EP3280554B1 - Forging hammer and method for controlling the working cycle of a forging hammer - Google Patents

Forging hammer and method for controlling the working cycle of a forging hammer Download PDF

Info

Publication number
EP3280554B1
EP3280554B1 EP16712778.6A EP16712778A EP3280554B1 EP 3280554 B1 EP3280554 B1 EP 3280554B1 EP 16712778 A EP16712778 A EP 16712778A EP 3280554 B1 EP3280554 B1 EP 3280554B1
Authority
EP
European Patent Office
Prior art keywords
hydraulic
speed
pump
hydro
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16712778.6A
Other languages
German (de)
French (fr)
Other versions
EP3280554A1 (en
Inventor
Markus Otto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Langenstein and Schemann GmbH
Original Assignee
Langenstein and Schemann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Langenstein and Schemann GmbH filed Critical Langenstein and Schemann GmbH
Publication of EP3280554A1 publication Critical patent/EP3280554A1/en
Application granted granted Critical
Publication of EP3280554B1 publication Critical patent/EP3280554B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J7/00Hammers; Forging machines with hammers or die jaws acting by impact
    • B21J7/20Drives for hammers; Transmission means therefor
    • B21J7/22Drives for hammers; Transmission means therefor for power hammers
    • B21J7/28Drives for hammers; Transmission means therefor for power hammers operated by hydraulic or liquid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J11/00Forging hammers combined with forging presses; Forging machines with provision for hammering and pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J7/00Hammers; Forging machines with hammers or die jaws acting by impact
    • B21J7/20Drives for hammers; Transmission means therefor
    • B21J7/46Control devices specially adapted to forging hammers, not restricted to one of the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/10Drives for forging presses
    • B21J9/12Drives for forging presses operated by hydraulic or liquid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/10Drives for forging presses
    • B21J9/20Control devices specially adapted to forging presses not restricted to one of the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses

Definitions

  • the underlying invention relates to a forming machine, in particular a forging hammer, and to a method for controlling a corresponding forming machine.
  • a forging hammer for the reshaping of workpieces comprising a striking tool and a hydraulic linear drive coupled to the striking tool and designed to drive the striking tool with a hydraulic circuit comprising a pressure accumulator, a hydraulic cylinder, in particular a differential cylinder, connected downstream of the pressure accumulator via a directional valve assembly, and comprising the Furthermore, a control unit designed at least for controlling the directional valve assembly.
  • the EP 0 116 024 B1 describes in connection with hydraulic machines the use of a pressure accumulator and hydraulic motor for the operation of hydraulic cylinders.
  • the EP 0 116 024 B1 also describes that elastic energy stored in the hydraulic system during operation of hydraulic machines can be converted into electrical energy by a hydraulic generator connected in parallel with the hydraulic pump in terms of fluid technology, the hydraulic generator being connected to the hydraulic circuit in order to generate the electrical energy.
  • an object of the present invention can be seen in particular in further developing and / or improving the known forming machines, in particular with regard to drive, energy efficiency and / or achievable working speeds.
  • the forming machine according to the embodiment according to claim 1 comprises an impact tool, for example an upper, lower die and / or bear, which e.g. can be designed as such as a forming tool, or can have a forming tool, and / or can have an interface for receiving, in particular fastening, a forming tool.
  • an impact tool for example an upper, lower die and / or bear, which e.g. can be designed as such as a forming tool, or can have a forming tool, and / or can have an interface for receiving, in particular fastening, a forming tool.
  • the forming machine further comprises a hydraulic linear drive designed to drive the striking tool and coupled to the striking tool for the purpose of driving the striking tool.
  • a hydraulic linear drive is to be understood to mean drives which are in particular designed to convert hydraulic energy into kinetic energy of a linear movement.
  • the hydraulic linear drive can comprise a hydraulic cylinder driven by a hydraulic fluid and acting as a linear motor.
  • a differential cylinder is proposed as the hydraulic cylinder, which has, for example, a piston guided in a cylinder tube with a one-sided of which can have a extending piston rod on which the striking tool, in particular the bear, can be fixed.
  • the invention can also be applied to any hydraulic cylinder.
  • a first fluid space which is formed on a side of the piston of the hydraulic cylinder facing away from the piston rod or is formed in operating states, is usually referred to as a piston space, and in particular in the sense of the underlying invention.
  • a second fluid space formed between the piston and the cylinder tube in an operating state of the hydraulic cylinder, in particular a differential cylinder, through which the piston rod extends or through which the piston rod can extend is referred to as an annular space.
  • the hydraulic linear drive comprises a hydraulic circuit with a servomotor hydraulic pump, i.e. a hydraulic pump coupled to its operation with a motor-driven servo motor.
  • the servo motor hydraulic pump is set up in such a way that the pump speed or pump power can be controlled by the servo motor.
  • the servo-motoric hydraulic pump is configured as a unidirectional servo-motoric hydraulic pump using the directional valve assembly proposed here and is integrated in the hydraulic circuit.
  • the term unidirectional should in particular be understood to mean that, when the forming machine is in operation, hydraulic fluid always flows through the pump in the same direction of flow, or that the hydraulic pump uses the same in one or more successive working cycles of the hydraulic cylinder, in particular differential cylinder Pump direction or direction of rotation is operated.
  • the unidirectional flow direction or pump direction can in particular be defined by a flow direction from one, in particular central, hydraulic tank to the hydraulic cylinder, in particular Differential cylinder, in particular to the piston space or to the annular space of the differential cylinder.
  • a hydraulic pump which is unidirectional in terms of fluid technology makes it possible, in particular, to achieve advantageous control times for the volume flows provided to the hydraulic system or the volume flows required by the hydraulic system.
  • the hydraulic pump can in particular be a constant pump, i.e. a hydraulic pump with a constant displacement.
  • the servomotor hydraulic pump proposed here enables the volume flow and / or pressure of the hydraulic fluid in the hydraulic circuit to be adapted comparatively precisely and quickly to the respective requirements and adjusted accordingly.
  • the latter is of particular advantage for the comparatively high piston speeds and piston accelerations that occur with forging hammers.
  • the pump speed or hydraulic power of the hydraulic pump can be optimally adapted to the movement phases that follow one another during a forging cycle and can be adjusted according to the respective requirements, while maintaining comparatively short control times.
  • the movement profile of the piston for example the speed, in particular the final speed reached immediately before the bear or tool hits a workpiece, can be set or controlled comparatively precisely by controlling the hydraulic circuit in a correspondingly precise and timely manner. Ultimately, this has an advantageous effect on the achievable forging or forming result, and an energy-efficient operation can advantageously be achieved.
  • the hydraulic pump of the hydraulic linear drive can be designed for comparatively high volume flows of, for example, 100 l / min to 500 l / min or more.
  • a plurality can be connected in parallel in terms of fluid technology Hydraulic pumps are used.
  • a pressure range in which the hydraulic pumps work i.e. a hydraulic pump pressure, can be in the range between 190-220 bar.
  • the hydraulic linear drive comprises a hydraulically operating or hydraulically operated hydraulic cylinder, in particular differential cylinder, in particular a double-acting hydraulic cylinder with a piston rod extending on one side of the piston.
  • the hydraulic cylinder, in particular differential cylinder, or generally formulated the hydraulic linear motor is fluid-technically with a directional valve assembly, i.e. a module comprising at least one, in particular directly controlled or piloted, directional valve, connected, and arranged downstream of the hydraulic pump via the directional valve assembly.
  • a directional valve assembly i.e. a module comprising at least one, in particular directly controlled or piloted, directional valve, connected, and arranged downstream of the hydraulic pump via the directional valve assembly.
  • the directional control valve assembly should in particular mean that the first fluid space, e.g. the piston chamber of the differential cylinder can be supplied or acted upon with hydraulic fluid in one switching position of a (directional) valve or a (directional) valve group, can be separated from the differential cylinder in another switching position, and / or in another switching position with a second one Fluid space, e.g. the annulus of the differential cylinder, can be fluidly connected.
  • the directional valve assembly two e.g. can have exactly two switching positions, the hydraulic pump being connected to the first fluid space, in particular piston space, in a first switching position, and to the second fluid space, in particular annular space of the differential cylinder, in a second switching position. Further or more detailed explanations for the connection also result from the explanations described below.
  • the hydraulic circuit further comprises a servo-motoric hydrogen generator, ie a hydraulic motor coupled to a servo motor that works as a generator.
  • the hydrogenerator can, for example, be designed for volume flows in the range of 300 l / min. For higher volume flows, several hydrogen generators or hydraulic motors connected in parallel in terms of fluid technology can be used.
  • the servomotor-driven hydrogenerator is in particular designed and connected to the hydraulic circuit in such a way that when hydraulic fluid is acted on and the shaping machine is operating properly, it works as a generator, i.e. Generate electrical energy from hydraulic energy.
  • the hydraulic motor can generate mechanical work from hydraulic energy for driving the regenerative servomotor, that is to say servo generator, wherein the servo generator can convert the mechanical energy into electrical energy.
  • the servo-motoric hydrogenerator is configured as a unidirectional servo-motoric hydrogenerator using the directional valve assembly proposed here and is integrated in the hydraulic circuit.
  • unidirectional reference is made to the above statements.
  • the hydrogenerator this is to be understood to mean that, when the forming machine is in operation, hydraulic fluid always flows in the same direction of flow through which the hydraulic motor or that the hydraulic motor in one or more successive working cycles of the hydraulic cylinder, in particular differential cylinder, with the same direction of rotation or The direction of flow of the hydraulic fluid is operated.
  • the unidirectional flow direction or direction of rotation can in particular be defined by a flow direction from the hydraulic cylinder, in particular differential cylinder, in particular piston space or to the annular space, to a, for example central, hydraulic tank of the hydraulic system.
  • the hydrogenerator is connected downstream of the hydraulic cylinder, in particular differential cylinder, in terms of fluid technology via the directional valve assembly.
  • fluid-technical interconnections of the hydraulic pump, hydraulic cylinder, in particular differential cylinder, and hydrogen generator can thus be carried out can be achieved in which hydraulic pump, differential cylinder and hydrogen generator are connected in series essentially always or in one or more predetermined time periods during a working cycle of the hydraulic cylinder, in particular differential cylinder, which should mean that hydraulic fluid flowing into a fluid space of the hydraulic cylinder, in particular differential cylinder is always provided by the hydraulic pump, and hydraulic fluid flowing away from the hydraulic cylinder, in particular differential cylinder, is always discharged via the hydrogenerator.
  • the hydrogen generator can be operated as a hydraulic brake for the piston of the hydraulic cylinder, in particular a differential cylinder, by means of a corresponding torque control of the regenerative servomotor.
  • the hydrogenerator can be used as an active hydraulic brake for the piston
  • the hydrogenerator can also be used for energy recovery, in that superfluous elastic Energy is extracted from the hydraulic system by appropriate control of the hydrogenerator.
  • the forming machine further comprises at least one control unit designed and designed to control at least the hydraulic pump, the hydrogen generator and the directional control valve assembly, in particular at least in sections or overlapping at the same time.
  • the hydraulic pump, hydrogenerator and directional valve assembly can be connected in series over an entire working cycle of the differential cylinder or at least over a substantial part of the working cycle, so that a defined and comparatively accurate movement control of the hydraulic cylinder, in particular Differential cylinder, can be achieved by hydraulic coupling of the hydraulic cylinder, in particular differential cylinder, to the hydraulic pump. Simultaneously or parallel to this, in particular over the entire working cycle, elastic or hydraulic energy stored or generated in the hydraulic system or hydraulic circuit can be converted into electrical energy by corresponding control of the hydrogenerator.
  • control unit can be set up in such a way that the directional valve assembly is controlled at least temporarily during a working movement or a working cycle of the hydraulic cylinder, in particular differential cylinder, or the switching position of the directional valve assembly is set such that the hydraulic pump with the first fluid chamber of the hydraulic cylinder, in particular the piston chamber, and the hydrogenerator are fluidically connected to a second fluid chamber of the hydraulic cylinder, in particular the annular chamber of the differential cylinder.
  • piston chamber and annulus reference is made to the above explanations, which apply accordingly.
  • the control unit can also be set up so that at least temporarily during a return movement, i.e. a movement opposite to the working movement, of the hydraulic cylinder, in particular differential cylinder, the directional valve assembly is controlled such that the hydraulic pump is fluidically connected to the second fluid chamber of the hydraulic cylinder, in particular the annular chamber, and the hydrogen generator is connected to the first fluid chamber of the hydraulic cylinder, in particular the piston chamber of the differential cylinder.
  • control unit can be set up in such a way that it controls the directional valve assembly in such a way that the hydraulic pump is connected or alternately connected to the first fluid space, in particular the piston space, and the second fluid space, in particular the annular space, in sequentially successive, in particular immediately successive, sections of a working cycle of the differential cylinder is.
  • the hydrogenerator can alternately be connected alternately to a second fluid space, in particular an annular space, and a first fluid space, in particular a piston space.
  • the hydraulic cylinder in particular differential cylinder, and in particular the striking tool, with continuous motion control between the reversal points of the hydraulic cylinder, in particular differential cylinder, and in particular also in the area of the reversal points, combined with energy recovery the hydraulic generator are operated.
  • the directional valve assembly can comprise a 4/2 way valve.
  • the directional control valve assembly can in particular comprise four individual hydraulic valves that are fluidly connected to one another in a bridge circuit.
  • a bridge circuit can be understood in particular as a ring circuit of, for example, four hydraulic valves with intermediate connection points.
  • such a bridge connection can be implemented by connecting two hydraulic valves connected in series.
  • the hydraulic circuit can comprise at least one suction valve, which is fluid-technically connected to a suction source, for example a hydraulic fluid reservoir or reservoir; or tank, on the one hand and with at least one fluid space, in particular the piston space and / or annular space, of the differential cylinder on the other hand.
  • a suction source for example a hydraulic fluid reservoir or reservoir; or tank, on the one hand and with at least one fluid space, in particular the piston space and / or annular space, of the differential cylinder on the other hand.
  • the fluidic connection of the suction valve can in particular be designed in such a way that a negative pressure which arises in the at least one fluid space during operation of the hydraulic cylinder, in particular a differential cylinder, can be compensated for by sucking in hydraulic fluid via the suction valve.
  • a negative pressure which arises in the at least one fluid space during operation of the hydraulic cylinder, in particular a differential cylinder, can be compensated for by sucking in hydraulic fluid via the suction valve.
  • Corresponding negative pressures can occur in a forging hammer, for example in the annular space when the impact tool rebounds, and / or when in an operating state the volume increase in the piston space is greater than the volume provided by the hydraulic pump of hydraulic fluid.
  • the latter can occur, for example, if the volume flow generated by the hydraulic pump remains or is smaller than or becomes the change in volume of the piston space caused by enlarging the piston space, which is the case, for example, after initially accelerating the piston towards the workpiece in order to regulate the required speed of the percussion tool Case may be.
  • the replenishment valve can be, for example, a hydraulic valve designed in the manner of a check valve, in particular a valve that automatically closes on one side.
  • the suction valve can, for example, be designed for volume flows in the range between 150 l / min to 10,000 l / min.
  • the respective design of the replenishment valve depends, among other things, on the respective stroke volume and the piston speeds that occur.
  • control unit can be set up to control the pump speed of the hydraulic pump such that the hydraulic pump is always operated at least at a non-zero minimum speed during operation, in particular during one or more successive working cycles.
  • control unit can be designed and set up in such a way that it controls the hydraulic pump or can control such that during operation, in particular a working section of one or more working cycles, the hydraulic cylinder, in particular the differential cylinder, has at least one different from zero Minimum speed is operated.
  • control unit can be set up in such a way that the hydraulic pump is always operated at least at the minimum speed during one or more immediately successive working cycles.
  • the minimum speed represents the lower limit for the speed of the hydraulic pump.
  • the hydraulic pump is therefore not stopped completely during appropriate operation, but is operated continuously, which can bring advantages in terms of energy efficiency and accuracy of setting the speed, in particular the final speed, of the forging tool.
  • control unit can be set up in such a way that the hydraulic pump is first activated or is activated at the minimum speed, and then the pump speed is initially increased from the minimum speed to a maximum speed in a working area of a working cycle of the hydraulic cylinder, in particular differential cylinder.
  • the pump speed can be reduced from the maximum speed to the minimum speed, in particular in such a way that the minimum speed is reached or is present at a reversal point of the hydraulic cylinder, in particular a differential cylinder.
  • the reversal point is preferably the reversal point of the piston of the hydraulic cylinder, in particular the differential cylinder, facing the area of action of the striking tool.
  • the increase in the pump speed of the hydraulic pump or the reduction in the pump speed of the hydraulic pump can take place in accordance with a linear function of time.
  • the control unit can be configured in such a way that the maximum speed is or is reached before reaching or at the time the impact tool strikes a workpiece positioned in the work area.
  • the pump speed of the hydraulic pump is reduced when the maximum speed is reached, so that under the action of the hydraulic forces prevailing in the hydraulic circuit and, if applicable, the force of gravity acting on the striking tool, the or a predetermined final speed has been reached in or shortly or immediately before the reversal point, or forming point, or in or short or immediately before the reversing point of the forming point.
  • the hydrogenerator can also be operated as a hydraulic brake in order to actively brake the piston.
  • the sequence of movements, in particular the final speed, of the hydraulic cylinder, in particular differential cylinder, and thus of the striking tool can be varied and adjusted comparatively flexibly within the limits given by the overall structure of the forming machine .
  • a suitable control of the pump speed of the hydraulic pump optionally with the additional use of suitable sensors for measuring the position and / or speed of the hydraulic cylinder, in particular differential cylinder, or the striking tool, and / or sensors for measuring one or more pressures prevailing in the hydraulic system comparatively accurate and reliable adjustment of the impact speed or final speed of the striking tool can be achieved.
  • the forming machine for example interacting with the control unit, can have sensors which are designed to determine the position of the hydraulic cylinder, in particular differential cylinder, and / or the impact tool.
  • sensors for measuring the pressure in the hydraulic circuit for example in a line opening into the first fluid space, in particular piston space, and or in a line opening into the second fluid space, especially annular space.
  • the sensors can be coupled to the control unit, so that values for pressures and / or position of the striking tool or hydraulic cylinder, in particular differential cylinder, transmitted from the sensors to the control unit for controlling the hydraulic pump and / or of the hydrogenerator can be used.
  • the pressures and / or positions are preferably processed by the control unit and used to control the hydraulic pump and / or the hydrogenerator in such a way that the striking tool has the required final speed in or shortly or immediately before the point of impact.
  • the hydraulic pump is operated at the minimum speed, i.e. that the pump speed of the hydraulic pump is set to the minimum speed in this movement section.
  • the operation at the minimum speed can be used to accelerate the bear and, in the case of an upper pressure forming machine, to drive the bear upwards.
  • control unit is connected to sensors for measuring the speed of the hydraulic cylinder, in particular differential cylinder, or percussion tool, that is to say that the peripheral machine can comprise corresponding speed sensors, and determined speed data from the control unit for control or regulation the hydraulic pump and / or the hydrogenerator can be used to regulate the final speed to a predetermined value.
  • a starting point for starting a forming or forging process in particular a starting point from which the piston or bear is accelerated in the direction of the forming area, depending on the respectively desired, required or predetermined final speed, corresponding to the respectively desired one , required or predetermined energy, in particular forming energy, depending on the height of the workpiece to be formed measured in the direction of movement of the piston, and / or depending on the respective forming path, for example for upsetting or reshaping the workpiece parallel to the direction of movement of the piston.
  • the starting point from which the acceleration of the bear takes place can be, in particular, a reversal point facing away from the forming area, in the case of an upper pressure forming machine, for example, an upper dead center of the piston or bear.
  • a variable setting of the starting point or output stroke from which the piston or striking tool, bear or die is accelerated, as described in particular in advance and possible in configurations, enables in particular an optimal setting of the movement sequence of the piston or bear, etc. It is also possible to variably adjust the stroke, for example the top dead center of the piston, so that, for example, improved forming or forging cycles, or forming or forging frequencies can be achieved.
  • control unit in such a way that the path or corresponding strokes covered by the striking tool during a forging cycle are / are minimal.
  • control unit can be designed and set up in such a way that different strokes, for example a minimally necessary stroke to achieve a desired or predetermined final speed or forming energy that follows in the forming operation, differ by targeted starting Reversal points, for example top dead centers of the piston, can be realized.
  • variable strokes of the piston it is possible to optimize forming times, and the movement sequence depending on the desired final speed, forming energy, depending on the height of the workpiece to be formed in the direction of movement of the piston, and / or depending on the respective forming path, e.g. for upsetting or forming the workpiece parallel to the direction of movement.
  • control unit can be set up and configured to use a starting point, in particular top dead center, of a preceding forming cycle, e.g. a starting point of the piston or bear or die at the beginning of a preceding forming cycle, in particular immediately preceding forming cycle, to determine a further starting point, in particular top dead center, of a subsequent, preferably immediately following, forming cycle.
  • a starting point in particular top dead center
  • control unit can be designed to use e.g. the piston, bear or die of a first forming process, second control data for movement control e.g. the piston, bear or die of a second forming process.
  • the second forming process can follow the first forming process directly in time. Optimized forming times can advantageously be achieved through such control of the forming processes, in particular successive forming processes.
  • the second control data can be determined from the first control data on the basis of the first control data and the boundary conditions specified for the subsequent temporal forming process.
  • an impact energy for example forming energy
  • the starting position of the piston is calculated on the basis of a subsequently required impact energy from the control unit or control, in particular is determined automatically.
  • the starting position can be set depending on the respective height of the workpiece to be formed.
  • the position, in particular the starting position, of the piston, or bear, or die is determined at the beginning or at a defined point in time during a forming or forging cycle and / or is used as a calculation basis for determining a starting position of the piston , Bears or dies and / or operating parameters for controlling the movement of pistons, bears and / or dies during or for a subsequent subsequent forming or forging process.
  • control unit can be set up and designed such that it controls or can control the hydraulic pump in such a way that a maximum feed speed of the hydraulic cylinder, in particular differential cylinder, or of the striking tool is in the range between 1.5 m / s to 6 m / s, in particular at about 1.5 m / s or 5 m / s, or between 4.8 m / s and 5.5 m / s, and that preferably a maximum return speed of the hydraulic cylinder, in particular differential cylinder, in the range between 1.5 m / s and 2 , 5m / s, preferably 2m / s, in particular between 1.8 m / s and 2.1m / s.
  • the volume flow during braking in one or the other direction of movement of the piston ie during the forward or backward movement of the piston, in the case of an overpressure forming machine when the piston moves up and down
  • the volume flow can vary depending on the piston diameter, rod diameter, piston speed and others, or can be set depending on these sizes.
  • the recovery of energy can take place in particular under roughly the same conditions of the reciprocating movement be optimized by means of the hydrogenerator, and overall an energy-saving operation can be achieved.
  • the forming machine can further comprise an energy store, which is connected to the hydrogenerator for the purpose of feeding in electrical energy generated by the hydrogenerator.
  • an energy store which is connected to the hydrogenerator for the purpose of feeding in electrical energy generated by the hydrogenerator.
  • the electrical energy generated by the hydrogenerator, or the electrical energy generated by the hydraulic energy of the hydraulic circuit by the hydrogenerator can be temporarily stored, and can be made available again as electrical energy in a subsequent work cycle or working section of the converter rail, for example for Operation of the hydraulic pump.
  • the electrical energy generated by the hydrogenerator can be fed into a power network or power-heat network connected to the forming machine.
  • a method for controlling a work cycle of a forming machine is provided.
  • the forming machine is a forging hammer.
  • a hydraulic cylinder in particular differential cylinder, coupled to an impact tool, is fluidly coupled via a hydraulic valve and a directional valve assembly connected upstream of the hydraulic cylinder.
  • Servomotor hydraulic pump of a hydraulic linear drive is driven by the supply of hydraulic fluid.
  • the hydraulic cylinder can be driven by acting on a fluid space, in particular the piston space or annular space of the differential cylinder.
  • hydraulic fluid e.g. the hydraulic fluid flowing from the second fluid space, in particular the annular space, or the first fluid space, in particular the piston space
  • hydraulic fluid is directed via the directional valve assembly to a servo motor-driven hydrogenerator that is fluid-connected downstream of the directional control valve assembly.
  • this should mean that the hydraulic pump is fluidly coupled to a fluid space, and, at least in one section of the working cycle, in particular at the same time, the hydrogen generator is coupled to the further fluid space.
  • the hydraulic cylinder in particular differential cylinder, can be controlled comparatively precisely and reliably, as a result of which, in particular, improved forging results can be obtained.
  • the directional valve assembly is controlled in such a way that the hydraulic pump with the first fluid chamber, in particular the piston chamber, and the hydrogen generator with the second fluid chamber , in particular the annular space of the differential cylinder, are fluidically connected.
  • the directional valve assembly is or is controlled such that the hydraulic pump with the second fluid space, in particular annulus, and the hydrogenerator with the first annulus, in particular Piston chamber, the differential cylinder are fluidly connected.
  • the hydraulic pump is controlled by the control unit such that the hydraulic pump is in operation is operated above or at least with a non-zero minimum speed.
  • the pump speed in a working section of a working cycle of the hydraulic cylinder, in particular differential cylinder can first be increased from the minimum speed to a maximum speed and then reduced from the maximum speed to the minimum speed, for example in such a way that in the working area of the impact tool, the reversal point of the hydraulic cylinder in particular differential cylinder or piston the minimum speed is reached or is present.
  • the pump speed can be controlled, for example, according to a predefined function of the time and / or the position of the hydraulic cylinder, in particular a differential cylinder, for example in accordance with a linear relationship with time.
  • control using at least partially non-linear relationships is also possible with the hydraulic system proposed here.
  • the pump speed can be set or regulated to the minimum speed during a return section of the working cycle of the hydraulic cylinder, in particular differential cylinder.
  • the pump speed of the Hydraulic pump from the minimum speed, in particular in a linear dependence on the time, to the maximum speed, in such a way that the maximum speed is or is reached before reaching a first reversal point of the hydraulic cylinder, in particular differential cylinder, assigned to the forming area.
  • control takes place in such a way that the pump speed of the hydraulic pump, i.e. the speed of the hydraulic pump of the hydraulic pump is reduced in such a way after reaching the maximum speed, in particular in a linear relationship with the time, that the minimum speed is reached or is set when the first reversal point is reached or is reached.
  • the directional valve assembly is controlled such that a pressure output of the hydraulic pump with the second fluid chamber of the hydraulic cylinder, in particular Annulus of the hydraulic cylinder, in particular differential cylinder, is or is fluidly connected, and that a pressure input of the hydrogenerator is or is fluidly connected to the first fluid chamber of the hydraulic cylinder, in particular piston chamber of the differential cylinder.
  • an elastic energy stored, generated and / or generated in the hydraulic system of the forming machine in particular potential energy stored in the hydraulic fluid, can be converted into electrical energy or another secondary energy form via the hydrogenerator, for example by decompression of the hydraulic fluid or the hydraulic system , and are fed to the metal forming machine, for example, in subsequent working cycles.
  • the hydrogenerator for example by decompression of the hydraulic fluid or the hydraulic system
  • the metal forming machine for example, in subsequent working cycles.
  • a negative pressure generated in the second fluid space, in particular the annular space, by rebound of the hydraulic cylinder, in particular differential cylinder, or percussion tool in the first reversal point is compensated for by at least one suction valve, which on the one hand is fluidly connected to the second fluid space and on the other hand a hydraulic tank.
  • an overpressure generated by the rebound in the first fluid chamber, in particular piston chamber, or an elastic energy generated in the hydraulic circuit is converted by decompression via or by the hydrogenerator into a secondary form of energy, for example electrical energy, and preferably in one Cache is saved.
  • the directional valve assembly is controlled in such a way that, when or when, or immediately before, a second reversal point of the hydraulic cylinder, in particular the differential cylinder, facing away from the forming area of the forming machine, is actuated such that a pressure output of the hydraulic pump with the first fluid chamber, in particular Piston space, is or is fluidly connected, and a pressure input of the hydrogenerator is or is fluidly connected to the second fluid space, in particular the annular space of the differential cylinder.
  • suction valves can be provided such that any pressure fluctuations in the hydraulic system can be compensated for, in particular to avoid pressure peaks.
  • the movement control of the piston, bear and / or die by the control unit in or in the region of the two reversal points of the piston, apart from the rebound occurring only in the deforming reversal point, is carried out approximately or essentially in the same way becomes.
  • FIG. 1 shows a schematic representation of the structure of an upper pressure forging hammer 1 designed according to an embodiment of the invention.
  • the forging hammer 1 comprises a frame (not shown) on which a differential cylinder 2 is fixed.
  • a lower die 3 is also fastened to the frame with a lower tool 4 detachably attached thereto.
  • a bear 8 i.e. Blacksmith bear, upper die attached, which can be moved back and forth along with the piston 6 in the longitudinal direction of the cylinder tube 5.
  • the degree of freedom of movement of the piston 6 or bear 8 is in FIG. 1 represented schematically by means of a double arrow.
  • the forging hammer 1 is designed as a vertical forging hammer, which is to mean that, in the correct operating state, the bear 8 or an upper tool 9 detachably fastened to it moves in the vertical direction from top to bottom and vice versa.
  • the forging hammer 1 is shown in a working state in which the upper tool 9 rests on the lower tool 4, corresponding to a first turning point U1 of the bear 8 or upper tool 9.
  • the forging hammer 1 has a hydraulic circuit comprising the differential cylinder 2, with one, or, as required, a plurality of servo-motoric hydraulic pumps 27, which comprises a hydraulic pump 11 controlled by a servo motor 10, the pressure side 12 of which with a 4/2 way valve 13 and the suction side 14 thereof are fluidly connected to a hydraulic tank 15.
  • the hydraulic circuit further comprises a hydrogen generator 16, the input side 17 of which is connected to the directional control valve 13, and the output side 18 of which is fluidly connected to the hydraulic tank 15.
  • the forming machine 1 further comprises a control unit 19, which is designed and is provided with corresponding control lines, so that the components of the forging hammer 1, in particular the directional control valve 13, hydraulic pump 27, and hydrogen generator 16, and, if appropriate, further components can be controlled.
  • a control unit 19 which is designed and is provided with corresponding control lines, so that the components of the forging hammer 1, in particular the directional control valve 13, hydraulic pump 27, and hydrogen generator 16, and, if appropriate, further components can be controlled.
  • the control unit 19 can be configured with various sensors for detecting operating parameters of the forging hammer 1.
  • the forging hammer 1 can have one or more pressure sensors 20 with which, for example, a pressure prevailing in a piston chamber 21 of the differential cylinder 2 and / or in an annular space 22 of the differential cylinder 2 during operation of the forging hammer 1 can be detected, which pressure can be detected, for example, by the control unit 19 can be used to control the forging hammer 1, in particular the differential cylinder 2 and / or the hydraulic pump 27 and / or the hydrogenerator 16.
  • the hydrogenerator 16 comprises one, or, if necessary, several, hydraulic motors 28 and a servo generator 29 coupled mechanically to the hydraulic motor 28, i.e. a servomotor operated as a generator.
  • the hydraulic pump 27 and the hydrogen generator 16 can be controlled using the servo motor 10 and the servo generator 29, and for this purpose are connected to the control unit 19 via corresponding control lines.
  • the hydraulic pump 27 and the hydrogenerator can be controlled in terms of speed and / or torque, for example in such a way that one for setting and / or reaching a predetermined or desired final speed of the bear 9 is achieved by.
  • the hydraulic pump 27 and the hydrogenerator 16 can be controlled such that the bear 9 or piston 6 follows a predetermined movement sequence, the hydraulic pump 27 and hydrogenerator 16 providing the hydraulic drive power or braking power required in each case.
  • the forging hammer 1 can further comprise a position and / or speed sensor 23, with which the control unit 19 can determine a position and / or speed of the bear 8 or the piston 6, with corresponding position and / or speed data for control purposes of the hydraulic circuit, in particular the hydraulic pump 27 and / or the hydrogenerator 16 and / or the directional control valve 13, can be used, for example for controlling or setting a desired final speed or impact speed of the differential cylinder 2.
  • the forging hammer 1 shown in connection with the figures further comprises an energy store 24 in which secondary energy generated by the hydraulic generator 16, for example by converting hydraulic energy, in particular elastic energy, from the hydraulic circuit, for example in the form of electrical energy, can be stored.
  • the energy store 24 can be connected to the control unit 19.
  • the energy store 24 and the associated one Control can be coordinated so that energy recovered from one or more preceding work cycles of the forging hammer 1 for operating the forging hammer 1, for example the hydraulic pump 27, is used or called up in subsequent work cycles.
  • the piston chamber 21 and the annular chamber 22 of the differential cylinder 2 are fluidically connected to the hydraulic tank 15 via suction valves 25 in order to compensate for any negative pressures that occur in the hydraulic system such that hydraulic fluid 30 is sucked in via the suction valves 25 from the hydraulic tank 15 in the event of a negative pressure and thus into the hydraulic system can be introduced.
  • the piston chamber 21 and the annular chamber 22 can each be fluidically connected to the hydraulic tank 15 or a hydraulic fluid source via a suction valve 25, so that in the event of a negative pressure hydraulic fluid is sucked into the piston chamber 21 or the annular chamber 22 by a suction effect caused by the negative pressure.
  • the suction valves 25 can, for example, be spring-loaded check valves or other similar valves which allow only unidirectional flow of hydraulic fluid in the direction from the hydraulic tank 15 to the piston chamber 21 or the annular chamber 22, but block in the opposite direction.
  • FIG. 2 to FIG. 5 show the forging hammer 1 in different operating states.
  • FIG. 2nd shows the forging hammer 1 in an operating state in which the hydraulic pump 27 and the directional control valve 13 are controlled by the control unit 19 such that the piston 6 of the differential cylinder 2 in the direction of the lower tool 4 is accelerated or moved for the purpose of machining a workpiece 26.
  • the directional valve 13 is designed in the present embodiment as a 4/2 way valve, and in the in FIG. 1 shown operating state switched so that a first connection A1, which is fluidly connected to the pressure side 12 of the hydraulic pump 11, is connected to a second connection A2, which is fluidly connected to the piston chamber 21.
  • hydraulic fluid 30 can be pumped from the hydraulic tank 15 into the piston chamber 21 by appropriate control of the servo motor 10 by the hydraulic pump 11, so as to increase the stroke of the piston 6 and to transmit a hydraulic acceleration force to the piston 6.
  • FIG. 1 shown operating state, in which the piston 6 is accelerated or moved in the direction of the lower tool 4, a third port A3 of the directional control valve 13 fluidly connected to the annular space 22, and switched through to a fourth port A4 of the directional control valve 13, which is fluidically connected to the hydrogenerator 16, more precisely connected to the input side 17 of the hydraulic motor 28.
  • the forging hammer 1 in the present example is designed as an upper pressure forging hammer 1 with an upper differential cylinder 2
  • the weight forces of the moving mass also contribute to the acceleration of the bear 8 in the direction of the lower tool 4 in addition to the hydraulic forces generated by the hydraulic pump 27 and the hydrogenerator 16 , in particular from bear 8, piston rod 7, piston 6, upper tool 9, etc., at.
  • the weight forces when the bear accelerates in the direction of the workpiece to be machined counteract the hydraulic force, which can also be recorded in terms of control technology by the hydraulic system proposed here.
  • a forging hammer can be used Both the upper pressure and the lower pressure forging hammer can be controlled with the method proposed here and have a corresponding structure.
  • control unit 19 can evaluate one or more position and / or speed sensors 23 and on the basis of the data obtained thereby, for example on the basis of the determined actual speed of the bear 8, or in accordance with the upper tool 9 or of the piston 6, control the hydraulic pump 28 and / or the hydrogenerator 16 such that the desired final speed is reached.
  • hydraulic fluid 30 flows into the piston space 21.
  • hydraulic fluid 30 located in the annular space 22 is displaced from the annular space 22, which is returned to the hydraulic tank 15 via the directional control valve 13 and the hydrogenerator 16.
  • elastic energy stored in the hydraulic system can, for example, be withdrawn from the hydraulic system and converted into electrical energy.
  • the electrical energy can in turn be temporarily stored in the energy store and the forging hammer 1 in subsequent work cycles, or also be provided immediately.
  • Elastic energy stored in the hydraulic system can be released, for example, by decompression of the hydraulic fluid 30.
  • hydraulic energy is withdrawn from the hydraulic circuit by, for example, increasing the torque of the servo generator 29 so that kinetic energy of the hydraulic fluid flowing through the hydraulic motor 28 is converted into electrical energy.
  • the latter leads to a braking effect overall, so that the moving mass, in particular piston 6, bear 8, etc., can be braked in a targeted manner.
  • the hydrogenerator 16 in the hydraulic system proposed here can be operated as a hydrofluidic brake to generate a braking effect for the moving mass, in particular the bear 8.
  • the hydrofluidic braking effect can be used for the purpose of setting a respectively required final speed when moving in the direction of the first turning point U1 and / or for braking the moving mass when moving in the direction of the second turning point U2, e.g. be used in the region of the upper second turning point with appropriate control of the hydrogenerator 16.
  • the hydraulic pump 27 and the hydrogenerator 16 can be operated essentially simultaneously at any time during the entire working cycle, the hydraulic pump 27 making it possible to generate a (positive) acceleration force and the hydrogenerator 16 making it possible to generate an opposite braking force.
  • this enables a comparatively exact and precise control of the movement sequence, for example of the bear 9, essentially, ie for example apart from periods in which the directional valve 13 is reversed, to be achieved during the entire working cycle of the forging hammer 1.
  • Negative pressures in the part of the hydraulic system on the piston chamber side can occur, for example, if, during the acceleration of the bear 8, the volume flow of hydraulic fluid 30 generated by the hydraulic pump 27 remains behind the volume change caused by enlarging the piston chamber 21. The latter can occur, for example, if the change in volume of the piston chamber 21 caused by the accelerating effect of gravity is greater than the volume flow of hydraulic fluid 30 provided by the hydraulic pump 27.
  • the volume flow of the hydraulic pump can be reduced so that the piston reaches the respectively predetermined final speed.
  • the time required to move the bear 8 from a second reversal point U2 of the piston 6 or the bear 8 to the first reversal point U1, which is distant from the lower tool 4 can be approximately 200 ms (milliseconds).
  • FIG. 3rd shows the forging hammer 1 in an operating state in which the bear 8 is in the first reversal point U1, ie in the present case the lower reversal point.
  • Impact and rebound can take place, for example, in a time range from 0.5 ms to 20 ms.
  • the directional control valve 13 is controlled accordingly by the control unit 19, in particular in such a way that the third connection A3 is fluidly connected to the first connection A1, and that the second Port A2 is connected to the fourth port A4 of the directional valve 13.
  • the piston chamber 21 is fluidly connected to the hydrogen generator 16, and the annular chamber 22 is fluidly connected to the pressure side 12 of the hydraulic pump 11.
  • a corresponding reversal of the directional control valve 23 can also take place before the first reversal point U1, for example at the time when the bear 9 has the desired final speed.
  • the directional control valve 23 can be switched over at a point in time at which the respectively desired final speed is reached, and any braking or braking operation of the piston 6 or bear 8 that may be required has been completed.
  • the braking process can take place, for example, in the end region of the movement of the bear 8 in the direction of the forming region or in the direction of the workpiece 26.
  • the end of the braking process can be before the point of impact of the bear 8 in the work area.
  • the directional control valve 23 can be switched over in time, in particular shortly before the point of impact, in particular in such a way that the required switching position of the directional control valve 23 is at least at the point of impact.
  • control of the directional control valve 23 can take place in such a way that control processes, in particular taking into account any system inertia or switching times, are initiated with a time delay such that the switching position of the directional control valve 23 required for a certain point in time is reliably reached at the respective point in time.
  • hydraulic fluid 30 displaced from the piston chamber 21 can be discharged via the hydrogenerator 16 into the hydraulic tank 15 by the displacement effect.
  • the one with the rebound in Hydraulic system generated and released by decompression of the hydraulic system elastic energy from the hydrogen generator 16 are converted into electrical energy, wherein the hydrogen generator 16 is controlled accordingly via the servo generator 29 so that it can be driven by the hydraulic motor 28 at least partially convert the elastic energy into electrical energy.
  • the electrical energy can be stored in the energy store 24 electrically connected to the servo generator 29 and e.g. for subsequent work cycles for electrically driving the hydraulic pump 27 and others be used.
  • hydraulic fluid 30 can be supplied to the annular space 22 through the fluidic connection of the hydraulic pump 27 and the annular space 22 in order to at least partially provide the hydraulic fluid required in the annular space 22 due to the movement of the piston in the direction of the second reversal point U2 or the annular space 22 in accordance with the movement of the To supply piston 6 at least partially with hydraulic fluid 30.
  • the suction valve or valves 25 can, as already mentioned, be designed as check valves and offer the possibility of vacuum peaks in the hydraulic system, without this requiring a full control of the hydraulic system by the control unit 19.
  • the hydraulic pump 27 is operated by the control unit 19, for example, at a minimum speed or minimum delivery rate which is required around the piston 6 after decay of the rebound to move to the second reversal point U2 at the desired speed. In this way, the control effort in particular can be reduced.
  • the movement of the piston 6 from the first U1 to the second reversal point U2 can e.g. in about 500 ms.
  • control unit 19 can control the hydraulic circuit, in particular the directional control valve 13 and the hydraulic pump 27 and the hydrogenerator 16, in such a way that the piston 6 together with the moving mass connected to it is braked.
  • the braking process can be performed in exemplary working cycles e.g. in a time span of approx. 100 ms.
  • control unit 19 can control the hydrogenerator 16 in such a way that hydraulic energy is withdrawn from the hydraulic fluid flowing back from the piston chamber 21 by the hydrogenerator 16, so that the hydrogenerator 16 acts as a hydrofluidic brake works.
  • the hydraulic pump 27 can be controlled in such a way that its delivery quantity is or is reduced, for example in such a way that the hydraulic pump 27 is operated at the minimum speed.
  • the hydraulic system is in any case controlled so that the bear 8 is completely braked in the second turning point U2, possibly using sensor-based position and / or speed data of the bear 8.
  • the completeness is noted that in the first turning point U1 the moving mass is braked as such by the forging process, but in the first turning point U1 effects such as rebound must be absorbed or managed by suitable control of the hydraulic system.
  • control unit 19 can control the hydraulic system in accordance with the previously described flowchart to carry out a further work cycle.
  • the control unit 19 can control the directional control valve 13 in such a way that the hydraulic pump 27, as in FIG. 2nd shown, is fluidly connected again to the piston chamber 21 and the hydrogenerator 16 is fluidly connected again to the annular space 22.
  • the hydraulic pump 27 and the hydrogen generator 16 can be controlled accordingly when the moving mass is accelerated and, if necessary, when the moving mass is decelerated to set the given impact speed.
  • FIG. 5 shows a working diagram relating to operating and control variables of the forging hammer 1, a total of five curves being shown, a first speed curve D1 describing the time dependence or the time course of the speed of the hydraulic pump 11.
  • a second speed curve D2 describes the time dependency or the time course of the speed of the hydrogenerator 16.
  • a first torque curve M1 describes the time dependence or the time profile of the torque of the hydraulic pump 11, and a second torque curve M2 shows the time dependency or the time profile of the torque of the hydrogenerator 16.
  • a movement curve B describes the time dependence or the time profile of the stroke of the piston 6 or bear 8. According to the movement curve B, the piston moves from the second reversal point U2 to the first reversal point U1, and then back to the first reversal point U1.
  • the bear 8 or piston 6 is accelerated from the second reversal point U2 in the direction of the first reversal point U1, the directional control valve 13 being controlled in such a way that the hydraulic pump 27 is fluidly connected to the piston chamber 21.
  • the hydrogenerator 16 is fluidically connected to the annular space 22.
  • the pump torque of the hydraulic pump 27 and thus the power which can be transmitted to the hydraulic system is increased in accordance with a comparatively steep flank, in the curve shown here as an example FIG. 5 down to about 1100Nm.
  • the torque required to accelerate the bear 9 decreases, not least because the gravity of the moving mass also contributes to the acceleration.
  • the bear 8 and the moving mass is accelerated to a first point in time t1, which is before a second point in time t2, in which the bear 8 reaches the first reversal point U1.
  • the respective final speed can optionally be set.
  • the directional control valve 13 can be reversed so that the hydraulic pump 27 is connected to the annular space 22 and the hydrogenerator 16 to the piston space 21.
  • the torque of the hydrogenerator 16 is increased in the period between t1 and t2, which means in particular that energy is withdrawn from the hydraulic fluid flowing into the piston chamber, which ultimately brakes the volume flow to the piston chamber 21, as a result of which the bear 9 has a braking effect can be generated.
  • the hydrogenerator 16 acts as a hydrofluidic brake in this period, in order to counteract any further acceleration of the bear 8 after the end speed has been reached.
  • the speed of the hydrogenerator 16 is approximately constant between t1 and t2 at the point in time mentioned (see curve D2). Before time t1, in the example the FIG. 5 in the time interval between t0 and t1, the speed of the hydrogen generator 16 can be set to the speed required for generator operation, in particular increased.
  • the torque of the hydrogenerator 16 increases until the second time t2, which e.g. can mean that the hydrogenerator 16 actually draws hydraulic energy from the hydraulic system.
  • curves of torque and speed of the hydraulic motor 28 and hydrogen generator 16 shown by way of example should be noted that the actual course of the curves may vary depending on the respective hydraulic system.
  • the course of the speed and / or torque can be offset in time from the times t0 to t4, which can be caused, for example, by different mass inertias and / or fluid inertias of the hydraulic fluid and / or components of the hydraulic system.
  • the increase in the speed of the hydrogen generator 16 before the time t1 to the speed required or suitable for generator operation can also be done otherwise than by the method shown in FIG FIG. 5 shown course can be achieved.
  • the speed and torque of the hydraulic motor and / or the hydrogenerator can vary depending on the respective forging hammer Design and dimensioning of the hydraulic system in particular FIG. 5 shown course deviate.
  • the hydraulic pump 27 is controlled in such a way that the speed drops to the minimum speed Dmin, the torque increasing when the final speed is reached.
  • the speed and torque of the hydraulic pump 27 are set such that, from the second point in time t2, the piston can be moved from the first reversal point U1 towards the second reversal point U2 at a predetermined return speed, for example 2 m / s.
  • the hydraulic pump 27 is corresponding to the in FIG. 5 shown example run according to the previously set minimum speed Mmin and the corresponding torque, and bear 8 or piston 6 are moved from the first reversal point U1 to the second reversal point U2. So that the hydrogenerator 16 does not act as a hydraulic brake for the return movement and acts as a brake on the hydraulic pump 27, the torque of the hydrogenerator 16 is reduced to zero after the second period.
  • the speed of the hydrogenerator 16, ie the hydraulic motor 28, results in this period in particular from the volume flow of the hydraulic fluid 30 displaced from the piston chamber 21.
  • the return movement of the piston 6 is slowed down from a third point in time t3 in such a way that the piston 6 together with the associated moving mass is braked in the second reversal point U2 and the working cycle can be repeated.
  • the torque of the hydrogenerator 16 is increased so that it acts as a hydraulic brake for braking the mass moving in the direction of the second reversal point U2.
  • the torque of the hydraulic pump 27 is reduced, which also leads to a slowdown the return movement leads.
  • the fourth point in time can be followed by a further working cycle which is carried out in accordance with the previously described working cycle, wherein after reversing the directional control valve 13, the hydraulic pump 27 is again connected to the piston chamber 21 and the hydrogenerator 16 is connected to the annular chamber 22 again.
  • Relief and simplification of the control of the arrangement proposed here consisting of hydraulic pump, hydrogenerator and directional valve can be achieved, for example, by the suction valves 25, which automatically, so to speak, any negative pressure conditions and pressure peaks, for example hydraulic impacts on the piston, hydraulic pump, hydrogenerator and / or directional valve assembly, in the hydraulic System can compensate.
  • the latter is not only beneficial on the control effort, but at the same time a comparatively low-wear operation can also be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Details Of Reciprocating Pumps (AREA)

