EP3289286B1 - Système de production d'énergie et procédé d'approvisionnement en produit d'un équipement de production d'énergie associé - Google Patents
Système de production d'énergie et procédé d'approvisionnement en produit d'un équipement de production d'énergie associé Download PDFInfo
- Publication number
- EP3289286B1 EP3289286B1 EP16720808.1A EP16720808A EP3289286B1 EP 3289286 B1 EP3289286 B1 EP 3289286B1 EP 16720808 A EP16720808 A EP 16720808A EP 3289286 B1 EP3289286 B1 EP 3289286B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- container
- particles
- energy production
- production system
- supply device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 58
- 238000000034 method Methods 0.000 title claims description 14
- 239000002245 particle Substances 0.000 claims description 109
- 238000012546 transfer Methods 0.000 claims description 22
- 230000007246 mechanism Effects 0.000 claims description 13
- 230000000295 complement effect Effects 0.000 claims description 7
- 238000003860 storage Methods 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 5
- 239000002023 wood Substances 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 239000000446 fuel Substances 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 3
- 241001465754 Metazoa Species 0.000 claims description 2
- 230000002538 fungal effect Effects 0.000 claims description 2
- 239000011368 organic material Substances 0.000 claims description 2
- 238000010248 power generation Methods 0.000 description 56
- 230000008878 coupling Effects 0.000 description 36
- 238000010168 coupling process Methods 0.000 description 36
- 238000005859 coupling reaction Methods 0.000 description 36
- 230000005540 biological transmission Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 9
- 238000011049 filling Methods 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 239000000428 dust Substances 0.000 description 5
- 238000009423 ventilation Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 244000000626 Daucus carota Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 229920000544 Gore-Tex Polymers 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000005770 birds nest Nutrition 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000009419 refurbishment Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 235000005765 wild carrot Nutrition 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K3/00—Feeding or distributing of lump or pulverulent fuel to combustion apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K3/00—Feeding or distributing of lump or pulverulent fuel to combustion apparatus
- F23K3/02—Pneumatic feeding arrangements, i.e. by air blast
Definitions
- the present invention relates to a power generation system according to the preamble of claim 1.
- the solids are, for example, particles such as biomass particles or wood particles. It is known to use high volume trucks allowing the delivery of bulk particles in a fixed container connected to a power generation equipment.
- Power generation systems are described in the documents EP 0195250 A2 , WO 2013/170856 A2 and US 2005/126454 A1 .
- the document EP 0195250 A2 discloses a power generation system according to the preamble of claim 1.
- the invention aims to provide a system for producing energy simpler to supply and more reliable.
- the invention relates to a power generation system according to claim 1.
- the power generation system according to the invention may comprise one or more of the features of dependent claims 2 to 10, taken singly or in any technically possible combination.
- the invention also relates to a product supply method of a power generation equipment according to claim 11.
- the method of supplying the product of energy production equipment according to the invention may comprise one or more of the features of the dependent claims 12 to 14, taken alone or in any technically possible combination.
- upstream and downstream refer to the flow direction of the particles.
- the first energy production system 1 is intended to produce energy from a product 2, the product 2 being in the form of particles 4.
- the first power generation system 1 comprises a power generation equipment 8, a product supply container 10 and a removable connection unit 12.
- the power generation equipment 8 is for using the product 2 to generate energy.
- the power generation equipment 8 comprises a power generation unit 14 from the product 2 in the form of particles 4 and a feed device 16 from the product 2 of the energy production unit 14.
- the feed device 16 feeds the power generation unit 14 directly. There is no intermediate buffer storage of particles 4.
- the container 10 shown in detail on the figure 2 , is able to store the product 2 in the form of particles 6 in an internal volume 18.
- the container 10 is able to be connected to the supply device 16 by the connection unit 12.
- the detachable connection unit 12 comprises at least a first connecting element 20 which is connected to the power generation equipment 8 and at least one second complementary connection element 22 which is connected to the container 10.
- the coupling unit 12 has a coupled configuration shown on the figure 1 in which the first coupling element 20 cooperates with the second complementary connecting element 22 so that the internal volume 18 communicates with the supply device 16, so that the particles 4 are transferable from the internal volume 18 to the device 16.
- the coupling unit 12 further has a disengaged configuration, shown in FIG. figure 3 in which the first coupling element 20 is separated from the second coupling element 22.
- the first power generation system 1 further comprises a locking device 24 of the coupling unit 12 in a coupled configuration.
- the energy production system 1 further comprises a control system 28 capable of modifying the transfer rate of the particles 4 by the connection unit 12.
- the product 2 is a fuel.
- Product 2 comprises organic materials of plant, animal or fungal origin, especially wood.
- Product 2 is for example a product 2 of biomass.
- the product 2 further comprises additives to preserve the particles from moisture.
- the shape, the weight and the mass of the particles 4 are adapted to their uses in the power generation equipment 8.
- the particles 4 are able to flow substantially like a fluid, in the manner of a granular material.
- the particles 4 have a cylindrical, spherical or any other geometry capable of allowing a gravity flow.
- the particles 4 are in the form of granules or the form of platelets.
- the longest dimension of the particles 4 is, for example, between 2 mm and 70 mm.
- the particles 4 are adapted to be transferred through the connection unit 12, the container 10 to the feeder 16, as described below without risk of blocking by viscosity.
- the particles 4 are stable and have a homogeneous and known composition.
- the particles 4 are formed by extrusion, grinding, compaction and / or dehydration of the product 2.
- the particles 4 are obtained from milled wood, straw flour, powder of charcoal and / or wood powders.
- the particles 4 can also be composed of mixtures of the elements mentioned above.
- the power generation unit 14 is able to convert a product supply 2 into energy. For example, if the product 2 is a fuel, the energy production unit 14 is able to consume the particles 4 and to produce, for example, thermal energy from the combustion of the particles 4.
- the power generation unit 14 is a gas and oil boiler converted back into a biomass boiler.
- the feed device 16 is the input device of the particles 4 in the power generation equipment 8.
- the feed device 16 has at least one inlet opening 30.
- Each inlet opening 30 has a first connecting element 20 adapted to cooperate with a second complementary connection element 22 of the container 10 as will be described by the after.
- the feed device 16 is capable of transferring the particles from the inlet opening 30 to the power generating unit 14.
- the feeder 16 comprises a worm.
- the feed device 16 comprises a shutter member 32 of the inlet opening 30, adjustable between a fully open position, intermediate closure positions and a total closed position.
- the shutter member 32 is a clean platen slidable between the fully open position and the fully closed position.
- the closure member 32 In the fully open position, represented on the figure 1 , the closure member 32 allows access of the product 2 from the inlet opening 30 to the power generation unit 14. In the fully closed position, the closure member 32 closes completely the entrance opening 30.
- the power generation equipment 8 advantageously comprises a communication module 34.
- the communication module is suitable for receiving and transmitting data to the container 10, to the control system 28 or to a management center 35.
- the communication module 34 is capable of transmitting information concerning the energy requirements of the power generation unit 14.
- the container 10 is adapted to be filled with particles 4 by a filling unit.
- the container 10 constitutes a unit volume of delivery in particles 4.
- a container 10 will be described in detail with reference to the figure 2 .
- the container 10 comprises a container 36, a support 38 and a connecting piece 40 comprising the second connecting element 22 adapted to be connected to the feeder 16, as will be described later.
- the container 10 defines the internal volume 18 for receiving the product 2 in the form of particles 4.
- the container 10 advantageously comprises a humidity sensor 42 of the internal volume 18, a measuring tool of the level 44 of particles 4 in the internal volume 18, a traceability device 46 and a transmission module 48.
- the container 10 is mobile.
- the container 10 advantageously comprises wheels 50, so as to allow its displacement.
- the wheels 50 are ratchet wheels.
- the container 10 comprises four wheels 50.
- the container 10 advantageously comprises a motor and brakes.
- the braking system is directly integrated with the wheels 50.
- the wheels 50 are for example able to be rotated independently of each other.
- the wheels 50 are able to support the weight of the container 36 when the internal volume 18 is filled with particles 4.
- the container 10 is transportable by a hand pallet truck.
- the container 10 comprises, for example, catches 52 for forklift forks.
- the container 10 advantageously comprises handles 54 integrated handling.
- the handles 54 are arranged on the container 36 and the wheels 50, the motor, the brakes and the forks 52 are arranged on the support 38.
- the wheels 50 comprise an integrated braking system controlled by the handle 54 when the latter is maneuvered.
- the wheels 50 are motorized and comprise an integrated braking system and controlled by a manual brake handle.
- the wheels 50 are motorized and controlled by the handle 54 or by a remote control with or without a wire.
- the container 10 is elongate in a longitudinal direction X, substantially vertical.
- the terms “lower” and “higher” refer to this longitudinal direction X.
- the height of the container 10 in the longitudinal direction X is adapted to prevent the formation of dust during the passage of the connecting unit 12 of the uncoupled configuration to the coupled configuration, that is to say when connecting the container 10 to the feeder 16.
- the outer shape of the container 10 does not have protruding parts to improve safety during handling. All of the connectors, such as the coupling end piece 40, are advantageously integrated into cavities of the container 10.
- the cross section is maximum in a plane located halfway up the container 10.
- the cross section of the container 10 is rectangular or hexagonal.
- the width of the container 10 is, for example, between 60 cm and 1.20 m.
- the length of the container 10 is, for example, between 60 cm and 1.4 m.
- the height of the container 10 is advantageously between 60 cm and 2 m.
- the container is adapted to be transported on a pallet of rectangular cross section of 1 m by 1.2 m.
- the transverse dimensions of the container are then advantageously between 40 cm by 40 cm and 1 m by 1.2 m.
- the container 10 is able to receive from 0.2 m 3 to 1.5 m 3 of particles 4 in its internal volume 18.
- the inner walls of the container 36 defining the internal volume 18 are chemically neutral and do not interact chemically with the product 2.
- the walls of the container 36 have a mechanical strength relative to the particles 4 transported.
