EP3274489B1 - Two-chamber electrodialysis cell with anion and cation exchange membrane for use as an anode in alkaline zinc electrolytes and zinc alloy electrolytes for the purpose of deposition of metal in electroplating systems - Google Patents
Two-chamber electrodialysis cell with anion and cation exchange membrane for use as an anode in alkaline zinc electrolytes and zinc alloy electrolytes for the purpose of deposition of metal in electroplating systems Download PDFInfo
- Publication number
- EP3274489B1 EP3274489B1 EP16711218.4A EP16711218A EP3274489B1 EP 3274489 B1 EP3274489 B1 EP 3274489B1 EP 16711218 A EP16711218 A EP 16711218A EP 3274489 B1 EP3274489 B1 EP 3274489B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- anolyte
- anode
- exchange membrane
- chamber
- zinc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003792 electrolyte Substances 0.000 title claims description 64
- 238000000909 electrodialysis Methods 0.000 title claims description 36
- 239000012528 membrane Substances 0.000 title claims description 30
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims description 27
- 229910052725 zinc Inorganic materials 0.000 title claims description 27
- 239000011701 zinc Substances 0.000 title claims description 27
- 229910001297 Zn alloy Inorganic materials 0.000 title claims description 26
- 238000005341 cation exchange Methods 0.000 title claims description 24
- 238000009713 electroplating Methods 0.000 title claims description 18
- 229910052751 metal Inorganic materials 0.000 title claims description 7
- 239000002184 metal Substances 0.000 title claims description 7
- 230000008021 deposition Effects 0.000 title description 3
- 238000005349 anion exchange Methods 0.000 title description 2
- 150000001450 anions Chemical class 0.000 title description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 97
- 239000003011 anion exchange membrane Substances 0.000 claims description 16
- 150000001768 cations Chemical class 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- 238000003860 storage Methods 0.000 claims description 5
- 238000001465 metallisation Methods 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 239000010405 anode material Substances 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims 2
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 230000000630 rising effect Effects 0.000 claims 1
- 239000011343 solid material Substances 0.000 claims 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 29
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 28
- 239000004033 plastic Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 9
- -1 hydrogen ions Chemical class 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 239000003014 ion exchange membrane Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 229910001415 sodium ion Inorganic materials 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000005246 galvanizing Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000003204 osmotic effect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 239000002000 Electrolyte additive Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 244000089486 Phragmites australis subsp australis Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000011086 high cleaning Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000012332 laboratory investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- ZNCPFRVNHGOPAG-UHFFFAOYSA-L sodium oxalate Chemical compound [Na+].[Na+].[O-]C(=O)C([O-])=O ZNCPFRVNHGOPAG-UHFFFAOYSA-L 0.000 description 1
- 229940039790 sodium oxalate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/16—Regeneration of process solutions
- C25D21/22—Regeneration of process solutions by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/002—Cell separation, e.g. membranes, diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
- C25D17/12—Shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/22—Electroplating: Baths therefor from solutions of zinc
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/565—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
Definitions
- the invention relates to an anode in the electroplating application for use in strongly alkaline, galvanic electrolytes based on sodium hydroxide for the deposition of zinc and zinc alloys on substrates of steel and zinc die-casting.
- the state of the art is to use most often insoluble anodes of steel, stainless steel or nickel-plated steel in alkaline galvanizing electrolytes.
- Different geometric shapes are selected, eg plates in rectangular shape, expanded metal in rectangular or cylindrical shape, Round rods, pipes and others.
- the zinc-nickel electrolyte is separated from the anode by a perfluorinated cation exchange membrane. Diluted sulfuric acid is used as the anolyte, and platinum-plated titanium as the anode material.
- a sodium hydroxide solution is used, which offers the advantage that no hydrogen ions (protons) from the anolyte on the cation exchange membrane in the zinc-nickel electrolyte described and can dilute this by reaction with hydroxide ions to water or in the presence of Cyanide ions in the zinc-nickel electrolyte can react when passing through the membrane to dangerous hydrogen cyanide.
- the US 2005/189231 A1 relates to baths, processes and systems for galvanizing zinc-nickel ternary and higher alloys, the system having a partition wall for forming a cathode chamber and an anode chamber, the plating bath being located only in the cathode chamber.
- the DE 690 13 825 T2 discloses a process for the continuous removal and recovery of ethylenediaminetetraacetic acid (EDTA) from the process water of electroless copper plating and apparatuses for carrying out this process.