Description

Die zu Grunde liegende Erfindung betrifft eine Umformmaschine, insbesondere Schmiedehammer, sowie ein Verfahren zum Steuern einer entsprechenden Umformmaschine.The underlying invention relates to a forming machine, in particular a forging hammer, and to a method for controlling a corresponding forming machine.

Zum Antrieb von Umformmaschinen wie Schmiedehämmern sind unterschiedliche Antriebskonzepte bekannt. Beispielsweise ist es aus dem gattungsgemäßen Stand der Technik DE 20 2014 104 509 U1 bekannt, dass Schmiedehämmer mit elektrischen Linearmotoren betrieben werden können.Various drive concepts are known for driving forming machines such as forging hammers. For example, it is from the generic prior art DE 20 2014 104 509 U1 known that forging hammers can be operated with electric linear motors.

Ferner beschreibt die DE 20 2014 104 509 U1 , ein Schmiedehammer, zur umformenden Bearbeitung von Werkstücken, umfassend ein Schlagwerkzeug und einen mit dem Schlagwerkzeug gekoppelten und zum Antrieb des Schlagwerkzeugs ausgebildeten hydraulischen Linearantrieb mit einem Hydraulikkreis umfassend einen Druckspeicher, einen über ein Wegeventilbaugruppe dem Druckspeicher fluidtechnisch nachgeschalteten Hydraulikzylinder, insbesondere Differentialzylinder, und umfassend des Weiteren eine zumindest zur Steuerung der Wegeventilbaugruppe ausgelegte Steuereinheit.Furthermore describes the DE 20 2014 104 509 U1 , a forging hammer for the reshaping of workpieces, comprising a striking tool and a hydraulic linear drive coupled to the striking tool and designed to drive the striking tool with a hydraulic circuit comprising a pressure accumulator, a hydraulic cylinder, in particular a differential cylinder, connected downstream of the pressure accumulator via a directional valve assembly, and comprising the Furthermore, a control unit designed at least for controlling the directional valve assembly.

Die EP 0 116 024 B1 beschreibt im Zusammenhang mit hydraulischen Maschinen die Verwendung eines Druckspeichers und Hydraulikmotors zum Betrieb von Hydraulikzylindern. Die EP 0 116 024 B1 beschreibt ferner, dass im hydraulischem System beim Betrieb von hydraulischen Maschinen gespeicherte elastische Energie durch einen fluidtechnisch parallel zur Hydraulikpumpe geschalteten Hydraulikgenerator in elektrische Energie umgewandelt werden kann, wobei zur Erzeugung der elektrischen Energie der Hydraulikgenerator mit dem Hydraulikkreis verbunden wird.The EP 0 116 024 B1 describes in connection with hydraulic machines the use of a pressure accumulator and hydraulic motor for the operation of hydraulic cylinders. The EP 0 116 024 B1 also describes that elastic energy stored in the hydraulic system during operation of hydraulic machines can be converted into electrical energy by a hydraulic generator connected in parallel with the hydraulic pump in terms of fluid technology, the hydraulic generator being connected to the hydraulic circuit in order to generate the electrical energy.

Die bekannten Umformmaschinen, insbesondere Schmiedehämmer, lassen durchaus Raum für Verbesserungen und Variationen im Hinblick auf Antrieb, Energieeffizienz und erreichbare Arbeitsgeschwindigkeiten.The known forming machines, in particular forging hammers, definitely leave room for improvements and variations with regard to drive, energy efficiency and achievable working speeds.

Insoweit kann eine Aufgabe der vorliegenden Erfindung insbesondere darin gesehen werden, die bekannten Umformmaschinen, insbesondere im Hinblick auf Antrieb, Energieeffizienz und/oder erreichbare Arbeitsgeschwindigkeiten, weiterzubilden und/oder zu verbessern.In this respect, an object of the present invention can be seen in particular in further developing and / or improving the known forming machines, in particular with regard to drive, energy efficiency and / or achievable working speeds.

Diese Aufgabe wird erfindungsgemäß insbesondere gelöst durch Ausgestaltungen entsprechend der Merkmale nach Patentanspruch 1 und 8. Weitere Ausgestaltungen, Weiterbildungen und Varianten ergeben sich insbesondere aus den abhängigen Ansprüchen sowie aus der nachfolgenden Beschreibung von Ausführungsbeispielen.According to the invention, this object is achieved in particular by configurations corresponding to the features according to patent claims 1 and 8. Further configurations, developments and variants result in particular from the dependent claims and from the following description of exemplary embodiments.

Die Umformmaschine gemäß der Ausgestaltung nach Patentanspruch 1 umfasst ein Schlagwerkzeug, beispielsweise ein Ober-, Untergesenk und/oder Bären, welches z.B. als solches als Umformwerkzeug ausgebildet sein kann, oder ein Umformwerkzeug aufweisen kann, und/oder eine Schnittstelle zur Aufnahme, insbesondere Befestigung, eines Umformwerkzeugs aufweisen kann.The forming machine according to the embodiment according to claim 1 comprises an impact tool, for example an upper, lower die and / or bear, which e.g. can be designed as such as a forming tool, or can have a forming tool, and / or can have an interface for receiving, in particular fastening, a forming tool.

Die Umformmaschine umfasst ferner einen zum Antrieb des Schlagwerkzeugs ausgebildeten und zum Zwecke des Antriebs des Schlagwerkzeugs mit diesem gekoppelten hydraulischen Linearantrieb. Unter einem hydraulischen Linearantrieb sollen im Sinne dieser Anmeldung Antriebe verstanden werden, welche insbesondere dazu ausgebildet sind, hydraulische Energie in kinetische Energie einer Linearbewegung umzuwandeln. Beispielsweise kann der hydraulische Linearantrieb einen durch ein Hydraulikfluid angetriebenen und als Linearmotor wirkenden Hydraulikzylinder umfassen. Bei einer hierin vorgeschlagenen Lösung wird als Hydraulikzylinder ein Differentialzylinder vorgeschlagen, welcher beispielsweise einen in einem Zylinderrohr geführten Kolben mit einer einseitig davon sich erstreckenden Kolbenstange aufweisen kann, an welcher das Schlagwerkzeug, insbesondere der Bär, festgelegt sein kann. Angemerkt soll an dieser Stelle werden, dass sich die Erfindung auch auf beliebige Hydraulikzylinder anwendbar ist.The forming machine further comprises a hydraulic linear drive designed to drive the striking tool and coupled to the striking tool for the purpose of driving the striking tool. In the context of this application, a hydraulic linear drive is to be understood to mean drives which are in particular designed to convert hydraulic energy into kinetic energy of a linear movement. For example, the hydraulic linear drive can comprise a hydraulic cylinder driven by a hydraulic fluid and acting as a linear motor. In a solution proposed here, a differential cylinder is proposed as the hydraulic cylinder, which has, for example, a piston guided in a cylinder tube with a one-sided of which can have a extending piston rod on which the striking tool, in particular the bear, can be fixed. At this point it should be noted that the invention can also be applied to any hydraulic cylinder.

Ein an einer von der Kolbenstange abgewandten Seite des Kolbens des Hydraulikzylinders ausgebildeter oder in Betriebszuständen sich ausbildender erster Fluidraum wird üblicherweise, und insbesondre im Sinne der zu Grunde liegenden Erfindung als Kolbenraum bezeichnet. Üblicherweise, und im Sinne der zu Grunde liegenden Erfindung wird ein in einem Betriebszustand des Hydraulikzylinders, insbesondere Differentialzylinders, zwischen Kolben und Zylinderrohr ausgebildeter zweiter Fluidraum durch welchen sich die Kolbenstange erstreckt, oder durch welchen sich die Kolbenstange erstrecken kann, als Ringraum bezeichnet.A first fluid space, which is formed on a side of the piston of the hydraulic cylinder facing away from the piston rod or is formed in operating states, is usually referred to as a piston space, and in particular in the sense of the underlying invention. Usually, and in the sense of the underlying invention, a second fluid space formed between the piston and the cylinder tube in an operating state of the hydraulic cylinder, in particular a differential cylinder, through which the piston rod extends or through which the piston rod can extend is referred to as an annular space.

Der hydraulische Linearantrieb umfasst einen Hydraulikkreis mit einer servomotorischen Hydropumpe, d.h. eine zu dessen Betrieb mit einem motorisch betriebenen Servomotor gekoppelte Hydraulikpumpe. Die servomotorische Hydropumpe ist derart eingerichtet, dass Pumpendrehzahl bzw. Pumpenleistung durch den Servomotor gesteuert werden kann/können.The hydraulic linear drive comprises a hydraulic circuit with a servomotor hydraulic pump, i.e. a hydraulic pump coupled to its operation with a motor-driven servo motor. The servo motor hydraulic pump is set up in such a way that the pump speed or pump power can be controlled by the servo motor.

