EP3284147B1 - Prise pour une unité de distribution d'alimentation à densité de sortie élevée - Google Patents

Prise pour une unité de distribution d'alimentation à densité de sortie élevée Download PDF

Info

Publication number
EP3284147B1
EP3284147B1 EP16780598.5A EP16780598A EP3284147B1 EP 3284147 B1 EP3284147 B1 EP 3284147B1 EP 16780598 A EP16780598 A EP 16780598A EP 3284147 B1 EP3284147 B1 EP 3284147B1
Authority
EP
European Patent Office
Prior art keywords
outlet
outlets
housing
pdu
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16780598.5A
Other languages
German (de)
English (en)
Other versions
EP3284147A1 (fr
EP3284147A4 (fr
Inventor
Travis IRONS
James P. Maskaly
Peter Giammona
Mark Ramsey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Server Technology Inc
Original Assignee
Server Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/687,670 external-priority patent/US9583902B2/en
Application filed by Server Technology Inc filed Critical Server Technology Inc
Publication of EP3284147A1 publication Critical patent/EP3284147A1/fr
Publication of EP3284147A4 publication Critical patent/EP3284147A4/fr
Application granted granted Critical
Publication of EP3284147B1 publication Critical patent/EP3284147B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/502Bases; Cases composed of different pieces
    • H01R13/506Bases; Cases composed of different pieces assembled by snap action of the parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/70Structural association with built-in electrical component with built-in switch
    • H01R13/713Structural association with built-in electrical component with built-in switch the switch being a safety switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/712Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit
    • H01R12/716Coupling device provided on the PCB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/465Identification means, e.g. labels, tags, markings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/502Bases; Cases composed of different pieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/514Bases; Cases composed as a modular blocks or assembly, i.e. composed of co-operating parts provided with contact members or holding contact members between them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/516Means for holding or embracing insulating body, e.g. casing, hoods
    • H01R13/518Means for holding or embracing insulating body, e.g. casing, hoods for holding or embracing several coupling parts, e.g. frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/627Snap or like fastening
    • H01R13/6271Latching means integral with the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/627Snap or like fastening
    • H01R13/6271Latching means integral with the housing
    • H01R13/6273Latching means integral with the housing comprising two latching arms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • H01R13/6691Structural association with built-in electrical component with built-in electronic circuit with built-in signalling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/72Means for accommodating flexible lead within the holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/73Means for mounting coupling parts to apparatus or structures, e.g. to a wall
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/76Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure with sockets, clips or analogous contacts and secured to apparatus or structure, e.g. to a wall
    • H01R24/78Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure with sockets, clips or analogous contacts and secured to apparatus or structure, e.g. to a wall with additional earth or shield contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R27/00Coupling parts adapted for co-operation with two or more dissimilar counterparts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2103/00Two poles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R25/00Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits
    • H01R25/006Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits the coupling part being secured to apparatus or structure, e.g. duplex wall receptacle