- the container 36 comprises an external reinforcing reinforcement enabling the shape and the mechanical strength of the container 36 to be maintained when the particles 4 present in the internal volume 18 are in motion, for example, during the loading into particles 4, during the transport of the container 10 or during the transfer of the particles 4 to the feeder 16.
- the container 36 is sealed to allow temporary storage of the particles 4 in the container 10.
- the container 36 of the container 10 is breathable so as to avoid a fermentation of the particles 4.
- the container 36 has a ventilation valve 56.
- the ventilation valve 56 is adapted to let escape the gas from the internal volume 18 but prevent the entry of gas into the interior volume 18.
- a safety valve to preserve the physical integrity of the container 10 in case of obstruction the ventilation valve 56 by any foreign body, such as snow, frost, insects, bird's nests or other.
- the container 36 advantageously comprises opaque walls 58 in order to protect the product 2 from ultraviolet rays.
- the container 36 further comprises a translucent viewing window 60 of the particle level 4 of the internal volume 18.
- the container 36 is made of high density polyethylene (PE) plastic or metal material.
- PE high density polyethylene
- the container 36 has an upper part 62 and a lower part 64.
- the container 36 typically comprises an upper cover 66 and a lower plate 68.
- the upper part 62 defines a filling opening 70 on its upper face oriented towards the top of the container 36.
- the dimensions of the filling opening 70 are adapted to allow the container 10 to be loaded by the filling unit.
- the filling opening 70 is adapted to be closed by the upper cover 66.
- the upper cover 66 is operable between an open position in which it allows access to the internal volume 18 through the filling opening 70 and the loading of the particles 4 in the internal volume 18 and a closed position in which it closes the filling opening 70.
- the upper cover 66 is shown in its closed position.
- the top cover 66 is removably attached to the upper part 62 so as to prevent the top cover 66 from unexpectedly passing into an open position, for example, during the transport of the container 10 or movements of the container 10.
- the upper cover 66 is screwed on the upper part 62.
- the top cover 66 is waterproof and / or breathable.
- the upper lid 66 is adapted to let water vapor from the internal volume 18 but prevent the external moisture from accessing the internal volume 18.
- the material of the upper lid 66 is for example GoreTex TM or any other similar breathable material.
- the lower part 64 has the shape of a hopper.
- the angle ⁇ of the hopper is adapted to facilitate the flow of particles 4 in the internal volume 18 to a discharge opening 72.
- the angle ⁇ of the hopper is measured between the longitudinal direction X and the wall of the hopper.
- the angle ⁇ of the hopper is advantageously between 30 ° and 50 °.
- the angle ⁇ of the hopper is adapted to the composition and the nature of the particles 4 for a good flow of the product 2.
- the emptying opening 72 is at the bottom of the hopper. As represented on the figure 2 , the emptying opening 72 is in the center of the hopper. Alternatively, it is positioned differently, for example, offset on one of the edges of the hopper.
- the emptying opening 72 is positioned to be higher than the inlet opening 30 of the feeder 16 when the container 10 is placed in the vicinity of the power generation equipment 8.
- the height the emptying opening 72 depends on the geometry of the container 10, the position of the discharge opening 72, central or remote, the angle ⁇ of the hopper and the diameter of the emptying opening 72.
- the bottom plate 68 is mounted on the lower part 64, movable between a closed position and a passage position.
- the bottom plate 68 is shown in its closed position on the figure 2 .
- the bottom plate 68 is slidable horizontally between the closed position and the passage position.
- the bottom plate 68 closes the emptying opening 72 and prevents the particles 4 of the internal volume 18 from falling through the emptying opening 72.
- the lower plate 68 releases the access of the emptying opening 72.
- the dimensions of the emptying opening 72 are adapted so that in the passage position, the particles 4 of the internal volume 18 flow and fall by gravity through the emptying opening 72.
- the diameter of the emptying opening 72 is greater than 20 mm.
- the container 36 comprises, for example, a retaining cap 74 adapted to hold the bottom plate 68 in the closed position.
- the holding cap 74 prevents inadvertent passage of the bottom plate 68 in the passage position.
- the holding cap 74 is removable.
- the support 38 is adapted to ensure the strength and rigidity of the container 10.
- the support 38 is a metal frame and hot-dip galvanized, or stainless steel.
- the connecting end piece 40 is for example a hollow tube having an upstream end 76 connected to the emptying opening 72 and a downstream end 78.
- the connecting piece 40 defines a particle flow duct 4 opening through the upstream end 76 into the emptying opening 72 and the downstream end 78.
- connection piece 40 is integral with the lower part 64.
- upstream end 76 of the connection piece 40 is adapted to be connected to the emptying opening 72, for example by screwing.
- connection piece 40 The downstream end 78 of the connection piece 40 comprises the second connecting element 22 adapted to cooperate with the first connecting element 20 of the feeder 16, as will be described later.
- the traceability device 46 indicates information representative of the container 10 or its contents. It can take the form of a bar code, an electronic chip, for example an RFID chip, or any other communicating tracing system.
- the representative information comprises the following information: the reference of the container 10, the date of revision of the container 10, the origin of the product 2, the date of loading of the product 2 in the container 10, the date of connection to the 8 energy production equipment, the reference of the power generation equipment 8, the humidity level in the internal volume 18 and / or the volume of particles 4 remaining in the internal volume 18, the date of expiry, such as a use-by date (UB) or a use-by date (DLC).
- UB use-by date
- DLC use-by date
- the traceability device 46 comprises a label and part of the information such as the volume of particles 4 and the humidity level are, for example, written manually on the device. label by an operator at regular intervals.
- the transmission module 48 is able to communicate with the communication module 34 or the control system 28.
- the transmission module 48 is able to transmit to the control system 28, a stop control of the transfer of particles 4 when the container 10 is empty. Thus, for example the worm is stopped.
- the transmission module 48 is a radio-identification module, RFID (English radio frequency identification ) .
- the transmission module 48 comprises an antenna associated with an electronic chip.
- the transmission module 48 is able to memorize and transmit data remotely.
- the transmission module 48 is able to store and transmit the information of the traceability device 46 and / or the information measured by the humidity sensor or the level measurement tool.
- the supply device 16 When the coupling unit 12 is in the coupled configuration, the supply device 16 is connected to the connection piece 40, the inlet opening 30 is in fluid communication with the particle circulation duct 4.
- the dimensions and the position of the inlet opening 30 and the connection endpiece 40 are adapted to allow the flow of particles 4 since the opening of emptying 72 to the feeder 16 when the coupling unit 12 is in the coupled configuration.
- the container 10 When the coupling unit 12 is in the uncoupled configuration, the container 10 is movable with respect to the power generating equipment 8 between a close position and a remote position.
- the container 10 advantageously remains in the close position.
- the coupling unit 12 is shown in the uncoupled configuration on the figure 3 and in the coupled configuration on the figure 4 .
- Each connecting element 20, 22 defines a passage lumen 82 of the particles 4 and a contact zone 84 with the other coupling element 20, 22.
- the coupling unit 20, 22 When the coupling unit 20, 22 is coupled the lumen 82 of the first coupling member 20 opens into the second passage member 22 and the contact areas 84 are in contact.
- the coupling unit 12 allows a tight connection in the coupled configuration.
- the shapes of the contact zones 84 of the first connecting element 20 connected to the feed device 16 and the second connecting element 22 connected to the container 10 are complementary.
- the contact zones 84 are two plates, or a male element and a female element, as illustrated in FIGS. Figures 3 and 4 .
- connection unit 12 comprises a centering device 86.
- the centering device 86 enables the slots 82 of the two connection elements 20, 22 to be positioned in such a way that they are in continuity with each other. the other or centered.
- the centering device 86 is for example formed of complementary cones on each of the contact zones 84, as illustrated in FIGS. Figures 3 and 4 .
- the second connecting element 22 connected to the container 10 comprises a valve 88.
- the valve 88 is movable between a closed position in which it closes the lumen 82 of the second coupling element 22 and an open position in which it allows access to the light of the second connecting element 22 by the particles 4.
- the valve 88 is advantageously constrained towards its closed position, for example by means of a spring when the coupling unit 12 in the uncoupled configuration.
- the passage of the coupling unit 12 in the uncoupled configuration thus causes the valve 88 to pass into the closed position.
- the first element 20 comprises a rod 90 or any other mechanical member adapted to put the valve 88 in the open position and to maintain it in the opening position.
- the passage of the coupling unit 12 in the coupled configuration causes the valve 88 to pass into the open position.
- the transfer of the particles 4 from the container 10 to the feeder 16 through the connection unit 12 is gravity.
- the inlet opening 30 of the feeder 16 being located at a lower level than the emptying opening 72 of the container 10, the supply of the feeder 16 by the container 10 is gravity, when the coupling unit 12 is in the coupled configuration.
- the locking device 24 is operable between a locking configuration and a release configuration.
- the locking device 24 is adapted to maintain the coupling unit 12 in the coupled configuration when in the lock configuration.
- the locking device 24 comprises, for example, retaining jaws adapted to grip the first coupling element 20 and the second coupling element 22 to prevent their spacing, when the coupling unit 12 is in the coupled configuration.
- the locking device 24 comprises a return mechanism adapted to put the locking device in the locking configuration as soon as the connection unit 12 is in the coupled configuration.
- the control system 28 is able to modify the transfer rate of the particles 4 through the connection unit 12.
- the control system 28 makes it possible to control the number and the input speed of the particles 4 entering the energy production unit 14.
- control system 28 controls the position of the shutter member 32 according to the needs of the power generation unit 14.
- control system 28 controls the position of the shutter member 32 as a function of the level of particles 4 in the container 10.
- the control system 28 is advantageously automatic. Automatic means that, thanks to the control system 28, the amount of particles 4 necessary for the operation of the power generation unit 14 is drawn from the connected container 10, without manual intervention.
- a product supply method 2 of the power generation equipment 8 will now be described.
- the method comprises the provision of a power generation system 1 as previously described with at least one container 10 comprising particles 4 in its internal volume 18.
- more than 90% of the internal volume 18 of each container 10 is filled with particles 4.
