (4) according to claim 1 or 2, characterized in that at least one first flow-influencing element (20) in the inlet channel (18) between the pump inlet (15) and the suction mouth (19) is arranged.
4. Kühlmittelpumpe (4) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zumindest ein zweites Strömungsbeeinflussendes Element (21) im Zulaufkanal (18) im Bereich des Saugmundes (19) angeordnet ist. 4. coolant pump (4) according to one of claims 1 to 3, characterized in that at least a second flow influencing element (21) in the inlet channel (18) in the region of the suction mouth (19) is arranged.
5. Kühlmittepumpe (4) nach Anspruch 4, dadurch gekennzeichnet, dass das zweite Strömungsbeeinflussende Element (21) drehsymmetrisch ausgebildet und koaxial zur Drehachse (7) angeordnet ist. 5. coolant pump (4) according to claim 4, characterized in that the second flow-influencing element (21) is rotationally symmetrical and coaxial with the axis of rotation (7) is arranged.
6. Kühlmittepumpe (4) nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass - in Richtung der Drehachse (7) betrachtet - das zweite Strömungsbeeinflussende Element (21) die Form eines Kreises aufweist, wobei vorzugsweise der Durchmesser (D2i) des Kreises mindestens einem Nabendurchmesser (d) des Laufrades (8) entspricht. 6. Kühlmittepumpe (4) according to claim 4 or 5, characterized in that - viewed in the direction of the axis of rotation (7) - the second flow influencing element (21) has the shape of a circle, wherein preferably the diameter (D 2 i) of the circle at least one hub diameter (d) of the impeller (8) corresponds.
7. Kühlmittelpumpe (4) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zumindest ein Strömungsbeeinflussendes Element (20, 21) durch eine in Richtung der Drehachse (7) in den Zulaufkanal (18) hineinragende Ausbuchtung (20a, 21a) einer Zulaufkanalwand (18c) gebildet ist. 7. coolant pump (4) according to one of claims 1 to 6, characterized in that at least one flow influencing element (20, 21) by a in the direction of the axis of rotation (7) in the inlet channel (18) projecting bulge (20a, 21a) of an inlet channel wall (18c) is formed.
8. Kühlmittelpumpe (4) nach Anspruch 7, dadurch gekennzeichnet, dass - in einer durch die Drehachse (7) und die Längsmittelachse (18 ' ) des Zulaufkanals (18) aufgespannten Schnittebene (ε3) betrachtet - zwischen dem ersten Strömungsbeeinflussenden Element (20) und der gegenüberliegenden Zulaufkanalwand (18b) ein - in einer Richtung parallel zur Drehachse (7) gemessener -erster kleinster Abstand (h) ausgebildet ist, welcher vorzugsweise mindestens 10% der in einer Richtung parallel zur Drehachse (7) gemessenen Breite (b) des Zulaufkanals (18) unmittelbar benachbart des ersten Strömungsbeeinflussenden Elements (20) beträgt. 8. coolant pump (4) according to claim 7, characterized in that - in a through the axis of rotation (7) and the longitudinal central axis (18 ' ) of the inlet channel (18) spanned cutting plane (ε 3 ) considered - between the first flow-influencing element (20 ) and the opposing inlet channel wall (18b) - a first smallest distance (h) measured in a direction parallel to the axis of rotation (7) is formed, which preferably has at least 10% of the width (b) measured in a direction parallel to the axis of rotation (7). of the inlet channel (18) is immediately adjacent to the first flow-influencing element (20).
9. Kühlmittelpumpe (4) nach Anspruch 7 oder 7, dadurch gekennzeichnet, dass - in einer Normalebene (ε2) auf die Drehachse (7) betrachtet - zwischen einer Flankenfläche (20b) des ersten Strömungsbeeinflussenden Elementes (20) und zumindest einer gegenüberliegenden Zulaufkanalwand (18a) ein in einer Normalebene (ε.) auf die Zulaufkanalwand (18a) gemessener zweiter kleinster Abstand (k) ausgebildet ist, welcher vorzugsweise mindestens 40% des Durchmessers (d) des Saugmundes (19) beträgt. 9. coolant pump (4) according to claim 7 or 7, characterized in that - viewed in a normal plane (ε 2 ) on the axis of rotation (7) - between a flank surface (20b) of the first flow-influencing element (20) and at least one opposite inlet channel wall (18a) a in a normal plane (ε.) On the inlet channel wall (18a) measured second smallest distance (k) is formed, which is preferably at least 40% of the diameter (d) of the suction mouth (19).