Definitions

  • the present disclosure is directed to power distribution units and, more specifically, to an outlet connector for a power distribution unit having a high density of power outputs.
  • a conventional Power Distribution Unit is an assembly of electrical outlets (also called receptacles) that receive electrical power from a source and distribute the electrical power to one or more separate electronic appliances. Each such PDU assembly has a power input that receives power from a power source, and power outlets that may be used to provide power to one or more electronic appliances.
  • PDUs are used in many applications and settings such as, for example, in or on electronic equipment racks.
  • One or more PDUs are commonly located in an equipment rack (or other cabinet), and may be installed together with other devices connected to the PDU such as environmental monitors, temperature and humidity sensors, fuse modules, or communications modules that may be external to or contained within the PDU housing.
  • a PDU that is mountable in an equipment rack or cabinet may sometimes be referred to as a Cabinet PDU, or "CDU" for short.
  • a common use of PDUs is supplying operating power for electrical equipment in computing facilities, such as data centers or server farms.
  • Such computing facilities may include electronic equipment racks that comprise rectangular or box-shaped housings sometimes referred to as a cabinet or a rack and associated components for mounting equipment, associated communications cables, and associated power distribution cables.
  • Electronic equipment may be mounted in such racks so that the various electronic devices (e.g., network switches, routers, servers and the like) are aligned vertically, one on top of the other, in the rack.
  • One or more PDUs may be used to provide power to the electronic equipment.
  • Multiple racks may be oriented side-by-side, with each containing numerous electronic components and having substantial quantities of associated component wiring located both within and outside of the area occupied by the racks.
  • Such racks commonly support equipment that is used in a computing network for an enterprise, referred to as an enterprise network.
  • equipment racks may be located in a data center or server farm, each rack having one or more associated PDUs.
  • Various different equipment racks may have different configurations, including different locations of and different densities of equipment within racks.
  • One or more such data centers may serve as data communication hubs for an enterprise.
  • space within equipment racks is valuable with maximization of computing resources for any given volume being desirable.
  • US 2007/077825 discloses a cable connector assembly that includes a cap and a plug received in the cap.
  • the cap includes a base portion defining a rear receiving chamber and a plurality of front passageways communicating with the receiving chamber.
  • the plug includes a plurality of terminals and a cable electrically connecting with the terminals.
  • the plug further comprises an inserting housing to receive the plurality of terminals, the inserting housing defining a plurality of receiving slots corresponding to the number of the front passageways of the cap, the terminals are respectively received in the receiving slots.
  • a joint terminal mounting structure for an electric junction box incorporates a junction box body having at least one terminal portion connected to at least one joint terminal, the joint terminal accommodating box having at least one joint terminal accommodating cavity, and a cover adapted to cover the joint terminal accommodating box.
  • CN 203 377 422 discloses a socket that comprises an upper cover, elastic pieces, and a base. Two elastic pieces are respectively disposed inside the base. The upper cover is disposed on the base. The two elastic pieces are respectively corresponding to two jacks on the upper cover.
  • CN 104 253 334 discloses an electrical connecting structure of a socket comprising a socket module and a bus bar, wherein the socket module comprises an insulated enclosure and a plug bush which is located in the enclosure used for connection with a plug, a connecting through hole being formed in the bus bar, a connector which penetrates out of the enclosure is arranged on the plug sleeve.
  • the connector comprises a supporting step which exceeds the outer surface of the enclosure and two pins which are arranged on the supporting step, the bus bar is placed on the supporting step, and the pins penetrate through the connecting through hole and are hooked onto the bus bar.
  • DE 4411731 discloses a surface-mounted plug socket of the type which comprises at least three terminals.
  • the terminals are arranged such that they are aligned with one another and a terminal strip is assigned to the surface-mounted plug socket, which terminal strip has at least one group of pins which project from a base plate at a distance from the terminals and form connecting elements for them.
  • WO2015038945 A1 discloses an outlet connector according to the preamble of claim 1.
  • a power distribution unit may be provided with one or more outlet banks that have a recessed surface relative to a front face of a PDU. A plurality of outlets in some embodiments extend away from the recessed surface, but do not extend beyond a plane of the front face of the PDU.
  • the outlets may be built into a tray, which in some embodiments may be air-tight with respect to the internal area of the PDU containing measurement and distribution equipment, thus allowing active cooling solutions to more easily be employed as compared to traditional use of conventional outlets, which typically are not air tight.
  • the front face of the PDU may include a lip that extends inwardly over a portion of the recessed surface and is adapted to engage with a plug retention tab that extends from an arm of a plug that may be coupled with an outlet.
  • Such an assembly allows a power distribution unit to be placed in an equipment rack and coupled with an input power source, and with equipment located in the rack in a flexible and convenient manner. Clearances and dimensions of equipment racks may be modified to provide enhanced space usage, efficiency, and/or density in a facility.
  • one or more of the outlet banks in a PDU may include a plurality of outlets that are coupled with a flexible cord and extend away from a front face of the PDU.
  • the flexible cord coupled with each outlet may penetrate a recessed surface relative to the front face of the PDU.
  • the flexible cord may be coupled with a power source in an interior portion of the PDU housing.