- connection unit 12 is provided in the uncoupled configuration and the container in a remote position for example on a storage area.
- the container 10 is moved from the remote position to the close position, that is to say around the power generation equipment 8 for example by means of the wheels 50 of the container 10 or by a pallet truck.
- connection unit 12 is then put in the coupled configuration.
- the step of connecting the connection unit is facilitated by the centering device 86.
- the locking device 24 is set in the locking configuration.
- the valve 88 goes into the open position.
- the container 10 is thus connected to the power supply device 16 of the power generation equipment.
- the internal volume 18 is placed in communication with the feeder 16 so that the particles 4 are transferable from the internal volume 18 to the feeder 16.
- the container 10 is then called active container.
- the holding cap 74 is removed and the bottom plate 68 of the container 10 is placed in its passage position.
- the particles 4 then flow into the connection piece 40.
- the retaining cap 74 is removed prior to passage of the coupling unit into the coupling configuration. Then, the bottom plate 68 of the container 10 is put in its passage position. The particles 4 then flow into the connection piece 40 but are stopped by the valve in the closed position.
- control system 28 adapts the transfer rate of the particles 4.
- the closure member 32 of the inlet opening 30 is relieved by the feeding device 16 to allow feeding of the power generation unit 14. Due to the fluidity of the particles 4, they flow rapidly to the feeder 16.
- the feed device 16 then feeds the energy production unit 14.
- the power generation unit 14 consumes the particles 4 stored in the connected container 10.
- the level of the particles in the active container 10 decreases as the energy production unit 14 consumes.
- the level can be controlled by an operator by means of the translucent window 60.
- the level of the active container 10 can be controlled by an operator. particles 4 in the internal volume 18 is measured by the measuring tool 44.
- the method comprises measuring the humidity in the internal volume 18 of the container 10 by the humidity sensor 42.
- the measured information is transmitted by the transmission module 48 to the control system 28.
- the communication module 34 transmits information concerning the consumption of the power generation equipment 8 to the control system 28 or at the management center 35.
- the control system 28 When the particle level 4 is below a predetermined threshold, the control system 28 gives instructions for slowing down or interrupting the pending particle transfers 4 that a new filled container 10 is ready to be connected in place of the container 10 active. Likewise, when the humidity level is outside a tolerance range, the control system 28 gives instructions for slowing down or interrupting the pending particle transfers that a new filled container is ready to be connected to. the place of the container 10 connected.
- the transmission module 48 transmits the delivery request for a new filled container 10 to the management center 35.
- control system 28 imposes the passage of the shutter member 32 in the fully closed position.
- the coupling unit 12 is then put in the uncoupled configuration.
- the passage of the coupling unit 12 in the uncoupled configuration allows the return of the valve 88 in the closed position.
- Each of the lumens 82 of the coupling unit 12 is advantageously obstructed during uncoupling, so that the dust can not disperse.
- connection unit 12 comprising the first element 20 and the second element 22 of the first container 10 connected in the uncoupled configuration
- the connecting unit 12 comprising the first element 20 and the second element 22 of the second container 10.
- the disconnected container 10 is then moved to a position remote from the power generation equipment 8, for example by means of the wheels 50 of the container 10 or by a pallet truck.
- the container 10 is moved to a recycling zone to be cleaned and again filled with particles 4.
- the container 10 is then recycled.
- the recycling comprises a cleaning of the container 10, a control of the container 10 and a refurbishment of the container 10.
- the quality of the product 2 and associated ashes is analyzed which allows a quality monitoring of the container 10 and the product 2.
- the particular failures of a container 10 are detected thanks to the information measured by the humidity sensor 42 and the measuring tool 44 and thanks to the information transmitted by the communication module 34 from the feed device 16 to the management center 35.
- the bottom plate 68 is placed in the closed position and a new retaining cap 72 is placed on the emptying opening 72 of the container.
- the top cover 66 is placed in the closed position.
- the product supply method 2 according to the invention is reliable and optimized.
- each container 10 is both a storage unit and supply.
- An advantage of this solution is that the manipulations of the particles 4 are limited. The product 2 is thus preserved in quality and quantity.
- the isolation of the product 2 in the container 10 avoids contact between the operator and the product 2 and reduces the risks associated with the emission of dust.
- each container 10 is unique and traceable with its labeling and its transmission module 48, which comprises for example an RFID type chip. Monitoring the quality of container 10 and product 2 enhances safety.
- the container 10 is reused after verification and repair and cleaning before a new loading. Each container 10 thus performs several life cycles.
- the container 10 is reusable and durable.
- a second power generation system 100 is represented on the figure 5 .
- the second energy production system 100 differs from the first energy production system 1 previously described in that it comprises a particle transfer device 102 capable of activating the transfer of the particles 4 from the container 10 to the device. 16.
- the transfer device 102 comprises an endless screw 104 capable of implementing the transfer of the particles 4 from the container 10 to the feed device 16.
- the worm screw 104 is disposed between the first coupling element 20 and the feed device 16.
- control system 28 is able to control the transfer device 102 to impose the flow rate of the particles entering the energy production unit 14.
- control system 28 is able to control the speed of rotation of the worm 104.
- a third power generation system 110 is shown on the figure 6 .
- the third energy production system 110 differs from the second energy production system 100 previously described in that the particle transfer device 102 comprises a pneumatic drive mechanism 112 able to implement the transfer of the particles 4 of the container 10 to the feeding device 16.
- the pneumatic drive mechanism 112 comprises, for example, a suction mechanism 114 capable of sucking the particles from the container 10 towards the feed device 16.
- a suction mechanism 114 capable of sucking the particles from the container 10 towards the feed device 16.
- the pneumatic suction mechanism 112 creates a depression downstream of the connection unit 112 through a suction port 116 in the feeder 16, when the coupling unit 12 is in the coupled configuration.
- the pneumatic drive mechanism 112 comprises a blower mechanism 118.
- the blower mechanism 118 is capable of injecting air or nitrogen into the internal volume 18 at a pressure advantageously greater at 1 bar by a pressurizing inlet 120.
- the pneumatic drive mechanism 112 advantageously comprises a locking mechanism 112 of the ventilation valve 56 to temporarily allow an overpressure in the internal volume 18.
- a fourth power generation system 130 according to the invention is represented on the figure 7 .
- the fourth power generation system 130 differs from the power generation systems 1, 100, 110 previously described in that the power generation system 130 comprises a plurality of containers 10, the power generation equipment 8 being adapted to be connected to each container 10 by a connection unit 132, 134.
- the feed device 16 comprises two inlet openings 136, 138, each inlet opening 136, 138 comprising a first connecting element 20 adapted to be connected to a different container 140, 142.
- the feed device 16 comprises a nanny capable of being connected to several containers at the same time.
- the feed device 16 then has a plurality of inlet openings each comprising a first coupling element 20, for example three openings, or more
- the same power generation unit 14 is for example able to be supplied with product by several containers 140, 142 in parallel or successively.
- the control system 28 is able to independently control the transfer rate of the particles 4 corresponding to each container 10.
- the method differs from the method previously described in that the disconnection of a connected container 10 and the connection of a filled container 10 are performed in masked time, that is to say without interruption of the supply of the unit. energy production 14.
- the method comprises a connection step for each container 140, 142.
- Each container 140, 142 is thus connected to the power supply device 16 of the power generation equipment 8.
- Each internal volume 18 is placed in communication with the feed device 16 so that the particles 4 are transferable from the volume internal 18 to the feeding device 16.
- control system 28 retains at least one active container 142, that is to say that it keeps one of the closure members 32 in the raised position.
- the other container 140 is inactive as represented on the figure 6 , that is to say that its shutter member 32 in the closed position.
- the level of the active container 142 is followed by the measuring tool 44.
- the change of active container is slaved to the level of particles 4 in the active container.
- control system 28 gives instructions to change the active container 142, that is to say to slow down or interrupt the particle transfers 4 from this container 142 and instructions to accelerate or establish a flow from the other container 140.
- the supply of particles 4 of the power generation unit 14 is not interrupted and does not undergo a jerk.
- control system 28 gives instructions for slowing down or interrupting the transfers of particles 4 from this container 142 and instructions to accelerate or establish a flow from the other container 140.
- the change of active container 142 can be performed manually by a user reading the level of particle 4 or humidity level indications in the active container 142.
- a fifth power generation system 150 is shown on the figure 8 .
- the fifth power generation system 150 differs from the third power generation system 110 in that the blower mechanism 118 of the pneumatic drive mechanism 112 is capable of injecting air or nitrogen into the fuel system.
- connection piece 40 at a pressure advantageously greater than 1 bar by a pressurizing inlet 152.
- the connection piece 40 comprises, for example, a trap 154 between the upstream end 76 and the downstream end 78 in the vicinity of the upstream end 76.
- the pressurizing inlet 152 opens into a lateral edge of the trap 154.
- the pressurizing inlet 152 is in the vicinity of the upstream end 76, away from the bottom of the trap 154.
- the power generation system 1, 100, 110, 130, 150 comprises a plurality of power generation equipment 8.
- Each power generation equipment 8 comprises a feed device 16 of the product 2 in the form of particles 4.
- Each feed device 16 comprises a first coupling element 20 as previously described.
- each container 10 is able to feed any power generation equipment 8 of the plurality of power generation equipment 8.
- the energy production unit 14 is an individual or collective boiler, an equipment for producing industrial steam, and electricity or other.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
Description
- La présente invention concerne un système de production d'énergie selon le préambule de la revendication 1.
- Dans le domaine de l'énergie, l'approvisionnement en matières solides représente un enjeu de services et de logistique. Les matières solides sont par exemple des particules comme des particules de biomasse ou des particules de bois. Il est connu d'utiliser des camions de grands volumes autorisant la livraison en vrac de particules dans un container fixe connecté à un équipement de production d'énergie.
- Cependant, la traçabilité des produits livrés est difficile avec ce type d'approvisionnement. De plus ce transport est peu adapté pour l'approvisionnement en petites quantités de particules.