- EDTA ethylenediaminetetraacetic acid
- the DE 40 16 000 A1 discloses an apparatus for the treatment of particular metal-containing liquids by ion exchange and simultaneous or periodic regeneration of the ion exchange resin by electrodialysis.
- the US 5,162,079 A discloses a method and apparatus for plating metals in which the metal salt concentration within the plating bath is reduced by providing an insoluble anode assembly in the bath.
- the invention is based on extensive laboratory investigations, the results of which form the basis for the description of the structural design and the function of the two-chamber electrodialysis cell.
- a galvanic plant with a two-chamber electrodialysis cell as anode in an alkaline zinc and zinc alloy electrolyte characterized in that the two-chamber electrodialysis cell contains an anode which is separated from an alkaline zinc or zinc alloy electrolyte by a cation and an anion exchange membrane in which the cation exchange membrane and the anion exchange membrane form two separate anolyte chambers, wherein an inner anolyte chamber in which the anode is located is permeable by a first anolyte and an outer anolyte chamber has openings with inflow and outflow means for filling with a second anolyte or overflowing one having second anolyte .
- the invention further relates to the use of a two-chamber electrodialysis cell with anion and cation exchange membrane as an anode in an alkaline zinc and zinc alloy electrolyte of a galvanic plant for the purpose of metal deposition, characterized in that the two-chamber electrodialysis cell contains an anode, which by the cation and an anion exchange membrane is separated from the alkaline zinc or zinc alloy electrolyte, wherein the cation exchange membrane and anion exchange membrane form two separate anolyte chambers, wherein an inner anolyte chamber, in which the anode is located, is permeable by a first anolyte and an outer anolyte chamber openings with inflow and outflow means for filling with a second anolyte or overflow of a second anolyte .
- the function of the two-compartment electrodialysis cell prevents an increase in the sodium hydroxide concentration and the volume of the zinc-nickel electrolyte.
- the inner chamber with the anode (7) is separated from the outer chamber by a cation exchange membrane (4). This in turn is separated from the zinc-nickel electrolyte by an anion exchange membrane (3).
- the inner anolyte chamber is connected via fittings (1), (2) with an anolyte circuit.
- the anodic reaction reduces the sodium hydroxide concentration in the anolyte circulatory system.
- the sodium hydroxide concentration in the outer chamber increases due to the "ion inflow" of Na + anolyte and OH - zinc-nickel to values greater than 300 g / l. Osmosis deprives the zinc-nickel electrolyte of water via the anion exchange membrane.
- the sodium hydroxide volume in the outer chamber increases and can be returned via the fitting (10) with hose (11) in the anolyte circuit or zinc-nickel electrolyte.
- concentrations and volumes of anolyte and zinc-nickel electrolyte can thus be kept stable.
- the two-chamber electrodialysis cell is preferably suitable for use in strongly alkaline, galvanic zinc-nickel electrolytes, which are based on sodium hydroxide and amine-containing additives, since the efficiency of the deposition process is particularly strongly influenced positively.
- the cathodic current efficiency remains at a high level. Process reliability is increased. Additional disposal costs are eliminated. Process chemicals are saved.
- two ion exchange membranes become a solid electrodialysis module, as in US Pat FIGS. 1 and 2 shown, joined together so that two anolyte chambers (5) and (6) arise.
- the anode can be made of a stainless steel tube (7) whose diameter and length can be different depending on the application and which is tapered on one side and a circular stainless steel board (14) which is firmly connected to the anode tube (eg welded) constructed his.
- a common pipe diameter for the application would be eg 2 inches.
- Two holes of different diameter in the board are used for screwing or welding the inlet and outlet fittings (1), (2) for the Anolyte sodium hydroxide solution (concentration about 160 g / l), hereinafter referred to as "Anolyte 1".
- the inlet and outlet fittings may be hose nozzles of different diameter, wherein the smaller diameter is to be used for the inlet, in order to generate any additional hydrostatic pressure inside the electrodialysis cell as it flows through the anolyte 1.
- the suspension device (18) Further firmly connected to the board is the suspension device (18) at the same time the power transmission from the anode rail to the electrodialysis cell is used.
- the plastic body consists of a plastic foot cap, e.g. PVC (16) into which a plastic lattice tube, e.g. Polypropylene of defined length, e.g. 700 mm and defined diameter, e.g. 80 mm and cation exchange membrane (4) lying thereon and a second lattice tube piece of defined length, e.g. 640 mm and diameter, e.g. 100 mm with the anionic membrane lying on it (3) is hermetically sealed together, e.g. Pouring in synthetic resin.