  • the interior portion of the PDU housing may include space to receive a portion of the flexible cord thereby providing the ability to extend an associated outlet away from the front face of the PDU housing, and retract an outlet toward the front face of the PDU housing.
  • Having a flexible cord extending from a PDU gives the ability to uniformly space the outlets along the length of the PDU which is desirable in that all the interconnecting cords coming from the computing equipment can be of equal length. Clearances and dimensions of equipment racks may be modified to provide enhanced space usage, efficiency, and/or density in a facility.
  • one or more of the outlet banks in a PDU may include a plurality of outlets that are rotatably coupled relative to a PDU housing.
  • the outlet banks may include an outlet shaft housing that receives a cord coupled with each outlet and provides for rotation of the outlet relative to the PDU housing.
  • An outlet enclosure housing is coupled with the outlet shaft housing and couples the respective outlet bank with the PDU housing.
  • the cord associated with each outlet may be coupled with a power source in an interior portion of the PDU housing.
  • the interior portion of the PDU housing may include space to receive a portion of the cord, thereby providing the ability to extend an associated outlet away from the outlet enclosure housing and retract an outlet toward the outlet enclosure housing, in addition to providing the ability to rotate the outlet relative to the outlet enclosure housing.
  • Such an assembly allows a power distribution unit to be placed in an equipment rack and coupled with an input power source, and with equipment located in the rack in a flexible and convenient manner.
  • Such an assembly lends itself to a compact design, that is modularly constructed, allowing rapid and highly variable configurations to be realized. Clearances and dimensions of equipment racks may be modified to provide enhanced space usage, efficiency, and/or density in a facility.
  • Apparatuses and devices are provided that allow for efficient and flexible distribution of power to equipment located, for example, in an electrical equipment rack.
  • PDUs have outlets that include an outer jacket around an outlet core.
  • Aspects of the disclosure provide outlets in a power distribution unit that have such an outer jacket removed. By removing the outer jacket, such as typically included with a C13 or C19 receptacle for example, the core element of the power receptacle remains and allows reduced possible spacing of receptacles, thus allowing for maximization of receptacle density.
  • Such core receptacles can be mounted on a PCB, sheet metal, molded into a multi receptacle (ganged) module, or mounted at the end of a flexible cord, according to various embodiments, providing flexibility in the configuration and manufacturing of such PDUs.
  • FIG. 1 is an illustration of a PDU 100 of an embodiment that includes various features of the present disclosure.
  • the PDU 100 includes a PDU housing 105 and a power input 110 that penetrates the housing 105 and may be connected to an external power source.
  • the power input of this embodiment is a swivel input cord assembly, such as described in co-pending patent application serial no. 61/675,921, filed on July 26, 2012 .
  • the PDU 100 according to this embodiment includes housing 105 that is vertically mountable in an equipment rack, although it will be understood that other form factors may be used, such as a horizontally mountable housing.
  • a plurality of outlet banks 115 are located within the housing 105 and are accessible through apertures in a front face of the housing 105.
  • the outlet banks 115 will be described in more detail below.
  • the PDU 100 of FIG. 1 includes a number of circuit breakers 120 that provide over-current protection for one or more associated outlet banks 115.
  • the PDU 100 also includes a communications module 125 that may be coupleable with one or more of a local computer, local computer network, and/or remote computer network.
  • a display portion 130 may be used to provide a local display of information related to current operating parameters of the PDU 100, such as the quantity of current being provided through the input and/or one or more of the outlets.
  • the outlet bank 115 is accessible through an aperture in the front face 200 of the PDU housing 105.
  • the outlet bank 115 includes a recessed surface 205 that is located in an interior portion of housing 105, and has a number of power outlets coupled thereto.
  • two C19 type connectors 210, and eight C13 type connectors 215 are provided in the outlet bank 115.
  • the plurality of outlets 210 and 215 include an outlet core only, without an associated outer jacket.
  • the outlet bank 115 may be a portion of an intelligent power module that supplies power to assets that may be mounted into an equipment rack.
  • the recessed surface 205 includes a surface of a printed circuit board to which the power outlets are mounted.
  • the recessed surface 205 may, in some embodiments, form a tray for mounting the outlets that seals an internal portion of the housing 105 to provide a substantially air tight internal portion.
  • the power outlets may be mounted to a printed circuit board that is used to form a seal between an exterior of the housing 105 and components internal to the housing 105.
  • Such a seal may be provided, for example, through a frictional fit between a printed circuit board and internal surfaces of the sides 145 of the housing 105, through a sealant, and/or through a gasket that provides a seal between the housing and a printed circuit board.
  • the internal portion of the housing 105 may include, for example, power measurement and distribution components, and may be actively cooled.
  • the "outlets” can be NEMA type outlets (e.g., NEMA 5-15R, NEMA 6-20R, NEMA 6-30R or NEMA 6-50R) or any of various IEC types (e.g., IEC C13 or IEC C19). It also will be understood that all "outlets” in a particular power outlet bank 115, or other module-outlet described herein, need not be identical or oriented uniformly along the PDU.
  • the "outlets” are not limited to three-prong receptacles; alternatively, one or more of the “outlets” can be configured for two or more than three prongs in the mating male connector. It also will be understood that the “outlets” are not limited to having female prong receptacles. In any “outlet,” one or more of the “prong receptacles” can be male instead of female connection elements, as conditions or needs indicate. In general, as used herein, female and male "prong receptacles" are termed "power-connection elements". While outlet bank 115 of this embodiment includes ten outlets, it will be understood that this is but one example and that an outlet bank may include a different number of outlets.