- En outre, le container et l'équipement de production étant fixes, le système de production d'énergie est encombrant. De plus, il est difficile d'accéder aux installations pour des opérations de maintenance par exemple.
- De plus, les particules lors de leur manipulation et de divers frottements mécaniques produisent des poussières. Ces poussières exposent les locaux dans lesquels sont stockées les particules à un risque d'inflammation. Le stockage des particules nécessite donc de nombreux dispositifs de sécurité. En outre la formation de poussières induit une perte de la masse utile de particules lors de l'approvisionnement.
- Des systèmes de production d'énergie sont décrits dans les documents
EP 0195250 A2 ,WO 2013/170856 A2 etUS 2005/126454 A1 . Le documentEP 0195250 A2 décrit un système de production d'énergie selon le préambule de la revendication 1. - Dans ce contexte, l'invention vise à proposer un système de production d'énergie plus simple à approvisionner et plus fiable.
- A cette fin, l'invention porte sur un système de production d'énergie selon la revendication 1.
- Le système de production d'énergie selon l'invention peut comprendre l'une ou plusieurs des caractéristiques des revendications dépendantes 2 à 10, prise(s) isolément ou suivant toutes les combinaisons techniquement possibles.
- L'invention a également pour objet un procédé d'approvisionnement en produit d'un équipement de production d'énergie selon la revendication 11.
- Le procédé d'approvisionnement en produit d'un équipement de production d'énergie selon l'invention peut comprendre l'une ou plusieurs des caractéristiques des revendications dépendantes 12 à 14, prise(s) isolément ou suivant toutes les combinaisons techniquement possibles.
- L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés sur lesquels :
- la
figure 1 est une représentation schématique d'un premier système de production d'énergie ; - la
figure 2 est une représentation schématique du container du système de production d'énergie de lafigure 1 ; - la
figure 3 est une représentation schématique de l'unité de raccord du système de production d'énergie de lafigure 1 dans une configuration désaccouplée ; - la
figure 4 est une représentation schématique de l'unité de raccord du système de production d'énergie de lafigure 1 dans une configuration accouplée ; - la
figure 5 est une représentation schématique d'un deuxième système de production d'énergie ; - la
figure 6 est une représentation schématique d'un troisième système de production d'énergie ; - la
figure 7 est une représentation schématique d'un quatrième système de production d'énergie selon l'invention ; - la
figure 8 est une représentation schématique d'un cinquième système de production d'énergie. - Dans la suite, les termes « amont » et « aval » s'entendent par rapport au sens d'écoulement des particules.
- Le premier système de production d'énergie 1, est destiné à produire de l'énergie à partir d'un produit 2, le produit 2 se présentant sous la forme de particules 4.
- Tel que représenté sur la
figure 1 , le premier système de production d'énergie 1 comprend un équipement de production d'énergie 8, un container 10 d'approvisionnement en produit 2 et une unité de raccord amovible 12. - L'équipement de production d'énergie 8 est destiné à utiliser le produit 2 pour générer de l'énergie. L'équipement de production d'énergie 8 comprend une unité de production d'énergie 14 à partir du produit 2 sous forme de particules 4 et un dispositif d'alimentation 16 en produit 2 de l'unité de production d'énergie 14.
- Le dispositif d'alimentation 16 alimente l'unité de production d'énergie 14 directement. Il n'y a pas de stockage tampon intermédiaire des particules 4.
- Le container 10, représenté en détail sur la
figure 2 , est propre à stocker le produit 2 sous forme de particules 6 dans un volume interne 18. De plus, le container 10 est apte à être relié au dispositif d'alimentation 16 par l'unité de raccord 12. - L'unité de raccord amovible 12 comprend au moins un premier élément de raccord 20 qui est lié à l'équipement de production d'énergie 8 et au moins un deuxième élément de raccord 22 complémentaire qui est lié au container 10.
- L'unité de raccord 12 présente une configuration accouplée représentée sur la
figure 1 , dans laquelle le premier élément de raccord 20 coopère avec le deuxième élément de raccord 22 complémentaire de sorte que le volume interne 18 communique avec le dispositif d'alimentation 16, de sorte que les particules 4 soient transférables du volume interne 18 au dispositif d'alimentation 16. L'unité de raccord 12 présente de plus une configuration désaccouplée, représentée sur lafigure 3 , dans laquelle le premier élément de raccord 20 est séparé du deuxième élément de raccord 22. - Le premier système de production d'énergie 1 comporte, en outre, un dispositif de verrouillage 24 de l'unité de raccord 12 en configuration accouplée.
- Le système de production d'énergie 1 comprend, de plus, un système de commande 28 propre à modifier le débit de transfert des particules 4 par l'unité de raccord 12.
- Par l'exemple, le produit 2 est un combustible.
- Le produit 2 comprend des matières organiques d'origine végétale, animale ou fongique, notamment du bois. Le produit 2 est par exemple un produit 2 de biomasse. En variante, le produit 2 comprend en outre des additifs pour préserver les particules de l'humidité.
- La forme, le poids et la masse des particules 4 sont adaptés à leurs utilisations dans l'équipement de production d'énergie 8. En particulier, les particules 4 sont aptes à s'écouler sensiblement comme un fluide, à la manière d'un matériau granulaire.
- Par exemple, les particules 4 ont une forme cylindrique, sphérique ou toute autre géométrie apte à permettre un écoulement gravitaire. Par exemple, les particules 4 ont la forme de granulés ou la forme de plaquettes.
- La dimension la plus longue des particules 4 est, par exemple, comprise entre 2 mm et 70 mm.
- Les particules 4 sont adaptées pour être transférer à travers l'unité de raccord 12, du container 10 vers le dispositif d'alimentation 16, tel que décrit par la suite sans risque de blocage par viscosité.
- En outre, les particules 4 sont stables et présentent une composition homogène et connue.
- Par exemple, les particules 4 sont formées par extrusion, broyage, compactage et/ou déshydratation du produit 2. Par exemple dans le domaine de l'énergie, les particules 4 sont obtenues à partir de bois broyé, de farine de paille, de poudre de charbon et/ou de poudres de bois. Dans le domaine de l'énergie, les particules 4 peuvent également être composées de mélanges des éléments cités ci-dessus.
- L'unité de production d'énergie 14 est propre à convertir un apport de produit 2 en énergie. Par exemple, si le produit 2 est un combustible, l'unité de production d'énergie 14 est apte à consommer les particules 4 et à produire par exemple de l'énergie thermique à partir de la combustion des particules 4.
- Par exemple, l'unité de production d'énergie 14 est une chaufferie à gaz et fioul reconvertie en une chaudière d'utilisation de biomasse.
- Le dispositif d'alimentation 16 est le dispositif d'entrée des particules 4 dans l'équipement de production d'énergie 8.
- Le dispositif d'alimentation 16 présente au moins une ouverture d'entrée 30. Chaque ouverture d'entrée 30 comporte un premier élément de raccord 20 propre à coopérer avec un deuxième élément de raccord complémentaire 22 du container 10 comme cela sera décrit, par la suite.
- Le dispositif d'alimentation 16 est propre à transférer les particules depuis l'ouverture d'entrée 30 vers l'unité de production d'énergie 14. Par exemple le dispositif d'alimentation 16 comporte une vis sans fin.
- De plus, le dispositif d'alimentation 16 comporte un organe d'obturation 32 de l'ouverture d'entrée 30, réglable entre une position d'ouverture totale, des positions de fermeture intermédiaire et une position de fermeture totale. Par exemple, l'organe d'obturation 32 est une platine propre à coulisser entre la position d'ouverture totale et la position de fermeture totale.
- Dans la position d'ouverture totale, représentée sur la
figure 1 , l'organe d'obturation 32 permet l'accès du produit 2 depuis l'ouverture d'entrée 30 vers l'unité de production d'énergie 14. Dans la position de fermeture totale, l'organe d'obturation 32 obture totalement l'ouverture d'entrée 30. - L'équipement de production d'énergie 8 comprend avantageusement un module de communication 34. Le module de communication est propre à recevoir et à transmettre des données au container 10, au système de commande 28 ou à un centre de gestion 35. Par exemple, le module de communication 34 est propre à transmettre des informations concernant les besoins énergétique de l'unité de production d'énergie 14.
- Le container 10 est adapté pour être rempli avec des particules 4 par une unité de remplissage. Le container 10 constitue un volume unitaire de livraison en particules 4.
- Un container 10 va être décrit en détail en référence à la
figure 2 . - Le container 10 comprend un récipient 36, un support 38 et un embout de raccord 40 comprenant le deuxième élément de raccord 22 propre à être raccordé au dispositif d'alimentation 16, comme cela sera décrit par la suite.
- Le container 10 définit le volume interne 18 de réception du produit 2 sous forme de particules 4.
- En outre, le container 10 comporte avantageusement un capteur d'humidité 42 du volume interne 18, un outil de mesure du niveau 44 de particules 4 dans le volume interne 18, un dispositif de traçabilité 46 et un module de transmission 48.
- En outre, le container 10 est mobile.
- Le container 10 comprend avantageusement des roues 50, de façon à permettre son déplacement. Par exemple, les roues 50 sont des roulettes à cliquets. Avantageusement, le container 10 comporte quatre roues 50. En complément, le container 10 comporte avantageusement un moteur et des freins. Par exemple, le système de freinage est directement intégré aux roues 50. Les roues 50 sont par exemple aptes à être tournée indépendamment les unes des autres. Les roues 50 sont propres à supporter le poids du récipient 36 lorsque le volume interne 18 est rempli de particules 4.
- En variante ou en complément, le container 10 est transportable par un transpalette manuel. Le container 10 comprend, par exemple, des prises 52 pour fourches de chariot élévateur.
- En outre, le container 10 comporte avantageusement des poignées 54 de manutention intégrées.
- Dans l'exemple représenté, les poignées 54 sont disposées sur le récipient 36 et les roues 50, le moteur, les freins et les prises 52 pour fourches sont disposés sur le support 38.
