EP3291271B1 - Steuerungsverfahren einer betätigungsvorrichtung und entsprechende betätigungsvorrichtung und schaltvorrichtung - Google Patents

Steuerungsverfahren einer betätigungsvorrichtung und entsprechende betätigungsvorrichtung und schaltvorrichtung Download PDF

Info

Publication number
EP3291271B1
EP3291271B1 EP17188936.3A EP17188936A EP3291271B1 EP 3291271 B1 EP3291271 B1 EP 3291271B1 EP 17188936 A EP17188936 A EP 17188936A EP 3291271 B1 EP3291271 B1 EP 3291271B1
Authority
EP
European Patent Office
Prior art keywords
value
displacement
electric current
coil
switching apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17188936.3A
Other languages
English (en)
French (fr)
Other versions
EP3291271A1 (de
Inventor
Vincent GEFFROY
Julien HENRI-ROUSSEAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP3291271A1 publication Critical patent/EP3291271A1/de
Application granted granted Critical
Publication of EP3291271B1 publication Critical patent/EP3291271B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/1866Monitoring or fail-safe circuits with regulation loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • H01H2047/006Detecting unwanted movement of contacts and applying pulses to coil for restoring to normal status

Definitions

  • the present invention relates to a method of controlling an actuating device.
  • the present invention also relates to an actuating device and a switching apparatus comprising such an actuating device.
  • an electromagnet comprises a coil and a movable portion with respect to the coil.
  • the moving part is, for example, an electrical circuit, or a core.
  • the moving part is received in the coil, the displacement of the movable part being controlled by the circulation of a current in the coil.
  • the moving part is mechanically fixed to a movable element forming electrical contact.
  • the displacement of the movable part then makes it possible to actuate the movable element and to control the opening or closing of the electrical contact.
  • the moving part moves from a position in which the electrical contact is open to a position in which the electrical contact is closed, or vice versa.
  • the reverse movement is usually performed by a spring, to ensure the opening of the circuit even in case of power failure.
  • shock detection is frequently provided during the design of switching devices, to the point that some of these devices include accelerometers for this purpose.
  • accelerometers for this purpose.
  • these accelerometers complicate the design and control of switching devices, and make them more expensive.
  • Document is known FR 2786915 A1 a method of controlling an actuating device of the aforementioned type, wherein the current is regulated at the second value by a regulation peak type algorithm, in which a switch is open or closed according to a sample of the Measured quantity is greater or less than a set value.
  • a regulation peak type algorithm in which a switch is open or closed according to a sample of the Measured quantity is greater or less than a set value.
  • An object of the invention is therefore to propose a method for controlling an actuating device that makes it possible to maintain the contact in the closed position for higher shocks than the methods of the state of the art without increasing significantly the power consumption.
  • the invention also relates to an electrical switching apparatus comprising an input terminal, an output terminal, a movable contact and an actuating device adapted to move the movable contact between a closed position in which the input terminal is electrically connected to the output terminal and an open position in which the input terminal is electrically isolated from the output terminal, the actuating device being as defined above.
  • the electrical switchgear is a contactor.
  • the electrical switchgear is a circuit breaker.
  • the electrical switching device is an electronic relay.
  • the electrical switching apparatus is a source inverter.
  • a switching apparatus 10 is shown on the figure 1 .
  • the switching apparatus 10 comprises an input electrical terminal 15, an output electrical terminal 20, a movable contact 25 and an actuating device 30.
  • the switching apparatus 10 is configured to receive a first electric current C1 on the input electrical terminal 15 and to deliver the first electric current C1 to the output terminal 20.
  • the switching apparatus 10 is further configured to electrically disconnect the input electrical terminal 15 from the electrical output terminal 20, i.e. to cut the first electrical current C1 between the electrical terminal of the electrical terminal. input 15 and the output electrical terminal 20.
  • the switching device 10 is, for example, a contactor.
  • the switching apparatus 10 is configured to electrically connect the electrical input terminal 15 and the electrical output terminal 20 upon receipt of a connection command sent by an external device, and to disconnect the electrical terminal. input 15 of the electrical output terminal 20 upon receipt of a disconnect command sent by said external device.