- the upper part of the two-chamber cylinder is also hermetically sealed in a plastic collar (17), so that both chambers have no connection to each other.
- the tubular plastic collar (17) has an external thread at the top, e.g.
- the anode (7) is inserted into the plastic body, below the board is a flat sealing ring (15) with a screw cap (8) made of plastic, which has an opening at the top, which is smaller than 10 mm in diameter the diameter of the board (14) and an internal thread, eg 2 1 ⁇ 2 ", has, the anode is screwed to the plastic body.
- the passage to the outer Anolytehunt have. These are used to screw in two fittings (9), (10), eg angled threaded fittings with hose nozzles.
- the outer anolyte chamber (5) is filled with sodium hydroxide solution (concentration eg 160 g / l), referred to in the following description as "Anolyte 2", via one of these two fittings, while venting takes place via the other fitting.
- one of the two grommets is provided with a cap (12) to prevent later penetration of zinc / zinc alloy electrolyte into the anolyte 2 during the production process.
- the drain fitting (10) for the overflowing Anolyte 2 in the working state the electrodialysis cell is for the same reason with a hose (11) or pipe bend (13) made of plastic with the opening facing down, provided.
- the sodium hydroxide concentration continuously increases and osmosis sets in, counteracting the increase in the concentration gradient between the outer anolyte chamber and the zinc / zinc alloy electrolyte.
- Water is withdrawn from the zinc / zinc alloy electrolyte via the anion exchange membrane (3) and reaches the outer anolyte chamber (5).
- the volume of the anolyte 2 in the outer anolyte chamber thereby increases continuously.
- the volume overhang is removed from the electrodialysis cell via the drainage device (10).
- the overflowing amount of sodium hydroxide solution (Anolyt 2) should be recycled to 50% each in the zinc / zinc alloy electrolyte and the anolyte 1 to keep the concentration and volume ratios of zinc / zinc alloy electrolyte and anolyte 1 approximately constant, as the Charge carrier sodium ions and hydroxide ions in an equivalent amount of the anolyte 1 and the zinc / zinc alloy electrolyte in the Anolyte 2 chamber (5) have passed.
- Fig. 4 The supply of required for the electrochemical oxidation at the anode anolyte 1 with a recommended concentration of about 160 g / l of sodium hydroxide is carried out as in Fig. 4 represented in the circulation system by means of a circulation pump (22) from a reservoir (23) via shut-off valves (20) and flow meter (21) for each individual electrodialysis cell.
- FIG. 2 For better understanding with arrows, the anolyte flux of Anolyt 1 through the electrodialysis cell is shown.
- the derivation of the excess volume of Anolyt 2 in the zinc / zinc alloy electrolyte is very easy by free overflow through the fitting with spout (10) and pipe bend (13), see Fig. 2 , half of the number of electrodialysis cells in the galvanic plant.
- the dissipation of the overflowing Anolyte 2 - volume in the Anolyte 1 - reservoir is done by the other half of the number of located in the galvanic electrodialysis cells on the fitting with nozzle (10) a plastic tube (11) is plugged into a central return line to the Anolyte 1 tank opens, see Fig. 4 , (19).
- the concentration of sodium hydroxide of the anolyte 1 should always be about 30 g / l greater than the sodium hydroxide concentration of the zinc / zinc alloy electrolyte. However, it must be smaller than the sodium hydroxide concentration of the Anolyte 2. Only then is it ensured that the osmosis water mainly from the zinc / zinc alloy electrolyte into the Anolyt 2 - chamber of the electrodialysis cell is "pushed" by osmotic pressure over the Anionenauleyermembran.
- the starting concentrations of sodium hydroxide of Anolyte 1 and 2 may be equal before commissioning the electrodialysis cells, as shown in the list of reference in (5), (6), as the concentration of anolyte 2 increases after application of the electroplating current with operating time and the concentration of Anolyte 1 drops.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Description
Die Erfindung betrifft eine Anode in der galvanotechnischen Anwendung für den Einsatz in stark alkalischen, galvanischen Elektrolyten auf der Basis von Natriumhydroxid zum Abscheiden von Zink und Zinklegierungen auf Substraten von Stahl und Zink-Druckguss.The invention relates to an anode in the electroplating application for use in strongly alkaline, galvanic electrolytes based on sodium hydroxide for the deposition of zinc and zinc alloys on substrates of steel and zinc die-casting.