- Dans une variante, les roues 50 comprennent un système de freinage intégré commandée par la poignée 54 lorsque celle-ci est manœuvrée. Dans une variante, les roues 50 sont motorisées et comprennent un système de freinage intégré et commandé par une poignée de frein manuelle. Dans une variante les roues 50 sont motorisées et commandées par la poignée 54 ou par une télécommande avec ou sans fil.
- Le container 10 est de forme allongée selon une direction longitudinale X, sensiblement verticale. Les termes « inférieurs » et « supérieurs » s'entendent par rapport à cette direction longitudinale X. La hauteur du container 10 selon la direction longitudinale X est adaptée pour éviter la formation de poussières lors du passage de l'unité de raccord 12 de la configuration désaccouplée à la configuration accouplée, c'est-à-dire lors de la connexion du container 10 au dispositif d'alimentation 16.
- Avantageusement, la forme externe du container 10 ne présente pas de parties saillantes afin d'améliorer la sécurité lors de sa manipulation. L'ensemble des connectiques, comme l'embout de raccord 40 sont avantageusement intégrés dans des cavités du container 10.
- Par exemple, la section transversale est maximale dans un plan situé à mi-hauteur du container 10. Par exemple, la section transversale du container 10 est rectangulaire ou hexagonale.
- La largeur du container 10 est, par exemple, comprise entre 60 cm et 1,20 m. La longueur du container 10 est, par exemple, comprise entre 60 cm et 1,4 m. La hauteur du container 10 est avantageusement comprise entre 60 cm et 2 m.
- Dans un exemple, le container est adapté pour être transportée sur une palette de section transversale rectangulaire de 1 m par 1,2 m. Les dimensions transversale du container sont alors avantageusement comprises entre 40 cm par 40 cm et 1 m par 1,2 m.
- Avantageusement, le container 10 est apte à recevoir de 0,2 m3 à 1,5 m3 de particules 4 dans son volume interne 18.
- Les parois internes du récipient 36 définissant le volume interne 18 sont neutres chimiquement, et n'interagissent pas chimiquement avec le produit 2.
- En outre, les parois du récipient 36 présentent une tenue mécanique par rapport aux particules 4 transportées. Par exemple, le récipient 36 comporte une armature externe de renforcement permettant le maintien en forme et la tenue mécanique du récipient 36 lorsque les particules 4 présentes dans le volume interne 18 sont en mouvement, par exemple, lors du chargement en particules 4, lors du transport du container 10 ou lors du transfert des particules 4 vers le dispositif d'alimentation 16.
- Le récipient 36 est étanche pour permettre un stockage temporaire des particules 4 dans le container 10.
- En variante ou en complément, le récipient 36 du container 10 est respirant de façon à éviter une fermentation des particules 4. Par exemple, le récipient 36 comporte une soupape de ventilation 56. La soupape de ventilation 56 est propre à laisser s'échapper les gaz provenant du volume interne 18 mais empêcher l'entrée de gaz dans le volume intérieur 18. En complément de la soupape de ventilation 56, il est placé une soupape de sécurité permettant de préserver l'intégrité physique du container 10 en cas d'obstruction de la soupape de ventilation 56 par tout corps étranger, comme de la neige, du givre, des insectes, des nids d'oiseaux ou autre.
- Le récipient 36 comporte avantageusement des parois opaques 58 afin de protéger le produit 2 des rayons ultraviolets.
- Le récipient 36 comporte, en outre, une fenêtre translucide de visualisation 60 du niveau de particules 4 du volume interne 18.
- Par exemple, le récipient 36 est réalisé en plastique polyéthylène (PE) à haute densité ou en matériau métallique.
- Le récipient 36 présente une partie haute 62 et une partie basse 64. En outre, le récipient 36 comporte typiquement un couvercle supérieur 66 et une platine inférieure 68.
- La partie haute 62 définit une ouverture de remplissage 70 sur sa face supérieure orientée vers le haut du récipient 36. Les dimensions de l'ouverture de remplissage 70 sont adaptées pour permettre le chargement du container 10 par l'unité de remplissage. L'ouverture de remplissage 70 est propre à être obturée par le couvercle supérieur 66.
- Le couvercle supérieur 66 est manœuvrable entre une position d'ouverture dans laquelle il permet l'accès au volume interne 18 par l'ouverture de remplissage 70 et le chargement des particules 4 dans le volume interne 18 et une position d'obturation dans lequel il obture l'ouverture de remplissage 70. Le couvercle supérieur 66 est représenté dans sa position d'obturation.
- Dans la position d'obturation, le couvercle supérieur 66 est fixé de manière amovible à la partie haute 62 de sorte à empêcher le passage inopiné du couvercle supérieure 66 dans une position d'ouverture, par exemple, lors du transport du container 10 ou des mouvements du container 10. Par exemple, dans la position d'obturation, le couvercle supérieur 66 est vissé sur la partie haute 62.
- Le couvercle supérieur 66 est étanche et/ou respirant. Avantageusement, le couvercle supérieur 66 est adapté pour laisser passer la vapeur d'eau provenant du volume interne 18 mais empêcher l'humidité externe d'accéder au volume interne 18. La matière du couvercle supérieur 66 est par exemple du GoreTex™ ou toute autre matière respirante similaire.
- La partie basse 64 présente la forme d'une trémie. L'angle α de la trémie est adapté pour faciliter l'écoulement des particules 4 dans le volume interne 18 vers une ouverture de vidage 72. L'angle α de la trémie est mesuré entre la direction longitudinale X et la paroi de la trémie. L'angle α de la trémie est avantageusement compris entre 30° et 50°.
- L'angle α de la trémie est adapté à la composition et la nature des particules 4 pour un bon écoulement du produit 2.
- L'ouverture de vidage 72 est en bas de la trémie. Telle que représenté sur la
figure 2 , l'ouverture de vidage 72 est au centre de la trémie. En variante, elle est positionnée différemment, par exemple, déportée sur l'un des bords de la trémie. - Tel que représentée sur la
figure 1 , l'ouverture de vidage 72 est positionnée de sorte à être plus élevée que l'ouverture d'entrée 30 du dispositif d'alimentation 16 lorsque le container 10 est placé à proximité de l'équipement de production d'énergie 8. La hauteur de l'ouverture de vidage 72 dépend de la géométrie du container 10, de la position de l'ouverture de vidage 72, centrale ou déportée, de l'angle α de la trémie et du diamètre de l'ouverture de vidage 72. - La platine inférieure 68 est montée sur la partie basse 64, mobile entre une position de fermeture et une position de passage. Le platine inférieure 68 est représentée dans sa position de fermeture sur la
figure 2 . - Par exemple, la platine inférieure 68 est apte à coulisser horizontalement entre la position de fermeture et la position de passage.
- Dans la position de fermeture, la platine inférieure 68 obture l'ouverture de vidage 72 et empêche les particules 4 du volume interne 18 de tomber par l'ouverture de vidage 72.
- Dans la position de passage, la platine inférieure 68 libère l'accès de l'ouverture de vidage 72.
- Les dimensions de l'ouverture de vidage 72 sont adaptées pour que dans la position de passage, les particules 4 du volume interne 18 s'écoulent et tombent par gravité par l'ouverture de vidage 72.
- Par exemple, le diamètre de l'ouverture de vidage 72 est supérieur à 20 mm.
- En outre, le récipient 36 comporte, par exemple, un opercule de maintien 74 apte à maintenir la platine inférieure 68 en position de fermeture. L'opercule de maintien 74 empêche un passage intempestif de la platine inférieure 68 en position de passage. L'opercule de maintien 74 est retirable.
- Le support 38 est propre à assurer la tenue et la rigidité du container 10. Le support 38 est un cadre métallique et galvanisé à chaud, ou en acier inoxydable.
- L'embout de raccord 40 est par exemple un tube creux présentant une extrémité amont 76 connectée à l'ouverture de vidage 72 et une extrémité aval 78.
- L'embout de raccord 40 définit un conduit de circulation des particules 4 débouchant par l'extrémité amont 76 dans l'ouverture de vidage 72 et par l'extrémité aval 78.
- Par exemple, l'embout de raccord 40 est venu de matière avec la partie basse 64. En variante, l'extrémité amont 76 de l'embout de raccord 40 est adaptée pour être connectée à l'ouverture de vidage 72, par exemple par vissage.
- L'extrémité aval 78 de l'embout de raccord 40 comporte le deuxième élément de raccord 22 adapté pour coopérer avec le premier élément de raccord 20 du dispositif d'alimentation 16, comme cela sera décrit par la suite.
- Le dispositif de traçabilité 46 indique des informations représentatives du container 10 ou de son contenu. Elle peut prendre la forme d'un code barre, d'une puce électronique, par exemple une puce RFID, ou de tout autre système de traçage communicant.
- Par exemple, les informations représentatives comprennent les informations suivantes : la référence du container 10, la date de révision du container 10, l'origine du produit 2, la date de chargement du produit 2 dans le container 10, la date de connexion à l'équipement de production d'énergie 8, la référence de l'équipement de production d'énergie 8, le taux d'humidité dans le volume interne 18 et/ou le volume de particules 4 restant dans le volume interne 18, la date de péremption, comme une date limite d'utilisation (DLU) ou une date limite de consommation (DLC).
- Par exemple, si le dispositif de traçabilité 46 n'est pas électronique, le dispositif de traçabilité 46 comprend une étiquette et une partie des informations comme le volume de particules 4 et le taux d'humidité sont, par exemple, notées manuellement sur l'étiquette par un opérateur à intervalle régulier.
- Le module de transmission 48 est apte à communiquer avec le module de communication 34 ou le système de commande 28. Par exemple, le module de transmission 48 est apte à transmettre au système de commande 28, une commande d'arrêt du transfert des particules 4 lorsque le container 10 est vide. Ainsi, par exemple la vis sans fin est arrêtée.
- Par exemple, le module de transmission 48 est un module de radio-identification, RFID (de l'anglais radio frequency identification). Le module de transmission 48 comporte une antenne associée à une puce électronique.
- Le module de transmission 48 est apte à mémoriser et à transmettre des données à distance. En particulier, le module de transmission 48 est apte à mémoriser et à transmettre les informations du dispositif de traçabilité 46 et/ou les informations mesurées par le capteur d'humidité ou l'outil de mesure du niveau.