  • the switching apparatus 10 is a circuit breaker.
  • the switching device 10 is a trigger of a undervoltage circuit breaker capable of disconnecting the electrical input terminal 15 from the electrical output terminal 20 following the detection of an inadvertent drop in a voltage. voltage.
  • the switching apparatus 10 is a source inverter.
  • a source inverter is a device adapted to power a device with an electric current supplied by one of two sources, and to switch the power supply between the two sources.
  • the movable contact 25 is electrically connected to the input electrical terminal 15. In a variant, the movable contact 25 is electrically connected to the electrical output terminal 20.
  • the movable contact 25 is movable between an open position and a closed position. When the movable contact 25 is in the open position, the electrical input terminal 15 is not electrically connected to the electrical output terminal 20. When the movable contact 25 is in the closed position, the electrical input terminal 15 is electrically connected by the movable contact 25 to the electrical output terminal 20.
  • the activation device 30 is configured to move the movable contact 25 between the open position and the closed position, and vice versa.
  • the activating device 30 is further configured to maintain the movable contact 25 in the closed position.
  • the activation device 30 comprises an electromagnet 35 and a control device 40.
  • the electromagnet 35 comprises a coil 45, also called a fixed part 35, and a mobile part 50.
  • the coil 45 has an electrical conductor wound around an axis.
  • the moving part 50 is, for example, a core of the electromagnet 35.
  • the movable portion 50 is fixed to the movable contact 25 and is movable with it.
  • the movable portion 50 is movable between a first position and a second position relative to the spool 45.
  • the movable portion 50 is movable in translation relative to the spool 45 along the axis of the spool 45.
  • the movable portion 50 When the movable portion 50 is in the first position, the movable portion 50 is, for example, at least partially received in the spool 45. When the movable portion 50 is in the second position, the movable portion 50 is at least partially extracted from the coil 45.
  • the electromagnet 35 comprises a spring adapted to exert on the movable portion 50 a force tending to bring the movable portion 50 of the second position to the first position.
  • the movable contact 25 When the movable portion 50 is in the first position, the movable contact 25 is in the open position. When the movable portion 50 is in the second position, the movable contact 25 is in the closed position.
  • the controller 40 is configured to control a movement of the movable portion 50 from the first position to the second position.
  • the control device 40 comprises a supply member 55, a measuring member 60, a sampling member 65 and a regulator 70.
  • the supply member 55 is configured to feed the coil 45 with a second electric current C2.
  • the power supply member 55 comprises an electric circuit 75 represented on the figure 2 .
  • the second electric current C2 has an intensity I.
  • the second electric current C2 is capable of causing a displacement of the mobile part 50 from the first position to the second position when a measured variable G has a displacement value Vd.
  • measured quantity G is, for example, intensity I.
  • the displacement value Vd is between 5 milliamperes (mA) and 25 amperes (A).
  • the measured quantity G is a voltage of the second electric current C2.
  • the second electric current C2 is further adapted to keep the moving part 50 in the second position when the measured quantity G is equal to a holding value Vm.
  • the holding value Vm is strictly smaller, in absolute value, than the displacement value Vd.
  • the hold value is between 5 mA and 25 A.
  • the supply member 55 is, for example, configured to generate the second electrical current C2 by pulse width modulation.
  • Pulse width modulation also known by the acronym PWM, of the English term “Pulse Width Modulation”
  • PWM Pulse width modulation
  • Pulse Width Modulation is a technique commonly used to synthesize electric currents in the form of a pulse sequence of very short duration before the characteristic times of the powered systems. For example, by opening and closing a switch quickly, a system is powered with an electric current whose average intensity is set by the ratio between the opening and closing times of the switch.
  • the electrical circuit 75 comprises a rectifier bridge 80, a protection diode 85, a first switch 90, a freewheel diode 95, a measurement resistor 100, a second switch 105 and a zener diode 110.
  • the electromagnet 35 is represented in the electrical circuit 75 by inductance and resistance in series.
  • the rectifier bridge 80 is configured to receive an input voltage input Ua as input and to transform the input voltage Ua into a full-wave rectified voltage Uc. Thus, the rectifier bridge 80 is configured to output an electrical current of origin C.