Stand der Technik ist, in alkalischen Verzinkungselektrolyten am häufigsten unlösliche Anoden aus Stahl, Edelstahl oder vernickeltem Stahl einzusetzen. Dabei werden verschiedene geometrische Formen gewählt, z.B. Platten in rechteckiger Form, Streckmetall in Rechteckform oder zylindrischer Form, Rundstäbe, Rohre und andere.The state of the art is to use most often insoluble anodes of steel, stainless steel or nickel-plated steel in alkaline galvanizing electrolytes. Different geometric shapes are selected, eg plates in rectangular shape, expanded metal in rectangular or cylindrical shape, Round rods, pipes and others.
Stark alkalische galvanische Verzinkungselektrolyte neigen je nach Elektrolytzusammensetzung nach relativ kurzer Betriebszeit von einigen Wochen zu teilweise starken Ablagerungen auf den Anodenoberflächen. Das hat den Nachteil der allmählichen Verschlechterung der kathodischen Stromausbeute und somit der Effizienz des galvanischen Prozesses sowie der galvanischen Anlage. Die Kosten an Elektroenergie pro Quadratmeter beschichteter Oberfläche steigen sukzessive an.Depending on the electrolyte composition, strongly alkaline galvanic galvanizing electrolytes tend to deposit strongly on the anode surfaces after a relatively short operating time of a few weeks. This has the disadvantage of the gradual deterioration of the cathodic current efficiency and thus the efficiency of the galvanic process and the galvanic plant. The cost of electrical energy per square meter of coated surface increases successively.
Diese Ablagerungen bestehen bei Natriumhydroxid basierten Elektrolyten zu großen Anteilen aus Natriumkarbonat und Natiumoxalat infolge von Oxydation an der Anodenoberfläche. Zusätzlich verändern organische Abbauprodukte die Ausgangseigenschaften der galvanischen Elektrolyte. Ein regelmäßiger, teilweise hoher Reinigungsaufwand ist notwendig. Der Karbonatgehalt solcher Elektrolyte muss oft mit Kristallisatoren unter zusätzlichem Elektroenergieverbrauch gesenkt werden. Alternativ werden die galvanischen Bäder neu angesetzt oder regelmäßig verdünnt. Die verbrauchten Elektrolyte werden entsorgt und erzeugen zusätzliche Chemikalien -, Entsorgungs-und Abwasserbehandlungskosten sowie Anlagenausfallzeiten.These deposits are large proportions of sodium carbonate and sodium oxalate due to oxidation at the anode surface in sodium hydroxide based electrolytes. In addition, organic degradation products alter the initial properties of the galvanic electrolytes. A regular, sometimes high cleaning effort is necessary. The carbonate content of such electrolytes often has to be lowered with crystallizers with additional electric energy consumption. Alternatively, the galvanic baths are recalculated or regularly diluted. The spent electrolytes are disposed of and generate additional chemicals, disposal and wastewater treatment costs, and equipment downtime.
In der
Die Bauformen solcher Membrananoden, die in den galvanischen Bädern zum Einsatz kommen, sind meist Kästen, wobei die Seite, die zur Galvanisierware zeigt, von der Kationenaustauschermembran gebildet wird. Als Anode findet meist platiniertes Streckmetall Anwendung.The designs of such membrane anodes used in the galvanic baths are mostly boxes, with the side facing the electroplating product being formed by the cation exchange membrane. As anode finds mostly platinized expanded metal application.
Als Nachteile der großtechnischen Anwendung des Patentes
- a) Verdünnung des Zink-Nickel-Elektrolyten während des galvanischen Prozesses infolge Neutralisation des Natriumhydroxides durch positiv geladene Wasserstoff - Ionen (Protonen) des Schwefelsäure - Anolyten, die über die Kationenaustauscher-Membran "transportiert" werden und mit negativ geladenen Hydroxidionen zu Wasser reagieren:
H+ Anolyt + OH- Katholyt → H2OKatholyt
Dieser Prozess läuft in einer Richtung ab und führt zu der erwähnten permanenten, langsamen Verdünnung des Zink-Nickel-Elektrolyten. - b) Volumenanstieg des Zink-Nickel-Elektrolyten:
Die im Punkt a) beschriebene Verdünnung und die daraus resultierende notwendige Zugabe von Natriumhydroxid zur Wiederherstellung der für die Legierungsabscheidung erforderlichen Natriumhydroxid - Konzentration im Zink-Nickel-Elektrolyten trägt zum Volumenanstieg des Elektroyten bei, wenn die lonenaktivität des Zink-Nickel-Elektrolyten größer ist als die des Schwefelsäure-Anolyten. Dann steigt der osmotische Druck und es wird zusätzlich Wasser über die Kationenaustauschermembran in den Zink-Nickel-Elektrolyten gedrückt. Die Folge ist zusätzliche Verdünnung und Volumenanstieg des Zink-Nickel-Elektrolyten. - c) Aus a) und b) folgend wird ein zusätzlicher, erheblicher technischer und energetischer Aufwand betrieben, um den permanent entstehenden, schwach verdünnten Elektrolyt-Volumenzuwachs mittels Vakuumverdampfer einzuengen und diskontinuierlich wieder in den Zink-Nickel-Elektrolyten zurückzuführen.