- Lorsque l'unité de raccord 12 est dans la configuration accouplée, le dispositif d'alimentation 16 est connecté à l'embout de raccord 40, l'ouverture d'entrée 30 est en communication fluidique avec le conduit de circulation des particules 4.
- Les dimensions et la position de l'ouverture d'entrée 30 et de l'embout de raccord 40 sont adaptées pour permettre l'écoulement des particules 4 depuis l'ouverture de vidage 72 vers le dispositif d'alimentation 16 lorsque l'unité de raccord 12 est dans la configuration accouplée.
- Lorsque l'unité de raccord 12 est dans la configuration désaccouplée, le container 10 est mobile par rapport à l'équipement de production en énergie 8 entre une position rapprochée et une position éloignée.
- Lorsque l'unité de raccord 12 est dans la configuration accouplée, le container 10 reste avantageusement dans la position rapprochée.
- L'unité de raccord 12 est représentée dans la configuration désaccouplée sur la
figure 3 et dans la configuration accouplée sur lafigure 4 . - Chaque élément de raccord 20, 22 définit une lumière de passage 82 des particules 4 et une zone de contact 84 avec l'autre élément de raccord 20, 22.
- Lorsque l'unité de raccord 20, 22 est accouplée la lumière 82 du premier élément de raccord 20 débouche dans le deuxième élément de passage 22 et les zones de contact 84 sont en contacts.
- L'unité de raccord 12 permet une connexion étanche dans la configuration accouplée.
- Par exemple, les formes des zones de contact 84 du premier élément de raccord 20 lié au dispositif d'alimentation 16 et du deuxième élément de raccord 22 lié au container 10 sont complémentaires. Par exemple, les zones de contact 84 sont deux platines, ou un élément mâle et un élément femelle, comme illustré sur les
figures 3 et 4 . - En outre, l'unité de raccord 12 comprend un dispositif de centrage 86. Le dispositif de centrage 86 permet de positionner les lumières 82 des deux éléments de raccords 20, 22 de manière à ce qu'elles soient dans la continuité l'une de l'autre ou centrée. Le dispositif de centrage 86 est par exemple formé de cônes complémentaires sur chacune des zones de contact 84, comme illustré sur les
figures 3 et 4 . - En outre le deuxième élément de raccord 22 lié au container 10 comprend un clapet 88. Le clapet 88 est mobile entre une position d'obturation dans laquelle il obture la lumière 82 du deuxième élément de raccord 22 et une position d'ouverture dans laquelle il permet l'accès à la lumière du deuxième élément de raccord 22 par les particules 4.
- Le clapet 88 est avantageusement contraint vers sa position d'obturation par exemple au moyen d'un ressort lorsque l'unité de raccord 12 dans la configuration désaccouplée. Le passage de l'unité de raccord 12 dans la configuration désaccouplée entraîne ainsi le passage du clapet 88 dans la position d'obturation.
- En outre, le premier élément 20 comporte une tige 90 ou tout autre organe mécanique propre à mettre le clapet 88 dans la position d'ouverture et à le maintenir dans la position d'ouverture. Le passage de l'unité de raccord 12 dans la configuration accouplée entraîne le passage du clapet 88 dans la position d'ouverture.
- Dans le premier système de production d'énergie 1, représenté sur la
figure 1 , le transfert des particules 4 du container 10 vers le dispositif d'alimentation 16 au travers de l'unité de raccord 12 est gravitaire. En effet, l'ouverture d'entrée 30 du dispositif d'alimentation 16 étant située à un niveau plus bas que l'ouverture de vidage 72 du container 10, l'alimentation du dispositif d'alimentation 16 par le container 10 est gravitaire, lorsque l'unité de raccord 12 est dans la configuration accouplée. - Le dispositif de verrouillage 24 est manœuvrable entre une configuration de verrouillage et une configuration de libération.
- Le dispositif de verrouillage 24 est propre à maintenir l'unité de raccord 12 dans la configuration accouplée lorsqu'il est dans la configuration de verrouillage.
- Le dispositif de verrouillage 24 comprend par exemple des mâchoires de maintien propre à enserrer le premier élément de raccord 20 et le deuxième élément de raccord 22 pour empêcher leur écartement, lorsque l'unité de raccord 12 est dans la configuration accouplée.
- Avantageusement, le dispositif de verrouillage 24 comprend un mécanisme de rappel propre à mettre le dispositif de verrouillage dans la configuration de verrouillage dès que l'unité de raccord 12 est dans la configuration accouplée.
- Le système de commande 28 est propre à modifier le débit de transfert des particules 4 au travers de l'unité de raccord 12.
- Le système de commande 28 permet de contrôler le nombre et la vitesse d'entrée des particules 4 entrant dans l'unité de production d'énergie 14.
- Par exemple, le système de commande 28 commande la position de l'organe d'obturation 32 selon les besoins de l'unité de production d'énergie 14. En variante ou en complément, le système de commande 28 commande la position de l'organe d'obturation 32 en fonction du niveau de particules 4 dans le container 10.
- Le système de commande 28 est, avantageusement, automatique. On entend par automatique que, grâce au système de commande 28, la quantité de particules 4 nécessaire au fonctionnement de l'unité de production d'énergie 14 est puisée dans le container 10 connecté, sans intervention manuelle.
- Un procédé d'approvisionnement en produit 2 de l'équipement de production d'énergie 8 va maintenant être décrit.
- Le procédé comprend la fourniture d'un système de production d'énergie 1 tel que précédemment décrit avec au moins un container 10 comprenant des particules 4 dans son volume interne 18.
- Avantageusement plus de deux containers 10 tel que précédemment décrits sont fournis. Avantageusement, tous les containers 10 sont semblables mais identifiables par un dispositif de traçabilité 46.
- Avantageusement plus de 90% du volume interne 18 de chaque container 10 est rempli de particules 4.
- Pour l'exemple, l'unité de raccord 12 est fournie dans la configuration désaccouplée et le container dans une position éloignée par exemple sur une aire de stockage.
- Le container 10 est déplacé de la position éloignée vers la position rapprochée, c'est-à-dire abords de l'équipement de production d'énergie 8 par exemple au moyen des roues 50 du container 10 ou par un transpalette.
- Lors d'une étape de branchement, l'unité de raccord 12 est ensuite mise dans la configuration accouplée. L'étape de branchement de l'unité de raccord est facilitée par le dispositif de centrage 86.
- Le dispositif de verrouillage 24 est mis dans la configuration de verrouillage. Le clapet 88 passe dans la position d'ouverture.
- Le container 10 est ainsi connecté au dispositif d'alimentation 16 de l'équipement de production d'énergie. Le volume interne 18 est mis en communication avec le dispositif d'alimentation 16 de sorte que les particules 4 soit transférables du volume interne 18 au dispositif d'alimentation 16.
- Le container 10 est alors appelé container actif.
- Avantageusement, l'opercule de maintien 74 est retiré et la platine inférieure 68 du container 10 est mise dans sa position de passage. Les particules 4 coulent alors dans l'embout de raccord 40.
- En variante, l'opercule de maintien 74 est retiré avant le passage de l'unité de raccord dans la configuration d'accouplement. Puis, la platine inférieure 68 du container 10 est mise dans sa position de passage. Les particules 4 coulent alors dans l'embout de raccord 40 mais sont arrêtées par le clapet dans la position d'obturation.
- Selon les besoins de l'unité de production d'énergie 14, le système de commande 28 adapte le débit de transfert des particules 4. Par exemple, l'organe d'obturation 32 de l'ouverture d'entrée 30 est relevée par le dispositif d'alimentation 16 pour permettre l'alimentation de l'unité de production d'énergie 14. Du fait de la fluidité des particules 4, ils s'écoulent rapidement vers le dispositif d'alimentation 16.
- Le dispositif d'alimentation 16 assure ensuite l'alimentation de l'unité de production d'énergie 14.
- L'unité de production d'énergie 14 consomme les particules 4 stockées dans le container 10 connecté.
- Le niveau des particules dans le container actif 10 diminue au fur et à mesure de la consommation par l'unité de production d'énergie 14. Le niveau est contrôlable par un opérateur au moyen de la fenêtre translucide 60. De plus, le niveau de particules 4 dans le volume interne 18 est mesuré par l'outil de mesure 44. En outre, le procédé comprend la mesure de l'humidité dans le volume interne 18 du container 10 par le capteur d'humidité 42.
- Lors d'une étape de transmission, par exemple, les informations mesurées sont transmise par le module de transmission 48 au système de commande 28. Le module de communication 34 transmet des informations concernant la consommation de l'équipement de production d'énergie 8 au système de commande 28 ou au centre de gestion 35.
- Lorsque le niveau de particules 4 est en dessous d'un seuil prédéterminé, le système de commande 28 donne des instructions pour ralentir ou interrompre les transferts de particules 4 en attente qu'un nouveau container 10 rempli soit prêt à être connecté à la place du container 10 actif. De même, lorsque le niveau d'humidité est en dehors d'une gamme de tolérance, le système de commande 28 donne des instructions pour ralentir ou interrompre les transferts de particules 4 en attente qu'un nouveau container rempli soit prêt à être connecté à la place du container 10 connecté.
- En outre le module de transmission 48 transmet la demande de livraison d'un nouveau container 10 rempli au centre de gestion 35.
- Par exemple, avant que l'unité de raccord 12 soit mise dans la configuration désaccouplée, le système de commande 28 impose le passage de l'organe d'obturation 32 dans la position de fermeture totale.
- L'unité de raccord 12 est ensuite mise dans la configuration désaccouplée. Le passage de l'unité de raccord 12 dans la configuration désaccouplée permet le retour du clapet 88 dans la position d'obturation. Chacune des lumières 82 de l'unité de raccord 12 est avantageusement obstruée lors du désaccouplement, ainsi, les poussières ne peuvent pas se disperser.