  • the original electrical current Co is a current chopped by the switch 90.
  • the input voltage Ua is, for example, a voltage alternative. Alternatively, the input voltage Ua is a DC voltage.
  • the input voltage Ua is imposed between the points of the rectifier bridge 80 denoted "A" and "B” on the figure 2 by an alternating voltage generator.
  • the DC voltage Uc is measured between the points marked “C” and “D” on the figure 2 .
  • the protective diode 85 is interposed between the rectifier bridge 80 and the first switch 90, that is to say that the rectifier bridge 80, the protection diode 85 and the first switch 90 are in series.
  • the first switch 90 is configured to alternately connect and disconnect the protection diode 85 and the coil 45 as a function of a control signal generated by the regulator 70.
  • the first switch 90 is, for example, a transistor.
  • Metal-Oxide-Semiconductor (“MOS”) transistors are particular examples of transistors.
  • Insulated gate bipolar transistors also known by the acronym IGBT "Insulated Gate Bipolar Transistor" are other examples of transistor particularly adapted to high power circuits.
  • the first switch 90 is provided for modulating the second current C2 by pulse width modulation from the original current C.
  • the second current C2 is obtained, from the original current Co, by the opening and closing the first switch 90.
  • the freewheeling diode 95 is placed in parallel with the assembly formed by the rectifier bridge 80, the protective diode 85 and the first switch 90.
  • the measuring resistor 100 is placed in series with the coil 45.
  • the measurement resistor 100 is also traversed by the second electric current C2.
  • the second electric current C2 passes successively through the coil 45 and the measurement resistor 100.
  • the second switch 105 is interposed between the ground of the electrical circuit 75 and the measurement resistor 100.
  • the second switch 105 is, for example, a MOS transistor or an IGBT transistor.
  • the Zener diode 110 is placed in parallel with the second switch 105 in the opposite direction.
  • the Zener diode 110 thus protects the second switch 105 against possible overvoltages, and also makes it possible to accelerate the discharge of the coil 45 when the second switch 105 is open.
  • the measuring member 60 is configured to measure a value V of the measured quantity G.
  • the measuring member 60 is configured to measure a voltage across the measurement resistor 100 and to calculate the intensity I of the second current C2 from the voltage measured across the measuring resistor 100.
  • the measuring member 60 is configured to measure a voltage across the coil 45.
  • the sampling member 65 is configured to acquire samples of the value V with a sampling period Pe, i.e. each sample is acquired at a time separated from the sampling period Pe of the instants. corresponding to the previous sample and the next sample.
  • the sampling period Pe is, for example, less than or equal to 500 ms.
  • the sampling period Pe is between 300 ms and 500 ms.
  • the sampling period Pe is between 30 ms and 70 ms.
  • the regulator 70 is configured to regulate the value V of the measured quantity G around a setpoint value Vc.
  • the control variable is, for example, an opening rate of the first switch 90.
  • the opening ratio is defined as being a ratio between the successive opening and closing times of the first switch 90.
  • the regulator 70 is then configured to regulate the value V of the measured quantity G by modulation of the pulse width.
  • the regulator 70 is configured to control the opening and / or closing of the first switch 90, according to a proportional-integrator-derivative algorithm, as a function of the values of the measured samples.
  • the regulator 70 is furthermore configured to modify the setpoint value Vc between the holding value Vm and the displacement value Vd.
  • the measuring member 60, the sampling member 65 and the regulator 70 are for example made in the form of a programmable logic circuit or dedicated integrated circuits.
  • control device 40 comprises a processor and a memory, a measurement software, an acquisition software and a control software being stored in the memory.
  • the measurement software, the acquisition software and the control software When executed on the processor, the measurement software, the acquisition software and the control software respectively form the measuring member 60, the acquisition member 65 and the regulator 70.
  • a flow chart of the steps of a control method of the activation device 30 is shown on the figure 3 .
  • the control method comprises an initial step 200, a first supply step 210, a step 220 of displacement, a step 230 of transition, a step 240 of acquisition, a step 250 of comparison, a step 260 of regulation, a step detection step 270 and a second step 280 of feeding.
  • the movable portion 50 is in the first position.