- a) Dilution of the zinc-nickel electrolyte during the galvanic process due to neutralization of the sodium hydroxide by positively charged hydrogen ions (protons) of the sulfuric acid anolyte, which are "transported" through the cation exchange membrane and react with negatively charged hydroxide ions to form water:
H + anolyte + OH - catholyte → H 2 O catholyte
This process is unidirectional and leads to the mentioned slow dilution of the zinc-nickel electrolyte. - b) Volume increase of the zinc-nickel electrolyte:
The dilution described in point a) and the consequent necessary addition of sodium hydroxide to restore the sodium hydroxide concentration in the zinc-nickel electrolyte required for the alloy deposition contributes to the volume increase of the electrolyte when the ion activity of the zinc-nickel electrolyte is greater than that of sulfuric acid anolyte. Then the osmotic pressure increases and water is additionally forced into the zinc-nickel electrolyte via the cation exchange membrane. The result is additional dilution and volume increase of the zinc-nickel electrolyte. - c) From a) and b) following, an additional, considerable technical and energetic effort is operated to narrow the permanently arising, weakly diluted electrolyte volume increase by means of a vacuum evaporator and discontinuously returned to the zinc-nickel electrolyte.
In der
Als Nachteil der Verwendung von Natriumhydroxidlösung als Anolyt muss allerdings die kontinuierlich steigende Konzentration von Natriumhydroxid und die permanente Volumenvergrößerung des Zink-Nickel-Elektrolyten angesehen werden, da Natrium-Ionen als positive Ladungsträger aus dem Anolyten über die Kationenaustauschermembran zur Kathode wandern und mit den "frei" werdenden Hydroxid-Ionen der Wasserspaltung als Co-Reaktion der Metallabscheidung an der Kathode die Natriumhydroxidkonzentration erhöhen:
Na+ Anolyt + OH- Katholyt → NaOH
However, the disadvantage of the use of sodium hydroxide solution as the anolyte is the continuously increasing concentration of sodium hydroxide and the permanent increase in volume of the zinc-nickel electrolyte, since sodium ions migrate as positive charge carriers from the anolyte over the cation exchange membrane to the cathode and with the "free "As the co-reaction of the metal deposition at the cathode, hydroxide ions of the water splitting increase the sodium hydroxide concentration:
Na + anolyte + OH - catholyte → NaOH
Dieser Effekt führt zu wachsenden Konzentrationsunterschieden zwischen Anolyt und Zink-Nickel-Elektrolyt in dem Sinne, dass die Anolytkonzentration sinkt und die Zink-Nickel-Elektrolyt-Konzentration steigt. In der Folge setzt Osmose über die Kationenaustauschermembran vom Anolyt in den Katholyt ein, wodurch dem Anolyt Wasser entzogen und dem Zink-Nickel-Elektrolyt zugeführt wird. Dieser Fakt führt nunmehr zu der erwähnten kontinuierlichen Vergrößerung des Zink-Nickel-Elektrolytvolumens und des Sinkens des Anolytvolumens. In der großtechnischen Anwendung bedeutet das, Maßnahmen zur Entsorgung des Zink-Nickel-Elektrolyt-Volumenüberhanges zu treffen sowie in bestimmten Zeitabständen Verdünnungen des Zink-Nickel-Elektrolyten vorzunehmen, was sich negativ auf die Verfahrenskosten auswirkt.This effect leads to increasing concentration differences between anolyte and zinc-nickel electrolyte in the sense that the anolyte concentration decreases and the zinc-nickel electrolyte concentration increases. As a result, osmosis enters the catholyte via the cation exchange membrane from the anolyte, whereby water is removed from the anolyte and supplied to the zinc-nickel electrolyte. This fact now leads to the mentioned continuous increase in the zinc-nickel electrolyte volume and the sinking of the anolyte volume. In large-scale application, this means taking measures to dispose of the zinc-nickel-electrolyte volume overhang and at certain intervals dilutions of the zinc-nickel electrolyte which has a negative effect on the costs of the procedure.