10. Kühlmittelpumpe (4) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das erste Strömungsbeeinflussende Element (20) vom Saugmund (19) und/oder vom zweiten Strömungsbeeinflussenden Element (21) beabstandet ist. 10. coolant pump (4) according to one of claims 1 to 9, characterized in that the first flow-influencing element (20) from the suction port (19) and / or from the second flow influencing element (21) is spaced.
11. Kühlmittelpumpe (4) nach einem der Ansprüch 1 bis 10, dadurch gekennzeichnet, dass ein in einer Normalebene (ε2) auf die Drehachse (7) dritter kleinste Abstand (x) zwischen dem ersten Strömungsbeeinflussenden Element (20) und dem Saugmund (19) mindestens den doppelten Durchmesser (d) des Saugmundes (19) beträgt. 11. coolant pump (4) according to one of claims 1 to 10, characterized in that in a normal plane (ε 2 ) on the axis of rotation (7) third smallest distance (x) between the first flow-influencing element (20) and the suction mouth ( 19) is at least twice the diameter (d) of the suction mouth (19).
12. Kühlmittelpumpe (4) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass in einer Normalebene (ε2) auf die Drehachse (7) gemessene ein vierter kleinster Abstand (y) zwischen einem ersten strö- mungsbeeinflussenden Element (20) und einem zweiten Strömungsbeeinflussenden Element (21) mindestens 40% des Durchmessers (d) des Saugmundes (19) beträgt. 12. coolant pump (4) according to one of claims 1 to 11, characterized in that in a normal plane (ε 2 ) on the axis of rotation (7) measured a fourth smallest distance (y) between a first flow-influencing element (20) and a second flow-influencing element (21) is at least 40% of the diameter (d) of the suction mouth (19).
13. Kühlmittelpumpe (4) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass im Zulaufkanal (18) zumindest eine das Kühlmittel in Richtung des Saugmundes (19) lenkende Leitwand (22a, 22b) angeordnet ist. 13. Coolant pump (4) according to one of claims 1 to 12, characterized in that in the inlet channel (18) at least one of the coolant in the direction of the suction mouth (19) directing guide wall (22a, 22b) is arranged.
14. Kühlmittelpumpe (4) nach Ansprüche 13, dadurch gekennzeichnet, dass zwei voneinander abgewandte Leitwände (22a, 22b) eine Doppelspirale (22) bilden und auf der dem Pumpeneintritt (15) abgewandten Seite des Saugmundes (19) - vorzugsweise im Wesentlichen symmetrisch zu einer durch die Längsmittelachse (18 ' ) des Zulaufkanals (18) und die Drehachse (7) des Laufrades (8) aufgespannten Ebene (ε3) - angeordnet sind. 14, coolant pump (4) according to claims 13, characterized in that two mutually remote guide walls (22a, 22b) form a double spiral (22) and on the pump inlet (15) facing away from the suction mouth (19) - preferably substantially symmetrically one through the longitudinal center axis (18 ' ) of the inlet channel (18) and the axis of rotation (7) of the impeller (8) spanned plane (ε 3 ) - are arranged.
15. Kühlmittelpumpe (4) nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass der Zulaufkanal (18) einen sich zwischen einem ein- trittsseitigen ersten Ende (181) und einem saugmundseitigen zweiten Ende (182) verlaufend erweiternden Strömungsquerschnitt aufweist. 15, coolant pump (4) according to one of claims 1 to 14, characterized in that the inlet channel (18) has a between an on-outlet side first end (181) and a suction mouth-side second end (182) extending widening flow cross-section.
16. Kühlmittelpumpe (4) nach Ansprüche 15, dadurch gekennzeichnet, dass das saugmundseitige zweite Ende (182) des Zulaufkanals (18) als achsgleich mit dem Saugmund (19) ausgeführter Kreissektor (182 ' ) ausgebildet ist, wobei vorzugsweise sich der Kreissektor (182 ' ) um einen Winkel (a) von etwa 180° erstreckt. 16, coolant pump (4) according to claims 15, characterized in that the suction mouth side second end (182) of the inlet channel (18) is designed as co-axial with the suction mouth (19) executed circular sector (182 ' ), wherein preferably the circular sector (182 ' ) by an angle (a) of about 180 °.
EP16736764.8A 2015-05-07 2016-05-09 Coolant pump for an internal combustion engine Active EP3292311B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50375/2015A AT517125B1 (en) 2015-05-07 2015-05-07 COOLANT PUMP FOR A COMBUSTION ENGINE
PCT/AT2016/050133 WO2016176712A1 (en) 2015-05-07 2016-05-09 Coolant pump for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP3292311A1 true EP3292311A1 (en) 2018-03-14
EP3292311B1 EP3292311B1 (en) 2022-08-03