  • the power outlets 210 and 215 may extend from the recessed surface 205 by various relative or absolute distances.
  • an outward or distal face 225 of the outlets 210 and 215 can be manufactured to extend or terminate .5 inches, 1 inch, 1.5 inches, or another predetermined absolute distance from the recessed surface 205.
  • the outward or distal face 225 of the outlets 210 and 215 can be manufactured to extend or terminate at a predetermined relative distance from the recessed surface 205, in relation to a plane of the front face 200 of the PDU housing 105.
  • the relative distance of extension or termination of the distal face 225 of the outlets can include, according to various embodiments: proximate to and below a plane of the front face 200, proximate to and above a plane of the front face 200, in line with a plane of the front face 200, substantially below a plane of the front face 200, and substantially above a plane of the front face 200.
  • the PDU housing 105 for an outlet module may be any suitable housing for such a device, as is known to one of skill in the art, and may be assembled with other modules in a PDU.
  • a housing generally includes a front portion 135 and a rear portion 140.
  • the front portion 135 is substantially planar
  • the rear portion 140 is substantially planar and parallel to the front portion 135.
  • the housing 105 also includes longitudinally extending side portions 145 and transverse end portions 150.
  • the front portion 135, rear portion 140, side portions 145, and end portions 150 are generally orthogonal to each other in a generally rectangular or box-type configuration.
  • the housing 105 can be made of any suitable, typically rigid, material, including, for example, a rigid polymeric ("plastic") material.
  • the front and rear portions are made from an electrically insulative material, whereas in other embodiments conducting materials are used for safe ground bonding.
  • the side portions and the end portions may be integrally formed, optionally along with the front portion or the rear portion.
  • Each outlet 210-215 is interconnected to the power source through any of a number of well-known connection schemes, such as spade, lug, plug connectors, screw connectors, or other suitable type of connector.
  • connection schemes such as spade, lug, plug connectors, screw connectors, or other suitable type of connector.
  • one or more of these electrical connectors can be located inside the housing or outside the housing, in embodiments where the power outlet module includes a housing.
  • the apertures in the housing 105 include a lip 220 around at least a portion of each aperture.
  • the lip 220 extends over a portion of the recessed surface 205 and may engage with a plug retention tab that extends from an arm of a plug that may be coupled with an outlet. In such a manner, plugs may be retainably engaged (or locked) with the PDU 100, and inadvertent disconnections of associated equipment may be avoided.
  • FIG. 3 illustrates a plug 300 that may be used to lock a power cord into an outlet bank 115.
  • the plug 300 includes a plug body 305, and a flexible cord 310 that extends from the plug body 305.
  • Arms 315 extend from the sides of the plug body 305 and each include a plug retention tab 320 that will engage with the lip 220 when the plug 305 is inserted into the outlet bank 115. When it is desired to unplug the plug 300, a user may squeeze the arms 315 toward the plug body 305 and remove the plug 300.
  • FIG. 4 illustrates an outlet bank 115 with plugs 300 coupled with the outlets 215.
  • plugs 325 are provided with similar arms and retention tabs and coupled with outlets 210.
  • cords for the C13 outlets are not included in the illustration, and are shown partially for the C19 outlets, for purposes of providing a more clear illustration.
  • FIG. 5 illustrates an exemplary alternate arrangement of outlets in outlet bank 500.
  • eight C13 outlets 505 are provided, along with four C19 outlets 510.
  • Such an arrangement may provide a relatively high density of power outlets as compared to traditional PDUs, thereby providing enhanced efficiency and space usage in many applications in which a relatively high number of computing equipment components may be present in an equipment rack, for example.
  • an outlet bank 600 may include a recessed surface 605 from which a number of power outlets 610 may extend that are coupled with a length of flexible insulated cord 615.
  • the outlets 610 extend through an associated aperture 607 in housing 105 and may provide a connection that is movable to some degree relative to the PDU housing 105.
  • the flexible cord 615 penetrates the recessed surface 605 and is coupled with a power source in an interior of the housing 105.
  • the interior portion of the housing 105 may include a cavity to receive a portion of the flexible cord 615, such that the outlets 610 are extendable away from the front face of the housing 105, and retractable toward the front face of the housing 105.
  • a user may simply push a cord into the housing 105 to retract the cord, or pull a cord away from the housing 105 to extend the cord.
  • Excess cord may be stored within the cavity of the housing 105 by simply allowing the cord to bunch up within the cavity, or a retraction/extension mechanism such as a spool or cylinder may be provided in the cavity that may receive the cord.
  • a PDU may have numerous different arrangements and numbers of outlets, and FIG.
  • FIG. 6 illustrates one of numerous different available arrangements of outlets in such an outlet bank 600.
  • Such arrangements may provide a relatively high density of power outlets as compared to traditional PDUs, thereby providing enhanced efficiency and space usage in many applications in which a relatively high number of computing equipment components may be present in an equipment rack, for example.
  • PDUs including outlet cores such as described herein may provide significant reductions in the area required for each outlet, with some embodiments providing approximately a 40% reduction in area required for C13 outlets and approximately a 30% reduction in area required for C19 outlets.
  • the PDU 700 includes a PDU housing 705 and a power input 710 that penetrates the housing 705 and may be connected to an external power source.
  • the power input 710 of this embodiment is a fixed position power input, although a swivel input cord assembly, such as illustrated in FIG. 1 , may be used according to various embodiments.