Die
Ausgehend von den beschriebenen Nachteilen der Anwendung von Membrananoden mit Kationenaustauschermembranen in galvanischen Elektrolyten liegt dem Anspruch 1 der angegebenen Erfindung das Problem zugrunde, eine Elektrodialysezelle zu schaffen und zur industriellen Anwendung in galvanischen Zink-und Zinklegierungsanlagen zur Verfügung zu stellen, die die im vorhergehenden Text erläuterten Nachteile
- Konzentrationsanstieg von Natriumhydroxid im Zink-oder Zinklegierungselektrolyt
- Volumenanstieg des Zink-oder Zinklegierungselektrolyten
- Salzablagerungen an der Anodenoberfläche oder der lonenaustauschermembran
- Volumenverlust von Anolyt durch Osmose
- Increasing the concentration of sodium hydroxide in the zinc or zinc alloy electrolyte
- Volume increase of zinc or zinc alloy electrolyte
- Salt deposits on the anode surface or ion exchange membrane
- Volume loss of anolyte by osmosis
Die Vorteile der Anwendung von Membrananoden mit Kationenaustauschermembranen, wie in den zitierten Patentschriften beschrieben, bleiben bei der Anwendung der hier beschriebenen Erfindung bestehen.The advantages of using membrane anodes with cation exchange membranes, as described in the cited patents, remain with the use of the invention described herein.
Der Erfindung liegen umfangreiche Laboruntersuchungen zugrunde, deren Ergebnisse die Grundlage für die Beschreibung des konstruktiven Aufbaus und der Funktion der Zweikammer-Elektrodialysezelle bilden.The invention is based on extensive laboratory investigations, the results of which form the basis for the description of the structural design and the function of the two-chamber electrodialysis cell.
Die erläuterten Probleme werden mit den im Anspruch 1 aufgeführten Merkmalen gelöst.The problems explained are solved with the features listed in
Erfindungsgemäß wird eine galvanische Anlage mit einer Zweikammer - Elektrodialysezelle als Anode in einem alkalischen Zink-und Zinklegierungselektrolyten bereitgestellt, dadurch gekennzeichnet, dass die Zweikammer - Elektrodialysezelle eine Anode enthält, die durch eine Kationen- und eine Anionenaustauschermembran von einem alkalischen Zink-oder Zinklegierungselektrolyten getrennt ist, wobei die Kationenaustauschermembran und Anionenaustauschermembran zwei getrennte Anolytkammern bilden, wobei eine innere Anolytkammer, in der sich die Anode befindet, von einem ersten Anolyt durchströmbar ist und eine äußere Anolytkammer Öffnungen mit Zufluss- und Abflusseinrichtungen zum Befüllen mit einem zweiten Anolyt bzw. Überlaufen von einem zweiten Anolyt aufweist.According to the invention, a galvanic plant with a two-chamber electrodialysis cell as anode in an alkaline zinc and zinc alloy electrolyte is provided, characterized in that the two-chamber electrodialysis cell contains an anode which is separated from an alkaline zinc or zinc alloy electrolyte by a cation and an anion exchange membrane in which the cation exchange membrane and the anion exchange membrane form two separate anolyte chambers, wherein an inner anolyte chamber in which the anode is located is permeable by a first anolyte and an outer anolyte chamber has openings with inflow and outflow means for filling with a second anolyte or overflowing one having second anolyte .