  • the movable contact 25 is thus in the open position, and the switching device 10 prevents the first current C1 from propagating from the input terminal 15 to the output terminal 20.
  • the regulator 70 controls the supply of the coil 45 with the second electric current C2, the measured variable G having the displacement value Vd, in particular the regulator 70 sets the value of setpoint Vc greater than or equal to the displacement value Vd, the acquisition member 65 acquires samples of the value V with the sampling period Pe and the regulator 70 regulates the value V of the measured quantity G around the value setpoint Vc, according to a proportional-integrator-derivative algorithm.
  • the derivative coefficient Kd is, for example, equal to 0, that is to say that the algorithm is a proportional-integrator algorithm.
  • a proportional-integrator algorithm is a special case of proportional-integrator-derivative algorithm.
  • the proportional coefficient Kp is, for example, between 1% of the integrating coefficient Ki and 10% of the integrating coefficient Ki .
  • the movable portion 50 moves from the first position to the second position during the displacement step 220.
  • the movable contact 25 is in the closed position.
  • the regulator 70 controls the opening of the first switch 90 and allows the coil 45 to discharge by restoring a portion of the electrical energy contained in the coil 45.
  • the current flowing through the measuring resistor 100 then decreases progressively, from the displacement value, during the discharge of the coil 45.
  • the regulator 70 implements the acquisition step 240.
  • the acquisition device 65 acquires the minus a sample of the value V of the measured quantity G.
  • the acquisition member 65 acquires a single sample of the value V of the measured quantity G.
  • the regulator compares the measured sample with a predetermined threshold S.
  • the threshold S is strictly between the displacement value Vd and the holding value Vm.
  • a difference between the threshold S and the holding value Vm is less than or equal, in absolute value, to 15 percent of the holding value Vm.
  • the difference between the threshold S and the holding value Vm is less than or equal, in absolute value, to 5 percent of the holding value Vm.
  • the comparison step 250 is followed by the regulation step 260.
  • the regulator 70 controls the supply of the coil 45 with the second electric current C2, the measured quantity G having the holding value Vm.
  • the regulator 70 sets the setpoint value Vc equal to the holding value Vm and regulates the value V of the measured quantity G around the setpoint value Vc according to a proportional-integrator-derivative algorithm.
  • the derivative coefficient Kd is, for example, equal to 0, that is to say that the algorithm is a proportional-integrator algorithm.
  • a proportional-integrator algorithm is a special case of proportional-integrator-derivative algorithm.
  • the proportional coefficient Kp is, for example, between 1% of the integrating coefficient Ki and 10% of the integrating coefficient Ki.
  • the acquisition 240, comparison 250 and control 260 steps are successively iterated in that order with the sampling period Pe. This is represented by an arrow 265 on the figure 3 .
  • the comparison step 250 is followed by the detection step 270.
  • the regulator 70 detects an undesirable displacement of the mobile part 50, that is to say that the regulator 70 considers that the sample acquired at the acquisition step 240 and compared with the threshold S at the comparison step 250 is greater than or equal to the threshold S because of a shock resulting in an undesirable displacement of the movable part 50.
  • the moving part 50 is, during the detection step 270, in an intermediate position between the first position and the second position.
  • the detection step 270 is then followed by the second supply step 280.
  • the regulator 70 controls the supply of the coil 45 with the second electric current C2, the measured variable G having the displacement value Vd, in particular the regulator 70 sets the value of setpoint Vc equal to the displacement value Vd, the acquisition member 65 acquires samples of the value V with the sampling period Pe and the regulator 70 regulates the value V of the measured quantity G around the setpoint value Vc according to a proportional-integrator-derivative algorithm.
  • the derivative coefficient Kd is, for example, equal to 0, that is to say that the algorithm is a proportional-integrator algorithm.
  • the proportional coefficient Kp is, for example, between 1% of the integrating coefficient Ki and 10% of the integrating coefficient Ki .
  • the moving part 50 moves from the intermediate position to the second position P2 under the effect of the electromagnetic force generated by the passage of the second current C2, the magnitude measured G showing the displacement value Vd, in the coil 45.
  • transition step 230 is then implemented again. This is represented on the figure 3 by an arrow 285.