Family

ID=56403914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16736764.8A Active EP3292311B1 (en) 2015-05-07 2016-05-09 Coolant pump for an internal combustion engine

Country Status (3)

Country Link
EP (1) EP3292311B1 (en)
AT (1) AT517125B1 (en)
WO (1) WO2016176712A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3055151B1 (en) * 2016-08-16 2019-07-19 Renault S.A.S CLOSURE ELEMENT FOR A HOUSING OF A HEAT PUMP PUMP INCLUDED IN A MOTOR
FR3093135B1 (en) * 2019-02-26 2022-07-08 Renault Sas Heat engine comprising a heat transfer fluid pump
DE102020116359A1 (en) 2020-06-22 2021-12-23 Man Truck & Bus Se Device for conveying a coolant

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB180823A (en) * 1921-03-31 1922-06-08 George Ure Reid Improvements in centrifugal pumps
DE19510812A1 (en) * 1995-03-24 1996-09-26 Klein Schanzlin & Becker Ag Centrifugal pump
JP3684859B2 (en) * 1998-09-11 2005-08-17 いすゞ自動車株式会社 Engine cooling system with suction pipe
DE102007048019A1 (en) * 2007-10-06 2009-04-09 Bayerische Motoren Werke Aktiengesellschaft Liquid pump i.e. coolant pump, for internal-combustion engine, has radially inward projecting flow guide rib aligned towards rotation axis and provided in housing and/or section of suction pipe that is adjoined to transport wheel
CN101782081A (en) 2009-01-16 2010-07-21 湖北飞剑泵业有限公司 High-efficiency semi-spiral water absorption chamber internal-combustion engine cooling water pump
CN201771822U (en) * 2010-08-23 2011-03-23 湖北飞剑泵业有限公司 Through equal-spoke pulley water pump
DE102010054084B4 (en) * 2010-12-10 2023-04-06 Volkswagen Aktiengesellschaft coolant pump
CN202117753U (en) * 2011-07-05 2012-01-18 浙江三工汽车零部件有限公司 Automobile water pump assembly with sleeved impeller
CN103267018A (en) 2013-06-03 2013-08-28 高邮市高农机械配件有限公司 Internal combustion engine cooling water pump water suction chamber runner
CN103541803A (en) * 2013-11-01 2014-01-29 湖北飞剑泵业有限公司 Flow temperature-controlling internal combustion engine cooling water pump

Also Published As

Publication number Publication date
AT517125B1 (en) 2019-07-15
AT517125A1 (en) 2016-11-15
EP3292311B1 (en) 2022-08-03
WO2016176712A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
DE60125267T2 (en) Method and device for expanding the operating area of a centrifugal compressor
EP2495425A2 (en) Jet engine device with a bypass flow channel
EP1778953B1 (en) Exhaust turbine cleaning device
EP1277967B1 (en) Compressor casing structure
DE102012015449A1 (en) Gas turbine combustion chamber with mixed air openings and air guide elements in a modular design
DE112016006410B4 (en) CENTRIFUGAL COMPRESSOR
EP2800892B1 (en) Mixing valve
DE19929978A1 (en) Fan with axial blades, with air guide elements in entry-side region of hub and on induction side of blades
DE2648850B2 (en)
EP2716915A1 (en) Housing for an axial ventilator
EP3292311A1 (en) Coolant pump for an internal combustion engine
DE1751838C3 (en) Combustion chamber for gas turbine systems with a flow control device
DE3706772A1 (en) FAN UNIT AND METHOD FOR PRODUCING THE GUIDING BLADES OF SUCH A FAN UNIT
EP3274569A1 (en) Mixing device
DE102012209476A1 (en) Inlet design for a pump assembly
EP3303845B1 (en) Self-priming pump assembly
DE19719609A1 (en) Fuel supply unit for internal combustion engine
EP0567874B1 (en) Flow machine for gas compression
EP2225467B1 (en) Swirl-generating apparatus and turbocharger with such a swirl-generating apparatus
EP3464904B1 (en) Centrifugal pump for heat-sensitive fluid food products and impeller for a centrifugal pump of this type
DE102015221388A1 (en) Fuel injection valve
DE1161481B (en) Device for stabilizing the characteristics of centrifugal machines with an axially flowed impeller
WO2011082930A1 (en) Fuel pump
DE102007037012B4 (en) Blower unit and hand-held blower
EP2960481A1 (en) Mixing device for charge air supply and exhaust gas recirculation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210303

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220406

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1508959

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016015137

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016015137

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

26N No opposition filed

Effective date: 20230504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 8

Ref country code: FR

Payment date: 20230517

Year of fee payment: 8

Ref country code: DE

Payment date: 20230519

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230522

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230509

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531