- Avantageusement, dans le cas ou plusieurs containers 10 remplis sont fournis, le passage de l'unité de raccord 12 comprenant le premier élément 20 et le deuxième élément 22 du premier container 10 connectée dans la configuration désaccouplé, est directement suivi par le passage de l'unité de raccord 12 comprenant le premier élément 20 et le deuxième élément 22 du deuxième container 10. Ainsi un nouveau container 10 rempli est connecté au dispositif d'alimentation 16.
- Le container 10 déconnecté est ensuite déplacé vers une position éloignée de l'équipement de production d'énergie 8 par exemple au moyen des roues 50 du container 10 ou par un transpalette.
- Par exemple le container 10 est déplacé vers une zone de recyclage pour être nettoyé et à nouveau rempli de particules 4.
- Par exemple le container 10 est ensuite recyclé. Par exemple, le recyclage comprend un nettoyage du container 10, un contrôle du container 10 et une remise en état du container 10. Par exemple, lors de l'étape de nettoyage la qualité du produit 2 et des cendres associées est analysée ce qui permet un suivi qualité du container 10 et du produit 2. Les défaillances particulières d'un container 10 sont détectées grâce aux informations mesurées par le capteur d'humidité 42 et l'outil de mesure 44 et grâce aux informations transmises par le module de communication 34 du dispositif d'alimentation 16 au centre de gestion 35.
- A la fin du recyclage, la platine inférieure 68 est placée en position de fermeture et un nouvel opercule de maintien 72 est placé sur l'ouverture de vidage 72 du container. De plus, le couvercle supérieur 66 est placé dans la position de fermeture.
- Le procédé d'approvisionnement en produit 2 selon l'invention est fiable et optimisé.
- En effet le passage de l'unité de raccord 12 de la configuration accouplé à la configuration désaccouplé est simple.
- En outre, chaque container 10 est à la fois une unité de stockage et d'approvisionnement. Un avantage de cette solution est que les manipulations des particules 4 sont limitées. Le produit 2 est ainsi préservé en qualité et en quantité.
- L'isolement du produit 2 dans le container 10 évite les contacts entre l'opérateur et le produit 2 et induit une réduction des risques associés à l'émission de poussières.
- De plus, chaque container 10 est unique et traçable avec son étiquetage et son module de transmission 48, qui comprend par exemple une puce de type RFID. Le suivi de la qualité du container 10 et du produit 2 renforce la sécurité.
- Le container 10 est réutilisé après vérification et remise en état et nettoyage avant un nouveau chargement. Chaque container 10 effectue ainsi plusieurs cycles de vie. Le container 10 est réutilisable et durable.
- Un deuxième système de production d'énergie 100 est représenté sur la
figure 5 . Le deuxième système de production d'énergie 100 diffère du premier système de production d'énergie 1 précédemment décrit en ce qu'il comprend un dispositif de transfert 102 des particules propre à activer le transfert des particules 4 depuis le container 10 vers le dispositif d'alimentation 16. - Le dispositif de transfert 102 comprend une vis sans fin 104 propre à mettre en œuvre le transfert des particules 4 du container 10 vers le dispositif d'alimentation 16.
- La vis sans fin 104 est disposée entre le premier élément de raccord 20 et le dispositif d'alimentation 16.
- Avantageusement, le système de commande 28 est propre à contrôler le dispositif de transfert 102 pour imposer le débit des particules entrant dans l'unité de production d'énergie 14.
- Par exemple, le système de commande 28 est propre à contrôler la vitesse de rotation de la vis sans fin 104.
- Un troisième système de production d'énergie 110 est représenté sur la
figure 6 . Le troisième système de production d'énergie 110 diffère du deuxième système de production d'énergie 100 précédemment décrit en ce que le dispositif de transfert 102 des particules comprend un mécanisme d'entrainement pneumatique 112 propre à mettre en oeuvre le transfert des particules 4 du container 10 vers le dispositif d'alimentation 16. - Le mécanisme d'entrainement pneumatique 112 comprend par exemple un mécanisme d'aspiration 114 propre à aspirer les particules du container 10 vers le dispositif d'alimentation 16. Par exemple, le mécanisme d'aspiration pneumatique 112 crée une dépression en aval de l'unité de raccord 112 par une bouche d'aspiration 116 dans le dispositif d'alimentation 16, lorsque l'unité de raccord 12 est dans la configuration accouplée.
- En variante ou en complément le mécanisme d'entrainement pneumatique 112 comprend un mécanisme de soufflerie 118. Par exemple, le mécanisme de soufflerie 118 est propre à injecter de l'air ou de l'azote dans le volume interne 18 à une pression avantageusement supérieure à 1 bar par une entrée de pressurisation 120. En outre, le mécanisme d'entrainement pneumatique 112 comprend avantageusement un mécanisme de blocage 112 de la soupape de ventilation 56 afin d'autoriser temporairement une surpression dans le volume interne 18.
- Un quatrième système de production d'énergie 130 selon l'invention, est représenté sur la
figure 7 . - Le quatrième système de production d'énergie 130 diffère des système de production d'énergie 1, 100, 110 précédemment décrit en ce que le système de production d'énergie 130 comprend une pluralité de containers 10, l'équipement de production d'énergie 8 étant propre à être connecté à chaque container 10 par une unité de raccord 132, 134.
- Dans l'exemple représenté, le dispositif d'alimentation 16 comporte deux ouvertures d'entrée 136, 138, chaque ouverture d'entrée 136, 138 comprenant un premier élément de raccord 20 propre à être connectée à un container 140, 142 différent.
- En variante, le dispositif d'alimentation 16 comporte une nourrice apte à être connectée à plusieurs containers en même temps. Le dispositif d'alimentation 16 présente alors plusieurs ouvertures d'entrée comprenant chacune un premier élément de raccord 20, par exemple trois ouvertures, ou plus
- Ainsi, une même unité de production d'énergie 14 est par exemple apte à être alimentée en produit par plusieurs containers 140, 142 en parallèle ou successivement.
- Le système de commande 28 est propre à commander indépendamment le débit de transfert des particules 4 correspondant à chaque container 10.
- Le procédé diffère du procédé précédemment décrit en ce que la déconnection d'un container 10 connecté et la connexion d'un container 10 rempli sont effectués en temps masqué, c'est-à-dire sans interruption de l'approvisionnement de l'unité de production d'énergie 14.
- Le procédé comprend une étape de branchement pour chaque container 140, 142.
- Chaque container 140, 142 est ainsi connecté au dispositif d'alimentation 16 de l'équipement de production d'énergie 8. Chaque volume interne 18 est mis en communication avec le dispositif d'alimentation 16 de sorte que les particules 4 soit transférables du volume interne 18 au dispositif d'alimentation 16.
- Avantageusement, le système de commande 28 conserve au moins un container 142 actif, c'est-à-dire qu'il conserve un des organes d'obturation 32 dans la position relevée. Par exemple, l'autre container 140 est inactif tel que représenté sur la
figure 6 , c'est-à-dire que son organe d'obturation 32 dans la position d'obturation. - Le niveau du container actif 142 est suivi par l'outil de mesure 44. Le changement de container actif est asservi au niveau de particules 4 dans le container actif.
- Lorsque le niveau de particules 4 dans le container actif 142 est en dessous d'un seuil prédéterminé, le système de commande 28 donne des instructions pour changer de containeur actif 142, c'est-à-dire ralentir ou interrompre les transferts de particules 4 en provenance de ce container 142 et des instructions pour accélérer ou établir un débit à partir de l'autre container 140.
- Ainsi, l'approvisionnement en particules 4 de l'unité de production d'énergie 14 n'est pas interrompu et ne subit pas d'à-coup.
- De même, lorsque le niveau d'humidité dans le container actif 142 est en dehors d'une gamme de tolérance, le système de commande 28 donne des instructions pour ralentir ou interrompre les transferts de particules 4 en provenance de ce container 142 et des instructions pour accélérer ou établir un débit à partir de l'autre container 140.
- En variante, le changement de container actif 142 peut être effectué manuellement par un utilisateur à la lecture des indications de niveau de particules 4 ou de niveau d'humidité dans le container actif 142.
- Un cinquième système de production d'énergie 150 est représenté sur la
figure 8 . Le cinquième système de production d'énergie 150 diffère du troisième système de production d'énergie 110 en ce que le mécanisme de soufflerie 118 du mécanisme d'entraînement pneumatique 112 est propre à injecter de l'air ou de l'azote dans l'embout de raccord 40 à une pression avantageusement supérieur à 1 bar par une entrée de pressurisation 152. - L'embout de raccord 40 comporte, par exemple, un siphon 154 entre l'extrémité amont 76 et l'extrémité aval 78 au voisinage de l'extrémité amont 76. L'entrée de pressurisation 152 débouche dans un bord latéral du siphon 154. Par exemple, l'entrée de pressurisation 152 est au voisinage de l'extrémité amont 76, à distance du fond du siphon 154.
- Dans une variante, le système de production d'énergie 1, 100, 110, 130, 150 comprend une pluralité d'équipements de production d'énergie 8. Chaque équipement de production d'énergie 8 comprend un dispositif d'alimentation 16 en produit 2 sous forme de particules 4. Chaque dispositif d'alimentation 16 comprend un premier élément de raccord 20 tel que précédemment décrit.
- Par exemple, chaque container 10 est apte à alimenter n'importe quel équipement de production d'énergie 8 de la pluralité d'équipement de production d'énergie 8.
- Dans une variante, l'unité de production d'énergie 14 est une chaudière individuelle ou collective, un équipement de production de vapeur industrielle, et d'électricité ou autre.