Die servomotorische Hydropumpe ist erfindungsgemäß unter Verwendung der hierin vorgeschlagenen Wegeventilbaugruppe als unidirektionale servomotorische Hydropumpe eingerichtet und in den Hydraulikkreis integriert. Unter dem Begriff unidirektional soll im Hinblick auf die Hydropumpe insbesondere verstanden werden, dass im Betrieb der Umformmaschine Hydraulikfluid stets in gleicher Flussrichtung durch die Pumpe fließt, bzw. dass die Hydropumpe in jeweils einem oder mehreren aufeinanderfolgenden Arbeitszyklen des Hydraulikzylinders, insbesondere Differentialzylinders, mit der gleichen Pumpenrichtung oder Drehrichtung betrieben wird. Die unidirektionale Flussrichtung bzw. Pumprichtung kann insbesondere definiert sein durch eine Flussrichtung von einem, insbesondere zentralen, Hydrauliktank zum Hydraulikzylinder, insbesondere Differentialzylinder, insbesondere zum Kolbenraum oder zum Ringraum des Differentialzylinders.According to the invention, the servo-motoric hydraulic pump is configured as a unidirectional servo-motoric hydraulic pump using the directional valve assembly proposed here and is integrated in the hydraulic circuit. With regard to the hydraulic pump, the term unidirectional should in particular be understood to mean that, when the forming machine is in operation, hydraulic fluid always flows through the pump in the same direction of flow, or that the hydraulic pump uses the same in one or more successive working cycles of the hydraulic cylinder, in particular differential cylinder Pump direction or direction of rotation is operated. The unidirectional flow direction or pump direction can in particular be defined by a flow direction from one, in particular central, hydraulic tank to the hydraulic cylinder, in particular Differential cylinder, in particular to the piston space or to the annular space of the differential cylinder.

Durch eine fluidtechnisch unidirektionale Hydropumpe können insbesondere vorteilhafte Steuerzeiten für die dem Hydrauliksystem zur Verfügung gestellten bzw. die vom Hydrauliksystem erforderlichen Volumenströme erreicht werden.A hydraulic pump which is unidirectional in terms of fluid technology makes it possible, in particular, to achieve advantageous control times for the volume flows provided to the hydraulic system or the volume flows required by the hydraulic system.

Bei der Hydraulikpumpe kann es sich insbesondere um eine Konstantpumpe, d.h. eine Hydraulikpumpe mit konstantem Verdrängungsvolumen, handeln.The hydraulic pump can in particular be a constant pump, i.e. a hydraulic pump with a constant displacement.

Durch die hierin vorgeschlagene servomotorische Hydropumpe können Volumenstrom und/oder Druck des Hydraulikfluids im Hydraulikkreis vergleichsweise präzise und schnell an jeweilige Erfordernisse angepasst und entsprechend eingestellt werden. Letzteres ist insbesondere für die bei Schmiedehämmern auftretenden vergleichsweise hohen Kolbengeschwindigkeiten und Kolbenbeschleunigungen von entscheidendem Vorteil. Insbesondere können Pumpendrehzahl oder Hydraulikleistung der Hydropumpe unter Einhaltung vergleichsweise kurzer Steuerzeiten an die während eines Schmiedezyklus aufeinanderfolgenden Bewegungsphasen optimal angepasst und den jeweiligen Anforderungen entsprechend eingestellt werden.The servomotor hydraulic pump proposed here enables the volume flow and / or pressure of the hydraulic fluid in the hydraulic circuit to be adapted comparatively precisely and quickly to the respective requirements and adjusted accordingly. The latter is of particular advantage for the comparatively high piston speeds and piston accelerations that occur with forging hammers. In particular, the pump speed or hydraulic power of the hydraulic pump can be optimally adapted to the movement phases that follow one another during a forging cycle and can be adjusted according to the respective requirements, while maintaining comparatively short control times.

Durch eine entsprechend genaue und zeitlich präzise Steuerung des Hydraulickreises kann ferner das Bewegungsprofil des Kolbens, beispielsweise die Geschwindigkeit, insbesondere die unmittelbar vor Auftreffen des Bären oder Werkzeugs auf ein Werkstück erreichte Endgeschwindigkeit, vergleichsweise genau eingestellt bzw. gesteuert werden. Das wirkt sich letztendlich vorteilhaft auf das erreichbare Schmiede- oder Umformergebnis aus, und es kann vorteilhafter Weise ein energieeffizienter Betrieb erreicht werden.The movement profile of the piston, for example the speed, in particular the final speed reached immediately before the bear or tool hits a workpiece, can be set or controlled comparatively precisely by controlling the hydraulic circuit in a correspondingly precise and timely manner. Ultimately, this has an advantageous effect on the achievable forging or forming result, and an energy-efficient operation can advantageously be achieved.

Insbesondere bei Schmiedehämmern kann die Hydraulikpumpe des hydraulische Lineartriebs ausgelegt sein für vergleichsweise hohe Volumenströme von beispielsweise 100 l/min bis 500 l/min oder mehr. Insbesondere können bei noch größeren Volumenströmen mehrere fluidtechnisch parallel geschaltete Hydraulikpumpen verwendet werden. Ein Druckbereich, in welchen die Hydraulikpumpen arbeiten, sprich ein Hydraulikpumpendruck, kann im Bereich zwischen 190 - 220 bar liegen.In the case of forging hammers in particular, the hydraulic pump of the hydraulic linear drive can be designed for comparatively high volume flows of, for example, 100 l / min to 500 l / min or more. In particular, in the case of even larger volume flows, a plurality can be connected in parallel in terms of fluid technology Hydraulic pumps are used. A pressure range in which the hydraulic pumps work, i.e. a hydraulic pump pressure, can be in the range between 190-220 bar.

Wie bereits erwähnt, umfasst der hydraulische Lineartrieb einen hydraulisch arbeitenden oder hydraulisch betreibbaren Hydraulikzylinder, insbesondere Differentialzylinder, insbesondere einen doppeltwirkenden Hydraulikzylinder mit einseitig des Kolbens sich erstreckender Kolbenstange. Der Hydraulikzylinder, insbesondere Differentialzylinder, oder allgemeinformuliert der hydraulische Linearmotor, ist fluidtechnisch mit einer Wegeventilbaugruppe, d.h. eine Baugruppe umfassend zumindest ein, insbesondere direkt gesteuertes oder vorgesteuertes, Wegeventil, verbunden, und über die Wegeventilbaugruppe der Hydropumpe fluidtechnisch nachgeschaltet angeordnet. Das bedeutet, dass der Hydraulikzylinder, insbesondere Differentialzylinder, durch die Hydropumpe im Betrieb mit Hydraulikfluid beaufschlagt werden kann.As already mentioned, the hydraulic linear drive comprises a hydraulically operating or hydraulically operated hydraulic cylinder, in particular differential cylinder, in particular a double-acting hydraulic cylinder with a piston rod extending on one side of the piston. The hydraulic cylinder, in particular differential cylinder, or generally formulated the hydraulic linear motor, is fluid-technically with a directional valve assembly, i.e. a module comprising at least one, in particular directly controlled or piloted, directional valve, connected, and arranged downstream of the hydraulic pump via the directional valve assembly. This means that the hydraulic cylinder, in particular differential cylinder, can be supplied with hydraulic fluid during operation by the hydraulic pump.

Über die Wegeventilbaugruppe verbunden soll insbesondere bedeuten, dass der ein erster Fluidraum, z.B. der Kolbenraum des Differentialzylinders, in einer Schaltstellung eines (Wege-)Ventils oder einer (Wege-)Ventilgruppe mit Hydraulikfluid versorgt oder beaufschlagt werden kann, in einer anderen Schaltstellung vom Differentialzylinder getrennt sein kann, und/oder in einer wieder anderen Schaltstellung mit einem zweiten Fluidraum, z.B. dem Ringraum des Differentialzylinders, fluidtechnisch verschaltet sein kann. Insbesondere soll erwähnt werden, dass die Wegeventilbaugruppe zwei, z.B. genau zwei, Schaltstellungen aufweisen kann, wobei in einer ersten Schaltstellung die Hydropumpe mit dem ersten Fluidraum, insbesondere Kolbenraum, und in einer zweiten Schaltstellung mit dem zweiten Fluidraum, insbesondere Ringraum des Differentialzylinders, verbunden ist. Weitere bzw. detailliertere Ausführungen zur Verschaltung ergeben sich auch aus weiter unten beschriebenen Ausführungen.Connected via the directional control valve assembly should in particular mean that the first fluid space, e.g. the piston chamber of the differential cylinder can be supplied or acted upon with hydraulic fluid in one switching position of a (directional) valve or a (directional) valve group, can be separated from the differential cylinder in another switching position, and / or in another switching position with a second one Fluid space, e.g. the annulus of the differential cylinder, can be fluidly connected. In particular, it should be noted that the directional valve assembly two, e.g. can have exactly two switching positions, the hydraulic pump being connected to the first fluid space, in particular piston space, in a first switching position, and to the second fluid space, in particular annular space of the differential cylinder, in a second switching position. Further or more detailed explanations for the connection also result from the explanations described below.

Der Hydraulikkreis umfasst ferner einen servomotorischen Hydrogenerator, d.h. einen mit einem generatorisch arbeitenden Servomotor gekoppelten Hydromotor. Der Hydrogenerator kann beispielswiese für Volumenströme im Bereich von 300l/min ausgelegt sein. Bei höheren Volumenströmen können mehrere fluidtechnisch parallel geschaltete Hydrogeneratoren bzw. Hydromotoren verwendet werden.The hydraulic circuit further comprises a servo-motoric hydrogen generator, ie a hydraulic motor coupled to a servo motor that works as a generator. The hydrogenerator can, for example, be designed for volume flows in the range of 300 l / min. For higher volume flows, several hydrogen generators or hydraulic motors connected in parallel in terms of fluid technology can be used.

Der servomotorische Hydrogenerator ist insbesondere derart ausgebildet und in den Hydraulikkreis geschaltet, dass bei Beaufschlagung mit Hydraulikfluid bei ordnungsgemäßem Betrieb der Umformmaschine generatorisch arbeiten, d.h. aus hydraulischer Energie elektrische Energie erzeugen. Dabei kann der Hydromotor aus hydraulischer Energie mechanische Arbeit zum Antrieb des generatorisch arbeitenden Servomotors, sprich Servogenerators, erzeugen, wobei der Servogenerator die mechanische Energie in elektrische Energie umwandeln kann.The servomotor-driven hydrogenerator is in particular designed and connected to the hydraulic circuit in such a way that when hydraulic fluid is acted on and the shaping machine is operating properly, it works as a generator, i.e. Generate electrical energy from hydraulic energy. The hydraulic motor can generate mechanical work from hydraulic energy for driving the regenerative servomotor, that is to say servo generator, wherein the servo generator can convert the mechanical energy into electrical energy.

Der servomotorische Hydrogenerator ist erfindungsgemäß unter Verwendung der hierin vorgeschlagenen Wegeventilbaugruppe als unidirektionaler servomotorische Hydrogenerator eingerichtet und in den Hydraulikkreis integriert. Zum Begriff unidirektional wird auf obige Ausführungen verwiesen. Insbesondere soll im Hinblick auf den Hydrogenerator darunter verstanden werden, dass im Betrieb der Umformmaschine Hydraulikfluid stets in gleicher Flussrichtung durch die den Hydromotor fließt, bzw. dass der Hydromotor in jeweils einem oder mehreren aufeinanderfolgenden Arbeitszyklen des Hydraulikzylinders, insbesondere Differentialzylinders, mit der gleichen Drehrichtung bzw. Flussrichtung des Hydraulikfluids betrieben wird. Die unidirektionale Flussrichtung bzw. Drehrichtung kann insbesondere definiert sein durch eine Flussrichtung vom Hydraulikzylinder, insbesondere Differentialzylinder, insbesondere Kolbenraum oder zum Ringraum, zu einem, beispielsweise zentralen, Hydrauliktank des Hydrauliksystems.According to the invention, the servo-motoric hydrogenerator is configured as a unidirectional servo-motoric hydrogenerator using the directional valve assembly proposed here and is integrated in the hydraulic circuit. With regard to the term unidirectional, reference is made to the above statements. In particular, with regard to the hydrogenerator, this is to be understood to mean that, when the forming machine is in operation, hydraulic fluid always flows in the same direction of flow through which the hydraulic motor or that the hydraulic motor in one or more successive working cycles of the hydraulic cylinder, in particular differential cylinder, with the same direction of rotation or The direction of flow of the hydraulic fluid is operated. The unidirectional flow direction or direction of rotation can in particular be defined by a flow direction from the hydraulic cylinder, in particular differential cylinder, in particular piston space or to the annular space, to a, for example central, hydraulic tank of the hydraulic system.

Es ist vorgesehen, dass der Hydrogenerator über die Wegeventilbaugruppe dem Hydraulikzylinder, insbesondere Differentialzylinder, fluidtechnisch nachgeschaltet ist. Insgesamt können so fluidtechnische Verschaltungen von Hydropumpe, Hydraulikzylinder, insbesondere Differentialzylinder, und Hydrogenerator erreicht werden, in welchen Hydropumpe, Differentialzylinder und Hydrogenerator in Wesentlichen stets oder in einem oder mehreren vorgegebenen Zeitabschnitten während eines Arbeitszyklus des Hydraulikzylinders, insbesondere Differentialzylinders, in Reihe geschaltet sind, was bedeuten soll, dass in einen Fluidraum des Hydraulikzylinders, insbesondere Differentialzylinders, einfließendes Hydraulikfluid stets durch die Hydropumpe bereitgestellt wird, und vom Hydraulikzylinder, insbesondere Differentialzylinder, abfließendes Hydraulikfluid stets über den Hydrogenerator abgeführt wird.It is provided that the hydrogenerator is connected downstream of the hydraulic cylinder, in particular differential cylinder, in terms of fluid technology via the directional valve assembly. Overall, fluid-technical interconnections of the hydraulic pump, hydraulic cylinder, in particular differential cylinder, and hydrogen generator can thus be carried out can be achieved in which hydraulic pump, differential cylinder and hydrogen generator are connected in series essentially always or in one or more predetermined time periods during a working cycle of the hydraulic cylinder, in particular differential cylinder, which should mean that hydraulic fluid flowing into a fluid space of the hydraulic cylinder, in particular differential cylinder is always provided by the hydraulic pump, and hydraulic fluid flowing away from the hydraulic cylinder, in particular differential cylinder, is always discharged via the hydrogenerator.

Durch die Verwendung und Einbindung des servomotorischen Hydrogenerators ist es möglich, dem vom Hydraulikzylinder, insbesondere Differentialzylinder, abfließenden Hydraulikfluid entsprechend der jeweiligen Ansteuerung des generatorisch arbeitenden Servomotors des Hydrogenerators, hydraulische Energie zu entziehen. Insbesondere kann durch eine entsprechende Drehmomentregelung des generatorisch arbeitenden Servomotors der Hydrogenerator als hydraulische Bremse für den Kolben des Hydraulikzylinders, insbesondere Differentialzylinders, betrieben werden. Insbesondere ist es möglich, den Kolben, und damit das Schlagwerkzeug aktiv zu bremsen.By using and integrating the servo-motoric hydrogenerator, it is possible to extract hydraulic energy from the hydraulic fluid flowing from the hydraulic cylinder, in particular the differential cylinder, in accordance with the respective control of the regenerative servo motor of the hydrogenerator. In particular, the hydrogen generator can be operated as a hydraulic brake for the piston of the hydraulic cylinder, in particular a differential cylinder, by means of a corresponding torque control of the regenerative servomotor. In particular, it is possible to actively brake the piston and thus the striking tool.

Damit ist es mit der hierin vorgeschlagenen Anordnung und hydraulischen Verschaltung von Hydromotor und Hydrogenerator möglich, den Kolben im Wesentlichen zu jedem Zeitpunkt während des Arbeitszyklus durch entsprechende Steuerung aktiv zu beschleunigen und aktiv zu bremsen, ohne dass eine Umsteuerung, d.h. Drehrichtungsumkehr an Hydropumpe oder Hydrogenerator erforderlich wäre. Insbesondere letzteres wirkt sich vorteilhaft auf die Energieeffizienz und die erreichbare Steuerungsgenauigkeit und -geschwindigkeit aus, und kann letztendlich auch zu Verbesserungen in der Umformqualität führen.With the arrangement and hydraulic interconnection of the hydraulic motor and hydrogen generator proposed here, it is possible to actively accelerate and actively brake the piston essentially at any time during the working cycle by means of appropriate control, without a reversal, i.e. Reversal of the direction of rotation at the hydraulic pump or hydrogenerator would be required. The latter in particular has an advantageous effect on energy efficiency and the achievable control accuracy and speed, and can ultimately also lead to improvements in the forming quality.

Abgesehen davon, dass der Hydrogenerator als aktive hydraulische Bremse für den Kolben eingesetzt werden kann, kann der Hydrogenerator auch zur Energierückgewinnung verwendet werden, dadurch, dass überflüssige elastische Energie aus dem Hydrauliksystem durch entsprechende Steuerung des Hydrogenerators entzogen wird.Apart from the fact that the hydrogenerator can be used as an active hydraulic brake for the piston, the hydrogenerator can also be used for energy recovery, in that superfluous elastic Energy is extracted from the hydraulic system by appropriate control of the hydrogenerator.

Die Umformmaschine umfasst des Weiteren zumindest eine zur, insbesondere zumindest abschnittsweise oder zeitlich überlappend gleichzeitigen, Steuerung zumindest der Hydropumpe, des Hydrogenerators und der Wegeventilbaugruppe ausgelegte und ausgebildete Steuereinheit.The forming machine further comprises at least one control unit designed and designed to control at least the hydraulic pump, the hydrogen generator and the directional control valve assembly, in particular at least in sections or overlapping at the same time.

Insbesondere ist es durch entsprechende Ansteuerung der Wegeventilbaugruppe mittels der Steuereinheit möglich Hydropumpe, Hydrogenerator und Wegeventilbaugruppe, über einen gesamten Arbeitszyklus des Differentialzylinders hinweg oder zumindest über einen wesentlichen Teil des Arbeitszyklus in Reihe zu schalten, so dass eine definierte und vergleichsweise genaue Bewegungssteuerung des Hydraulikzylinders, insbesondere Differentialzylinders, durch hydraulische Kopplung des Hydraulikzylinders, insbesondere Differentialzylinders, an die Hydropumpe erreicht werden kann. Gleichzeitig bzw. parallel dazu kann, insbesondere über den gesamten Arbeitszyklus hinweg, im Hydrauliksystem bzw. Hydraulikkreis gespeicherte oder erzeugte elastische oder hydraulische Energie durch entsprechende Steuerung des Hydrogenerators in elektrische Energie umgewandelt werden.In particular, by appropriately controlling the directional valve assembly by means of the control unit, the hydraulic pump, hydrogenerator and directional valve assembly can be connected in series over an entire working cycle of the differential cylinder or at least over a substantial part of the working cycle, so that a defined and comparatively accurate movement control of the hydraulic cylinder, in particular Differential cylinder, can be achieved by hydraulic coupling of the hydraulic cylinder, in particular differential cylinder, to the hydraulic pump. Simultaneously or parallel to this, in particular over the entire working cycle, elastic or hydraulic energy stored or generated in the hydraulic system or hydraulic circuit can be converted into electrical energy by corresponding control of the hydrogenerator.

Es zeigt sich, dass durch die hierin vorgeschlagene fluidtechnische Verschaltung von Hydropumpe, Hydraulikzylinders, insbesondere Differentialzylinder, und Hydrogenerator ein gleichzeitiger Betrieb von Hydropumpe und Hydrogenerator umgesetzt werden kann, mit vorteilhaften Auswirkungen auf Steuerungspräzision und Energieeffizienz der Umformmaschine.It has been shown that the fluidic connection of the hydraulic pump, hydraulic cylinder, in particular differential cylinder, and hydrogen generator proposed here enables simultaneous operation of the hydraulic pump and hydrogen generator to be implemented, with advantageous effects on control precision and energy efficiency of the forming machine.

Insbesondere bei Schmiedehämmern mit vergleichsweise hohen Geschwindigkeiten, von z.B. 2m/s bis 5m/s, und vergleichsweise hohen Beschleunigungen am Schlagwerkzeug, kann durch die hierin vorgeschlagene Hydropumpe und den Hydrogenerator und die hierin vorgeschlagene hydraulische Verschaltung der Hydropumpe und des Hydrogenerators über den gesamten Arbeitszyklus hinweg eine im Wesentlichen durchgehende Bewegungssteuerung erreicht werden, was für präzise Schmiedeergebnisse von entscheidendem Vorteil ist, während gleichzeitig im Vergleich zu herkömmlichen Schmiedehämmern ein vergleichsweise energieeffizienter Betrieb möglich ist.Especially with forging hammers with comparatively high speeds, e.g. from 2m / s to 5m / s, and comparatively high accelerations on the striking tool, the hydraulic pump and the hydrogenerator proposed here and the hydraulic interconnection of the hydraulic pump and the hydrogenerator proposed here over the entire working cycle an essentially continuous motion control is achieved what is of decisive advantage for precise forging results, while at the same time a comparatively energy-efficient operation is possible in comparison with conventional forging hammers.

In Ausgestaltungen kann die Steuereinheit derart eingerichtet sein, dass zumindest zeitweise während einer Arbeitsbewegung oder eines Arbeitszyklus des Hydraulikzylinders, insbesondere Differentialzylinders, die Wegeventilbaugruppe so angesteuert ist, bzw. die Schaltstellung der Wegeventilbaugruppe so eingestellt ist, dass die Hydropumpe mit dem ersten Fluidraum des Hydraulikzylinders, insbesondere Kolbenraum, und der Hydrogenerator mit einem zweiten Fluidraum des Hydraulikzylinders, insbesondere Ringraum des Differentialzylinders, fluidtechnisch verbunden sind. Im Hinblick auf die Begriffe Kolbenraum und Ringraum wird auf die obigen Ausführungen verwiesen, die entsprechend gelten.In embodiments, the control unit can be set up in such a way that the directional valve assembly is controlled at least temporarily during a working movement or a working cycle of the hydraulic cylinder, in particular differential cylinder, or the switching position of the directional valve assembly is set such that the hydraulic pump with the first fluid chamber of the hydraulic cylinder, in particular the piston chamber, and the hydrogenerator are fluidically connected to a second fluid chamber of the hydraulic cylinder, in particular the annular chamber of the differential cylinder. With regard to the terms piston chamber and annulus, reference is made to the above explanations, which apply accordingly.

Die Steuereinheit kann ferner dazu eingerichtet sein, dass zumindest zeitweise während einer Rückholbewegung, d.h. einer der Arbeitsbewegung entgegengesetzten Bewegung, des Hydraulikzylinders, insbesondere Differentialzylinders, die Wegeventilbaugruppe so angesteuert ist, dass die Hydropumpe mit dem zweiten Fluidraum des Hydraulikzylinders, insbesondere Ringraum, und der Hydrogenerator mit dem ersten Fluidraum des Hydraulikzylinders, insbesondere Kolbenraum des Differentialzylinders, fluidtechnisch verbunden sind.The control unit can also be set up so that at least temporarily during a return movement, i.e. a movement opposite to the working movement, of the hydraulic cylinder, in particular differential cylinder, the directional valve assembly is controlled such that the hydraulic pump is fluidically connected to the second fluid chamber of the hydraulic cylinder, in particular the annular chamber, and the hydrogen generator is connected to the first fluid chamber of the hydraulic cylinder, in particular the piston chamber of the differential cylinder.

Insbesondere kann die Steuereinheit derart eingerichtet sein dass diese die Wegeventilbaugruppe derart steuert, dass die Hydropumpe in sequentiell aufeinander folgenden, insbesondere unmittelbar aufeinanderfolgenden, Abschnitten eines Arbeitszyklus des Differentialzylinders abwechselnd mit erstem Fluidraum, insbesondere Kolbenraum, und zweitem Fluidraum, insbesondere Ringraum, verbunden wird bzw. ist. Entsprechend kann der Hydrogenerator korrespondierend abwechselnd mit zweitem Fluidraum, insbesondere Ringraum, und erstem Fluidraum, insbesondere Kolbenraum, verbunden sein.In particular, the control unit can be set up in such a way that it controls the directional valve assembly in such a way that the hydraulic pump is connected or alternately connected to the first fluid space, in particular the piston space, and the second fluid space, in particular the annular space, in sequentially successive, in particular immediately successive, sections of a working cycle of the differential cylinder is. Accordingly, the hydrogenerator can alternately be connected alternately to a second fluid space, in particular an annular space, and a first fluid space, in particular a piston space.

Insbesondere mit einer derartigen Steuerung und alternierenden Verschaltung der Hydropumpe und des Hydrogenerators kann der Hydraulikzylinder, insbesondere Differentialzylinder, und insbesondere das Schlagwerkzeug, mit kontinuierlich erfolgender Bewegungssteuerung zwischen den Umkehrpunkten des Hydraulikzylinders, insbesondere Differentialzylinders, und insbesondere auch im Bereich der Umkehrpunkte, kombiniert mit Energierückgewinnung über den Hydraulikgenerator betrieben werden.In particular, with such a control and alternating connection of the hydraulic pump and the hydrogenerator, the hydraulic cylinder, in particular differential cylinder, and in particular the striking tool, with continuous motion control between the reversal points of the hydraulic cylinder, in particular differential cylinder, and in particular also in the area of the reversal points, combined with energy recovery the hydraulic generator are operated.

In Ausgestaltungen kann die Wegeventilbaugruppe ein 4/2 Wegeventil umfassen.In embodiments, the directional valve assembly can comprise a 4/2 way valve.

In Ausgestaltungen kann die Wegeventilbaugruppe insbesondere vier einzelne, in einer Brückenschaltung fluidtechnisch miteinander verbundene Hydraulikventile umfassen. Eine Brückenschaltung kann insbesondere eine Ringschaltung von beispielsweise vier Hydraulikventilen mit zwischengeschalteten Anschlussstellen verstanden werden. Beispielsweise kann eine solche Brückenschaltung durch Parallelschaltung jeweils zweier in Serie geschalteter Hydraulikventile umgesetzt sein.In embodiments, the directional control valve assembly can in particular comprise four individual hydraulic valves that are fluidly connected to one another in a bridge circuit. A bridge circuit can be understood in particular as a ring circuit of, for example, four hydraulic valves with intermediate connection points. For example, such a bridge connection can be implemented by connecting two hydraulic valves connected in series.

In Ausgestaltungen kann der Hydraulikkreis zumindest ein Nachsaugventil umfassen, welches fluidtechnisch mit einer Nachsaugquelle, beispielsweise einem Hydraulikfluid-Reservoir, -behälter; oder-tank, einerseits und mit zumindest einem Fluidraum, insbesondere dem Kolbenraum und/oder Ringraum, des Differentialzylinders andererseits verbunden ist.In embodiments, the hydraulic circuit can comprise at least one suction valve, which is fluid-technically connected to a suction source, for example a hydraulic fluid reservoir or reservoir; or tank, on the one hand and with at least one fluid space, in particular the piston space and / or annular space, of the differential cylinder on the other hand.

Die fluidtechnische Anbindung des Nachsaugventils kann insbesondere derart ausgebildet sein, dass ein in dem zumindest einen Fluidraum beim Betrieb des Hydraulikzylinders, insbesondere Differentialzylinders, entstehender Unterdruck durch Nachsaugen von Hydraulikfluid über das Nachsaugventil ausgeglichen werden kann. Entsprechende Unterdrücke können bei einem Schmiedehammer beispielsweise im Ringraum beim Rückprall des Schlagwerkzeugs, und/oder wenn in einem Betriebszustand die der Volumenvergrößerung des Kolbenraums größer ist als das von der Hydropumpe bereitgestellte Volumen an Hydraulikfluid. Letzteres kann beispielsweise auftreten, wenn der von der Hydropumpe erzeugte Volumenstrom zurückbleibt bzw. kleiner ist oder wird als die durch Vergrößerung des Kolbenraums bewirkte Volumenänderung des Kolbenraums, was beispielsweise bei nach anfänglicher Beschleunigung des Kolbens in Richtung Werkstück zur Einregelung der jeweils erforderlichen Geschwindigkeit des Schlagwerkzeugs der Fall sein kann.The fluidic connection of the suction valve can in particular be designed in such a way that a negative pressure which arises in the at least one fluid space during operation of the hydraulic cylinder, in particular a differential cylinder, can be compensated for by sucking in hydraulic fluid via the suction valve. Corresponding negative pressures can occur in a forging hammer, for example in the annular space when the impact tool rebounds, and / or when in an operating state the volume increase in the piston space is greater than the volume provided by the hydraulic pump of hydraulic fluid. The latter can occur, for example, if the volume flow generated by the hydraulic pump remains or is smaller than or becomes the change in volume of the piston space caused by enlarging the piston space, which is the case, for example, after initially accelerating the piston towards the workpiece in order to regulate the required speed of the percussion tool Case may be.