  • the PDU 700 includes housing 105 that is vertically mountable in an equipment rack, although it will be understood that other form factors may be used, such as a horizontally mountable housing.
  • a plurality of outlet banks 715 are coupled with the housing 705 and include a plurality of rotatable outlets 735 that extend away from the housing 705.
  • the outlet banks 715 are illustrated in additional detail in FIGS. 8-9 .
  • the PDU 700 of FIG. 7 includes a number of circuit breakers 720 that provide over-current protection for one or more associated outlet banks 715.
  • the PDU 700 also includes a communications module 125 that may be coupleable with one or more of a local computer, local computer network, and/or remote computer network.
  • a display portion 130 may be used to provide a local display of information related to current operating parameters of the PDU 700, such as the quantity of current being provided through the input and/or one or more of the outlets.
  • the outlet bank 715 includes a number of rotatable outlets 735 that are coupled with an outlet enclosure housing 740 and outlet shaft housing 745 within the outlet enclosure housing 740.
  • the outlet shaft housing 745 receives a cord coupled with each outlet 735 and provides for rotation of the outlet 735 around or relative to a longitudinal axis 750 of the PDU housing 705.
  • Each outlet 735 is secured to the outlet shaft housing 745, which may rotate relative to the outlet enclosure housing 740.
  • the outlet shaft housing 745 includes a cavity to receive a portion of the cord from each outlet 735, providing the ability to extend or retract outlets 735 relative to the outlet shaft housing 745.
  • the exit point of the cord from the outlet shaft housing 745 may be oriented such that it limits, reduces, or minimizes the movement of the conductors within outlet shaft housing 745 and the associated connection between the conductors and a power source connection within housing 705. Additionally, the outlet shaft housing 745 may provide strain relief for the cord.
  • each of the rotatable outlets 735 are coupled with the PDU housing 705 in a manner similar as the rotatable assembly described in co-pending U.S. Patent Application No. 61/675,921, filed on July 26, 2012 , entitled "Multi-Position Input Cord Assembly for a Power Distribution Unit," .
  • outlets 735 are illustrated as IEC-type outlets, although it will be readily understood that any of various other types of outlets alternatively can be used.
  • the "outlets” can be NEMA type outlets (e.g., NEMA 5-15R, NEMA 6-20R, NEMA 6-30R or NEMA 6-50R) or any of various IEC types (e.g., IEC C13 or IEC C19). It also will be understood that all "outlets" in a particular power outlet bank 115, or other module-outlet described herein, need not be identical or oriented uniformly along the PDU.
  • Outlet connector 800 shown in FIG. 10 includes an outlet core 802 and an end cap 804 connected to the outlet core.
  • outlet connector 800 includes a plurality of electrical terminals 806 and 808. Electrical terminals 806 and 808 are positioned between the outlet core 802 and the end cap 804.
  • Connector 800 includes two outer electrical terminals 806 and a middle electrical terminal 808.
  • electrical terminals 806 and 808 have the same construction although middle terminal 808 is positioned to face the opposite direction of electrical terminals 806.
  • the middle connection tab is offset from the outer electrical terminal's connection tabs.
  • the terminals may be different sizes.
  • middle terminal 808 is larger than the outer terminals 806.
  • electrical terminals 806 and 808 are constructed from suitable electrically conductive materials such as tin, copper, gold, silver, and the like. Multiple materials can be used in combination.
  • the terminals can be constructed of tin with a suitable coating material.
  • the terminals comprise copper with a tin plating.
  • the terminals such as outer terminals 806 are formed from a single piece of conductive material by bending contacts 812 and 814 away from connection tab 810. Although the electrical terminals are aligned with respect to each other, the middle connection tab is offset from the outer electrical terminals' connection tabs.
  • Contacts 812 and 814 are bent inward towards each other such that when a mating contact (not shown) is inserted into the electrical terminal, the contacts 812 and 814 are urged toward the mating terminal. Accordingly, in some embodiments it is desirable to form the electrical terminals 806 and 808 from a conductive resilient spring-like material. Connection tabs 810 extend through and beyond the input side 816 of the connector core 802. Accordingly, contacts 812 and 814 are positioned toward the output side 818 of the outlet core 802. It can be appreciated from the figure that electrical terminals 806 and 808 are configured as female receptacles. In other embodiments the electrical terminals 806 and 808 may be configured as male terminals or a combination of male and female terminals.
  • end cap 804 is insertable into cavity 843 formed in outlet core 802.
  • Internal indexing features 846 and 844 help ensure that end cap 804 is inserted into cavity 843 in the correct orientation.
  • Features 844 and 846 act in cooperation with indexing relief feature 842 formed into the side of cavity 843.
  • the outlet connector 800 is mountable to a printed circuit board or other surface with mounting screws 820.
  • mounting screws 820 are each screwed into a boss 824 which protrudes from mounting flange 822.
  • Mounting flange 822 is adjacent the input side 816 of the outlet core 802 and provides stabilization of the connector 800 against its mounting surface.
  • Mounting boss 824 extends from flange 822 to help position and locate the outlet connector 800 on its mounting surface such as a printed circuit board.
  • end cap 804 includes a pair of latches 826 that engage ledges 828 formed in outlet core 802. Accordingly, latches 826 help prevent end cap 804 from being removed from the outlet core 802.
  • mounting flange 822 includes notches 838 and 840 positioned adjacent corresponding terminals. Notches 838 and 840 allow for visible inspection of terminal solder joints and also allow flux residue to be removed.
  • outlet core 802 includes a plurality of aligned apertures 830 and 832. In some embodiments, cavities 834 and 836 are interposed between the outer apertures 830 and the middle aperture 832. As shown in the figure, the electrical terminals are positioned within the apertures. Outlet core 802 also includes external indexing features 850. In this embodiment, the external indexing features 850 are in the form of chamfers.