Claims (14)
- Système de production d'énergie (1, 100, 110, 130, 150) comprenant :- un équipement de production d'énergie (8) comprenant une unité de production d'énergie (14) à partir d'un produit (2) sous forme de particules (4) et un dispositif d'alimentation (16) de l'unité de production (14),- un container (10) définissant un volume interne (18) de réception du produit (2) sous forme de particules (4),- au moins une unité de raccord (12) amovible comprenant au moins un premier élément de raccord (20) lié à l'équipement de production d'énergie (8) et au moins un deuxième élément de raccord (22) complémentaire lié au container (10),l'unité de raccord (12) présentant une configuration accouplée dans laquelle le premier élément de raccord (20) coopère avec le deuxième élément de raccord (22) complémentaire et le volume interne (18) communique avec le dispositif d'alimentation (16) de sorte que les particules (4) soient transférables du volume interne (18) au dispositif d'alimentation (16), et une configuration désaccouplée dans laquelle les deux éléments de raccord (20, 22) sont séparés et lorsque l'unité de raccord (12) est dans la configuration désaccouplée, le container (10) est mobile par rapport à l'équipement de production d'énergie (8) entre une position rapprochée et une position éloignée, caractérisé en ce que le système de production d'énergie (1, 100, 110, 130, 150) comprend une pluralité de containers (10), le dispositif d'alimentation (16) étant propre à être connecté à chaque container (10), par une unité de raccord (12).
- Système de production d'énergie (1, 100, 110, 130, 150) selon la revendication 1 dans lequel l'unité de raccord (12) comprend un dispositif de centrage (86).
- Système de production d'énergie (1, 100, 110, 130, 150) selon l'une des revendications 1 ou 2 comprenant un dispositif de verrouillage (24) propre à maintenir l'unité de raccord (12) dans la configuration accouplée.
- Système de production d'énergie (1, 100, 110, 130, 150) selon l'une quelconque des revendications précédentes, dans lequel le container définit une lumière de passage des particules et le container comprend un clapet, le clapet étant mobile entre une position d'obturation de la lumière de passage des particules et une position d'ouverture, le passage de l'unité de raccord (12) dans la configuration désaccouplée entrainant le passage du clapet dans la position d'obturation et le passage de l'unité de raccord (12) dans la configuration accouplée entrainant le passage du clapet dans la position d'ouverture.
- Système de production d'énergie (1, 100, 110, 130, 150) selon l'une quelconque des revendications précédentes, comprenant un système de commande (28) propre à modifier le débit de transfert de particules (4) par l'unité de raccord (12).
- Système de production d'énergie (1, 100, 110, 130, 150) selon l'une quelconque des revendications précédentes, comprenant un mécanisme d'entrainement pneumatique (112) propre à mettre en oeuvre le transfert des particules (4) du container (10) vers le dispositif d'alimentation (16).
- Système de production d'énergie (1, 100, 110, 130, 150) selon l'une quelconque des revendications précédentes, dans lequel le transfert des particules (4) du container (10) vers le dispositif d'alimentation (16) au travers de l'unité de raccord (12) est gravitaire.
- Système de production d'énergie (1, 100, 110, 130, 150) selon l'une quelconque des revendications précédentes, comprenant une vis sans fin propre à mettre en oeuvre le transfert des particules (4) du container (10) vers le dispositif d'alimentation (16).
- Système de production d'énergie (1, 100, 110, 130, 150) selon l'une quelconque des revendications précédentes, comprenant une pluralité d'équipement de production d'énergie (8), chaque équipement de production d'énergie (8) comprenant un dispositif d'alimentation (16) en produit (2) sous forme de particule (4), chaque équipement de production d'énergie (8) comprenant au moins un premier élément de raccord (20) susceptible de coopérer avec le deuxième élément de raccord (22) du container (10), de sorte que les particules (4) soient transférables du volume interne (18) à chaque dispositif d'alimentation (16).
- Système de production d'énergie (1, 100, 110, 130, 150) selon l'une quelconque des revendications précédentes, dans lequel le dispositif d'alimentation (16) est propre à alimenter directement l'unité de production d'énergie (14), sans stockage tampon intermédiaire des particules (4).
- Procédé d'approvisionnement en produit (2) d'un équipement de production d'énergie (8) comprenant les étapes suivantes :- fourniture d'un système de production d'énergie (1, 100, 110, 130, 150) selon l'une quelconque des revendications 1 à 10, le container (10) comprenant des particules (4) dans son volume interne (18),- branchement de l'unité de raccord (12) entre le container (10) et le dispositif d'alimentation (16),- transfert de particules (4) du volume interne (18) du container (10) vers le dispositif d'alimentation (16),- débranchement de l'unité de raccord (12),- déplacement du container (10),dans lequel le système de production d'énergie (1, 100, 110, 130, 150) comprend une pluralité de container (10), et l'équipement de production d'énergie (8) comprend une pluralité de premiers éléments de raccords (20).
- Procédé d'approvisionnement selon la revendication 11, comprenant une étape de suivi du niveau de particules (4) dans le container (10).
- Procédé d'approvisionnement selon les revendications 11 et 12, comprenant une étape de changement de container actif (10), le changement de container (10) actif étant déclenché par le système de commande (28) lorsque le niveau de particules (4) dans le container actif (10) est sous un seuil prédéterminé.
- Procédé d'approvisionnement selon l'une quelconque des revendications 11 à 13 dans lequel le produit (2) est un combustible comprenant des matières organiques d'origine végétale, animale ou fongique, notamment du bois.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1553867A FR3035706A1 (fr) | 2015-04-29 | 2015-04-29 | Systeme de production d'energie et procede d'approvisionnement en produit d'un equipement de production d'energie associe |
PCT/EP2016/059673 WO2016174237A1 (fr) | 2015-04-29 | 2016-04-29 | Système de production d'énergie et procédé d'approvisionnement en produit d'un équipement de production d'énergie associé |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3289286A1 EP3289286A1 (fr) | 2018-03-07 |
EP3289286B1 true EP3289286B1 (fr) | 2019-11-27 |
Family
ID=54007817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16720808.1A Active EP3289286B1 (fr) | 2015-04-29 | 2016-04-29 | Système de production d'énergie et procédé d'approvisionnement en produit d'un équipement de production d'énergie associé |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3289286B1 (fr) |
FR (1) | FR3035706A1 (fr) |
WO (1) | WO2016174237A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3421391A1 (fr) * | 2017-06-29 | 2019-01-02 | Serbatoi Cemin Eurotank S.r.l. | Réservoir de stockage et d'extraction de pastilles combustibles |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3510443A1 (de) * | 1985-03-22 | 1986-09-25 | Kurt 4300 Essen Wolf | Verfahren und vorrichtung zum einblasen von feststoffen in industrieoefen |
US7305924B2 (en) * | 2003-07-30 | 2007-12-11 | Step Saver, Inc. | Apparatus and method for delivery of biomass fuel |
WO2013170856A2 (fr) * | 2012-05-14 | 2013-11-21 | Mogens Echberg | Système pour grand sac |
-
2015
- 2015-04-29 FR FR1553867A patent/FR3035706A1/fr not_active Withdrawn
-
2016
- 2016-04-29 EP EP16720808.1A patent/EP3289286B1/fr active Active
- 2016-04-29 WO PCT/EP2016/059673 patent/WO2016174237A1/fr unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
FR3035706A1 (fr) | 2016-11-04 |
WO2016174237A1 (fr) | 2016-11-03 |
EP3289286A1 (fr) | 2018-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2011124B1 (fr) | Hotte pour chargement de container avec au moins un assemblage de combustible nucleaire et procede de chargement | |
EP0606608A1 (fr) | Procédé et dispositif pour l'évacuation de résidus solides d'une installation d'épuration de gaz | |
EP3289286B1 (fr) | Système de production d'énergie et procédé d'approvisionnement en produit d'un équipement de production d'énergie associé | |
WO2010139712A1 (fr) | Dispositif de connexion pour système de remplissage de jarres pour la fabrication de combustible nucleaire | |
EP1350743B1 (fr) | Procédé et dispositif de remplissage automatique d'un bac chauffant avec un produit solide | |
EP2303477A2 (fr) | Dispositif de dépoussiérage, dans le cadre de transfert de produits pulvérulents, installation, et procédés utilisant ledit dispositif | |
US20120107059A1 (en) | Apparatus and method for dispensing flowable solid material | |
SE0702169L (sv) | Metod och anordning för fyllning av förpackningar av kollapsande slag | |
EP3289287B1 (fr) | Procédé d'approvisionnement, container d'approvisionnement et système de gestion associés | |
EP2225490A1 (fr) | Installation d'extraction à débit régulier | |
EP3507220B1 (fr) | Vanne d'aiguillage | |
EP2784389B1 (fr) | Module compact de traitement de fumées et installation de crémation comprenant le module | |
FR2783345A1 (fr) | Procede et installation de remplissage de futs contenant des dechets dangereux | |
EP2464307B1 (fr) | Procédé et dispositif de vidage d'un élément tubulaire enfermant un fluide | |
FR2993195A1 (fr) | Dispositif et procede de transfert pneumatique de poudre | |
EP1783065A1 (fr) | Dispositif de stockage d'un produit fluide | |
EP3218164A1 (fr) | Installation de fabrication de récipients en matière thermoplastique intégrant un dispositif de broyage et un tel dispositif de broyage | |
EP3040294B1 (fr) | Système de stockage de déchets et de lixiviat | |
EP4304959A1 (fr) | Dispositif de distribution automatisé d'obturateurs | |
WO2015014605A1 (fr) | Systeme et procede de transfert de matiere solide sous forme granulaire | |
EP4267478A1 (fr) | Contenant de transport de poudres volatiles | |
FR3138420A1 (fr) | Interface, procédé et système de supervision de l'approvisionnement en consommables de postes d'une ligne de production | |
EP3378305A1 (fr) | Système de distribution de granules pour l'élevage d'animaux aquatiques | |
FR3022535A1 (fr) | Dispositif pour le transbordement par aspiration | |
WO2010004113A1 (fr) | Système d'introduction de mortier dans un conteneur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171120 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181114 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190617 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1207085 Country of ref document: AT Kind code of ref document: T Effective date: 20191215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016025061 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200227 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200228 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200327 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200419 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016025061 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1207085 Country of ref document: AT Kind code of ref document: T Effective date: 20191127 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20200828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200429 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231129 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240320 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240320 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240320 Year of fee payment: 9 Ref country code: FR Payment date: 20240320 Year of fee payment: 9 Ref country code: BE Payment date: 20240320 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240320 Year of fee payment: 9 |