  • the graphs 290 to 305 describe the operation of a switching device of the state of the art, implementing a control method according to the state of the art, and undergoing a shock causing an unwanted displacement of the moving part. 50 of the actuator at a time t equal to 125 milliseconds.
  • the graph 290 represents the variation over time of the intensity of the current flowing through the coil of the actuator.
  • the shock received causes an increase in the current flowing through the coil, which appears in the form of a peak 310.
  • the graph 295 represents the position of the moving part over time, between the second position represented by the ordinate "0" and the first position represented by the ordinate "5.5".
  • the ordinate is graduated in millimeters on the graph 295.
  • the shock causes the movable portion 50 to move from the second position to the first position, and the movable portion 50 remains in the first position after the impact.
  • the graph 300 represents the magnetic force exerted by the fixed part of the electromagnet on the moving part 50 over time. As shown in graph 300, the magnetic force exerted does not increase during the shock detection.
  • Chart 305 shows the resistive force exerted by the spring (s). The resistive force increases at the moment of impact, then decreases to a minimum value, sign that the moving part 50 has reached the first position and remains there.
  • the graphs 315 to 330 describe the operation of a switching device according to the invention, implementing a control method according to the invention, and undergoing a shock causing an undesired displacement of the movable part 50 of the actuator.
  • a time t equal to 125 milliseconds.
  • Each graph 315, 320, 325 and 330 corresponds to a graph 290, 295, 300 and 305 respectively of the figure 4 and is represented with the same scales, for comparison.
  • the graph 315 represents the variation over time of the intensity I of the second current C2 passing through the coil 45. Following the impact, the intensity I increases more significantly than in the case of the method of the state of the art. , and over a longer period. This is due to the detection of the shock by the regulator 70 and to the implementation of the second feeding step 280.
  • the graph 320 represents the position of the moving part 50 over time, between the second position represented by the ordinate "0" and the first position represented by the ordinate "5.5".
  • the ordinate is graduated in millimeters on the graph 320.
  • the shock causes a displacement of small amplitude, visible in the form of a peak 335, of the moving part 50 from the second position towards the first position, but the moving part 50 quickly returns to the second position and remains there after the shock. This movement is not sufficient to cause the opening of the movable contact 25.
  • the graph 325 represents the magnetic force exerted by the fixed portion 45 of the electromagnet 35 on the moving part 50 over time. As shown in graph 325, the magnetic force exerted increases significantly after the shock is detected. This is visible by the rise of the magnetic force up to a maximum of 340 on the graph 325, corresponding to a current value Vd.
  • the graph 330 represents the resistive force exerted by the spring or springs. The resistive force increases at the moment of the shock, then returns to the value it had just before the shock, sign that the moving part returns to the second position and remains there. This appears on graph 330 as a peak 345.
  • the regulation of the measured quantity G is very efficient and the second current C2 has few variations in the absence of shock.
  • the threshold S is thus close to the holding value Vm, and the detection of a single sample greater than or equal to the threshold S makes it possible to detect a shock.
  • the detection of a shock and inadvertent movement of the moving part 50 that it causes is very fast.
  • the implementation of the second feeding step 280 then takes place more rapidly, and the displacement of the mobile part 50 is then limited in amplitude, as shown by the peak 335 at the figure 5 .
  • the holding value Vm is relatively low. The power consumption of the switching apparatus 10 is therefore reduced.
  • the switching apparatus 10 does not include displacement sensors.
  • the switching device 10 is thus easy to manufacture and control, and inexpensive compared to a switching apparatus comprising a displacement sensor.
  • the switching apparatus 10 has been described in the case where the mobile part 50 of the electromagnet 35 is a core. However, those skilled in the art will understand that the invention is applicable to a large type of electromagnets having moving parts of different types.
  • the movable part is an electrical circuit movable with respect to the coil 45.
  • the control method has been described in the case where the measured quantity is the intensity of the second current C2.
  • the quantity measured is another quantity of the second current C2, for example the voltage of the second current C2.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Relay Circuits (AREA)