  • end cap 804 includes a body portion 860 insertable into the cavity 843 of outlet core 802 (see FIG. 11 ) and a flange 862.
  • End cap 804 includes a plurality of apertures 854 and 856 extending through the cap.
  • Outer apertures 854 correspond to the outer apertures 830 of outlet core 802 (see FIG. 15 ).
  • middle aperture 856 corresponds to the middle aperture 832 of outlet core 802 (see FIG. 15 ).
  • End cap 804 also includes a pair of indexing features 852 which correspond to the indexing features 850 of the outlet core 802 (see FIG. 15 ).
  • Latches 826 include ramped surfaces 864 and a latch surface 866.
  • end cap 804 includes cavities 858 interposed between the outer apertures 854 and middle aperture 856. As mentioned above, end cap 804 includes internal indexing features 844 and 846. As shown in the figure, indexing features 844 extend beyond body portion 860 further than indexing feature 846. Indexing feature 844 corresponds to the indexing cutout 842 of the core 802 (see FIG. 15 ).
  • the end cap 804 can be color coded to indicate an output capacity (e.g., amperage) or phase configuration of the associated outlet core. In some embodiments, the end cap 804 has a contrasting color with respect to the outlet core. In some embodiments, the end cap 804 is a different color than the outlet core.
  • the disclosed technology can be used with any suitable phase configuration such as single, dual, and/or three phase configurations, including polyphase connections described in U.S. Patent No. 8,541 906 .
  • Outlet connector bank 900 includes a unitary body 902 having a surrounding sidewall 903 with a flange 904 extending therefrom.
  • the unitary body 902 includes a plurality of outlet cores 906 and an unobstructed space 910 between adjacent pairs of the plurality of outlet cores 906.
  • each outlet core includes at least three aligned apertures.
  • the plurality of electrical terminals are positioned each in a corresponding one of the plurality of aligned apertures.
  • Each outlet core includes an end cap 908 connected to and surrounding the electrical terminals of the outlet cores 906.
  • Surrounding sidewall 903 includes a plurality of latches 912 to facilitate retaining the outlet bank in a corresponding chassis.
  • the sidewall also includes slots 905 to receive the retainers of a mating plug, such as the retention arms and tabs (315, 320) described above with respect to FIG. 3 .
  • the retainers of mating plugs positioned adjacent latches 912 can engage openings 913.
  • outlet connector bank 900 includes a recessed surface 914 which is part of unitary body 902 from which the plurality of outlet cores 906 extend toward the surrounding flange 904.
  • Each outlet core 906 includes the plurality of aligned apertures 916 and 918.
  • the apertures include outboard apertures 916 and middle aperture 918.
  • Electrical terminals 920 are positioned in the outboard apertures 916 while middle terminal 922 is positioned in the middle aperture 918.
  • the middle terminals 922 are ganged together via a circuit rail 924.
  • Outboard terminals 920 are not ganged together and are available for individual connection.
  • 26 through 28 illustrate another embodiment of an outlet connector bank 1000 similar to that described with respect to FIGS. 23 through 25 .
  • the outboard terminals 1020 are ganged together via corresponding circuit rails 1026.
  • Middle terminals 1022 are ganged together via circuit rail 1024.
  • Outboard terminals 1020 extend through apertures 1016 while middle terminal 1022 extends through aperture 1018.
  • the outlet connector banks described with respect to FIGS. 25 through 28 describe ganging at least some of the terminals together, in other embodiments all of the terminals may be left unganged.
  • Outlet connector 1100 shown in FIG. 29 includes an outlet core 1102 and an end cap 1104 connected to the outlet core.
  • the outlet core 1102 and the end cap 1104 include a pair of grooves or channels 1106 to help ensure that plug 1110 is properly connected to the outlet connector 1100.
  • Plug 1110 includes mating terminals 1116 and indexing rails 1112 configured to mate with channels 1106.
  • Plug 1110 also includes retainers 1114 configured to engage slots 905 or openings 913 (see FIG. 22 ).
  • Embodiments described herein provide several benefits relative to traditional PDUs having outlets that include an outer jacket around an outlet core.
  • the core element of the power receptacle remains and allows for reduced possible spacing of receptacles, thus allowing for increased or maximized receptacle density.
  • Such core receptacles can be mounted on a PCB, sheet metal, or molded into a multi receptacle (ganged) module, according to various embodiments, providing flexibility in the configuration and manufacturing of such PDUs.
  • core receptacles can be mounted in single or dual rows, in any orientation, to further increase density.
  • PDU outlets can provide reduced PDU volume, while also appropriately configured cord plugs including custom plug configurations and industry standard power cords and providing optional locking for power cords.
  • the outlets extend away from the PDU housing, either through a recessed surface or a rotatable connection, additional flexibility and versatility are provided to users of PDUs, because, for example, the outlets can be uniformly spaced along the length of the PDU, which is desirable in that interconnecting power cords to equipment located in an equipment rack can then be the same length.
  • PDUs such as those described herein, according to various embodiments, provide several advantages over traditional PDUs.
  • high outlet density PDUs may contain the maximum possible number of outlets per unit volume, which equates to maximum or increased value to a PDU customer or user.
  • High outlet density PDUs may work with industry standard power cords, thus requiring no additional cost that is incurred when put into service.
  • High outlet density PDUs may have a smaller volume than conventional outlet PDU's, and can thus be installed into a wider variety of commercially available equipment racks.
  • High outlet density PDUs allow construction of an air tight enclosure, which can then be actively, cooled using forced air or other fluids.
  • High outlet density PDUs allow for modular, highly variable assembly methodologies, not easily achieved with conventional outlets. It will be noted that this list of various advantages is not exhaustive or exclusive, and numerous different advantages and efficiencies may be achieved, as will be recognized by one of skill in the art.