Bei dem Nachsaugventil kann es sich beispielsweise um ein nach Art eines Rückschlagventils ausgebildetes Hydraulikventil, insbesondere einseitig automatisch sperrendes Ventil handeln. Das Nachsaugventil kann beispielsweise für Volumenströme in der Größenordnung zwischen 150 l/min bis 10.000 l/min ausgelegt sein. Die jeweilige Auslegung des Nachsaugventils ist unter anderem Abhängig vom jeweiligen Hubvolumen und den jeweils auftretenden Kolbengeschwindigkeiten.The replenishment valve can be, for example, a hydraulic valve designed in the manner of a check valve, in particular a valve that automatically closes on one side. The suction valve can, for example, be designed for volume flows in the range between 150 l / min to 10,000 l / min. The respective design of the replenishment valve depends, among other things, on the respective stroke volume and the piston speeds that occur.

In Ausgestaltungen kann die Steuereinheit eingerichtet sein zur Steuerung der Pumpendrehzahl der Hydropumpe derart, dass die Hydraulikpumpe während des Betriebs, insbesondere während eines oder mehrerer aufeinanderfolgender Arbeitszyklen, stets zumindest mit einer von Null verschiedenen Mindestdrehzahl betrieben wird. Das soll insbesondere bedeuten, dass die Hydraulikpumpe derart angesteuert wird, dass die Pumpendrehzahl nicht unter einem von Null verschiedenen Grenzwert liegt. Das kann insbesondere erreicht werden durch die hierin vorgeschlagene hydraulische Verschaltung der Komponenten des Hydraulikkreises in Kombination mit der hierin vorgeschlagenen Verwendung einer servomotorischen Hydropumpe.In embodiments, the control unit can be set up to control the pump speed of the hydraulic pump such that the hydraulic pump is always operated at least at a non-zero minimum speed during operation, in particular during one or more successive working cycles. This should mean in particular that the hydraulic pump is controlled in such a way that the pump speed is not below a non-zero limit. This can be achieved in particular by the hydraulic interconnection of the components of the hydraulic circuit proposed here in combination with the use of a servo-motor hydraulic pump proposed here.

In Ausgestaltungen kann die Steuereinheit derart ausgebildet und eingerichtet, sein, dass diese die Hydropumpe derart steuert, bzw. derart steuern kann, dass diese während des Betriebs, insbesondere eines Arbeitsabschnitts eines oder mehrerer Arbeitszyklen Hydraulikzylinders, insbesondere des Differentialzylinders, zumindest mit einer von Null verschiedenen Mindestdrehzahl betrieben wird.In embodiments, the control unit can be designed and set up in such a way that it controls the hydraulic pump or can control such that during operation, in particular a working section of one or more working cycles, the hydraulic cylinder, in particular the differential cylinder, has at least one different from zero Minimum speed is operated.

Insbesondere kann die Steuereinheit so eingerichtet sein, dass die Hydraulikpumpe während einer oder mehrerer unmittelbar aufeinanderfolgender Arbeitszyklen stets zumindest mit der Mindestdrehzahl betrieben wird. Das bedeutet insbesondere, dass in einer entsprechenden Betriebsweise die Mindestdrehzahl die untere Grenze für die Drehzahl der Hydropumpe darstellt. Die Hydraulikpumpe wird bei entsprechendem Betrieb also nicht komplett gestoppt, sondern kontinuierlich mit betrieben, was Vorteile im Hinblick auf Energieeffizienz und Genauigkeit der Einstellung der Geschwindigkeit, insbesondere Endgeschwindigkeit, des Schmiedewerkzeugs mit sich bringen kann.In particular, the control unit can be set up in such a way that the hydraulic pump is always operated at least at the minimum speed during one or more immediately successive working cycles. This means in particular that in a corresponding mode of operation the minimum speed represents the lower limit for the speed of the hydraulic pump. The hydraulic pump is therefore not stopped completely during appropriate operation, but is operated continuously, which can bring advantages in terms of energy efficiency and accuracy of setting the speed, in particular the final speed, of the forging tool.

In Ausgestaltungen kann die Steuereinheit derart eingerichtet sein, dass die Hydraulikpumpe zunächst mit der Mindestdrehzahl aktiviert ist bzw. wird, und anschließend die Pumpendrehzahl in einem Arbeitsbereich eines Arbeitszyklus des Hydraulikzylinders, insbesondere Differentialzylinders, zunächst von der Mindestdrehzahl auf eine Maximaldrehzahl erhöht wird. In einem anschließenden Arbeitsabschnitt kann die Pumpendrehzahl von der Maximaldrehzahl auf die Mindestdrehzahl erniedrigt werden, insbesondere derart, dass die Mindestdrehzahl in einem Umkehrpunkt des Hydraulikzylinders, insbesondere Differentialzylinders, erreicht ist oder vorliegt. Vorzugsweise handelt es sich beim dem Umkehrpunkt um den dem Einwirkungsbereich des Schlagwerkzeugs zugewandten Umkehrpunkt des Kolbens des Hydraulikzylinders, insbesondere Differentialzylinders.In embodiments, the control unit can be set up in such a way that the hydraulic pump is first activated or is activated at the minimum speed, and then the pump speed is initially increased from the minimum speed to a maximum speed in a working area of a working cycle of the hydraulic cylinder, in particular differential cylinder. In a subsequent working section, the pump speed can be reduced from the maximum speed to the minimum speed, in particular in such a way that the minimum speed is reached or is present at a reversal point of the hydraulic cylinder, in particular a differential cylinder. The reversal point is preferably the reversal point of the piston of the hydraulic cylinder, in particular the differential cylinder, facing the area of action of the striking tool.

Gemäß Ausgestaltungen kann die Zunahme der Pumpendrehzahl der Hydropumpe bzw. die Reduktion der Pumpendrehzahl der Hydropumpe entsprechend einer linearen Funktion der Zeit erfolgen. Insbesondere kann die Steuereinheit in Ausgestaltungen derart eingerichtet sein, dass die Maximaldrehzahl vor Erreichen oder im Zeitpunkt des Auftreffens des Schlagwerkzeugs auf ein im Arbeitsbereich positioniertes Werkstück erreicht wird bzw. ist.According to refinements, the increase in the pump speed of the hydraulic pump or the reduction in the pump speed of the hydraulic pump can take place in accordance with a linear function of time. In particular, the control unit can be configured in such a way that the maximum speed is or is reached before reaching or at the time the impact tool strikes a workpiece positioned in the work area.

Zum Erreichen einer vorgegebenen Endgeschwindigkeit des Schlagwerkzeugs kann in Ausgestaltungen vorgesehen sein, dass ab dem Erreichen der Maximaldrehzahl die Pumpendrehzahl der Hydraulikpumpe verringert wird, so dass unter Einwirkung der im Hydraulikkreis herrschenden hydraulischen Kräfte und gegebenenfalls der auf das Schlagwerkzeug wirkenden Schwerkraft die bzw. eine vorgegebene Endgeschwindigkeit im oder kurz oder unmittelbar vor dem Umkehrpunkt, oder Umformpunkt, bzw. im oder kurz oder unmittelbar vor dem Umkehrpunkt des Umformpunkts, erreicht ist. Zur Einstellung der Endgeschwindigkeit kann auch der Hydrogenerator als hydraulische Bremse betrieben werden, um den Kolben aktiv abzubremsen.To achieve a predetermined final speed of the striking tool, it can be provided in embodiments that the pump speed of the hydraulic pump is reduced when the maximum speed is reached, so that under the action of the hydraulic forces prevailing in the hydraulic circuit and, if applicable, the force of gravity acting on the striking tool, the or a predetermined final speed has been reached in or shortly or immediately before the reversal point, or forming point, or in or short or immediately before the reversing point of the forming point. To set the top speed, the hydrogenerator can also be operated as a hydraulic brake in order to actively brake the piston.

Insbesondere aus den obigen Ausführungen ergibt sich, dass durch entsprechende Steuerung der Hydropumpe und des Hydrogenerators der Bewegungsablauf, insbesondere die Endgeschwindigkeit, des Hydraulikzylinders, insbesondere Differentialzylinders, und damit des Schlagwerkzeugs in den durch den Gesamtaufbau der Umformmaschine gegebenen Grenzen vergleichsweise flexibel variieren und genau einstellen lässt. Insbesondere kann durch eine geeignete Steuerung der Pumpendrehzahl der Hydropumpe, gegebenenfalls unter zusätzlicher Verwendung geeigneter Sensoren zur Messung von Position und/oder Geschwindigkeit des Hydraulikzylinders, insbesondere Differentialzylinders, oder des Schlagwerkzeugs, und/oder Sensoren zur Messung einer oder mehrerer im Hydrauliksystem herrschenden Drücke, eine vergleichsweise genaue und zuverlässige Einstellung der Auftreffgeschwindigkeit bzw. Endgeschwindigkeit des Schlagwerkzeugs erreicht werden.In particular, it follows from the above explanations that by appropriately controlling the hydraulic pump and the hydrogenerator, the sequence of movements, in particular the final speed, of the hydraulic cylinder, in particular differential cylinder, and thus of the striking tool can be varied and adjusted comparatively flexibly within the limits given by the overall structure of the forming machine . In particular, a suitable control of the pump speed of the hydraulic pump, optionally with the additional use of suitable sensors for measuring the position and / or speed of the hydraulic cylinder, in particular differential cylinder, or the striking tool, and / or sensors for measuring one or more pressures prevailing in the hydraulic system comparatively accurate and reliable adjustment of the impact speed or final speed of the striking tool can be achieved.

Entsprechend der vorgenannten Ausführungen kann die Umformmaschine, beispielsweise mit der Steuereinheit zusammenwirkende, Sensoren aufweisen, welche dazu ausgebildet sind, die Position des Hydraulikzylinders, insbesondere Differentialzylinders, und/oder des Schlagwerkzeugs zu ermitteln. Ferner können Sensoren zur Messung des Drucks im Hydraulikkreis, beispielsweise in einer in den ersten Fluidraum, insbesondere Kolbenraum, mündenden Leitung und oder in einer in den zweiten Fluidraum, insbesondere Ringraum, mündenden Leitung, angebracht sein. Die Sensoren können mit der Steuereinheit gekoppelt sein, so dass von den Sensoren an die Steuereinheit übermittelte Werte für Drücke und/oder Position des Schlagwerkzeugs oder Hydraulikzylinders, insbesondere Differentialzylinders, zur Steuerung der Hydropumpe und/oder des Hydrogenerators verwendet werden können. Bevorzugt werden die Drücke und/oder Positionen von der Steuereinheit verarbeitet und zur Steuerung der Hydropumpe und/oder des Hydrogenerators derart verwendet, dass das Schlagwerkzeug im oder kurz oder unmittelbar vor dem Auftreffpunkt die jeweils erforderliche Endgeschwindigkeit aufweist.In accordance with the aforementioned statements, the forming machine, for example interacting with the control unit, can have sensors which are designed to determine the position of the hydraulic cylinder, in particular differential cylinder, and / or the impact tool. Furthermore, sensors for measuring the pressure in the hydraulic circuit, for example in a line opening into the first fluid space, in particular piston space, and or in a line opening into the second fluid space, especially annular space, can be attached. The sensors can be coupled to the control unit, so that values for pressures and / or position of the striking tool or hydraulic cylinder, in particular differential cylinder, transmitted from the sensors to the control unit for controlling the hydraulic pump and / or of the hydrogenerator can be used. The pressures and / or positions are preferably processed by the control unit and used to control the hydraulic pump and / or the hydrogenerator in such a way that the striking tool has the required final speed in or shortly or immediately before the point of impact.

In Ausgestaltungen kann vorgesehen sein, dass während einer Rückholbewegung, d.h. einer der vorgenannten Arbeitsbewegung entgegengesetzten Arbeitsbewegung, des Hydraulikzylinders, insbesondere Differentialzylinders, das heißt während eines Bewegungsabschnitts, in welchem sich der Hydraulikzylinder, insbesondere Differentialzylinder, bzw. das Schlagwerkzeug nach erfolgter Umformung vom Werkstück entfernt, die Hydropumpe mit der Mindestdrehzahl betrieben wird, d.h. dass die Pumpendrehzahl der Hydropumpe in diesem Bewegungsabschnitt auf die Mindestdrehzahl eingestellt ist bzw. wird. Insbesondere kann der Betrieb mit der Mindestdrehzahl verwendet werden, den Bären zu beschleunigen, und, im Falle einer Oberdruck-Umformmaschine, den Bären nach oben zu fahren.In embodiments, it can be provided that during a return movement, i.e. a hydraulic cylinder, in particular differential cylinder, a working movement opposite to the aforementioned working movement, that is to say during a movement section in which the hydraulic cylinder, in particular differential cylinder, or the striking tool moves away from the workpiece after the shaping has taken place, the hydraulic pump is operated at the minimum speed, i.e. that the pump speed of the hydraulic pump is set to the minimum speed in this movement section. In particular, the operation at the minimum speed can be used to accelerate the bear and, in the case of an upper pressure forming machine, to drive the bear upwards.

In weiteren Ausgestaltungen kann vorgesehen sein, dass die Steuereinheit mit Sensoren zur Messung der Geschwindigkeit des Hydraulikzylinders, insbesondere Differentialzylinders, bzw. Schlagwerkzeugs verbunden ist, das heißt, dass die Umfangmaschine entsprechende Geschwindigkeitssensoren umfassen kann, und ermittelte Geschwindigkeitsdaten von der Steuereinheit zur Steuerung bzw. Regelung der Hydropumpe und/oder des Hydrogenerators verwendet werden, um die Endgeschwindigkeit auf einen vorgegebenen Wert einzuregeln.In further refinements, it can be provided that the control unit is connected to sensors for measuring the speed of the hydraulic cylinder, in particular differential cylinder, or percussion tool, that is to say that the peripheral machine can comprise corresponding speed sensors, and determined speed data from the control unit for control or regulation the hydraulic pump and / or the hydrogenerator can be used to regulate the final speed to a predetermined value.

Insbesondere unter Verwendung der hierin vorgeschlagenen Sensoren in Kombination mit den hierin servogesteuerten Komponenten, sprich der Hydropumpe und des Hydrogenerators, ist es beispielsweise möglich die Endgeschwindigkeit des Schlagwerkzeugs im Auftreffpunkt entsprechend des jeweils erforderlichen Wert aufweist. Beispielsweise können im Wesentlichen ohne großen Aufwand in aufeinanderfolgenden Arbeitszyklen verschiedene Endgeschwindigkeit eingestellt werden.In particular, using the sensors proposed here in combination with the servo-controlled components, ie the hydraulic pump and the hydrogenerator, it is possible, for example, to have the end speed of the impact tool at the point of impact corresponding to the value required in each case. For example, different final speeds can be set essentially without great effort in successive work cycles.

In Ausgestaltungen kann vorgesehen sein, dass ein Ausgangspunkt zum Start eines Umform- oder Schmiedevorgangs, insbesondere ein Ausgangspunkt von dem aus der Kolben oder Bär in Richtung des Umformbereichs beschleunigt wird, in Abhängigkeit der jeweils gewünschten, erforderlichen bzw. vorgegebenen Endgeschwindigkeit, korrespondierend zur jeweils gewünschten, erforderlichen bzw. vorgegebenen Energie, insbesondere Umformenergie, in Abhängigkeit der in Bewegungsrichtung des Kolbens gemessenen Höhe des umzuformenden Werkstücks , und/oder in Abhängigkeit des jeweiligen Umformwegs korrespondierend z.B. zur Stauchung oder Umformung des Werkstücks parallel zur Bewegungsrichtung des Kolbens eingestellt wird.In embodiments it can be provided that a starting point for starting a forming or forging process, in particular a starting point from which the piston or bear is accelerated in the direction of the forming area, depending on the respectively desired, required or predetermined final speed, corresponding to the respectively desired one , required or predetermined energy, in particular forming energy, depending on the height of the workpiece to be formed measured in the direction of movement of the piston, and / or depending on the respective forming path, for example for upsetting or reshaping the workpiece parallel to the direction of movement of the piston.

Bei dem Ausgangspunkt, von dem aus die Beschleunigung des Bären erfolgt, kann es sich insbesondere um einen vom Umformbereich abgewandten Umkehrpunkt handeln, bei einer Oberdruckumformmaschine beispielsweise um einen oberen Totpunkt des Kolbens oder Bären.The starting point from which the acceleration of the bear takes place can be, in particular, a reversal point facing away from the forming area, in the case of an upper pressure forming machine, for example, an upper dead center of the piston or bear.

Eine, wie insbesondere vorweg beschriebene und in Ausgestaltungen mögliche, variable Einstellung des Ausgangspunktes oder Ausgangshubs von dem aus die Beschleunigung des Kolbens bzw. Schlagwerkzeug, Bären oder Gesenks erfolgt, ermöglicht insbesondere eine optimale Einstellung des Bewegungsablaufs des Kolbens oder Bären usw.. Ferner ist es möglich, den Hub, beispielsweise den oberen Totpunkt des Kolbens, variabel einzustellen, so dass beispielsweise verbesserte Umform- oder Schmiedezyklen, oder Umform- oder Schmiedefrequenzen erreicht werden können.A variable setting of the starting point or output stroke from which the piston or striking tool, bear or die is accelerated, as described in particular in advance and possible in configurations, enables in particular an optimal setting of the movement sequence of the piston or bear, etc. It is also possible to variably adjust the stroke, for example the top dead center of the piston, so that, for example, improved forming or forging cycles, or forming or forging frequencies can be achieved.

Insbesondere ist es in Ausgestaltungen möglich, dass die Steuereinheit derart ausgelegt ist, dass der vom Schlagwerkzeug während eines Schmiedezyklus zurückgelegte Weg, bzw. korrespondierende Hübe, minimal ist/sind. Beispielsweise kann die Steuereinheit derart ausgelegt und eingerichtet sein, dass verschiedene Hübe, z.B. ein minimal notwendiger Hub zur Erreichung einer im Umformbetrieb zeitlich nachfolgenden, gewünschten oder vorgegebenen Endgeschwindigkeit oder Umformenergie, durch gezieltes anfahren unterschiedlieher Umkehrpunkte, beispielsweise oberer Totpunkte des Kolbens, realisiert werden.In particular, in embodiments it is possible for the control unit to be designed in such a way that the path or corresponding strokes covered by the striking tool during a forging cycle are / are minimal. For example, the control unit can be designed and set up in such a way that different strokes, for example a minimally necessary stroke to achieve a desired or predetermined final speed or forming energy that follows in the forming operation, differ by targeted starting Reversal points, for example top dead centers of the piston, can be realized.

Insbesondere ist es durch Verwendung variabler Hübe des Kolbens möglich, Umformzeiten zu optimieren, und den Bewegungsablauf in Abhängigkeit der jeweils gewünschten Endgeschwindigkeit, Umformenergie, in Abhängigkeit der in Bewegungsrichtung des Kolbens gemessenen Höhe des umzuformenden Werkstücks , und/oder in Abhängigkeit des jeweiligen Umformwegs korrespondierend z.B. zur Stauchung oder Umformung des Werkstücks parallel zur Bewegungsrichtung.In particular, by using variable strokes of the piston, it is possible to optimize forming times, and the movement sequence depending on the desired final speed, forming energy, depending on the height of the workpiece to be formed in the direction of movement of the piston, and / or depending on the respective forming path, e.g. for upsetting or forming the workpiece parallel to the direction of movement.

In Ausgestaltungen kann die Steuereinheit dazu eingerichtet und ausgebildet sein, anhand eines Ausgangspunkts, insbesondere oberen Totpunkts, eines vorangehenden Umformzyklus, z.B. eines Startpunkts des Kolbens oder Bären oder Gesenks zum Beginn eines vorausgehenden Umformzyklus, insbesondere unmittelbar vorausgehenden Umformzyklus, einen weiteren Ausgangspunkt, insbesondere oberen Totpunkt, eines nachfolgenden, vorzugsweise unmittelbar nachfolgenden, Umformzyklus zu ermitteln.In embodiments, the control unit can be set up and configured to use a starting point, in particular top dead center, of a preceding forming cycle, e.g. a starting point of the piston or bear or die at the beginning of a preceding forming cycle, in particular immediately preceding forming cycle, to determine a further starting point, in particular top dead center, of a subsequent, preferably immediately following, forming cycle.

Insbesondere kann die Steuereinheit dazu ausgelegt sein, auf Grundlage von ersten Steuerdaten zur Bewegungssteuerung z.B. des Kolbens, Bären oder Gesenks eines ersten Umformvorgangs, zweite Steuerdaten zur Bewegungssteuerung z.B. des Kolbens, Bären oder Gesenks eines zweiten Umformvorgangs zu ermitteln. Dabei kann der zweite Umformvorgang zeitlich unmittelbar auf den ersten Umformvorgang folgen. Vorteilhafterweise können durch eine solche Steuerung der Umformvorgänge, insbesondere aufeinanderfolgender Umformvorgänge, optimierte Umformzeiten erreicht werden. Die zweiten Steuerdaten können auf Grundlage der ersten Steuerdaten und der für den zeitlich darauffolgenden Umformvorgang vorgegebenen Randbedingungen aus den ersten Steuerdaten ermittelt werden.In particular, the control unit can be designed to use e.g. the piston, bear or die of a first forming process, second control data for movement control e.g. the piston, bear or die of a second forming process. The second forming process can follow the first forming process directly in time. Optimized forming times can advantageously be achieved through such control of the forming processes, in particular successive forming processes. The second control data can be determined from the first control data on the basis of the first control data and the boundary conditions specified for the subsequent temporal forming process.

In Ausgestaltungen kann beispielsweise vorgesehen sein, dass eine Schlagenergie, z.B. Umformenergie, eines zuletzt gefahrenen Hubs dazu verwendet wird, die Startposition des Kolbens auf Grundlage einer darauffolgend erforderlichen Schlagenergie von der Steuereinheit oder Steuerung errechnet, insbesondere automatisch ermittelt wird. Beispielsweise kann die Startposition in Abhängigkeit der jeweiligen Höhe des umzuformenden Werkstücks, eingestellt werden.In refinements, it can be provided, for example, that an impact energy, for example forming energy, of a stroke last used is used for this purpose the starting position of the piston is calculated on the basis of a subsequently required impact energy from the control unit or control, in particular is determined automatically. For example, the starting position can be set depending on the respective height of the workpiece to be formed.

In Ausgestaltungen kann vorgesehen sein, dass die Position, insbesondere Ausgangsposition, des Kolbens, oder Bären, oder Gesenks, zum Beginn oder in einen definierten Zeitpunkt während eines Umform- oder Schmiedezyklus ermittelt und/oder dazu verwendet wird als Berechnungsgrundlage zur Ermittlung einer Ausgangsposition von Kolben, Bären oder Gesenk und/oder von Betriebsparametern zur Bewegungssteuerung von Kolben, Bär und/oder Gesenk während oder für einen zeitlich darauffolgenden Umform- oder Schmiedevorgang.In embodiments, it can be provided that the position, in particular the starting position, of the piston, or bear, or die, is determined at the beginning or at a defined point in time during a forming or forging cycle and / or is used as a calculation basis for determining a starting position of the piston , Bears or dies and / or operating parameters for controlling the movement of pistons, bears and / or dies during or for a subsequent subsequent forming or forging process.

In Ausgestaltungen kann die Steuereinheit derart eingerichtet und ausgebildet sein, dass diese die Hydraulikpumpe so steuert bzw. steuern kann, dass eine maximale Vorschubgeschwindigkeit des Hydraulikzylinders, insbesondere Differentialzylinders, oder des Schlagwerkzeugs im Bereich zwischen 1,5m/s bis 6m/s, insbesondere bei etwa 1,5m/s oder 5m/s, oder zwischen 4,8 m/s und 5,5 m/s liegt, und dass bevorzugt eine maximale Rückholgeschwindigkeit des Hydraulikzylinders, insbesondere Differentialzylinders, im Bereich zwischen 1,5m/s und 2,5m/s, bevorzugt bei 2m/s, insbesondere zwischen 1,8 m/s und 2,1m/s liegt.In embodiments, the control unit can be set up and designed such that it controls or can control the hydraulic pump in such a way that a maximum feed speed of the hydraulic cylinder, in particular differential cylinder, or of the striking tool is in the range between 1.5 m / s to 6 m / s, in particular at about 1.5 m / s or 5 m / s, or between 4.8 m / s and 5.5 m / s, and that preferably a maximum return speed of the hydraulic cylinder, in particular differential cylinder, in the range between 1.5 m / s and 2 , 5m / s, preferably 2m / s, in particular between 1.8 m / s and 2.1m / s.

In Ausgestaltungen kann vorgesehen sein, dass der Volumenstrom bei Bremsvorgängen in die eine oder andere Bewegungsrichtung des Kolbens, d.h. bei der Vor- oder Zurückbewegung des Kolbens, im Falle einer Oberdruck-Umformmaschine bei einer Auf- und Abbewegung des Kolbens, etwa gleich sind. Jedoch kann der Volumenstrom in Abhängigkeit von Kolbendurchmesser, Stangendurchmesser, Kolbengeschwindigkeit und anderen variieren, oder in Abhängigkeit dieser Größen eingestellt sein. Insbesondere bei etwa gleichen Bedingungen der Hin- und Herbewegung kann die Rückgewinnung von Energie mittels des Hydrogenerators optimiert werden, und insgesamt ein Energiesparender Betrieb erreicht werden.In embodiments, it can be provided that the volume flow during braking in one or the other direction of movement of the piston, ie during the forward or backward movement of the piston, in the case of an overpressure forming machine when the piston moves up and down, is approximately the same. However, the volume flow can vary depending on the piston diameter, rod diameter, piston speed and others, or can be set depending on these sizes. The recovery of energy can take place in particular under roughly the same conditions of the reciprocating movement be optimized by means of the hydrogenerator, and overall an energy-saving operation can be achieved.

In Ausgestaltungen kann die Umformmaschine des Weiteren einen Energiespeicher umfassen, welcher zum Zwecke der Einspeisung von durch den Hydrogenerator erzeugter elektrischer Energie mit dem Hydrogenerator verbunden ist. Auf diese Weise kann die durch den Hydrogenerator erzeugte, bzw. die aus der hydraulischen Energie des Hydraulikkreises durch den Hydrogenerator erzeugte, elektrische Energie zwischengespeichert werden, und in einem darauf folgenden Arbeitszyklus oder Arbeitsabschnitt der Umformerschiene als elektrische Energie wieder zur Verfügung gestellt werden, beispielsweise zum Betrieb der Hydropumpe. Abgesehen davon ist es auch möglich, dass die vom Hydrogenerator erzeugte elektrische Energie in ein mit der Umformmaschine verbundenes Stromnetz, oder Kraft-Wärme-Netz eingespeist wird.In embodiments, the forming machine can further comprise an energy store, which is connected to the hydrogenerator for the purpose of feeding in electrical energy generated by the hydrogenerator. In this way, the electrical energy generated by the hydrogenerator, or the electrical energy generated by the hydraulic energy of the hydraulic circuit by the hydrogenerator, can be temporarily stored, and can be made available again as electrical energy in a subsequent work cycle or working section of the converter rail, for example for Operation of the hydraulic pump. Apart from this, it is also possible for the electrical energy generated by the hydrogenerator to be fed into a power network or power-heat network connected to the forming machine.

Es zeigt sich, dass durch die hierin vorgeschlagene spezifische Kombination der hierin vorgeschlagenen Hydraulikkomponenten, insbesondere Hydromotor, Hydrogenerator und Wegeventilbaugruppe und deren Verschaltung, eine besonders genaue und exakte Steuerung der Umformmaschine, insbesondere des Hydraulikzylinders, insbesondere Differentialzylinders, bzw. Schlagwerkzeugs der Umformmaschine, ermöglicht wird bzw. ist, wobei gleichzeitig durch einen wie hierin vorgeschlagenen Hydraulikkreis ein vergleichsweise energieeffizienter Betrieb der Umformmaschine ermöglicht wird.It has been shown that the specific combination of the hydraulic components proposed here, in particular hydraulic motor, hydrogen generator and directional valve assembly and their connection, enables particularly precise and exact control of the forming machine, in particular the hydraulic cylinder, in particular differential cylinder, or percussion tool of the forming machine or is, at the same time a comparatively energy-efficient operation of the forming machine is made possible by a hydraulic circuit as proposed here.

Nach Patentanspruch 8 ist ein Verfahren zur Steuerung eines Arbeitszyklus einer Umformmaschine vorgesehen. Bei der Umformmaschine handelt es sich um einen Schmiedehammer.According to claim 8, a method for controlling a work cycle of a forming machine is provided. The forming machine is a forging hammer.