Claims (11)

  1. Verfahren zum Steuern einer Betätigungsvorrichtung (30), die einen Elektromagneten (35) und eine Steuervorrichtung (40) umfasst, wobei der Elektromagnet (35) eine Spule (45) und ein in Bezug auf die Spule (45) zwischen einer ersten Stellung und einer zweiten Stellung bewegliches Teil (50) umfasst,
    wobei die Steuervorrichtung (40) aufweist:
    - ein Versorgungselement (45), das ausgebildet ist, die Spule (45) mit einem elektrischen Strom (C2) zu versorgen,
    - ein Messelement (60), das ausgebildet ist, mindestens einen Wert (V) einer gemessenen Größe (G) des elektrischen Stroms (C2) zu messen,
    - ein Abtastelement (65), das ausgebildet ist, mindestens eine Abtastung des Wertes (V) zu beschaffen, und
    - einen Regler (70), der geeignet ist, den Wert (V) der gemessenen Größe (G) um einen Sollwert (Vc) herum zu regeln;
    wobei das Verfahren die Schritte aufweist:
    - Versorgen (210) des Elektromagneten (35) mit dem elektrischen Strom (C2), wobei die gemessene Größe (G) einen Bewegungswert (Vd) aufweist, der geeignet ist, eine Bewegung des beweglichen Teils (50) von der ersten Stellung in die zweite Stellung hervorzurufen,
    - Bewegen (220) des beweglichen Teils (50) von der ersten Stellung in die zweite Stellung,
    - Bewegen (220) des beweglichen Teils (50) von der ersten Stellung in die zweite Stellung,
    - Beschaffen (240) einer Abtastung des gemessenen Wertes (V) mit einer Abtastperiode (Pe),
    - Regeln (260) des elektrischen Stroms (C2) um einen Sollwert (Vc) herum, wobei der Sollwert (Vc) größer oder gleich einem Haltewert (Vm) ist, der geeignet ist, das bewegliche Teil (50) in der zweiten Stellung zu halten,
    - Vergleichen (250) jeder Abtastung mit einer vorbestimmten Schwelle (S), die streng größer als der Haltewert (Vm) ist, und
    - Detektieren (270) einer unerwünschten Bewegung des beweglichen Teils (50), wenn eine einzige Abtastung im Absolutwert größer oder gleich der Schwelle (S) ist, wobei das Verfahren dadurch gekennzeichnet ist, dass der Schritt des Regelns des elektrischen Stroms um einen Sollwert (Vc) herum gemäß einem PID-Algorithmus durchgeführt wird.
  2. Steuerverfahren nach Anspruch 1, bei dem nach dem Detektieren einer unerwünschten Bewegung die Steuervorrichtung (40) einen Schritt (280) der Versorgung des Elektromagneten (35) mit dem elektrischen Strom (C2) durchführt, wobei die gemessene Größe (G) den Bewegungswert (Vd) aufweist.
  3. Steuerverfahren nach einem beliebigen der Ansprüche 1 und 2, bei dem die Differenz zwischen der Schwelle (S) und dem Haltewert (Vm) im Absolutwert kleiner oder gleich 15 Prozent des Haltewerts (Vm), vorzugsweise kleiner oder gleich 5 Prozent des Haltewerts (Vm) beträgt.
  4. Steuerverfahren nach einem beliebigen der Ansprüche 1 bis 3, bei dem der PID-Algorithmus einen Differenzierbeiwert (Kd) gleich null aufweist.
  5. Steuerverfahren nach einem beliebigen der Ansprüche 1 bis 4, bei dem die Abtastperiode (Pe) kleiner oder gleich 500 Mikrosekunden ist, wobei ein Proportionalkoeffizient (Kp) und ein Integralkoeffizient (Ki) für den PID-Algorithmus definiert ist, wobei der Proportionalkoeffizient (Kp) zwischen 1 Prozent des Integralkoeffizienten (Ki) und 10 Prozent des Integralkoeffizienten (Ki) liegt.