Claims (9)

  1. Connecteur de sortie (800), comprenant :
    un noyau de sortie (802) ayant un côté entrée et un côté sortie avec au moins trois ouvertures alignées s'étendant entre eux ;
    une pluralité de bornes électriques (806, 808) chacune positionnée dans une ouverture correspondante des ouvertures ; et
    un capuchon d'extrémité (804) raccordé au noyau de sortie (802) et entourant les bornes électriques (806, 808) ;
    le capuchon d'extrémité (804) inclut une partie de corps (860) et caractérisé en ce que le capuchon d'extrémité inclut une paire de loquets (826) positionnés pour entrer en prise avec une paire de rebords (828) correspondants formés dans une cavité (843) du noyau de sortie (802), et un élément d'indexage interne (844) s'étendant depuis la partie de corps (860) et capable de s'accoupler avec une découpe d'indexage (842) du noyau de sortie (802).
  2. Connecteur de sortie selon la revendication 1, dans lequel le capuchon d'extrémité (804) est codé par couleur pour indiquer soit une capacité de sortie du noyau de sortie soit une configuration de phase du noyau de sortie par rapport à une source de puissance.
  3. Connecteur de sortie selon la revendication 2, dans lequel la couleur du capuchon d'extrémité est différente d'une couleur du noyau de sortie.
  4. Connecteur de sortie selon la revendication 1, dans lequel le noyau de sortie inclut au moins un élément d'indexage.
  5. Connecteur de sortie selon la revendication 4, dans lequel l'au moins un élément d'indexage est un chanfrein (850) ou est un canal (1106).
  6. Connecteur de sortie selon la revendication 1, dans lequel le noyau de sortie inclut une bride de montage (822) .
  7. Connecteur de sortie selon la revendication 6, dans lequel la bride de montage (822) est adjacente au côté entrée.
  8. Connecteur de sortie selon la revendication 1, dans lequel chaque borne électrique inclut une patte de connexion (810) s'étendant depuis le côté entrée.
  9. Connecteur de sortie selon la revendication 8, dans lequel au moins une patte de connexion est décalée par rapport à au moins une autre patte de connexion.
EP16780598.5A 2015-04-15 2016-04-13 Prise pour une unité de distribution d'alimentation à densité de sortie élevée Active EP3284147B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/687,670 US9583902B2 (en) 2012-11-06 2015-04-15 High outlet density power distribution unit
PCT/US2016/027228 WO2016168260A1 (fr) 2015-04-15 2016-04-13 Unité de distribution d'alimentation à densité de sortie élevée