Bei dem hierin vorgeschlagenen Verfahren ist vorgesehen, dass ein mit einem Schlagwerkzeug gekoppelter Hydraulikzylinder, insbesondere Differentialzylinder, durch eine über einen Hydraulikkreis und eine dem Hydraulikzylinder fluidtechnisch vorgeschaltete Wegeventilbaugruppe fluidtechnisch gekoppelte, servomotorische Hydropumpe eines hydraulischen Linearantriebs durch Zufuhr von Hydraulikfluid angetrieben wird. Insbesondere kann ein Antrieb des Hydraulikzylinders durch Beaufschlagung eines Fluidraums, insbesondere des Kolbenraums bzw. Ringraums des Differentialzylinders, erfolgen.In the method proposed here, it is provided that a hydraulic cylinder, in particular differential cylinder, coupled to an impact tool, is fluidly coupled via a hydraulic valve and a directional valve assembly connected upstream of the hydraulic cylinder. Servomotor hydraulic pump of a hydraulic linear drive is driven by the supply of hydraulic fluid. In particular, the hydraulic cylinder can be driven by acting on a fluid space, in particular the piston space or annular space of the differential cylinder.

Insbesondere kann vorgesehen sein, dass, insbesondere wenn die Hydropumpe mit einem Fluidraum des Hydraulikzylinders, z.B. Kolbenraum oder Fluidraum des Differentialzylinders, fluidtechnisch verbunden ist, von einem weiteren Fluidraum des Hydraulikzylinders, insbesondere Differentialzylinders, abfließendes Hydraulikfluid, z.B. das vom zweiten Fluidraum, insbesondere Ringraum, oder ersten Fluidraum, insbesondere Kolbenraum, abfließende Hydraulikfluid, über die Wegeventilbaugruppe an einen in den Hydraulikkreis der Wegeventilbaugruppe fluidtechnisch nachgeschalteten, servomotorischen Hydrogenerator geleitet wird.In particular, it can be provided that, in particular if the hydraulic pump with a fluid space of the hydraulic cylinder, e.g. Piston chamber or fluid chamber of the differential cylinder, fluidically connected, from another fluid chamber of the hydraulic cylinder, in particular differential cylinder, hydraulic fluid, e.g. the hydraulic fluid flowing from the second fluid space, in particular the annular space, or the first fluid space, in particular the piston space, is directed via the directional valve assembly to a servo motor-driven hydrogenerator that is fluid-connected downstream of the directional control valve assembly.

Insbesondere soll das bedeuten, dass die Hydropumpe an einen Fluidraum fluidtechnisch gekoppelt ist, und dabei, zumindest in einem Abschnitt des Arbeitszyklus, insbesondere zeitgleich, der Hydrogenerator an den weiteren Fluidraum gekoppelt ist.In particular, this should mean that the hydraulic pump is fluidly coupled to a fluid space, and, at least in one section of the working cycle, in particular at the same time, the hydrogen generator is coupled to the further fluid space.

Damit ist zumindest in den Abschnitten, in welchen beide Fluidräume mit Hydropumpe oder Hydrogenerator gekoppelt, insbesondere fluidtechnisch verbunden sind, die duale Steuerung des Hydraulikkreises möglich, was bedeuten soll, dass der Hydraulikkreis insbesondere durch gleichzeitige Ansteuerung von Hydropumpe und Hydrogenerator beeinflusst werden kann oder beeinflussbar ist.In this way, at least in the sections in which both fluid spaces are coupled to the hydraulic pump or hydrogen generator, in particular connected in terms of fluid technology, dual control of the hydraulic circuit is possible, which should mean that the hydraulic circuit can be influenced or influenced, in particular, by simultaneous control of the hydraulic pump and hydrogen generator .

Insbesondere aus der Möglichkeit zur dualen Steuerung des Hydraulikkreises einerseits über die Hydropumpe und andererseits über den Hydrogenerator kann der Hydraulikzylinder, insbesondere Differentialzylinder, vergleichsweise genau und zuverlässig gesteuert werden, wodurch insbesondere verbesserte Schmiedeergebnisse erhalten werden können.In particular from the possibility of dual control of the hydraulic circuit on the one hand via the hydraulic pump and on the other hand via the hydrogen generator, the hydraulic cylinder, in particular differential cylinder, can be controlled comparatively precisely and reliably, as a result of which, in particular, improved forging results can be obtained.

Insbesondere auf diese Weise kann erreicht werden, dass Hydromotor und Hydrogenerator während des gesamten Arbeitszyklus des Hydraulikzylinders, insbesondere Differentialzylinders, zur Verfügung stehen, und getrennt oder gleichzeitig betrieben werden können, wodurch eine vergleichsweise exakte Steuerung des Hydraulikzylinders, insbesondere Differentialzylinders, bei gleichzeitig energieeffizientem Betrieb erreicht werden kann. Wegen weiteren Vorteilen und vorteilhaften Wirkungen wird auf die obigen Ausführungen verwiesen, die entsprechend gelten.In particular, it can be achieved in this way that the hydraulic motor and hydrogen generator are available during the entire working cycle of the hydraulic cylinder, in particular differential cylinder, and can be operated separately or simultaneously, as a result of which a comparatively exact control of the hydraulic cylinder, in particular differential cylinder, is achieved with simultaneously energy-efficient operation can be. For further advantages and advantageous effects, reference is made to the above statements, which apply accordingly.

In Ausgestaltungen kann vorgesehen sein, dass während einer Arbeitsbewegung, insbesondere Vorschubbewegung in Richtung des Arbeitsbereichs oder Umformbereichs des Hydraulikzylinders, insbesondere Differentialzylinders, die Wegeventilbaugruppe so angesteuert wird, dass die Hydropumpe mit dem ersten Fluidraum, insbesondere dem Kolbenraum, und der Hydrogenerator mit dem zweiten Fluidraum, insbesondere Ringraum des Differentialzylinders, fluidtechnisch verbunden sind.In embodiments, it can be provided that during a working movement, in particular a feed movement in the direction of the working area or forming area of the hydraulic cylinder, in particular differential cylinder, the directional valve assembly is controlled in such a way that the hydraulic pump with the first fluid chamber, in particular the piston chamber, and the hydrogen generator with the second fluid chamber , in particular the annular space of the differential cylinder, are fluidically connected.

In weiteren Ausgestaltungen kann vorgesehen sein, dass zumindest zeitweise während einer Rückholbewegung des Hydraulikzylinders, insbesondere Differentialzylinders, d.h. während einer vom Arbeitsbereich oder Arbeitspunkt des Hydraulikzylinders, insbesondere Differentialzylinders, oder Schlagwerkzeugs weg gerichteten Bewegung des Hydraulikzylinders oder Schlagwerkzeugs, die Wegeventilbaugruppe so angesteuert ist oder wird, dass die Hydropumpe mit dem zweiten Fluidraum, insbesondere Ringraum, und der Hydrogenerator mit dem ersten Ringraum, insbesondere Kolbenraum, des Differentialzylinders fluidtechnisch verbunden sind. Wegen Vorteilen und vorteilhaften Wirkungen und/oder weiteren Einzelheiten der hier vorgeschlagenen Betriebsweise wird insbesondere auch auf die obigen Ausführungen verwiesen, die entsprechend Anwendung finden.In further refinements, it can be provided that at least temporarily during a return movement of the hydraulic cylinder, in particular differential cylinder, i.e. during a movement of the hydraulic cylinder or percussion tool away from the working area or operating point of the hydraulic cylinder, in particular differential cylinder or percussion tool, the directional valve assembly is or is controlled such that the hydraulic pump with the second fluid space, in particular annulus, and the hydrogenerator with the first annulus, in particular Piston chamber, the differential cylinder are fluidly connected. Because of advantages and advantageous effects and / or further details of the mode of operation proposed here, reference is made in particular to the above explanations, which are used accordingly.

In Ausgestaltungen kann vorgesehen sein, dass die Hydropumpe durch die Steuereinheit derart gesteuert wird, dass die Hydropumpe während des Betriebs oberhalb bzw. zumindest mit einer von Null verschiedenen Mindestdrehzahl betrieben wird.In embodiments, it can be provided that the hydraulic pump is controlled by the control unit such that the hydraulic pump is in operation is operated above or at least with a non-zero minimum speed.

Insbesondere kann in Ausgestaltungen die Pumpendrehzahl in einem Arbeitsabschnitt eines Arbeitszyklus des Hydraulikzylinders, insbesondere Differentialzylinders, zunächst von der Mindestdrehzahl auf eine Maximaldrehzahl erhöht und anschließend von der Maximaldrehzahl auf die Mindestdrehzahl erniedrigt werden, beispielsweise derart, dass in dem Arbeitsbereich des Schlagwerkzeugs zugewandten Umkehrpunkt des Hydraulikzylinders, insbesondere Differentialzylinders, oder Kolbens die Mindestdrehzahl erreicht ist oder vorliegt.In particular, in embodiments, the pump speed in a working section of a working cycle of the hydraulic cylinder, in particular differential cylinder, can first be increased from the minimum speed to a maximum speed and then reduced from the maximum speed to the minimum speed, for example in such a way that in the working area of the impact tool, the reversal point of the hydraulic cylinder in particular differential cylinder or piston the minimum speed is reached or is present.

Die Steuerung der Pumpendrehzahl kann beispielsweise nach einer vorgegebenen Funktion der Zeit und/oder der Position des Hydraulikzylinders, insbesondere Differentialzylinders, erfolgen, beispielsweise entsprechend eines linearen Zusammenhangs mit der Zeit. Jedoch ist mit dem hierin vorgeschlagenen Hydrauliksystem auch eine Steuerung unter Verwendung von zumindest teilweise nichtlinearen Zusammenhängen möglich.The pump speed can be controlled, for example, according to a predefined function of the time and / or the position of the hydraulic cylinder, in particular a differential cylinder, for example in accordance with a linear relationship with time. However, control using at least partially non-linear relationships is also possible with the hydraulic system proposed here.

In Ausgestaltungen kann während eines Rückholabschnitts des Arbeitszyklus des Hydraulikzylinders, insbesondere Differentialzylinders, die Pumpendrehzahl auf die Mindestdrehzahl eingestellt oder eingeregelt werden.In embodiments, the pump speed can be set or regulated to the minimum speed during a return section of the working cycle of the hydraulic cylinder, in particular differential cylinder.

In Ausgestaltungen kann vorgesehen sein, dass zur Beschleunigung des Hydraulikzylinders, insbesondere Differentialzylinders, d.h. des Kolbens des Hydraulikzylinders, insbesondere Differentialzylinders, in Richtung eines einem Umform- oder Arbeitsbereich der Umformmaschine, d.h. des Hydraulikzylinders bzw. Differentialzylinders oder Schlagwerkzeugs, zugeordneten ersten Umkehrpunkts die Pumpendrehzahl der Hydropumpe von der Mindestdrehzahl, insbesondere in linearer Abhängigkeit von der Zeit, auf die Maximaldrehzahl erhöht wird, derart, dass die Maximaldrehzahl vor Erreichen eines dem Umformbereich zugeordneten ersten Umkehrpunkts des Hydraulikzylinders, insbesondere Differentialzylinders, erreicht wird bzw. ist.In embodiments, it can be provided that, in order to accelerate the hydraulic cylinder, in particular differential cylinder, that is to say the piston of the hydraulic cylinder, in particular differential cylinder, in the direction of a first reversal point assigned to a forming or working area of the forming machine, ie the hydraulic cylinder or differential cylinder or impact tool, the pump speed of the Hydraulic pump from the minimum speed, in particular in a linear dependence on the time, to the maximum speed, in such a way that the maximum speed is or is reached before reaching a first reversal point of the hydraulic cylinder, in particular differential cylinder, assigned to the forming area.

Ferner kann in Ausgestaltungen vorgesehen sein, dass die Steuerung derart erfolgt, dass die Pumpendrehzahl der Hydropumpe, d.h. die Drehzahl des Hydraulikpumpe der Hydropumpe, nach Erreichen der Maximaldrehzahl derart verringert wird, insbesondere in einem linearen Zusammenhang mit der Zeit, dass die Mindestdrehzahl bei oder mit Erreichen des ersten Umkehrpunkts erreicht wird oder eingestellt ist. Wegen Vorteilen oder vorteilhaften Wirkungen entsprechender Ausgestaltungen wird auf obige Ausführungen verwiesen.It can further be provided in embodiments that the control takes place in such a way that the pump speed of the hydraulic pump, i.e. the speed of the hydraulic pump of the hydraulic pump is reduced in such a way after reaching the maximum speed, in particular in a linear relationship with the time, that the minimum speed is reached or is set when the first reversal point is reached or is reached. For advantages or advantageous effects of corresponding configurations, reference is made to the above statements.

In Ausgestaltungen kann vorgesehen sein, dass einhergehend mit Erreichen des dem Umformbereich der Umformmaschine zugeordneten ersten Umkehrpunkts oder bei Erreichen der einer vorgegebenen Geschwindigkeit des Bären bzw. des Kolbens die Wegeventilbaugruppe derart gesteuert wird, dass ein Druckausgang der Hydropumpe mit dem zweiten Fluidraum des Hydraulikzylinders, insbesondere Ringraum des Hydraulikzylinders, insbesondere Differentialzylinders, fluidtechnisch verbunden wird bzw. ist, und dass ein Druckeingang des Hydrogenerators mit dem ersten Fluidraum des Hydraulikzylinders, insbesondere Kolbenraum des Differentialzylinders, fluidtechnisch verbunden wird bzw. ist.In embodiments, it can be provided that, when the first reversal point assigned to the forming area of the forming machine is reached or when a predetermined speed of the bear or the piston is reached, the directional valve assembly is controlled such that a pressure output of the hydraulic pump with the second fluid chamber of the hydraulic cylinder, in particular Annulus of the hydraulic cylinder, in particular differential cylinder, is or is fluidly connected, and that a pressure input of the hydrogenerator is or is fluidly connected to the first fluid chamber of the hydraulic cylinder, in particular piston chamber of the differential cylinder.

Insbesondere bei solchen Ausgestaltungen kann eine im Hydrauliksystem der Umformmaschine gespeicherte, erzeugte und/oder entstehende elastische Energie, insbesondere im Hydraulikfluid gespeicherte potentielle Energie, beispielsweise durch Dekompression des Hydraulikfluids bzw. des Hydrauliksystems, über den Hydrogenerator in elektrische Energie oder eine andere sekundäre Energieform umgewandelt werden, und beispielsweise in darauffolgenden Arbeitszyklen der Umformmaschine zugeführt werden. Ergänzend wird in diesem Zusammenhang auf die Ausführungen weiter oben verwiesen, die entsprechend gelten.In particular with such configurations, an elastic energy stored, generated and / or generated in the hydraulic system of the forming machine, in particular potential energy stored in the hydraulic fluid, can be converted into electrical energy or another secondary energy form via the hydrogenerator, for example by decompression of the hydraulic fluid or the hydraulic system , and are fed to the metal forming machine, for example, in subsequent working cycles. In this context, reference is also made to the explanations above, which apply accordingly.

In Ausgestaltungen kann vorgesehen sein, dass ein durch Rückprall des Hydraulikzylinders, insbesondere Differentialzylinders, bzw. Schlagwerkzeugs im ersten Umkehrpunkt erzeugter Unterdruck im zweiten Fluidraum, insbesondere Ringraum, durch zumindest ein Nachsaugventil ausgeglichen wird, welches einerseits mit dem zweiten Fluidraum und andererseits einem Hydraulikbehälter fluidtechnisch verbunden ist. Ferner kann vorgesehen sein, dass ein durch den Rückprall im ersten Fluidraum, insbesondere Kolbenraum, erzeugter Überdruck, bzw. eine im Hydraulikkreis erzeugte elastische Energie durch Dekompression über den bzw. vom Hydrogenerator in eine sekundäre Energieform, beispielsweise elektrische Energie, gewandelt und vorzugsweise in einem Zwischenspeicher gespeichert wird. Wegen Vorteilen und vorteilhaften Wirkungen wird insbesondere auf die Ausführungen weiter oben sowie weiter unten verwiesen, die entsprechend gelten.In embodiments, it can be provided that a negative pressure generated in the second fluid space, in particular the annular space, by rebound of the hydraulic cylinder, in particular differential cylinder, or percussion tool in the first reversal point, is compensated for by at least one suction valve, which on the one hand is fluidly connected to the second fluid space and on the other hand a hydraulic tank. Furthermore, it can be provided that an overpressure generated by the rebound in the first fluid chamber, in particular piston chamber, or an elastic energy generated in the hydraulic circuit is converted by decompression via or by the hydrogenerator into a secondary form of energy, for example electrical energy, and preferably in one Cache is saved. For advantages and advantageous effects, reference is made in particular to the statements above and below, which apply accordingly.

In Ausgestaltungen kann vorgesehen sein, dass einhergehend mit, oder bei, oder unmittelbar vor, Erreichen eines vom Umformbereich der Umformmaschine abgewandten zweiten Umkehrpunktes des Hydraulikzylinders, insbesondere des Differentialzylinders, die Wegeventilbaugruppe derart angesteuert wird, dass ein Druckausgang der Hydropumpe mit dem ersten Fluidraum, insbesondere Kolbenraum, fluidtechnisch verbunden wird oder ist, und ein Druckeingang des Hydrogenerators mit dem zweiten Fluidraum, insbesondere Ringraum des Differentialzylinders, fluidtechnisch verbunden wird oder ist.In embodiments, it can be provided that the directional valve assembly is controlled in such a way that, when or when, or immediately before, a second reversal point of the hydraulic cylinder, in particular the differential cylinder, facing away from the forming area of the forming machine, is actuated such that a pressure output of the hydraulic pump with the first fluid chamber, in particular Piston space, is or is fluidly connected, and a pressure input of the hydrogenerator is or is fluidly connected to the second fluid space, in particular the annular space of the differential cylinder.

Insbesondere kann in Ausgestaltungen vorgesehen sein, dass während einer Umsteuerung des Druckausgangs der Hydropumpe und des Druckeingangs des Hydrogenerators gegebenenfalls auftretende Druckschwankungen im Hydrauliksystem durch ein oder mehrere entsprechend in den Hydraulikkreis geschaltete Nachsaugventile ausgeglichen werden. Mit anderen Worten, es können Nachsaugventile vorgesehen sein, derart dass etwaige Druckschwankungen im Hydrauliksystem, insbesondere zur Vermeidung von Druckspitzen, ausgeglichen werden können.In particular, it can be provided in embodiments that pressure fluctuations in the hydraulic system that may occur during a reversal of the pressure output of the hydraulic pump and the pressure input of the hydrogenerator are compensated for by one or more suction valves switched accordingly in the hydraulic circuit. In other words, suction valves can be provided such that any pressure fluctuations in the hydraulic system can be compensated for, in particular to avoid pressure peaks.

Vorteilhafter Weise ist in Ausgestaltungen vorgesehen, dass die Bewegungssteuerung des Kolbens, Bären und/oder Gesenks durch die Steuereinheit in oder im Bereich der beiden Umkehrpunkte des Kolbens, abgesehen des lediglich im umformenden Umkehrpunkt auftretenden Rückpralls, in etwa bzw. im Wesentlichen in gleicher Weise durchgeführt wird. Das bedeutet insbesondere, dass, abgesehen von der zeitlichen Spanne, in welcher ein Rückprall auf das Hydrauliksystem wirkt, in beiden Umkehrpunkten, ggf. Schwerkraftbereinigt, eine im Wesentlichen gleiche Bewegungssteuerung angewandt werden kann.It is advantageously provided in embodiments that the movement control of the piston, bear and / or die by the control unit in or in the region of the two reversal points of the piston, apart from the rebound occurring only in the deforming reversal point, is carried out approximately or essentially in the same way becomes. This means in particular that, apart from the time span in which a rebound acts on the hydraulic system, essentially the same motion control can be used at both reversal points, possibly adjusted for gravity.

In Ausgestaltungen kann vorgesehen sein, dass mehrere aufeinanderfolgende Arbeitszyklen nach einer der oben beschriebenen Ausgestaltungen gesteuert wird/werden, wobei die Hydropumpe und der Hydrogenerator während der Arbeitszyklen durchgehend in gleicher Drehrichtung, d.h. ohne Drehrichtungsumkehr, betrieben werden, und/oder wobei die Hydropumpe über die mehreren Arbeitszyklen hinweg zumindest mit der von Null verschiedenen Mindestdrehzahl betrieben wird, und/oder wobei in einem Arbeitszyklus und/oder Teilarbeitszyklus durch den Hydrogenerator erzeugte Sekundärenergie, beispielsweise elektrische Energie, in einem darauffolgenden Arbeitszyklus und/oder Teilarbeitszyklus der Umformmaschine, insbesondere der Hydropumpe, zugeführt wird. Insbesondere auf diese Weise kann eine vorteilhafte Energieeffizienz erreicht werden.In embodiments, it can be provided that several successive work cycles are / are controlled according to one of the designs described above, the hydraulic pump and the hydrogenerator being continuously in the same direction of rotation during the work cycles, i.e. be operated without reversing the direction of rotation, and / or wherein the hydraulic pump is operated at least at the non-zero minimum speed over the several working cycles, and / or wherein secondary energy, for example electrical energy, generated by the hydrogenerator in one working cycle and / or partial working cycle subsequent working cycle and / or partial working cycle of the forming machine, in particular the hydraulic pump, is supplied. In this way in particular, advantageous energy efficiency can be achieved.

Aus den obigen und vorangehenden Ausführungen wird insbesondere deutlich, dass mit der hierin vorgeschlagenen Umformmaschine und dem hierin vorgeschlagenen Verfahren zur Steuerung der Umformmaschine die der Erfindung zugrunde liegende Aufgabe gelöst wird.It is particularly clear from the above and previous explanations that the forming machine proposed here and the method proposed here for controlling the forming machine achieve the object on which the invention is based.

Ausführungsbeispiele der Erfindung werden nachfolgend anhand der anhängenden Figuren näher beschrieben. Es zeigen:

FIG. 1
eine schematische Darstellung des Aufbaus eines gemäß einer Ausgestaltung der Erfindung ausgebildeten Schmiedehammers;
FIG. 2
den Schmiedehammer nach FIG. 1 in einem ersten Betriebszustand;
FIG. 3
den Schmiedehammer nach FIG. 1 in einem zweiten Betriebszustand;
FIG. 4
den Schmiedehammer nach FIG. 1 in einem dritten Betriebszustand; und
FIG. 5
ein Arbeitsdiagramm betreffend Betriebs- und Steuergrößen des Schmiedehammers.
Exemplary embodiments of the invention are described in more detail below with reference to the attached figures. Show it:
FIG. 1
is a schematic representation of the structure of a forging hammer designed according to an embodiment of the invention;
FIG. 2nd
after the forging hammer FIG. 1 in a first operating state;
FIG. 3rd
after the forging hammer FIG. 1 in a second operating state;
FIG. 4th
after the forging hammer FIG. 1 in a third operating state; and
FIG. 5
a working diagram regarding operating and control parameters of the forging hammer.

FIG. 1 zeigt eine schematische Darstellung des Aufbaus eines gemäß einer Ausgestaltung der Erfindung ausgebildeten Oberdruck Schmiedehammers 1. FIG. 1 shows a schematic representation of the structure of an upper pressure forging hammer 1 designed according to an embodiment of the invention.

Komponenten des Schmiedehammers 1 werden nachfolgend anhand der FIG. 1 näher beschrieben, wobei Funktion und Betriebsweise des Schmiedehammers 1 insbesondere im Zusammenhang mit FIG. 2 bis 5 näher erläutert werden.Components of the forging hammer 1 are described below using the FIG. 1 described in more detail, the function and operation of the forging hammer 1 in particular in connection with FIG. 2 to 5 are explained in more detail.

Der Schmiedehammer 1 umfasst ein (nicht dargestelltes) Gestell, an welchem ein Differentialzylinder 2 festgelegt ist. Am Gestell ist ferner ein Untergesenk 3 mit einem daran lösbar angebrachten Unterwerkzeug 4 befestigt.The forging hammer 1 comprises a frame (not shown) on which a differential cylinder 2 is fixed. A lower die 3 is also fastened to the frame with a lower tool 4 detachably attached thereto.

An einem in einem Zylinderrohr 5 des Differentialzylinders 2 längsverschiebbar geführten Kolben 6 ist eine sich einseitig vom Kolben 6 erstreckende Kolbenstange 7 angebracht.A piston rod 7, which extends on one side from the piston 6, is attached to a piston 6, which is guided in a longitudinally displaceable manner in a cylinder tube 5 of the differential cylinder 2.

An einem vom Kolben 6 entfernt gelegenen Ende der Kolbenstange 7 ist ein als Bär 8 , d.h. Schmiedebär, ausgebildetes Obergesenk befestigt, welches mit dem Kolben 6 einhergehend in Längsrichtung des Zylinderrohrs 5 hin- und her bewegt werden kann.At one end of the piston rod 7 remote from the piston 6 there is a bear 8, i.e. Blacksmith bear, upper die attached, which can be moved back and forth along with the piston 6 in the longitudinal direction of the cylinder tube 5.

Der Bewegungsfreiheitsgrad des Kolbens 6 bzw. Bären 8 ist in FIG. 1 anhand eines Doppelpfeils schematisch dargestellt. Im vorliegenden Fall ist der Schmiedehammer 1 als ein Vertikalschmiedehammer ausgebildet, was bedeuten soll, dass im ordnungsgemäßen Betriebszustand eine Bewegung des Bären 8 bzw. eines daran lösbar befestigten Oberwerkzeugs 9 in vertikaler Richtung von oben nach unten und umgekehrt erfolgt.The degree of freedom of movement of the piston 6 or bear 8 is in FIG. 1 represented schematically by means of a double arrow. In the present case, the forging hammer 1 is designed as a vertical forging hammer, which is to mean that, in the correct operating state, the bear 8 or an upper tool 9 detachably fastened to it moves in the vertical direction from top to bottom and vice versa.

Im Beispiel der FIG. 1 ist der Schmiedehammer 1 in einem Arbeitszustand gezeigt, in welchem das Oberwerkzeug 9 am Unterwerkzeug 4 anliegt, korrespondierend zu einem ersten Umkehrpunkt U1 des Bären 8 bzw. Oberwerkzeugs 9.In the example of the FIG. 1 The forging hammer 1 is shown in a working state in which the upper tool 9 rests on the lower tool 4, corresponding to a first turning point U1 of the bear 8 or upper tool 9.

Der Schmiedehammer 1 weist einen den Differentialzylinder 2 umfassenden Hydraulikkreis auf, mit einer, oder je nach Bedarf mehreren, servomotorischen Hydropumpen 27, welche einen über einen Servomotor 10 gesteuerte Hydraulikpumpe 11 umfasst, deren Druckseite 12 mit einem 4/2 Wegeventil 13 und deren Saugseite 14 mit einem Hydrauliktank 15 fluidtechnisch verbunden sind.The forging hammer 1 has a hydraulic circuit comprising the differential cylinder 2, with one, or, as required, a plurality of servo-motoric hydraulic pumps 27, which comprises a hydraulic pump 11 controlled by a servo motor 10, the pressure side 12 of which with a 4/2 way valve 13 and the suction side 14 thereof are fluidly connected to a hydraulic tank 15.

Der Hydraulikkreis umfasst ferner einen Hydrogenerator 16 dessen Eingangsseite 17 mit dem Wegeventil 13 verbunden ist, und dessen Ausgangsseite 18 mit dem Hydrauliktank 15 fluidtechnisch verbunden ist.The hydraulic circuit further comprises a hydrogen generator 16, the input side 17 of which is connected to the directional control valve 13, and the output side 18 of which is fluidly connected to the hydraulic tank 15.

Die Umformmaschine 1 umfasst des weitere eine Steuereinheit 19, welche ausgebildet ist, und mit entsprechenden Steuerleitungen versehen ist, so dass die Komponenten des Schmiedehammers 1, insbesondre Wegeventil 13, Hydropumpe 27, und Hydrogenerator 16, und ggf. weitere Komponenten gesteuert werden können.The forming machine 1 further comprises a control unit 19, which is designed and is provided with corresponding control lines, so that the components of the forging hammer 1, in particular the directional control valve 13, hydraulic pump 27, and hydrogen generator 16, and, if appropriate, further components can be controlled.