  6. Betätigungsvorrichtung (30), die einen Elektromagneten (35) und eine Steuervorrichtung (40) umfasst, wobei der Elektromagnet (35) eine Spule und ein in Bezug auf die Spule (45) zwischen einer ersten Stellung und einer zweiten Stellung bewegliches Teil (50) umfasst, wobei die Steuervorrichtung (40) aufweist:
    - ein Versorgungselement (55), das ausgebildet ist, die Spule (45) mit einem elektrischen Strom (C2) zu versorgen, wobei der elektrische Strom (C2) geeignet ist, eine Bewegung des beweglichen Teils (50) von der ersten Stellung in die zweite Stellung hervorzurufen, wenn eine gemessene Größe (G) des elektrischen Stroms (C2) einen Bewegungswert (Vd) aufweist, und geeignet ist, das bewegliche Teil (50) in der zweiten Stellung zu halten, wenn diese gemessene Größe (G) einen Haltewert (Vm) als absoluten Wert streng kleiner als der Bewegungswert (Vd) aufweist,
    - ein Messelement (60), das ausgebildet ist, mindestens einen Wert (V) der gemessenen Größe (G) zu messen,
    - ein Abtastelement (65), das ausgebildet ist, Abtastungen des gemessenen Werts (V) mit einer Abtastperiode (Pe) zu beschaffen und
    - einen Regler (70), der geeignet ist, den Wert (V) der gemessenen Größe (G) um einen Sollwert (Vc) herum zu regeln;
    wobei der Regler (70) ausgebildet ist, den Wert (V) der gemessenen Größe (G) gemäß einem Algorithmus zu regeln, um jede gemessene Abtastung mit einer vorbestimmten Schwelle (S) streng größer als der Haltewert (Vm) zu vergleichen und um eine ungewünschte Bewegung des beweglichen Teils (50) zu detektieren, wenn eine einzige Abtastung des gemessenen Werts (V) als Absolutwert größer oder gleichder Schwelle (S) ist,
    dadurch gekennzeichnet, dass der Algorithmus ein PID-Algorithmus ist.
  7. Elektrisches Schaltgerät (10), das eine Eingangsklemme (15), eine Ausgangsklemme (20), einen beweglichen Kontakt (25) und eine Betätigungsvorrichtung (30), die geeignet ist, den beweglichen Kontakt (25) zwischen einer geschlossenen Stellung, in der die Eingangsquelle (15) elektrisch mit der Ausgangsklemme (20) verbunden ist, und einer Offenstellung, in der die Eingangsquelle (15) elektrisch von der Ausgangsklemme (20) isoliert ist, umfasst, dadurch gekennzeichnet, dass die Betätigungsvorrichtung (30) nach Anspruch 6 ausgebildet ist.
  8. Elektrisches Schaltgerät (10) nach Anspruch 7, bei dem das elektrische Schaltgerät (10) ein Schütz ist.
  9. Elektrisches Schaltgerät (10) nach Anspruch 7, bei dem das elektrische Schaltgerät (10) ein Schutzschalter ist.
  10. Elektrisches Schaltgerät (10) nach Anspruch 7, bei dem das elektrische Schaltgerät (10) ein elektronisches Relais ist.
  11. Elektrisches Schaltgerät (10) nach Anspruch 7, bei dem das elektrische Schaltgerät (10) ein Quellenumschalter ist.
EP17188936.3A 2016-09-02 2017-09-01 Steuerungsverfahren einer betätigungsvorrichtung und entsprechende betätigungsvorrichtung und schaltvorrichtung Active EP3291271B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1658195A FR3055736B1 (fr) 2016-09-02 2016-09-02 Procede de commande d'un dispositif d'actionnement, dispositif d'actionnement et appareil de commutation associes