Die Erfindung betrifft ferner die Verwendung einer Zweikammer - Elektrodialysezelle mit Anionen- und Kationenaustauschermembran als Anode in einem alkalischen Zink- und Zinklegierungselektrolyten einer galvanischen Anlage zum Zweck der Metallabscheidung, dadurch gekennzeichnet, dass die Zweikammer-Elektrodialysezelle eine Anode enthält, die durch die Kationen- und eine Anionenaustauschermembran von dem alkalischen Zink-oder Zinklegierungselektrolyten getrennt ist, wobei die Kationenaustauschermembran und Anionenaustauschermembran zwei getrennte Anolytkammern bilden, wobei eine innere Anolytkammer, in der sich die Anode befindet, von einem ersten Anolyt durchströmbar ist und eine äußere Anolytkammer Öffnungen mit Zufluss- und Abflusseinrichtungen zum Befüllen mit einem zweiten Anolyt bzw. Überlaufen von einem zweiten Anolyt aufweist.The invention further relates to the use of a two-chamber electrodialysis cell with anion and cation exchange membrane as an anode in an alkaline zinc and zinc alloy electrolyte of a galvanic plant for the purpose of metal deposition, characterized in that the two-chamber electrodialysis cell contains an anode, which by the cation and an anion exchange membrane is separated from the alkaline zinc or zinc alloy electrolyte, wherein the cation exchange membrane and anion exchange membrane form two separate anolyte chambers, wherein an inner anolyte chamber, in which the anode is located, is permeable by a first anolyte and an outer anolyte chamber openings with inflow and outflow means for filling with a second anolyte or overflow of a second anolyte .
Bei der galvanotechnischen Anwendung von Elektrodialysezellen mit einer Anolyt-Kammer, wo die Anode durch eine Kationenaustauschermembran vom stark alkalischen, aminhaltigen Zink-Nickel-Elektrolyten und der Kathode (Galvanisiergut) getrennt ist, um eine anodische Oxydation der organischen Elektrolytzusätze und ein Absinken der kathodischen Stromausbeute zu vermeiden, werden bei Anlegen des Galvanisierstromes die positiv geladenen Ionen (Natrium-Ionen, Patent
Durch die Anwendung der Zweikammer-Elektrodialysezelle werden diese Nachteile beseitigt.By using the two-chamber electrodialysis cell, these disadvantages are eliminated.
Die Funktion der Zweikammer-Elektrodialysezelle verhindert ein Ansteigen der Natriumhydroxid-Konzentration und des Volumens des Zink-Nickel-Elektrolyten.The function of the two-compartment electrodialysis cell prevents an increase in the sodium hydroxide concentration and the volume of the zinc-nickel electrolyte.
Sie besteht aus einer inneren (6) und einer äußeren Anolyt-Kammer (5). Die innere Kammer mit der Anode (7) ist durch eine Kationenaustauschermembran (4) von der äußeren Kammer getrennt. Diese wiederum ist durch eine Anionenaustauschermembran (3) vom Zink-Nickel-Elektrolyten abgegrenzt. Die innere Anolyt-Kammer ist über Armaturen (1), (2) mit einem Anolyt-Kreislauf verbunden. Durch die anodische Reaktion sinkt die Natriumhydroxid-Konzentration im Anolyt-Kreislaufsystem. Die Natriumhydroxid-Konzentration in der äußeren Kammer steigt infolge der "lonen-Zuwanderung" von Na+ Anolyt und OH- Zink-Nickel bis auf Werte größer 300 g/l. Osmose entzieht dem Zink-Nickel-Elektrolyt Wasser über die Anionenaustauschermembran.It consists of an inner (6) and an outer anolyte chamber (5). The inner chamber with the anode (7) is separated from the outer chamber by a cation exchange membrane (4). This in turn is separated from the zinc-nickel electrolyte by an anion exchange membrane (3). The inner anolyte chamber is connected via fittings (1), (2) with an anolyte circuit. The anodic reaction reduces the sodium hydroxide concentration in the anolyte circulatory system. The sodium hydroxide concentration in the outer chamber increases due to the "ion inflow" of Na + anolyte and OH - zinc-nickel to values greater than 300 g / l. Osmosis deprives the zinc-nickel electrolyte of water via the anion exchange membrane.
Infolge des osmotischen Druckes steigt das Natronlauge-Volumen in der äußeren Kammer und kann über die Armatur (10) mit Schlauch (11) in den Anolyt-Kreislauf oder Zink-Nickel-Elektrolyt zurückgeführt werden. Die Konzentrationen und Volumina von Anolyt und Zink-Nickel-Elektrolyt können somit stabil gehalten werden.As a result of the osmotic pressure, the sodium hydroxide volume in the outer chamber increases and can be returned via the fitting (10) with hose (11) in the anolyte circuit or zinc-nickel electrolyte. The concentrations and volumes of anolyte and zinc-nickel electrolyte can thus be kept stable.