Die Steuereinheit 19 kann mit diversen Sensoren zur Erfassung von Betriebsparametern des Schmiedehammers 1 ausgestaltet sein. Beispielsweise kann der Schmiedehammer 1 einen oder mehrere Drucksensoren 20 aufweisen, mit welchen beispielsweise ein in einem Kolbenraum 21 des Differentialzylinders 2 und/oder ein in einem Ringraum 22 des Differentialzylinders 2 beim Betrieb des Schmiedehammers 1 herrschender Druck erfasst werden kann, welcher beispielsweise durch die Steuereinheit 19 zur Steuerung des Schmiedehammers 1, insbesondere des Differentialzylinders 2 und/oder der Hydropumpe 27 und/oder des Hydrogenerators 16 verwendet werden kann.The control unit 19 can be configured with various sensors for detecting operating parameters of the forging hammer 1. For example, the forging hammer 1 can have one or more pressure sensors 20 with which, for example, a pressure prevailing in a piston chamber 21 of the differential cylinder 2 and / or in an annular space 22 of the differential cylinder 2 during operation of the forging hammer 1 can be detected, which pressure can be detected, for example, by the control unit 19 can be used to control the forging hammer 1, in particular the differential cylinder 2 and / or the hydraulic pump 27 and / or the hydrogenerator 16.

Der Hydrogenerator 16 umfasst einen, oder je nach Bedarf mehrere, Hydromotoren 28 und einen mit dem Hydromotor 28 antriebsmechanisch gekoppelten Servogenerator 29, d.h. einen generatorisch betriebenen Servomotor.The hydrogenerator 16 comprises one, or, if necessary, several, hydraulic motors 28 and a servo generator 29 coupled mechanically to the hydraulic motor 28, i.e. a servomotor operated as a generator.

Die Hydropumpe 27 und der Hydrogenerator 16 können anhand des Servomotors 10 und des Servogenerators 29 gesteuert werden, und sind zu diesem Zwecke über entsprechende Steuerleitungen mit der die Steuereinheit 19 verbunden. Insbesondere können die Hydropumpe 27 und der Hydrogenerator in Drehzahl und/oder Drehmoment gesteuert werden, beispielsweise derart dass eine zur Einstellung und/oder Erreichung einer vorgegebenen oder gewünschten Endgeschwindigkeit des Bären 9 durch erreicht wird. Insbesondere können die Hydropumpe 27 und der Hydrogenerator 16 so gesteuert werden, dass der Bär 9 oder Kolben 6 einem vorgegebenen Bewegungsablauf folgt, wobei Hydropumpe 27 und Hydrogenerator 16 die jeweils erforderliche hydraulische Antriebsleistung oder Bremsleistung zur Verfügung stellen.The hydraulic pump 27 and the hydrogen generator 16 can be controlled using the servo motor 10 and the servo generator 29, and for this purpose are connected to the control unit 19 via corresponding control lines. In particular, the hydraulic pump 27 and the hydrogenerator can be controlled in terms of speed and / or torque, for example in such a way that one for setting and / or reaching a predetermined or desired final speed of the bear 9 is achieved by. In particular, the hydraulic pump 27 and the hydrogenerator 16 can be controlled such that the bear 9 or piston 6 follows a predetermined movement sequence, the hydraulic pump 27 and hydrogenerator 16 providing the hydraulic drive power or braking power required in each case.

Der Schmiedehammer 1 kann des Weiteren einen Positions- und/oder Geschwindigkeitssensor 23 umfassen, mit welchem durch die Steuereinheit 19 eine Position und/oder Geschwindigkeit des Bären 8 bzw. des Kolbens 6 ermittelt werden kann, wobei entsprechende Positions- und/oder Geschwindigkeitsdaten zur Steuerung des Hydraulikkreises, insbesondere der Hydropumpe 27 und/oder des Hydrogenerators 16 und/oder des Wegeventils 13, verwendet werden können, beispielsweise zur Steuerung oder Einstellung einer jeweils gewünschten Endgeschwindigkeit oder Auftreffgeschwindigkeit des Differentialzylinders 2.The forging hammer 1 can further comprise a position and / or speed sensor 23, with which the control unit 19 can determine a position and / or speed of the bear 8 or the piston 6, with corresponding position and / or speed data for control purposes of the hydraulic circuit, in particular the hydraulic pump 27 and / or the hydrogenerator 16 and / or the directional control valve 13, can be used, for example for controlling or setting a desired final speed or impact speed of the differential cylinder 2.

Der im Zusammenhang mit den Figuren gezeigte Schmiedehammer 1 umfasst des Weiteren einen Energiespeicher 24 in welchen durch den Hydrogenerator 16, beispielsweise durch Umwandlung von hydraulischer Energie, insbesondere elastischer Energie, aus dem Hydraulikkreis erzeugte Sekundärenergie, beispielsweise in Form elektrischer Energie, gespeichert werden kann. Zur Lade- und Entladesteuerung kann der Energiespeicher 24 mit der Steuereinheit 19 verbunden sein. Insbesondere kann der Energiespeicher 24 und die zugehörige Steuerung so aufeinander abgestimmt sein, dass aus einem oder mehreren vorrangehenden Arbeitszyklen des Schmiedehammers 1 rückgewonnene Energie zum Betrieb des Schmiedehammers 1, beispielsweise der Hydropumpe 27, in nachfolgenden Arbeitszyklen verwendet oder abgerufen wird.The forging hammer 1 shown in connection with the figures further comprises an energy store 24 in which secondary energy generated by the hydraulic generator 16, for example by converting hydraulic energy, in particular elastic energy, from the hydraulic circuit, for example in the form of electrical energy, can be stored. For charging and discharging control, the energy store 24 can be connected to the control unit 19. In particular, the energy store 24 and the associated one Control can be coordinated so that energy recovered from one or more preceding work cycles of the forging hammer 1 for operating the forging hammer 1, for example the hydraulic pump 27, is used or called up in subsequent work cycles.

Der Kolbenraum 21 und der Ringraum 22 des Differentialzylinders 2 sind zum Ausgleich von im Hydrauliksystem etwaig auftretenden Unterdrücken über Nachsaugventile 25 mit dem Hydrauliktank 15 derart fluidtechnisch verbunden, dass Hydraulikflüssigkeit 30 über die Nachsaugventile 25 im Falle eines Unterdrucks aus den Hydrauliktank 15 angesaugt und so ins Hydrauliksystem eingebracht werden kann.The piston chamber 21 and the annular chamber 22 of the differential cylinder 2 are fluidically connected to the hydraulic tank 15 via suction valves 25 in order to compensate for any negative pressures that occur in the hydraulic system such that hydraulic fluid 30 is sucked in via the suction valves 25 from the hydraulic tank 15 in the event of a negative pressure and thus into the hydraulic system can be introduced.

Insbesondere können der Kolbenraum 21 und Ringraum 22 jeweils über ein Nachsaugventil 25 fluidtechnisch mit dem Hydrauliktank 15, oder einer Hydraulikfluidquelle, verbunden sein, so dass im Falle eines Unterdrucks Hydraulikfluid durch eine vom Unterdruck verursachte Saugwirkung in den Kolbenraum 21 oder Ringraum 22 gesaugt wird.In particular, the piston chamber 21 and the annular chamber 22 can each be fluidically connected to the hydraulic tank 15 or a hydraulic fluid source via a suction valve 25, so that in the event of a negative pressure hydraulic fluid is sucked into the piston chamber 21 or the annular chamber 22 by a suction effect caused by the negative pressure.

Bei den Nachsaugventilen 25 kann es sich beispielsweise um federbelastete Rückschlagventile, oder andere gleichartige Ventile handeln, welche einen Iediglich unidirektionalen Fluss von Hydraulikfluid in Richtung vom Hydrauliktank 15 zum Kolbenraum 21 oder Ringraum 22 zulassen, in entgegengesetzter Richtung jedoch sperren.The suction valves 25 can, for example, be spring-loaded check valves or other similar valves which allow only unidirectional flow of hydraulic fluid in the direction from the hydraulic tank 15 to the piston chamber 21 or the annular chamber 22, but block in the opposite direction.

Eine beispielhafte Betriebsweise des Schmiedehammers 1 auf Grundlage der oben beschriebenen Komponenten wird nachfolgend anhand der FIG. 2 bis FIG. 5 beschrieben, welche den Schmiedehammer 1 in unterschiedlichen Betriebszuständen zeigen.An exemplary operation of the forging hammer 1 based on the components described above is described below with reference to FIG FIG. 2 to FIG. 5 described, which show the forging hammer 1 in different operating states.

FIG. 2 zeigt den Schmiedehammer 1 in einen Betriebszustand, in welchem die Hydropumpe 27 und das Wegeventil 13 von der Steuereinheit 19 derart gesteuert sind, dass der Kolben 6 des Differentialzylinders 2 in Richtung des Unterwerkzeugs 4 zum Zwecke der Bearbeitung eines Werkstücks 26 beschleunigt oder bewegt wird. FIG. 2nd shows the forging hammer 1 in an operating state in which the hydraulic pump 27 and the directional control valve 13 are controlled by the control unit 19 such that the piston 6 of the differential cylinder 2 in the direction of the lower tool 4 is accelerated or moved for the purpose of machining a workpiece 26.

Das Wegeventil 13 ist in vorliegendem Ausführungsbeispiel als 4/2 Wegeventil ausgeführt, und in dem in FIG. 1 gezeigten Betriebszustand so geschalten, dass ein erster Anschluss A1, der fluidtechnisch mit der der Druckseite 12 der Hydraulikpumpe 11 verbunden ist, auf einen zweiten Anschluss A2 durchgeschalten ist, welcher fluidtechnisch mit dem Kolbenraum 21 verbunden ist. Auf diese Weise kann Hydraulikfluid 30 durch entsprechende Steuerung des Servomotors 10 durch die Hydraulikpumpe 11 vom Hydrauliktank 15 in den Kolbenraum 21 gepumpt werden, um so den Hub des Kolbens 6 zu vergrößern und eine hydraulische Beschleunigungskraft auf den Kolben 6 zu übertragen.The directional valve 13 is designed in the present embodiment as a 4/2 way valve, and in the in FIG. 1 shown operating state switched so that a first connection A1, which is fluidly connected to the pressure side 12 of the hydraulic pump 11, is connected to a second connection A2, which is fluidly connected to the piston chamber 21. In this way, hydraulic fluid 30 can be pumped from the hydraulic tank 15 into the piston chamber 21 by appropriate control of the servo motor 10 by the hydraulic pump 11, so as to increase the stroke of the piston 6 and to transmit a hydraulic acceleration force to the piston 6.

Ferner ist in dem in FIG. 1 gezeigten Betriebszustand, in welchem der Kolben 6 beschleunigt, bzw. in Richtung des Unterwerkzeugs 4 bewegt wird, ein dritter Anschluss A3 des Wegeventils 13 fluidtechnisch mit dem Ringraum 22 verbunden, und durchgeschalten auf einen vierten Anschluss A4 des Wegeventils 13, welcher fluidtechnisch mit dem Hydrogenerator 16, genauer mit der Eingangsseite 17 des Hydromotors 28, verbunden ist.Furthermore, in the FIG. 1 shown operating state, in which the piston 6 is accelerated or moved in the direction of the lower tool 4, a third port A3 of the directional control valve 13 fluidly connected to the annular space 22, and switched through to a fourth port A4 of the directional control valve 13, which is fluidically connected to the hydrogenerator 16, more precisely connected to the input side 17 of the hydraulic motor 28.

Da der Schmiedehammer 1 im vorliegenden Beispiel als Oberdruck Schmiedehammer 1 mit einem oben liegenden Differentialzylinder 2 ausgebildet ist, tragen zur Beschleunigung des Bären 8 in Richtung des Unterwerkzeugs 4 neben den durch die Hydropumpe 27 und den Hydrogenerator 16 erzeugten hydraulischen Kräfte noch die Gewichtskräfte der bewegten Masse, insbesondere von Bär 8, Kolbenstange 7, Kolben 6, Oberwerkzeug 9 usw., bei.Since the forging hammer 1 in the present example is designed as an upper pressure forging hammer 1 with an upper differential cylinder 2, the weight forces of the moving mass also contribute to the acceleration of the bear 8 in the direction of the lower tool 4 in addition to the hydraulic forces generated by the hydraulic pump 27 and the hydrogenerator 16 , in particular from bear 8, piston rod 7, piston 6, upper tool 9, etc., at.

Bei einem Unterdruck Schmiedehammer oder Unterdruck-Schmiedebären, auf welchen die vorliegende Erfindung ebenfalls anwendbar ist, wirken die Gewichtskräfte bei der Beschleunigung des Bären in Richtung des zu bearbeitenden Werkstücks der hydraulischen Kraft entgegen, was durch das hierin vorgeschlagene hydraulische System ebenfalls steuerungstechnisch erfasst werden kann. Bei einer Kombination Oberdruck und Unterdruck Schmiedehammer können sowohl Oberdruck als auch Unterdruck Schmiedehammer mit dem hierin vorgeschlagenen Verfahren gesteuert werden und einen entsprechenden Aufbau aufweisen.In the case of a vacuum forging hammer or vacuum forging bear, to which the present invention can also be applied, the weight forces when the bear accelerates in the direction of the workpiece to be machined counteract the hydraulic force, which can also be recorded in terms of control technology by the hydraulic system proposed here. With a combination of upper pressure and negative pressure, a forging hammer can be used Both the upper pressure and the lower pressure forging hammer can be controlled with the method proposed here and have a corresponding structure.

Zurückkommend auf den in FIG. 1 gezeigten Zustand wird weiter ausgeführt, dass in dem gezeigten Betriebszustand der Bär 8 durch die Hydropumpe 27 derart mit Hydraulikfluid 30 beaufschlagt wird, und der Hydrogenerator 16, sofern erforderlich, dem hydraulischen System hydraulische Energie entzieht und insoweit als hydraulische Bremse wirkt , dass das Oberwerkzeug 9 beim Auftreffen auf das zu bearbeitende Werkstück 26 eine jeweils gewünschte Auftreffgeschwindigkeit bzw. Endgeschwindigkeit aufweist, und entsprechend eine jeweils gewünschte bzw. vorgegebene Umformenergie an das Werkstück abgegeben werden kann.Coming back to the in FIG. 1 The state shown is further explained that in the operating state shown, the bear 8 is acted upon with hydraulic fluid 30 by the hydraulic pump 27, and the hydrogen generator 16, if necessary, draws hydraulic energy from the hydraulic system and acts as a hydraulic brake to the extent that the upper tool 9 when striking the workpiece 26 to be machined has a respectively desired impact speed or final speed, and accordingly a respectively desired or predetermined forming energy can be delivered to the workpiece.

Zur Steuerung der Beschleunigung und Einstellung der Geschwindigkeit des Bären 8 kann die Steuereinheit 19 einen oder mehrere Positions- und/oder Geschwindigkeitssensoren 23 auswerten, und anhand der dadurch erhaltenen Daten, beispielsweise anhand der ermittelten tatsächlichen Geschwindigkeit des Bären 8, oder entsprechend des Oberwerkzeugs 9 oder des Kolbens 6, die Hydropumpe 28 und/oder den Hydrogenerator 16 derart steuern dass die gewünschte Endgeschwindigkeit erreicht wird.To control the acceleration and setting of the speed of the bear 8, the control unit 19 can evaluate one or more position and / or speed sensors 23 and on the basis of the data obtained thereby, for example on the basis of the determined actual speed of the bear 8, or in accordance with the upper tool 9 or of the piston 6, control the hydraulic pump 28 and / or the hydrogenerator 16 such that the desired final speed is reached.

Während der Bewegung des Bären 8 bzw. Kolbens 6 in Richtung des Werkstücks 26 oder Unterwerkzeugs 4 fließt, entsprechend des von der Hydraulikpumpe 11 erzeugen Volumenstroms, Hydraulikfluid 30 in den Kolbenraum 21. Gleichzeitig wird im Ringraum 22 befindliches Hydraulikfluid 30 aus dem Ringraum 22 verdrängt, welches über das Wegeventil 13 und den Hydrogenerator 16 in den Hydrauliktank 15 rückgeführt wird.During the movement of the bear 8 or piston 6 in the direction of the workpiece 26 or lower tool 4, corresponding to the volume flow generated by the hydraulic pump 11, hydraulic fluid 30 flows into the piston space 21. At the same time, hydraulic fluid 30 located in the annular space 22 is displaced from the annular space 22, which is returned to the hydraulic tank 15 via the directional control valve 13 and the hydrogenerator 16.

Indem in der Rückführleitung der Hydrogenerator 16 eingeschalten ist, kann beispielsweise im Hydrauliksystem gespeicherte elastische Energie dem hydraulischen System entzogen und in elektrische Energie umgewandelt werden. Die elektrische Energie kann wiederum im Energiespeicher zwischengespeichert und dem Schmiedehammer 1 in darauffolgenden Arbeitszyklen, oder auch unmittelbar bereitgestellt werden. Im hydraulischen System gespeicherte elastische Energie kann beispielsweise durch Dekompression des Hydraulikfluids 30 freigesetzt werden.Since the hydrogenerator 16 is switched on in the return line, elastic energy stored in the hydraulic system can, for example, be withdrawn from the hydraulic system and converted into electrical energy. The electrical energy can in turn be temporarily stored in the energy store and the forging hammer 1 in subsequent work cycles, or also be provided immediately. Elastic energy stored in the hydraulic system can be released, for example, by decompression of the hydraulic fluid 30.

Ferner kann durch entsprechende Steuerung des Hydrogenerators 16, d.h. des Servogenerators 29, dem Hydraulikkreis hydraulische Energie dadurch entzogen werden, indem beispielsweise das Drehmoment des Servogenerators 29 erhöht wird, so dass kinetische Energie des durch den Hydromotor 28 fließenden Hydraulikfluids in elektrische Energie umgewandelt wird. Letzteres führt insgesamt zu einer Bremswirkung, so dass die bewegte Masse, insbesondere Kolben 6, Bär 8 usw., gezielt abgebremst werden kann.Furthermore, by appropriate control of the hydrogenerator 16, i.e. of the servo generator 29, hydraulic energy is withdrawn from the hydraulic circuit by, for example, increasing the torque of the servo generator 29 so that kinetic energy of the hydraulic fluid flowing through the hydraulic motor 28 is converted into electrical energy. The latter leads to a braking effect overall, so that the moving mass, in particular piston 6, bear 8, etc., can be braked in a targeted manner.

Das bedeutet, dass der Hydrogenerator 16 in dem hier vorgeschlagenen Hydrauliksystem als hydrofluidische Bremse zur Erzeugung einer Bremswirkung für die bewegte Masse, insbesondere den Bären 8, betrieben werden kann. Beispielsweise kann die hydrofluidische Bremswirkung zu Zwecken der Einstellung einer jeweils erforderlichen Endgeschwindigkeit bei der Bewegung in Richtung des ersten Umkehrpunkts U1 und/oder zur Abbremsung der bewegten Masse bei der Bewegung in Richtung des zweiten Umkehrpunkts U2, z.B. im Bereich des oberen zweiten Umkehrpunkts unter entsprechender Steuerung des Hydrogenerators 16 eingesetzt werden.This means that the hydrogenerator 16 in the hydraulic system proposed here can be operated as a hydrofluidic brake to generate a braking effect for the moving mass, in particular the bear 8. For example, the hydrofluidic braking effect can be used for the purpose of setting a respectively required final speed when moving in the direction of the first turning point U1 and / or for braking the moving mass when moving in the direction of the second turning point U2, e.g. be used in the region of the upper second turning point with appropriate control of the hydrogenerator 16.

Mit der hierin vorgeschlagenen Lösung sind Hydropumpe 27 und Hydrogenerator 16 im Wesentlichen während des gesamten Arbeitszyklus jederzeit gleichzeitig betreibbar sind, wobei die Hydropumpe 27 die Erzeugung einer (positiven) Beschleunigungskraft, und der Hydrogenerator 16 die Erzeugung einer entgegengesetzten Bremskraft ermöglichen. Insbesondere dadurch kann eine vergleichsweise exakte und präzise Steuerung des Bewegungsablaufs z.B. des Bären 9, im Wesentlichen, d.h. z.B. abgesehen von Zeitabschnitten in welchen das Wegeventil 13 umgesteuert wird, während des gesamten Arbeitszyklus des Schmiedehammers 1 erreicht werden.With the solution proposed here, the hydraulic pump 27 and the hydrogenerator 16 can be operated essentially simultaneously at any time during the entire working cycle, the hydraulic pump 27 making it possible to generate a (positive) acceleration force and the hydrogenerator 16 making it possible to generate an opposite braking force. In particular, this enables a comparatively exact and precise control of the movement sequence, for example of the bear 9, essentially, ie for example apart from periods in which the directional valve 13 is reversed, to be achieved during the entire working cycle of the forging hammer 1.

Etwaige, im Hydrauliksystem, d.h. hydraulischen System, kolbenraumseitig auftretende Unterdrücke können bei dem gezeigten Schmiedehammer 1 insbesondere dadurch ausgeglichen werden, dass Hydraulikfluid 30 über das fluidtechnisch mit dem Kolbenraum 21 und dem Hydrauliktank 15 verbundenes Nachsaugventil 25 nachfließen kann.Any, in the hydraulic system, i.e. Hydraulic system, underpressure occurring on the piston chamber side can be compensated for in the forging hammer 1 shown in particular by the fact that hydraulic fluid 30 can flow in via the suction valve 25, which is fluidically connected to the piston chamber 21 and the hydraulic tank 15.

Unterdrücke im kolbenraumseitigen Teil des Hydrauliksystems können beispielsweise auftreten, wenn während der Beschleunigung des Bären 8 die durch die Hydropumpe 27 erzeugte Volumenstrom an Hydraulikfluid 30 hinter der durch Vergrößerung des Kolbenraums 21 hervorgerufenen Volumenänderung zurückbleibt. Letzteres kann beispielsweise auftreten wenn die Volumenänderung des Kolbenraums 21 verursacht durch die beschleunigende Wirkung der Schwerkraft größer ist als der von der Hydropumpe 27 bereitgestellte Volumenstrom an Hydraulikfluid 30.Negative pressures in the part of the hydraulic system on the piston chamber side can occur, for example, if, during the acceleration of the bear 8, the volume flow of hydraulic fluid 30 generated by the hydraulic pump 27 remains behind the volume change caused by enlarging the piston chamber 21. The latter can occur, for example, if the change in volume of the piston chamber 21 caused by the accelerating effect of gravity is greater than the volume flow of hydraulic fluid 30 provided by the hydraulic pump 27.

Beispielsweise kann nach Ablauf einer vorgegebenen Beschleunigungszeit oder -phase, d.h. am oder nach dem Ende der hydraulischen Füllzeit des Kolbens, der Volumenstrom der Hydraulikpumpe reduziert werden, so dass der Kolben die jeweils vorgegebene Endgeschwindigkeit erreicht.For example, after a predetermined acceleration time or phase, i.e. at or after the end of the hydraulic filling time of the piston, the volume flow of the hydraulic pump can be reduced so that the piston reaches the respectively predetermined final speed.

In beispielhaften Betriebsabläufen kann die zur Bewegung des Bären 8 von einem vom Unterwerkzeug 4 entfernt gelegenen zweiten Umkehrpunkt U2 des Kolbens 6 oder des Bären 8 zum ersten Umkehrpunkt U1 benötigte Zeit etwa 200 ms (Millisekunden) betragen.In exemplary operations, the time required to move the bear 8 from a second reversal point U2 of the piston 6 or the bear 8 to the first reversal point U1, which is distant from the lower tool 4, can be approximately 200 ms (milliseconds).

Im Hinblick auf die bei Schmiedehämmern durchaus erheblichen zu bewegenden Massen bis hin zu mehreren Tonnen und vergleichsweise hohen Endgeschwindigkeiten, sind entsprechend hohe Hydraulikleistungen erforderlich, welche zudem in vergleichsweise kurzer Zeit und darüber hinaus mit hoher Genauigkeit eingeregelt und gesteuert werden müssen.With regard to the masses to be moved, which can be quite considerable with forging hammers, up to several tons and comparatively high top speeds, correspondingly high hydraulic capacities are required, which moreover have to be regulated and controlled in a comparatively short time and moreover with high accuracy.

Darüber hinaus treten bei Schmiedehämmern vergleichsweise hohe Volumenströme an Hydraulikfluid und vergleichsweise hohe Strömungsgeschwindigkeiten im Hydraulikkreis auf, welche zur Sicherstellung eines sicheren und zuverlässigen Betriebs entsprechend gesteuert werden müssen.In addition, comparatively high volume flows of hydraulic fluid and comparatively high flow speeds occur in forging hammers in the hydraulic circuit, which must be controlled accordingly to ensure safe and reliable operation.

Insbesondere diese vorgenannten Aufgaben und Herausforderungen können mit der hierin vorgeschlagenen und beschriebenen Umformmaschine, insbesondere dem hierin vorgeschlagenen Hydrauliksystem, gelöst werden.In particular, these aforementioned tasks and challenges can be solved with the forming machine proposed and described herein, in particular the hydraulic system proposed here.

FIG. 3 zeigt den Schmiedehammer 1 in einem Betriebszustand, in welchem der Bär 8 im ersten Umkehrpunkt U1, d.h. vorliegend dem unteren Umkehrpunkt, ist. Indem der Bär 8, insbesondere das Oberwerkzeug 9 auf das Werkstück 26 auftrifft, wird die jeweils bewegte Masse, umfassend insbesondere die Masse des Bären 8, des Oberwerkzeugs 9, des Kolbens 6, der Kolbenstange 7, abgebremst, wobei die Bewegungsenergie in Umformenergie in das Werkstück 26 zu dessen Umformung eingebracht wird. FIG. 3rd shows the forging hammer 1 in an operating state in which the bear 8 is in the first reversal point U1, ie in the present case the lower reversal point. By the bear 8, in particular the upper tool 9 striking the workpiece 26, the mass being moved in each case, including in particular the mass of the bear 8, the upper tool 9, the piston 6, the piston rod 7, is braked, the kinetic energy being converted into energy Workpiece 26 is introduced for its forming.

Insbesondere durch das hierin vorgeschlagene Hydrauliksystem mit während des Arbeitszyklus gleichzeitig betreibbarer Hydropumpe 27 und Hydrogenerator 16 ist es möglich, die Endgeschwindigkeit des Bären 8 vergleichsweise genau einzustellen, so dass vorteilhafte Schmiedeergebnisse erhalten werden können.In particular, by means of the hydraulic system proposed here with a hydraulic pump 27 and hydrogen generator 16 which can be operated simultaneously during the working cycle, it is possible to set the final speed of the bear 8 comparatively precisely, so that advantageous forging results can be obtained.

Unmittelbar anschließend an oder im Bereich des Auftreffens des Oberwerkzeugs 9 auf das Werkstück 26 kann an der abgebremsten Masse ein insbesondere in Abhängigkeit des Materials des Werkstücks mehr oder weniger ausgeprägter 26 Rückprall auftreten, der eine Beschleunigung in einer vom Unterwerkzeug 4 weg gerichteten Richtung mit sich bringt. Auftreffen und Rückprall können beispielsweise in einem Zeitbereich von 0,5 ms bis 20 ms stattfinden.Immediately after or in the area of the impact of the upper tool 9 on the workpiece 26, a more or less pronounced rebound may occur on the braked mass, depending in particular on the material of the workpiece, which causes acceleration in a direction away from the lower tool 4 . Impact and rebound can take place, for example, in a time range from 0.5 ms to 20 ms.

Durch den Rückprall wird insbesondere der Kolben 6 vom ersten Umkehrpunkt U1 schlagartig in Richtung des zweiten Umkehrpunkts U2 bewegt. Dadurch entsteht einerseits im Kolbenraum 21 für das darin befindliche Hydraulikfluid eine Verdrängungswirkung, und andererseits entstehen im Ringraum 22 bzw. im entstehenden Ringraum 22 ein Unterdruck und korrespondierend dazu eine Sogwirkung.Due to the rebound, the piston 6 in particular is suddenly moved from the first reversal point U1 in the direction of the second reversal point U2. On the one hand, this creates a displacement effect in the piston chamber 21 for the hydraulic fluid located therein, and on the other hand, a negative pressure is created in the annular space 22 or in the resulting annular space 22 and, correspondingly, a suction effect.