Publications (2)

Publication Number Publication Date
EP3291271A1 EP3291271A1 (de) 2018-03-07
EP3291271B1 true EP3291271B1 (de) 2019-02-27

Family

ID=57485647

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17188936.3A Active EP3291271B1 (de) 2016-09-02 2017-09-01 Steuerungsverfahren einer betätigungsvorrichtung und entsprechende betätigungsvorrichtung und schaltvorrichtung

Country Status (4)

Country Link
US (1) US10699864B2 (de)
EP (1) EP3291271B1 (de)
JP (1) JP7053193B2 (de)
FR (1) FR3055736B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000019366A1 (it) * 2020-08-05 2022-02-05 Lmp Srl Dispositivo elettronico di comando e controllo di un attuatore elettromagnetico, e relativo attuatore elettromagnetico

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2648584B1 (fr) * 1989-06-16 1991-10-11 Rexroth Sigma Procede et systeme de regulation du courant moyen traversant une charge, et dispositif de telecommande electrique du type manipulateur en faisant application
JP3085132B2 (ja) * 1995-03-02 2000-09-04 本田技研工業株式会社 パルス幅変調ソレノイドの制御装置
DE19530798A1 (de) * 1995-08-22 1997-02-27 Fev Motorentech Gmbh & Co Kg Verfahren zur Erkennung des Auftreffens eines Ankers auf einen Elektromagneten an einer elektromagnetischen Schaltanordnung
DE19742037B4 (de) * 1997-09-24 2007-08-09 Wabco Gmbh Verfahren zur Abfallerkennung einer magnetbetriebenen Vorrichtung
US6744615B1 (en) * 1997-12-23 2004-06-01 Siemens Aktiengesellschaft Device for controlling an electromechanical regulator
DE19807875A1 (de) * 1998-02-25 1999-08-26 Fev Motorentech Gmbh Verfahren zur Regelung der Ankerauftreffgeschwindigkeit an einem elektromagnetischen Aktuator durch extrapolierende Abschätzung der Energieeinspeisung
FR2786915B1 (fr) * 1998-12-07 2001-01-12 Schneider Electric Ind Sa Dispositif de commande d'un electro-aimant, avec detection d'un deplacement intempestif du noyau mobile de l'electro-aimant
US8737034B2 (en) * 2010-01-13 2014-05-27 Infineon Technologies Ag Determining a change in the activation state of an electromagnetic actuator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2018056116A (ja) 2018-04-05
FR3055736A1 (fr) 2018-03-09
JP7053193B2 (ja) 2022-04-12
FR3055736B1 (fr) 2018-09-28
EP3291271A1 (de) 2018-03-07
US10699864B2 (en) 2020-06-30
US20180068817A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
EP3149853B1 (de) Feldeffekttransistor und zugehörige fehlerdetektionsvorrichtung
EP1009006B1 (de) Standardeinrichtung zur Steuerung eines Elektromagneten zum Öffnen oder Schliessen eines Schutzschalters
EP2406802B1 (de) Steuerschaltung für einen elektromagnetischen aktuator eines vakuumschalters
EP3944279A1 (de) Verfahren zur diagnose des betriebszustands eines elektrischen schaltgeräts und elektrisches schaltgerät zur umsetzung dieses verfahrens
EP3291271B1 (de) Steuerungsverfahren einer betätigungsvorrichtung und entsprechende betätigungsvorrichtung und schaltvorrichtung
EP3288059B1 (de) Steuerbarer auslöser für einen elektrischen trennschalter
FR2786915A1 (fr) Dispositif de commande d'un electro-aimant, avec detection d'un deplacement intempestif du noyau mobile de l'electro-aimant
EP2600376B1 (de) Verfahren zur Abschätzung der Temperatur eines elektromagnetischen Schaltschützes, und Schaltschütz zur Umsetzung dieses Verfahrens
EP3087647B1 (de) Leistungsregler mit linearer steuerung von stromspitzenbegrenzung und mit kurzschlussschutz
EP1485931A1 (de) Elektrische einrichtung mit einem gesteuerten piezoelektrischen betätigungsglied
WO2018115753A1 (fr) Installation électrique haute tension continue et procédé de contrôle d'un appareil de coupure dans une telle installation
EP2270829A1 (de) Steuerung über eine Einrichtung zur magnetischen Kompensation einer Rückstosskraft und Schaltschutz mit einer solchen Vorrichtung
EP2320438B1 (de) Elektromagnetischer Aktuator und ein den Aktuator umfassender elektrischer Schalter
EP2200050B1 (de) Verarbeitungseinheit, die mit Mitteln zur Steuerung eines elektromagnetischen Stellglieds ausgestattet ist, und elektromagnetisches Stellglied, das eine solche Verarbeitungseinheit umfasst
EP0921305B1 (de) Verfahren und Vorrichtung zur Steuerung des Stromzufuhrs einer Schalterwicklung für Kraftfahrzeuganlasser
EP3944278B1 (de) Verfahren zur diagnose des betriebszustands eines elektrischen schaltgeräts und elektrisches schaltgerät zur umsetzung dieses verfahrens
EP3389072A1 (de) Steuerverfahren eines stromunterbrechungsgeräts, elektromagnetisches stellglied, das einen schaltkreis zur umsetzung dieses verfahrens umfasst, und elektrisches unterbrechungsgerät, das ein solches stellglied umfasst
EP3381100A1 (de) Verfahren und vorrichtung zum einschalten eines leistungstransformators
WO1987007456A1 (fr) Procede et dispositif de commande d'un electro-aimant dont l'excitation, par un courant periodique monoarche, provoque l'actionnement d'une piece mobile
EP3159991B1 (de) Vorrichtung und verfahren zur begrenzung einer ersten stromspitze in einem stromnetz
EP3944280A1 (de) Verfahren zum schätzen einer eigenschaft eines elektrischen schaltgeräts und entsprechende vorrichtungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180808

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180927

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GEFFROY, VINCENT

Inventor name: HENRI-ROUSSEAU, JULIEN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1102535

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017002355

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1102535

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017002355

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190901

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190901

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230920

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230926

Year of fee payment: 7

Ref country code: DE

Payment date: 20230928

Year of fee payment: 7