Publications (3)

Publication Number Publication Date
EP3284147A1 EP3284147A1 (fr) 2018-02-21
EP3284147A4 EP3284147A4 (fr) 2019-02-20
EP3284147B1 true EP3284147B1 (fr) 2023-09-27

Family

ID=57126788

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16780598.5A Active EP3284147B1 (fr) 2015-04-15 2016-04-13 Prise pour une unité de distribution d'alimentation à densité de sortie élevée

Country Status (3)

Country Link
EP (1) EP3284147B1 (fr)
CN (1) CN106058519B (fr)
WO (1) WO2016168260A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10524377B2 (en) * 2018-01-31 2019-12-31 Eaton Intelligent Power Limited Power distribution unit with interior busbars
US11539177B2 (en) * 2018-06-15 2022-12-27 Siemens Mobility, Inc. Vital relay assembly for modular solid-state current-limiting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203377422U (zh) * 2013-06-17 2014-01-01 罗立芬 一种新型的插座
CN104253334A (zh) * 2014-09-04 2014-12-31 公牛集团有限公司 插座电气连接结构

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2563313Y2 (ja) 1990-08-06 1998-02-18 矢崎総業株式会社 電気接続箱
FR2703845B1 (fr) * 1993-04-05 1995-06-30 Arnould App Electr Socle de prise de courant.
US7043543B2 (en) * 1996-07-23 2006-05-09 Server Technology, Inc. Vertical-mount electrical power distribution plugstrip
US6283787B1 (en) * 2000-06-30 2001-09-04 Jonie Chou Electric outlet shell
US6750410B2 (en) * 2000-09-05 2004-06-15 Jae Ha Lee Electric outlet with rotatable receptacles
US20060199438A1 (en) * 2005-02-15 2006-09-07 Server Technology, Inc. Ganged electrical outlets, apparatus, and methods of use
US20060246784A1 (en) * 2005-04-29 2006-11-02 Aekins Robert A Electrically isolated shielded connector system
CN100566040C (zh) * 2005-09-30 2009-12-02 富士康(昆山)电脑接插件有限公司 线缆连接器组件
US7457106B2 (en) 2006-01-11 2008-11-25 Server Technology, Inc. Power distribution unit and methods of making and use including modular construction and assemblies
EP2248044A4 (fr) 2007-12-28 2013-12-11 Server Tech Inc Systèmes et procédés de distribution, de gestion et de surveillance d'énergie
EP2404354B1 (fr) * 2009-03-04 2018-11-07 Server Technology, Inc. Surveillance de paramètres relatifs a l'alimentation dans une unité de distribution de l'alimentation
US8283802B2 (en) * 2009-06-11 2012-10-09 American Power Conversion Corporation Dual column gang outlets for minimizing installation space
CN201594673U (zh) * 2010-02-05 2010-09-29 余戈平 三字形平行扁孔三脚插头二脚插头通用插座
CN202019073U (zh) * 2011-04-02 2011-10-26 北京突破电气有限公司 用于电源分配单元带电维护的功能模块
US8587950B2 (en) 2011-05-31 2013-11-19 Server Technology, Inc. Method and apparatus for multiple input power distribution to adjacent outputs
DE112013005294T5 (de) * 2012-11-06 2015-08-13 Server Technology, Inc. Stromverteilungseinheit mit hoher Steckdosendichte
CA2922762C (fr) * 2013-09-12 2020-06-09 Pce, Inc. Appareil permettant de retenir une prise male dans un connecteur femelle
CN103928785B (zh) * 2013-12-20 2016-01-20 公牛集团有限公司 显式模块化插座
CN103915712B (zh) * 2013-12-20 2016-01-13 公牛集团有限公司 隐式模块化插座
US9444175B2 (en) * 2014-11-26 2016-09-13 Liang Light Chen Socket connector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203377422U (zh) * 2013-06-17 2014-01-01 罗立芬 一种新型的插座
CN104253334A (zh) * 2014-09-04 2014-12-31 公牛集团有限公司 插座电气连接结构

Also Published As

Publication number Publication date
WO2016168260A1 (fr) 2016-10-20
EP3284147A1 (fr) 2018-02-21
CN106058519B (zh) 2021-07-02
CN106058519A (zh) 2016-10-26
EP3284147A4 (fr) 2019-02-20

Similar Documents

Publication Publication Date Title
US11133626B2 (en) High outlet density power distribution unit
US11728604B2 (en) Combination outlet and power distribution unit incorporating the same
US11296467B2 (en) High outlet density power distribution unit
EP3284147B1 (fr) Prise pour une unité de distribution d'alimentation à densité de sortie élevée
US11563296B2 (en) Track busway power distribution unit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602016083035

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01R0025160000

Ipc: H01R0013506000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H01R0025160000

Ipc: H01R0013506000

A4 Supplementary search report drawn up and despatched

Effective date: 20190117

RIC1 Information provided on ipc code assigned before grant

Ipc: H01R 103/00 20060101ALI20190111BHEP

Ipc: H01R 13/72 20060101ALI20190111BHEP

Ipc: H01R 13/506 20060101AFI20190111BHEP

Ipc: H01R 25/00 20060101ALI20190111BHEP

Ipc: H01R 24/78 20110101ALI20190111BHEP

Ipc: H01R 13/46 20060101ALI20190111BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190820

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230419

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230514

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016083035

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230927

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1616349

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927