Um den im Hydrauliksystem geänderten Bedingungen im Bereich des Aufpralls und/oder ersten Umkehrpunkts Rechnung zu tragen wird das Wegeventil 13 durch die Steuereinheit 19 entsprechend gesteuert, insbesondere derart, dass der dritte Anschluss A3 fluidtechnisch mit dem ersten Anschluss A1 verbunden ist, und dass der zweite Anschluss A2 mit dem vierten Anschluss A4 des Wegeventils 13 verbunden ist. Dadurch werden der der Kolbenraum 21 fluidtechnisch mit dem Hydrogenerator 16, und der Ringraum 22 fluidtechnisch mit der Druckseite 12 der Hydraulikpumpe 11 verbunden. Eine entsprechende Umsteuerung des Wegeventils 23 kann zeitlich auch schon vor dem ersten Umkehrpunkt U1 erfolgen, beispielsweise in dem Zeitpunkt, in dem der Bär 9 die gewünschte Endgeschwindigkeit aufweist. Beispielsweise kann ein Umschalten des Wegeventils 23 zu einem Zeitpunkt erfolgen, in welchem die jeweils gewünschte Endgeschwindigkeit erreicht, und ein ggf. erforderliches Abbremsen oder Abbremsvorgang des Kolbens 6 oder Bären 8 abgeschlossen ist. Der Abbremsvorgang kann beispielsweise im Endbereich der Bewegung des Bären 8 in Richtung des Umformbereichs bzw. in Richtung des Werkstücks 26 erfolgen. Das Ende des Abbremsvorgangs kann zeitlich vor dem Auftreffzeitpunkt des Bären 8 im Arbeitsbereich liegen. Insoweit kann ein Umschalten des Wegeventils 23 zeitlich, insbesondere kurz vor dem Auftreffzeitpunkt erfolgen, insbesondere derart dass die jeweils erforderliche Schaltstellung des Wegeventils 23 zumindest im Auftreffzeitpunkt vorliegt.In order to take into account the changed conditions in the area of the impact and / or the first reversal point in the hydraulic system, the directional control valve 13 is controlled accordingly by the control unit 19, in particular in such a way that the third connection A3 is fluidly connected to the first connection A1, and that the second Port A2 is connected to the fourth port A4 of the directional valve 13. As a result, the piston chamber 21 is fluidly connected to the hydrogen generator 16, and the annular chamber 22 is fluidly connected to the pressure side 12 of the hydraulic pump 11. A corresponding reversal of the directional control valve 23 can also take place before the first reversal point U1, for example at the time when the bear 9 has the desired final speed. For example, the directional control valve 23 can be switched over at a point in time at which the respectively desired final speed is reached, and any braking or braking operation of the piston 6 or bear 8 that may be required has been completed. The braking process can take place, for example, in the end region of the movement of the bear 8 in the direction of the forming region or in the direction of the workpiece 26. The end of the braking process can be before the point of impact of the bear 8 in the work area. In this respect, the directional control valve 23 can be switched over in time, in particular shortly before the point of impact, in particular in such a way that the required switching position of the directional control valve 23 is at least at the point of impact.

Generell kann die Steuerung des Wegeventils 23 derart erfolgen, dass Steuervorgänge, insbesondere unter Berücksichtigung etwaiger Systemträgheiten oder Schaltzeiten, zeitlich vorversetzt derart eingeleitet werden, dass die für einen gewissen Zeitpunkt erforderliche Schaltstellung des Wegeventils 23 im jeweiligen Zeitpunkt sicher erreicht ist.In general, the control of the directional control valve 23 can take place in such a way that control processes, in particular taking into account any system inertia or switching times, are initiated with a time delay such that the switching position of the directional control valve 23 required for a certain point in time is reliably reached at the respective point in time.

In der Schaltstellung des Wegeventils 13, welche in dem Betriebszustand der FIG. 4 gezeigt ist, kann durch die Verdrängungswirkung aus dem Kolbenraum 21 verdrängtes Hydraulikfluid 30 über den Hydrogenerator 16 in den Hydrauliktank 15 abgeleitet werden. Insbesondere kann z.B. die mit dem Rückprall im Hydrauliksystem erzeugte und durch Dekompression des Hydrauliksystems frei werdende elastische Energie vom Hydrogenerator 16 in elektrische Energie gewandelt werden, wobei der Hydrogenerator 16 über den Servogenerator 29 entsprechend gesteuert wird, so dass dieser vom Hydromotor 28 angetrieben die elastische Energie zumindest teilweise in elektrische Energie umwandeln kann.In the switching position of the directional valve 13, which in the operating state of FIG. 4th shown, hydraulic fluid 30 displaced from the piston chamber 21 can be discharged via the hydrogenerator 16 into the hydraulic tank 15 by the displacement effect. In particular, the one with the rebound in Hydraulic system generated and released by decompression of the hydraulic system elastic energy from the hydrogen generator 16 are converted into electrical energy, wherein the hydrogen generator 16 is controlled accordingly via the servo generator 29 so that it can be driven by the hydraulic motor 28 at least partially convert the elastic energy into electrical energy.

Die elektrische Energie kann in dem mit dem Servogenerator 29 elektrisch verbundenen Energiespeicher 24 gespeichert werden und z.B. für nachfolgende Arbeitszyklen zum elektrischen Antreiben der Hydropumpe 27 u.a. verwendet werden.The electrical energy can be stored in the energy store 24 electrically connected to the servo generator 29 and e.g. for subsequent work cycles for electrically driving the hydraulic pump 27 and others be used.

Ferner kann durch die fluidtechnische Verbindung von Hydropumpe 27 und Ringraum 22 dem Ringraum 22 Hydraulikfluid 30 zugeführt werden, um zumindest teilweise das durch die Bewegung des Kolbens in Richtung des zweiten Umkehrpunkts U2 im Ringraum 22 erforderliche Hydraulikfluid bereitzustellen bzw. den Ringraum 22 entsprechend der Bewegung des Kolbens 6 zumindest teilweise mit Hydraulikfluid 30 zu versorgen.Furthermore, hydraulic fluid 30 can be supplied to the annular space 22 through the fluidic connection of the hydraulic pump 27 and the annular space 22 in order to at least partially provide the hydraulic fluid required in the annular space 22 due to the movement of the piston in the direction of the second reversal point U2 or the annular space 22 in accordance with the movement of the To supply piston 6 at least partially with hydraulic fluid 30.

Aufgrund der beim Rückprall auftretenden vergleichsweise hohen Beschleunigungen kann es vorkommen, dass die durch die Bewegung des Kolbens 6 in Richtung des zweiten Umkehrpunkts U2 verursachte Volumenänderung des Ringraums 22 größer ist als der von der Hydropumpe 27 gelieferte Volumenstrom. In dieser Situation kann ringraumseitig trotz aktiver Hydropumpe 27 ein Unterdruck bzw. eine Sogwirkung, entstehen, der/die gemäß der hierin vorgeschlagenen Lösung durch das ringraumseitige Nachsaugventil 25 ausgeglichen werden kann. Durch das ringraumseitige Nachsaugventil 25 ist der Ringraum 22 fluidtechnisch mit dem Hydrauliktank 15 verbunden, so dass durch die Sogwirkung bedingt Hydraulikfluid 30 vom Hydrauliktank 15 in den Ringraum 22 nachfließen kann.Due to the comparatively high accelerations occurring during the rebound, it can happen that the change in volume of the annular space 22 caused by the movement of the piston 6 in the direction of the second reversal point U2 is greater than the volume flow supplied by the hydraulic pump 27. In this situation, an underpressure or suction effect can occur on the annulus side, despite the active hydraulic pump 27, which can be compensated for by the suction valve 25 on the annulus side in accordance with the solution proposed here. The annulus 22 is connected fluidically to the hydraulic tank 15 through the annulus-side suction valve 25, so that hydraulic fluid 30 can flow into the annulus 22 from the hydraulic tank 15 due to the suction effect.

Das bzw. die Nachsaugventile 25, können, wie bereits erwähnt, als Rückschlagventile ausgebildet sein, und bieten die Möglichkeit, Unterdruckspitzen im Hydrauliksystem aufzufangen, ohne dass es hierzu einer vollumfänglichen Steuerung des Hydrauliksystems durch die Steuereinheit 19 bedarf.The suction valve or valves 25 can, as already mentioned, be designed as check valves and offer the possibility of vacuum peaks in the hydraulic system, without this requiring a full control of the hydraulic system by the control unit 19.

Insbesondere ist es zum Ausgleich von Unterdruckspitzen, oder generell Unterdrücken, nicht erforderlich, die Hydropumpe 27, beispielsweise im Bereich des Rückpralls, entsprechend mit erhöhter Drehzahl und entsprechend hoher Förderleistung zu betreiben. Stattdessen kann nach Umsteuern des Wegeventils 13 entsprechend der Konfiguration nach FIG. 4, bei welcher die Hydropumpe 27 fluidtechnisch mit dem Ringraum 22 und der Hydrogenerator 16 fluidtechnisch mit dem Kolbenraum 21 verbunden sind, die Hydropumpe 27 durch die Steuereinheit 19 beispielsweise mit einer Mindestdrehzahl bzw. Mindestfördermenge betrieben werden, die erforderlich ist um den Kolben 6, nach Abklingen des Rückpralls, mit der jeweils gewünschten Geschwindigkeit zum zweiten Umkehrpunkt U2 zu bewegen. Auf diese Weise kann insbesondere der Steuerungsaufwand reduziert werden.In particular, to compensate for negative pressure peaks, or generally negative pressures, it is not necessary to operate the hydraulic pump 27, for example in the region of the rebound, at a correspondingly high speed and correspondingly high delivery rate. Instead, after reversing the directional valve 13 according to the configuration FIG. 4th , in which the hydraulic pump 27 is fluidly connected to the annular space 22 and the hydrogenerator 16 is fluidly connected to the piston space 21, the hydraulic pump 27 is operated by the control unit 19, for example, at a minimum speed or minimum delivery rate which is required around the piston 6 after decay of the rebound to move to the second reversal point U2 at the desired speed. In this way, the control effort in particular can be reduced.

Die Bewegung des Kolbens 6 vom ersten U1 zum zweiten Umkehrpunkt U2 kann in beispielhaften Arbeitszyklen z.B. in etwa 500 ms erfolgen.The movement of the piston 6 from the first U1 to the second reversal point U2 can e.g. in about 500 ms.

Bei Erreichen oder in einem Zeitraum vor Erreichen des zweiten Umkehrpunkts U2 kann die Steuereinheit 19 den Hydraulikkreis, insbesondere Wegeventil 13 und Hydropumpe 27 und Hydrogenerator 16, derart steuern, dass der Kolben 6 mitsamt der mit diesem verbundenen bewegten Masse abgebremst wird. Der Abbremsvorgang kann in beispielhaften Arbeitszyklen z.B. in einer Zeitspanne von ca. 100 ms erfolgen.When reaching or in a period before reaching the second turning point U2, the control unit 19 can control the hydraulic circuit, in particular the directional control valve 13 and the hydraulic pump 27 and the hydrogenerator 16, in such a way that the piston 6 together with the moving mass connected to it is braked. The braking process can be performed in exemplary working cycles e.g. in a time span of approx. 100 ms.

Zur Abbremsung des Kolbens 6 und der damit bewegten Masse im Bereich des zweiten Umkehrpunkts U2 kann die Steuereinheit 19 den Hydrogenerator 16 derart ansteuern, dass dem vom Kolbenraum 21 rückströmenden Hydraulikfluid durch den Hydrogenerator 16 hydraulische Energie entzogen wird, so dass der Hydrogenerator 16 als hydrofluidische Bremse wirkt.To brake the piston 6 and the mass moved thereby in the area of the second turning point U2, the control unit 19 can control the hydrogenerator 16 in such a way that hydraulic energy is withdrawn from the hydraulic fluid flowing back from the piston chamber 21 by the hydrogenerator 16, so that the hydrogenerator 16 acts as a hydrofluidic brake works.

Gleichzeitig kann, sofern nicht bereits geschehen, die Hydropumpe 27 so gesteuert werden, dass deren Fördermenge reduziert wird oder ist, beispielsweise derart, dass die Hydropumpe 27 mit der Mindestdrehzahl betrieben wird.At the same time, if not already done, the hydraulic pump 27 can be controlled in such a way that its delivery quantity is or is reduced, for example in such a way that the hydraulic pump 27 is operated at the minimum speed.

Bei der Abbremsung wirkt bei einem Oberdruck betriebenen Schmiedehammer entsprechend der Figuren die auf die bewegte Masse wirkende Schwerkraft zusätzlich bremsend für die Bewegung in Richtung des zweiten Umkehrpunkts U2.When braking, with an upper pressure operated forging hammer according to the figures, the force of gravity acting on the moving mass additionally acts as a brake for the movement in the direction of the second reversal point U2.

Zur Abbremsung im Bereich des zweiten Umkehrpunkts U2 wird, ggf. unter Verwendung von sensorbasiert erfassten Positions- und/oder Geschwindigkeitsdaten des Bären 8, das Hydrauliksystem jedenfalls so gesteuert, dass der Bär 8 im zweiten Umkehrpunkt U2 vollständig abgebremst ist. Lediglich der Vollständigkeit wird angemerkt, dass im ersten Umkehrpunkt U1 die Abbremsung der bewegten Masse durch den Schmiedevorgang als solchen erfolgt, wobei jedoch im ersten Umkehrpunkt U1 Effekte wie Rückprall durch geeignete Steuerung des Hydrauliksystems aufzufangen oder zu bewältigen sind.For braking in the area of the second turning point U2, the hydraulic system is in any case controlled so that the bear 8 is completely braked in the second turning point U2, possibly using sensor-based position and / or speed data of the bear 8. Merely the completeness is noted that in the first turning point U1 the moving mass is braked as such by the forging process, but in the first turning point U1 effects such as rebound must be absorbed or managed by suitable control of the hydraulic system.

Nach dem Abbremsen im zweiten Umkehrpunkt U2 kann die Steuereinheit 19 das Hydrauliksystem entsprechend des vorweg beschriebenen Ablaufschemas zur Ausführung eines weiteren Arbeitszyklus steuern. Dabei kann die Steuereinheit 19 das Wegeventil 13 derart steuern, dass die Hydropumpe 27, wie in FIG. 2 gezeigt, fluidtechnisch wieder mit dem Kolbenraum 21 und der Hydrogenerator 16 fluidtechnisch wieder mit dem Ringraum 22 verbunden ist.After braking in the second reversal point U2, the control unit 19 can control the hydraulic system in accordance with the previously described flowchart to carry out a further work cycle. The control unit 19 can control the directional control valve 13 in such a way that the hydraulic pump 27, as in FIG FIG. 2nd shown, is fluidly connected again to the piston chamber 21 and the hydrogenerator 16 is fluidly connected again to the annular space 22.

Sofern in einem nachfolgenden Arbeitszyklus etwa eine von einem vorausgehenden Arbeitszyklus verschiedene Auftreffgeschwindigkeit erforderlich ist, können die Hydropumpe 27 und der Hydrogenerator 16 bei der Beschleunigung der bewegten Masse, und ggf. bei der Abbremsung der bewegten Masse zur Einstellung der gegebenen Auftreffgeschwindigkeit entsprechend gesteuert werden.If, in a subsequent work cycle, for example, an impact speed different from a previous work cycle is required, the hydraulic pump 27 and the hydrogen generator 16 can be controlled accordingly when the moving mass is accelerated and, if necessary, when the moving mass is decelerated to set the given impact speed.

Hierbei soll angemerkt werden, dass eine Veränderung oder Variation der Auftreffgeschwindigkeit mit dem hierin vorgeschlagenen Hydrauliksystem und der hierin vorgeschlagenen Verschaltung der Hydropumpe 27, des Wegeventils 13 und des Hydrogenerators 16 und der damit verbundenen Steuerung 19 vergleichsweise einfach bewerkstelligt werden kann. Insbesondere kann mit dem hierin vorgeschlagenen System auf veränderte Randbedingungen vergleichsweise flexibel reagiert werden durch entsprechende Veränderung der Steuerung, ggf. unter zusätzlicher Auswertung von Druck-, Positions-, oder Geschwindigkeitssensoren.It should be noted here that a change or variation of the impact speed with the hydraulic system proposed here and the connection proposed here of the hydraulic pump 27, the directional control valve 13 and the hydrogenerator 16 and the control unit 19 connected therewith can be accomplished comparatively easily. In particular, the system proposed here can be used to react comparatively flexibly to changed boundary conditions by correspondingly changing the control, possibly with additional evaluation of pressure, position or speed sensors.

FIG. 5 zeigt ein Arbeitsdiagramm betreffend Betriebs- und Steuergrößen des Schmiedehammers 1, wobei insgesamt fünf Kurven dargestellt sind, wobei eine erste Drehzahlkurve D1 die zeitliche Abhängigkeit bzw. den zeitlichen Verlauf der Drehzahl der Hydraulikpumpe 11 beschreibt. Eine zweite Drehzahlkurve D2 beschreibt die zeitliche Abhängigkeit bzw. den zeitlichen Verlauf der Drehzahl des Hydrogenerators 16. FIG. 5 shows a working diagram relating to operating and control variables of the forging hammer 1, a total of five curves being shown, a first speed curve D1 describing the time dependence or the time course of the speed of the hydraulic pump 11. A second speed curve D2 describes the time dependency or the time course of the speed of the hydrogenerator 16.

Eine erste Drehmomentkurve M1 beschreibt die zeitliche Abhängigkeit bzw. den zeitlichen Verlauf des Drehmoments der Hydraulikpumpe 11, und eine zweite Drehmomentkurve M2 zeigt die zeitliche Abhängigkeit bzw. den zeitlichen Verlauf des Drehmoments des Hydrogenerators 16.A first torque curve M1 describes the time dependence or the time profile of the torque of the hydraulic pump 11, and a second torque curve M2 shows the time dependency or the time profile of the torque of the hydrogenerator 16.

Eine Bewegungskurve B beschreibt die zeitliche Abhängigkeit bzw. den zeitlichen Verlauf des Hubs des Kolbens 6 oder Bären 8. Gemäß der Bewegungskurve B bewegt sich der Kolben vom zweiten Umkehrpunkt U2 aus zum ersten Umkehrpunkt U1, und dann wieder zurück zum ersten Umkehrpunkt U1.A movement curve B describes the time dependence or the time profile of the stroke of the piston 6 or bear 8. According to the movement curve B, the piston moves from the second reversal point U2 to the first reversal point U1, and then back to the first reversal point U1.

In dem beispielhaft gezeigten Bewegungsablauf nach Bewegungskurve B befindet sich der Kolben 6 bzw. Bär 8, entsprechend dem Start eines Arbeitszyklus, in einem Startzeitpunkt t0 bei t = 0 im zweiten Umkehrpunkt U2. Vom zweiten Umkehrpunkt U2 aus wird der Bär 8 bzw. Kolben 6 beschleunigt in Richtung des ersten Umkehrpunktes U1, wobei das Wegeventil 13 derart gesteuert wird, dass die Hydropumpe 27 fluidtechnisch verbunden ist mit dem Kolbenraum 21. Der Hydrogenerator 16 ist in diesem Betriebszustand fluidtechnisch verbunden mit dem Ringraum 22.In the example of the movement sequence shown according to movement curve B, the piston 6 or bear 8, corresponding to the start of a work cycle, is at a start time t0 at t = 0 in the second reversal point U2. The bear 8 or piston 6 is accelerated from the second reversal point U2 in the direction of the first reversal point U1, the directional control valve 13 being controlled in such a way that the hydraulic pump 27 is fluidly connected to the piston chamber 21. In this operating state, the hydrogenerator 16 is fluidically connected to the annular space 22.

Zur Beschleunigung wird das Pumpendrehmoment der Hydropumpe 27 und damit die ins Hydrauliksystem übertragbare Leistung entsprechend einer vergleichsweise steilen Flanke erhöht, in der vorliegend beispielhaften Kurve nach FIG. 5 bis auf etwa 1100Nm.For acceleration, the pump torque of the hydraulic pump 27 and thus the power which can be transmitted to the hydraulic system is increased in accordance with a comparatively steep flank, in the curve shown here as an example FIG. 5 down to about 1100Nm.

Mit steigender Geschwindigkeit des Bären 8 sinkt das zur Beschleunigung des Bären 9 erforderliche Drehmoment, nicht zuletzt weil auch die Schwerkraft der bewegten Masse zur Beschleunigung beiträgt. Der Bär 8, und die bewegte Masse wird bis zu einem ersten Zeitpunkt t1, der vor einem zweiten Zeitpunkt t2 liegt, in welchem der Bär 8 den ersten Umkehrpunkt U1 erreicht, beschleunigt.As the speed of the bear 8 increases, the torque required to accelerate the bear 9 decreases, not least because the gravity of the moving mass also contributes to the acceleration. The bear 8 and the moving mass is accelerated to a first point in time t1, which is before a second point in time t2, in which the bear 8 reaches the first reversal point U1.

Einhergehend mit zunehmender Geschwindigkeit des Bären 8 bzw. Kolbens 6 steigt die Drehzahl der Hydropumpe 27 von der Mindestdrehzahl Dmin bis zur Maximaldrehzahl Dmax korrespondierend zu der durch die Bewegung des Kolbens 6 verursachten Volumenänderung des Kolbenraums 21. Im gleichen Zeitraum zwischen t0 und t1 wird Hydraulikfluid 30, bei steigendem Volumenstrom, aus dem Ringraum 21 verdrängt, wobei einhergehend mit dem steigenden Volumenstrom die Drehzahl des Hydrogenerators 16, d.h. die Drehzahl des Hydromotors 28 des Hydrogenerators 16, steigt.Along with the increasing speed of the bear 8 or piston 6, the speed of the hydraulic pump 27 increases from the minimum speed Dmin to the maximum speed Dmax corresponding to the change in volume of the piston chamber 21 caused by the movement of the piston 6. In the same period between t0 and t1, hydraulic fluid 30 becomes , with increasing volume flow, displaced from the annular space 21, the speed of rotation of the hydrogenerator 16, ie the speed of the hydraulic motor 28 of the hydrogenerator 16 increases.

Im Zeitraum zwischen dem ersten Zeitpunkt t1 und dem Auftreffpunkt, der im Diagramm im Wesentlichen dem ersten Umkehrpunkt U1 zugeordneten zweiten Zeitpunkt t2 entspricht, sprich im Zeitraum zwischen dem Ende der Beschleunigungsphase und dem Auftreffzeitpunkt, kann optional noch eine Einstellung der jeweiligen Endgeschwindigkeit erfolgen.In the period between the first point in time t1 and the point of impact, which essentially corresponds to the second point in time t2 assigned to the first reversal point U1 in the diagram, that is to say in the period between the end of the acceleration phase and the point of impact, the respective final speed can optionally be set.

Zur Einstellung der Geschwindigkeit kann das Wegeventil 13 so umgesteuert werden, dass die Hydropumpe 27 mit dem Ringraum 22 und der Hydrogenerator 16 mit dem Kolbenraum 21 verbunden ist. Dabei kann, wie beispielhaft im Diagramm gezeigt ist, das Drehmoment des Hydrogenerators 16 im Zeitraum zwischen t1 und t2 erhöht werden, was insbesondere bedeutet, dass dem in den Kolbenraum fließenden Hydraulikfluid Energie entzogen wird, was letztendlich den Volumenstrom zum Kolbenraum 21 bremst, wodurch für den Bären 9 eine bremsende Wirkung erzeugt werden kann. D.h. der Hydrogenerator 16 wirkt in diesem Zeitraum als hydrofluidische Bremse, um gegebenenfalls einer weiteren Beschleunigung des Bären 8 nach Erreichen der Endgeschwindigkeit zu entgegenzuwirken.To adjust the speed, the directional control valve 13 can be reversed so that the hydraulic pump 27 is connected to the annular space 22 and the hydrogenerator 16 to the piston space 21. Here, as exemplified in The diagram shows that the torque of the hydrogenerator 16 is increased in the period between t1 and t2, which means in particular that energy is withdrawn from the hydraulic fluid flowing into the piston chamber, which ultimately brakes the volume flow to the piston chamber 21, as a result of which the bear 9 has a braking effect can be generated. This means that the hydrogenerator 16 acts as a hydrofluidic brake in this period, in order to counteract any further acceleration of the bear 8 after the end speed has been reached.

Die Drehzahl des Hydrogenerators 16 ist in dem genannten Zeitpunkt zwischen t1 und t2 etwa konstant (siehe Kurve D2). Vor dem Zeitpunkt t1, im Beispiel der FIG. 5 im Zeitintervall zwischen t0 und t1, kann die Drehzahl des Hydrogenerators 16 auf die zum generatorischen Betrieb erforderliche Drehzahl eingestellt, insbesondere hochgefahren werden.The speed of the hydrogenerator 16 is approximately constant between t1 and t2 at the point in time mentioned (see curve D2). Before time t1, in the example the FIG. 5 in the time interval between t0 and t1, the speed of the hydrogen generator 16 can be set to the speed required for generator operation, in particular increased.

Das Drehmoment des Hydrogenerators 16 (siehe Kurve M2) steigt bis zum zweiten Zeitpunkt t2 an, was z.B. bedeuten kann, dass der Hydrogenerator 16 dem hydraulischen System tatsächlich hydraulische Energie entzieht.The torque of the hydrogenerator 16 (see curve M2) increases until the second time t2, which e.g. can mean that the hydrogenerator 16 actually draws hydraulic energy from the hydraulic system.

Im Hinblick auf die in FIG. 5 gezeigten beispielhaft angegebenen Verläufe von Drehmoment und Drehzahl des Hydromotors 28 und Hydrogenerators 16 soll bemerkt werden, dass der jeweils tatsächliche Verlauf der Kurven in Abhängigkeit des jeweiligen Hydrauliksystems abweichen kann. Beispielsweise kann der Verlauf von Drehzahl und/oder Drehmoment gegenüber den Zeitpunkten t0 bis t4 zeitlich versetzt sein, was beispielsweise durch unterschiedliche Massenträgheiten und/oder Fluidträgheiten des Hydraulikfluids und/oder von Komponenten des Hydrauliksystems bedingt sein kann. Beispielsweise kann die Erhöhung der Drehzahl des Hydrogenerators 16 vor dem Zeitpunkt t1 auf die zum generatorischen Betrieb erforderliche oder geeignete Drehzahl auch anderweitig als durch den in FIG. 5 gezeigten Verlauf erreicht werden. Mit anderen Worten können Drehzahl und Drehmoment von Hydromotor und/oder Hydrogenerator von unterschiedlichen Schmiedehämmern in Abhängigkeit der jeweiligen Auslegung und Dimensionierung insbesondere des Hydrauliksystems von dem in FIG. 5 gezeigten Verlauf abweichen.With regard to in FIG. 5 curves of torque and speed of the hydraulic motor 28 and hydrogen generator 16 shown by way of example should be noted that the actual course of the curves may vary depending on the respective hydraulic system. For example, the course of the speed and / or torque can be offset in time from the times t0 to t4, which can be caused, for example, by different mass inertias and / or fluid inertias of the hydraulic fluid and / or components of the hydraulic system. For example, the increase in the speed of the hydrogen generator 16 before the time t1 to the speed required or suitable for generator operation can also be done otherwise than by the method shown in FIG FIG. 5 shown course can be achieved. In other words, the speed and torque of the hydraulic motor and / or the hydrogenerator can vary depending on the respective forging hammer Design and dimensioning of the hydraulic system in particular FIG. 5 shown course deviate.

Zeitgleich wird in dem Zeitraum zwischen t1 und t2 die Hydropumpe 27 derart gesteuert, dass die Drehzahl auf die Mindestdrehzahl Dmin sinkt wobei das Drehmoment ab dem Erreichen der Endgeschwindigkeit ansteigt.At the same time, in the period between t1 and t2, the hydraulic pump 27 is controlled in such a way that the speed drops to the minimum speed Dmin, the torque increasing when the final speed is reached.

Hierbei soll erwähnt werden, dass Drehzahl und Drehmoment der Hydropumpe 27 derart eingestellt werden, dass ab dem zweiten Zeitpunkt t2 der Kolben mit einer vorgegebenen Rückholgeschwindigkeit, beispielsweise 2m/s, vom ersten Umkehrpunkt U1 in Richtung des zweiten Umkehrpunkts U2 bewegt werden kann.It should be mentioned here that the speed and torque of the hydraulic pump 27 are set such that, from the second point in time t2, the piston can be moved from the first reversal point U1 towards the second reversal point U2 at a predetermined return speed, for example 2 m / s.

Ab dem zweiten Zeitpunkt t2 wird die Hydropumpe 27 entsprechend dem in FIG. 5 gezeigten beispielhaften Verlauf entsprechend der zuvor eingestellten Mindestdrehzahl Mmin und dem entsprechenden Drehmoment betrieben, und Bär 8 bzw. Kolben 6 werden vom ersten Umkehrpunkt U1 zum zweiten Umkehrpunkt U2 bewegt. Damit der Hydrogenerator 16 für die Rückholbewegung nicht als hydraulische Bremse wirkt, und bremsend auf die Hydropumpe 27 wirkt, wird nach dem zweiten Zeitraum das Drehmoment des Hydrogenerators 16 auf Null reduziert. Die Drehzahl des Hydrogenerators 16, d.h. des Hydromotors 28, resultiert in diesem Zeitraum insbesondere aus dem Volumenstrom des aus dem Kolbenraum 21 verdrängten Hydraulikfluids 30.From the second point in time t2, the hydraulic pump 27 is corresponding to the in FIG. 5 shown example run according to the previously set minimum speed Mmin and the corresponding torque, and bear 8 or piston 6 are moved from the first reversal point U1 to the second reversal point U2. So that the hydrogenerator 16 does not act as a hydraulic brake for the return movement and acts as a brake on the hydraulic pump 27, the torque of the hydrogenerator 16 is reduced to zero after the second period. The speed of the hydrogenerator 16, ie the hydraulic motor 28, results in this period in particular from the volume flow of the hydraulic fluid 30 displaced from the piston chamber 21.

Die Rückholbewegung des Kolbens 6 wird ab einem dritten Zeitpunkt t3 verlangsamt, derart, dass der Kolben 6 samt der damit verbundenen bewegten Masse im zweiten Umkehrpunkt U2 abgebremst ist, und der Arbeitszyklus von neuem durchlaufen werden kann.The return movement of the piston 6 is slowed down from a third point in time t3 in such a way that the piston 6 together with the associated moving mass is braked in the second reversal point U2 and the working cycle can be repeated.

Zum Abbremsen wird das Drehmoment des Hydrogenerators 16 erhöht, so dass dieser als hydraulische Bremse zur Abbremsung der in Richtung des zweiten Umkehrpunkts U2 sich bewegenden Masse wirkt. Einhergehend damit wird das Drehmoment der Hydropumpe 27 verringert, was ebenfalls zu einer Verlangsamung der Rückholbewegung führt. Durch diese Maßnahmen und der wirkenden Schwerkraft wird die sich bewegende Masse bis zu einem vierten Zeitpunkt t4, der das Ende des Arbeitszyklus definiert, vollständig abgebremst.For braking, the torque of the hydrogenerator 16 is increased so that it acts as a hydraulic brake for braking the mass moving in the direction of the second reversal point U2. Along with this, the torque of the hydraulic pump 27 is reduced, which also leads to a slowdown the return movement leads. These measures and the acting gravity completely brake the moving mass up to a fourth time t4, which defines the end of the working cycle.

Auf den vierten Zeitpunkt kann ein weiterer, entsprechend des vorweg beschriebenen Arbeitszyklus ausgeführter Arbeitszyklus folgen, wobei nach Umsteuerung des Wegeventils 13 bei der die Hydropumpe 27 wieder mit dem Kolbenraum 21 und der Hydrogenerator 16 wieder mit dem Ringraum 22 verbunden werden.The fourth point in time can be followed by a further working cycle which is carried out in accordance with the previously described working cycle, wherein after reversing the directional control valve 13, the hydraulic pump 27 is again connected to the piston chamber 21 and the hydrogenerator 16 is connected to the annular chamber 22 again.

Insgesamt zeigt sich, dass mittels des vorgeschlagenen Hydrauliksystems eine vergleichsweise genaue Steuerung von Hydromotor 28 und Hydrogenerator 16 möglich ist, derart, dass der Bär 8 entsprechend eines jeweils vorgegebenen Bewegungsablaufs und Bewegungs- und Geschwindigkeitsverlaufs gesteuert werden kann, und gleichzeitig im hydraulischen System anfallende Verlustenergie in Nutzenergie gewandelt werden kann. Es können durch die hierin vorgeschlagene Steuerung und den vorgeschlagenen Aufbau des hydraulischen Systems des Schmiedehammers vergleichsweise genaue und energieeffiziente Arbeitszyklen für den Differentialzylinder 2 und Schmiedehammer 1 umgesetzt werden.Overall, it is shown that by means of the proposed hydraulic system, a comparatively precise control of the hydraulic motor 28 and hydrogen generator 16 is possible, such that the bear 8 can be controlled in accordance with a respectively predefined movement sequence and movement and speed curve, and at the same time the energy loss occurring in the hydraulic system Useful energy can be converted. Due to the control proposed here and the proposed construction of the hydraulic system of the forging hammer, comparatively precise and energy-efficient working cycles for the differential cylinder 2 and forging hammer 1 can be implemented.

Insbesondere durch die Möglichkeit des gleichzeitigen Betriebs von Hydropumpe 27 und Hydrogenerator 16 kann eine vergleichsweise genaue und zuverlässige Einstellung des Bewegungsablaufs und der Geschwindigkeit, insbesondere Endgeschwindigkeit bzw. Auftreffgeschwindigkeit, des Bären 9 erreicht werden.In particular, due to the possibility of the simultaneous operation of hydraulic pump 27 and hydrogen generator 16, a comparatively precise and reliable setting of the movement sequence and the speed, in particular the final speed or impact speed, of the bear 9 can be achieved.

Eine Entlastung und Vereinfachung der Steuerung der hierin vorgeschlagenen Anordnung aus Hydropumpe, Hydrogenerator und Wegeventil kann z.B. durch die Nachsaugventile 25 erreicht werden, die sozusagen automatisch, etwaige Unterdruckzustände und Druckspitzen, beispielsweise hydraulische Schläge auf Kolben, Hydropumpe, Hydrogenerator und/oder Wegeventilbaugruppe, im hydraulischen System ausgleichen können. Letzteres wirkt sich nicht nur vorteilhaft auf den Steuerungsaufwand, sondern es kann gleichzeitig auch ein vergleichsweise verschleißarmer Betrieb erreicht werden.Relief and simplification of the control of the arrangement proposed here consisting of hydraulic pump, hydrogenerator and directional valve can be achieved, for example, by the suction valves 25, which automatically, so to speak, any negative pressure conditions and pressure peaks, for example hydraulic impacts on the piston, hydraulic pump, hydrogenerator and / or directional valve assembly, in the hydraulic System can compensate. The latter is not only beneficial on the control effort, but at the same time a comparatively low-wear operation can also be achieved.

BezugszeichenlisteReference list

11
SchmiedehammerForge hammer
22nd
DifferentialzylinderDifferential cylinder
33rd
UntergesenkLower die
44th
UnterwerkzeugLower tool
55
ZylinderrohrCylinder barrel
66
Kolbenpiston
77
KolbenstangePiston rod
88th
Bärbear
99
OberwerkzeugUpper tool
1010th
ServomotorServo motor
1111
Hydraulikpumpehydraulic pump
1212th
DruckseitePrinted page
1313
WegeventilDirectional control valve
1414
SaugseiteSuction side
1515
HydrauliktankHydraulic tank
1616
HydrogeneratorHydrogenerator
1717th
EingangsseiteHome page
1818th
AusgangsseiteExit side
1919th
SteuereinheitControl unit
2020
DrucksensorPressure sensor
2121
KolbenraumPiston chamber
2222
RingraumAnnulus
2323
Positions- oder GeschwindigkeitssensorPosition or speed sensor
2424th
EnergiespeicherEnergy storage
2525th
NachsaugventilSuction valve
2626
Werkstückworkpiece
2727
servomotorische Hydropumpeservomotor hydraulic pump
2828
HydromotorHydraulic motor
2929
ServogeneratorServo generator
3030th
HydraulikflüssigkeitHydraulic fluid
U1U1
erster Umkehrpunktfirst turning point
U2U2
zweiter Umkehrpunktsecond turning point
A1 - A4A1 - A4
erster bis vierter Anschlussfirst to fourth connection
D1, D2D1, D2
DrehzahlkurveSpeed curve
M1, M2M1, M2
DrehmomentkurveTorque curve
BB
BewegungskurveMovement curve
t0t0
StartzeitpunktStart time
t1 - t4t1 - t4
erster bis vierter Zeitpunktfirst to fourth time
DminDmin
MindestdrehzahlMinimum speed
DmaxDmax
MaximaldrehzahlMaximum speed

Claims (17)

  1. Forging hammer (1) for shaping workpieces (26), comprising a striking tool (8, 9) and a hydraulic linear drive (2, 13, 16, 19, 27) that is coupled to the striking tool (8, 9) and is designed to drive the striking tool (8, 9), said linear drive having a hydraulic circuit comprising a servomotor-driven hydro pump (27), a hydraulic cylinder (2), in particular a differential cylinder (2), which is fluidically connected downstream to the hydro pump (27) via a directional valve assembly (13), and a servomotor-driven hydro generator (16) which is fluidically connected downstream to the hydraulic cylinder (2) via the directional valve assembly (13), and further comprising a control unit (19) which is designed to at least control (19) the hydro pump (27), the hydro generator (16) and the directional valve assembly (13), wherein the hydro pump (27), using the directional valve assembly (13), is configured as a unidirectional servomotor-driven hydro pump (27) and is integrated into the hydraulic circuit, and wherein the servomotor-driven hydro generator (16), using the directional valve assembly (13), is configured as a unidirectional servomotor-driven hydro generator (16) and is integrated into the hydraulic circuit.
  2. Forging hammer (1) according to claim 1, wherein the control unit (19) is configured such that the directional valve assembly (13) is actuated at least temporarily during a working movement of the hydraulic cylinder (2) such that the hydro pump (27) is fluidically connected to a first fluid chamber (21), in particular a piston chamber (21), and the hydro generator (16) is fluidically connected to a second fluid chamber, in particular an annular chamber (22), of the hydraulic cylinder (2), and such that the directional valve assembly (13) is actuated at least temporarily during a return movement of the hydraulic cylinder (2) such that the hydro pump (27) is fluidically connected to the second fluid chamber (22) and the hydro generator (16) is fluidically connected to the first fluid chamber (21) of the hydraulic cylinder (2), and/or
    wherein the control unit (19) is configured such that the hydro pump (27) is alternately connected to a or the first fluid chamber (21) and to the second fluid chamber (22) of the hydraulic cylinder (2) in sequentially successive, in particular immediately successive, portions of a working cycle of the hydraulic cylinder (2), wherein optionally the hydro generator (16) is correspondingly alternately connected to the second fluid chamber (22) and to the first fluid chamber (21).
  3. Forging hammer (1) according to either claim 1 or claim 2, wherein the directional valve assembly (13) comprises a 4/2 way valve (13), or wherein the directional valve assembly comprises at least four individual hydraulic valves that are fluidically connected in a bridge circuit, wherein the bridge circuit is optionally designed as a polygonal circuit of four hydraulic valves having intermediate connection points, is also optionally implemented as a parallel circuit of in each case two hydraulic valves that are connected in series,
    and/or
    wherein the hydraulic circuit comprises a plurality of hydro pumps (27) that are fluidically connected in parallel and/or the hydraulic circuit comprises a plurality of hydro generators (16) that are fluidically connected in parallel.
  4. Forging hammer (1) according to either claim 1 or claim 2, or to claim 3 if dependent on claim 2, wherein the hydraulic circuit comprises at least one feeder valve (25) which is fluidically connected on one side to a feeding source (15) and on the other side to at least one fluid chamber (21, 22) of the hydraulic cylinder (2), in particular to the piston chamber (21) and/or annular chamber (22), the fluidic connection of the suction valve (25) optionally being designed such that a negative pressure that arises in the at least one fluid chamber (21, 22) during operation of the hydraulic cylinder (2), in particular the differential cylinder (2), can be compensated for by feeding in hydraulic fluid by means of the feeder valve (25).
  5. Forging hammer (1) according to any of claims 1 to 4, wherein the control unit (19) is configured to control the pump speed of the hydro pump (27) such that, during operation, said hydro pump is operated at least at a minimum speed (Dmin) that differs from zero, wherein the pump speed in a working region of a working cycle of the hydraulic cylinder (2) is preferably first increased from the minimum speed (Dmin) to a maximum speed (Dmax) and is subsequently decreased from the maximum speed (Dmax) to the minimum speed (Dmin), wherein the control unit (19) is optionally configured such that the hydro pump (27) is always operated at least at the minimum speed (Dmin) during a plurality of immediately successive working cycles, wherein
    the control unit (19) is also optionally configured such that the hydro pump (27) is first activated at the minimum speed (Dmin), and subsequently the pump speed in a working region of a working cycle of the hydraulic cylinder (2) is first increased from the minimum speed (Dmin) to a maximum speed (Dmax), and the pump speed is also optionally decreased from the maximum speed (Dmax) to the minimum speed (Dmin) in a subsequent working portion, in particular such that the minimum speed (Dmin) is achieved in a reversal point of the hydraulic cylinder (2), wherein the pump speed of the hydro pump (27) is also optionally increased correspondingly with a linear function of time, wherein the control unit (19) is also optionally configured such that, when a predetermined final speed of the striking tool (8, 9) has been reached, starting from when the maximum speed (Dmax) has been reached, the pump speed of the hydro pump (27) is reduced such that, under the influence of the hydraulic forces prevailing in the hydraulic circuit and, if applicable, the force of gravity acting on the striking tool (8, 9), the predetermined final speed is achieved in or shortly before or immediately before the reversal point, or shaping point, or in or shortly before or immediately before the reversal point of the shaping point, wherein, in order to set the final speed, the hydro generator (16) is optionally operated as a hydraulic brake in order to actively brake the hydraulic piston (2).
  6. Forging hammer (1) according to any of claims 1 to 5, wherein the control unit (19) is designed and configured to control the hydro pump (27) such that a maximum feeding speed of the differential cylinder (2) is in the range of between 1.0 to 6 m/s, and/or wherein the control unit (19) is configured such that a starting point for starting a shaping or forging process depending on a final speed that is required in each case, depending on the height of the workpiece (26) to be shaped, which height is measured in the direction of movement of the hydraulic piston (2), and/or wherein the control unit is configured such that the distance covered by the striking tool (8, 9) during a forging cycle is minimal, and/or wherein the control unit (19) is configured such that striking energy of a previously driven stroke is used to calculate the starting position of the hydraulic piston (2) on the basis of subsequently required striking energy, wherein the starting position is optionally set depending on the particular height of the workpiece (26) to be shaped, and/or the control unit (19) is configured such that a position, in particular the starting position, of the hydraulic piston (2) at the beginning or at a defined point in time is determined during a shaping or forging cycle and is used as a calculation basis for determining a starting position of the hydraulic piston (2) and/or for operating parameters for controlling the movement of the hydraulic piston (2) for a chronologically subsequent shaping or forging process.
  7. Forging hammer (1) according to any of claims 1 to 6, further comprising an energy storage means (24) which is connected to the hydro generator (16) for the purpose of feeding electrical energy generated by the hydro generator (16).
  8. Method for controlling a working cycle of a forging hammer (1), wherein a hydraulic cylinder (2), in particular a differential cylinder (2), that is coupled to a striking tool (8, 9) is driven by the supply of hydraulic fluid (30) by means of a servomotor-driven hydro pump (27) of a hydraulic linear drive (2, 13, 16, 19, 27), which hydro pump is fluidically coupled via a hydraulic circuit and a directional valve assembly (13) that is fluidically connected upstream to the hydraulic cylinder (2), wherein hydraulic fluid (30) that flows out from the differential cylinder (2) is conveyed, via the directional valve assembly (13), to a servomotor-driven hydro generator (16) that is fluidically connected downstream into the hydraulic circuit of the directional valve assembly (13), wherein the hydro pump (27), using the directional valve assembly (13), is operated as a unidirectional servomotor-driven hydro pump (27) and wherein the servomotor-driven hydro generator (16), using the directional valve assembly (13), is operated as a unidirectional servomotor-driven hydro generator (16).
  9. Method according to claim 8, wherein, at least temporarily during a working movement of the hydraulic cylinder (2) the directional valve assembly (13) is actuated such that the hydro pump (27) is fluidically connected to a first fluid chamber (21) of the hydraulic cylinder (2), in particular a piston chamber (21), and the hydro generator (16) is fluidically connected to a second fluid chamber (22) of the hydraulic cylinder (2), in particular an annular chamber (22), and such that, at least temporarily during a subsequent return movement of the hydraulic cylinder (2), the directional valve assembly (13) is actuated such that the hydro pump (27) is fluidically connected to the second fluid chamber (22), in particular the annular chamber (22), and the hydro generator (16) is fluidically connected to the first fluid chamber (21), in particular the piston chamber (21), of the hydraulic cylinder (2), and/or wherein, in sequentially successive, in particular immediately successive, portions of a working cycle of the hydraulic cylinder (2), the hydro pump (27) is alternately connected to a or the first fluid chamber (21) and second fluid chamber (22) of the hydraulic cylinder (2), wherein the hydro generator (16) is optionally correspondingly alternately connected to the second fluid chamber (22) and the first fluid chamber (21).
  10. Method according to either claim 8 or claim 9, the hydro pump (27) is controlled by the control unit (19) such that, during operation, the hydro pump (27) is operated at least at a minimum speed (Dmin) that differs from zero, wherein the pump speed in a working portion of a working cycle of the differential cylinder (2) is preferably first increased from the minimum speed (Dmin) to a maximum speed (Dmax) and then decreased from the maximum speed (Dmax) to the minimum speed (Dmin), and wherein, preferably during a return portion of the working cycle, the pump speed is set or adjusted to the minimum speed (Dmin).
  11. Method according to any of claims 8 to 10, wherein, in order to accelerate a piston (6) of the hydraulic cylinder (2) in the direction of a first reversal point (U1) that is associated with the shaping region (4) of the forging hammer (1), the pump speed of the hydro pump (27) is increased from a or the minimum speed (Dmin), in particular in a linear dependence on time, to a or the maximum speed (Dmax) such that the maximum speed (Dmax) is achieved before reaching a first reversal point (U1) that is associated with the shaping region (4) of the hydraulic cylinder (2), wherein the pump speed of the hydro pump (27) is preferably reduced after the maximum speed (Dmax) has been reached, in particular in a linear relationship with time, such that the minimum speed (Dmin) is achieved when the first reversal point (U1) has been reached, wherein the hydro pump (27) is always operated at least at the minimum speed (Dmin) during a plurality of immediately successive working cycles, wherein the hydro pump (27) is also optionally activated first at the minimum speed (Dmin), and then the pump speed in a working region of a working cycle of the hydraulic cylinder (2) is increased from the minimum speed (Dmin) to a maximum speed (Dmax), and also optionally, in a subsequent working portion, the pump speed is decreased from the maximum speed (Dmax) to the minimum speed (Dmin), in particular such that the minimum speed (Dmin) is achieved in a reversal point of the hydraulic cylinder (2), wherein, when a predetermined final speed of the striking tool (8, 9) has been reached, starting from when the maximum speed (Dmax) has been achieved, the pump speed of the hydro pump (27) is also optionally reduced such that the predetermined final speed is achieved in or shortly before or immediately before the reversal point, or shaping point, or in or shortly before or immediately before the reversal point of the shaping point under the influence of the hydraulic forces prevailing in the hydraulic circuit, and, if applicable, the force of gravity acting on the striking tool (8, 9), wherein, in order to set the final speed, the hydro generator (16) is optionally operated as a hydraulic brake in order to actively brake the hydraulic piston (2).
  12. Method according to any of claims 8 to 11, wherein, when a or the first reversal point (U1) of the forging hammer (1) that is associated with a shaping region (4) has been reached, or when a predetermined speed of the rams (9) has been reached, the directional valve assembly (13) is actuated such that a pressure outlet (12) of the hydro pump (27) is fluidically connected to a or, if dependent on claim 9, to the second fluid chamber (22) of the hydraulic cylinder (2), in particular an annular chamber (22) of the differential cylinder (2), and a pressure inlet (17) of the hydro generator (16) is fluidically connected to a or, if dependent on claim 9, to the first fluid chamber (21) of the hydraulic cylinder (2), in particular the piston chamber (21) of the differential cylinder (2).
  13. Method according to claim 12 if dependent on claim 9 or a claim referring back to claim 9, wherein a negative pressure that is generated by rebound in the first reversal point (U1) is compensated for in the second fluid chamber (22), in particular the annular chamber (22), by means of a feeder valve (25) that is fluidically connected on one side to the second fluid chamber (22) and on the other side to a hydraulic tank (15), and, preferably, elastic energy generated by the rebound in the hydraulic circuit is converted into electrical energy by means of decompression by the hydro generator (16), and is preferably stored in an intermediate storage means (24).
  14. Method according to either claim 8 or claim 13, wherein, when a second reversal point (U2) of the hydraulic cylinder (2) that is remote from the shaping region (4) of the forging hammer (1) has been reached, the directional valve assembly (13) is actuated such that a pressure outlet (12) of the hydro pump (2) is fluidically connected to a or, if dependent on claim 9 or a claim referring back to claim 9, to the first fluid chamber (21) of the hydraulic cylinder (2), in particular the piston chamber (21) of the differential cylinder (2), and a pressure inlet (17) of the hydro generator (16) is fluidically connected to a or, if dependent on claim 9 or a claim referring back to claim 9, to the second fluid chamber (22) of the hydraulic cylinder (2), in particular the annular chamber (22) of the differential cylinder (2).
  15. Method according to any of claims 8 to 14, wherein a starting point for starting a shaping or forging process depending on a required final speed, depending on the height of the workpiece (26) to be shaped, which height is measured in the direction of movement of the hydraulic piston (2), and/or wherein the distance covered by the striking tool (8, 9) during a forging cycle is minimal.
  16. Method for controlling a forging hammer (1) according to any of claims 1 to 7, wherein a plurality of successive working cycles is/are controlled according to a method according to any of claims 8 to 15, wherein the hydro pump (27) is operated at least over the plurality of working cycles at a minimum speed that differs from zero.
  17. Method according to claim 16, wherein secondary energy generated in a working cycle by the hydro generator (16) is supplied in a subsequent working cycle of the forging hammer (1) and/or wherein striking energy of a previously driven stroke is used to calculate the starting position of the hydraulic piston (2) on the basis of subsequently required striking energy, and/or wherein a position, in particular a starting position, of the hydraulic piston (2) is determined at the beginning or at a defined point in time during a shaping or forging cycle and is used as a calculation basis for determining a starting position of the hydraulic piston (2) and/or for operating parameters for controlling the movement of the hydraulic piston (2) for a chronologically subsequent shaping or forging process.
EP16712778.6A 2015-04-09 2016-03-18 Forging hammer and method for controlling the working cycle of a forging hammer Active EP3280554B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015105400.0A DE102015105400B4 (en) 2015-04-09 2015-04-09 Forming machine, in particular forging hammer, and method for controlling a forming machine
PCT/EP2016/055950 WO2016162184A1 (en) 2015-04-09 2016-03-18 Forming machine, in particular forging hammer, and method for controlling a forming machine

Publications (2)

Publication Number Publication Date
EP3280554A1 EP3280554A1 (en) 2018-02-14
EP3280554B1 true EP3280554B1 (en) 2020-07-01

Family

ID=55642426

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16712778.6A Active EP3280554B1 (en) 2015-04-09 2016-03-18 Forging hammer and method for controlling the working cycle of a forging hammer

Country Status (4)

Country Link
US (1) US10875082B2 (en)
EP (1) EP3280554B1 (en)
DE (1) DE102015105400B4 (en)
WO (1) WO2016162184A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3311997A1 (en) * 2016-10-18 2018-04-25 Automation, Press and Tooling, A.P. & T AB Servo hydraulic press
DE102018120000A1 (en) * 2018-08-16 2020-02-20 Moog Gmbh Electrohydrostatic actuator system with suction tank
CN110259769B (en) * 2019-05-27 2020-09-25 天津市天锻压力机有限公司 Electro-hydraulic control system of 3000T liquid die forging hydraulic press and forming process
DE102021101539A1 (en) 2021-01-25 2022-07-28 Langenstein & Schemann Gmbh Hydraulic forming machine for pressing workpieces, in particular a forging hammer, and method for operating a hydraulic forming machine, in particular a forging hammer
CN114458663B (en) * 2022-01-19 2024-02-02 上海海岳液压机电工程有限公司 Energy control method based on hydraulic pile hammer
CN114505438B (en) * 2022-04-02 2022-07-12 太原理工大学 High-power electro-hydraulic control press machine system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3636265C1 (en) * 1986-10-24 1987-08-27 Langenstein & Schemann Gmbh Liquid-outlet-securing device in the region of the piston rod guide on the pull-back cylinder of a metal-forming machine tool

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3742820A (en) * 1971-09-22 1973-07-03 Sperry Rand Corp Power transmission
SE437861B (en) 1983-02-03 1985-03-18 Goran Palmers DEVICE FOR MEDIUM HYDRAULIC CYLINDER OPERATED MACHINERY WITH ONE OF A DRIVE CELL THROUGH AN ENERGY CUMULATOR DRIVE PUMP
DE3728418A1 (en) * 1987-08-26 1989-03-09 Horst Baltschun DYNAMIC PRESSURE PRESSURE PRESS
EP0641644A1 (en) * 1993-09-02 1995-03-08 Maschinenfabrik Müller-Weingarten AG Method for controlling the drive of a hydraulic press and apparatus for carrying out the method
DE102008003106A1 (en) 2008-01-01 2009-07-02 Dieffenbacher Gmbh + Co. Kg Method for energy-saving operation of a hydraulic press and an energy-saving and low-maintenance hydraulic press
DE102008053766A1 (en) 2008-10-21 2010-04-22 Voith Patent Gmbh Hydraulic press drive and method for operating a hydraulic press drive
ES2475214T3 (en) * 2009-07-27 2014-07-10 Oilgear Towler S.A.S. Apparatus for hydraulically operating processing machines such as metal forming machines and method for operating such metal forming machines
DE102011000473B4 (en) * 2011-02-02 2017-07-13 Langenstein & Schemann Gmbh Pressing machine and method for pressing workpieces
DE102011011750A1 (en) * 2011-02-18 2012-08-23 MAE Maschinen- u. Apparatebau Götzen GmbH Accumulator-free hydraulic drive arrangement for and with a consumer, in particular for presses, and method for operating such an accumulatorless hydraulic drive assembly
DE102012000017A1 (en) 2012-01-02 2013-07-04 Schuler Smg Gmbh & Co. Kg Method for controlling a hydraulic press
DE202014104509U1 (en) 2014-09-22 2014-10-20 Schuler Pressen Gmbh sledgehammer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3636265C1 (en) * 1986-10-24 1987-08-27 Langenstein & Schemann Gmbh Liquid-outlet-securing device in the region of the piston rod guide on the pull-back cylinder of a metal-forming machine tool

Also Published As

Publication number Publication date
EP3280554A1 (en) 2018-02-14
WO2016162184A1 (en) 2016-10-13
US20180185900A1 (en) 2018-07-05
DE102015105400B4 (en) 2022-06-02
DE102015105400A1 (en) 2016-10-13
US10875082B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
EP3280554B1 (en) Forging hammer and method for controlling the working cycle of a forging hammer
EP0615837B1 (en) Drive control method for a hydraulic press and apparatus for carrying out the method
DE102011000473B4 (en) Pressing machine and method for pressing workpieces
EP0641644A1 (en) Method for controlling the drive of a hydraulic press and apparatus for carrying out the method
DE10393056B4 (en) Hydraulic control in a hydraulic system, in particular for the operation of a scrap shear
AT516507A4 (en) forging machine
EP2420681A2 (en) Hydraulic linear drive device
EP1758696B1 (en) Hybrid drawing cushion facility
EP1656224B1 (en) Device for controlling the drawing process in a transfer press
DE4320213A1 (en) Pressing main drive
EP0692327A1 (en) Drive for hydraulic presses with high number of cycles
EP3056291B1 (en) Press with cutting shock damping
DE102010037330B4 (en) Drive device with linear motor for a press
DE102006041222B4 (en) Method for open-die forging a workpiece
DE10005023A1 (en) Press
EP1646462B1 (en) Method for shaping a workpiece
EP3157727A1 (en) Method for operating an injection-moulding machine
EP0768127B1 (en) Drawing apparatus for a press
EP4013607A1 (en) Baling press and method for baling deformable material
WO2022157360A1 (en) Hydraulic forming machine for pressing workpieces, more particularly forging hammer, and method for operating a hydraulic forming machine, more particularly a forging hammer
EP4091733A1 (en) Drawing cushion and method for controlling same
DE1960706A1 (en) Device for generating impulse printing with liquid
DE2700149A1 (en) High-speed hydrodynamic hammer with built-in container - having elastic diaphragm which cooperates with vertically adjustable and horizontally movable die block

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171005

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190705

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1285686

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010375

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201002

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010375

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

26N No opposition filed

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210318

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210318

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210318

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210318

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1285686

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240321

Year of fee payment: 9

Ref country code: FR

Payment date: 20240326

Year of fee payment: 9