Die Zweikammer-Elektrodialysezelle eignet sich bevorzugt für den Einsatz in stark alkalischen, galvanischen Zink-Nickel-Elektrolyten, die auf der Basis von Natriumhydroxid und aminhaltigen Zusätzen aufgebaut sind, da hier die Effizienz des Abscheideprozesses besonders stark positiv beeinflusst wird.The two-chamber electrodialysis cell is preferably suitable for use in strongly alkaline, galvanic zinc-nickel electrolytes, which are based on sodium hydroxide and amine-containing additives, since the efficiency of the deposition process is particularly strongly influenced positively.
Die kathodische Stromausbeute bleibt auf hohem Niveau. Die Prozesssicherheit wird gesteigert. Zusätzliche Entsorgungskosten entfallen. Prozesschemikalien werden eingespart.The cathodic current efficiency remains at a high level. Process reliability is increased. Additional disposal costs are eliminated. Process chemicals are saved.
Eine vorteilhafte Gestaltungsform der vorliegenden Offenbarung ist in den
Andere Bauformen, wie in Anspruch 12 genannt und in
Other types as recited in
Es zeigen:
- Fig. 1
- den Prinzipaufbau der Elektrodialysezelle mit den funktionsrelevanten Bestandteilen,
- Fig. 2
- die detaillierte Darstellung des Aufbaus einer zylindrischen Elektrodialysezelle,
- Fig. 3
- die Anordnung der lonenaustauschermembranen und des Anodenrohres im Querschnitt,
- Fig. 4
- das technische Aufbauschema eines galvanischen Bades mit den Elektrodialysezellen und der notwendigen technischen Peripherie,
- Fig. 5
- die grafische Darstellung einer möglichen Bauform in Kastenbauweise.
- Fig. 1
- the basic structure of the electrodialysis cell with the function-relevant components,
- Fig. 2
- the detailed representation of the construction of a cylindrical electrodialysis cell,
- Fig. 3
- the arrangement of the ion exchange membranes and the anode tube in cross section,
- Fig. 4
- the technical structure of a galvanic bath with the electrodialysis cells and the necessary technical periphery,
- Fig. 5
- the graphic representation of a possible design in box construction.
Entsprechend dem Anspruch 1 werden anstelle von einer lonenaustauschermembran zwei lonenaustauschermembranen zu einem festen Elektrodialysemodul, wie in den
Das Elektrodialysemodul setzt sich aus zwei miteinander verschraubten Baukomponenten zusammen:
- a) Anode(7) mit Schraubkappe (8),
Fig. 1 und2 - b) Kunststoffkörper
- a) anode (7) with screw cap (8),
Fig. 1 and2 - b) plastic body
Die Anode kann aus einem Edelstahlrohr (7), dessen Durchmesser und Länge je nach Anwendungsfall unterschiedlich sein können und das an einer Seite verjüngt ist und einer kreisrunden Edelstahl-Platine (14), die mit dem Anodenrohr fest verbunden ist (z.B. verschweißt), aufgebaut sein. Ein gebräuchlicher Rohrdurchmesser für den Anwendungsfall wäre z.B. 2 Zoll. Zwei Bohrungen von unterschiedlichem Durchmesser in der Platine dienen zum Einschrauben oder Verschweißen der Zu-und Ablaufarmaturen (1), (2) für den Anolyt Natronlauge (Konzentration ca. 160 g/l), in der weiteren Beschreibung als "Anolyt 1" bezeichnet. Die Zu-und Ablaufarmaturen können Schlauchtüllen von unterschiedlichem Durchmesser sein, wobei der kleinere Durchmesser für den Zulauf zu verwenden ist, um keinen zusätzlichen hydrostatischen Druck im Inneren der Elektrodialysezelle beim Durchströmen des Anolyt 1 zu erzeugen. Weiterhin fest verbunden mit der Platine ist die Aufhängevorrichtung (18), die gleichzeitig der Stromübertragung von der Anodenschiene auf die Elektrodialysezelle dient.The anode can be made of a stainless steel tube (7) whose diameter and length can be different depending on the application and which is tapered on one side and a circular stainless steel board (14) which is firmly connected to the anode tube (eg welded) constructed his. A common pipe diameter for the application would be eg 2 inches. Two holes of different diameter in the board are used for screwing or welding the inlet and outlet fittings (1), (2) for the Anolyte sodium hydroxide solution (concentration about 160 g / l), hereinafter referred to as "
Der Kunststoffkörper besteht aus einer Kunststoff-Fußkappe, z.B. PVC (16), in die ein Gitterrohrstück aus Kunststoff, z.B. Polypropylen, von definierter Länge, z.B. 700 mm und definiertem Durchmesser, z.B. 80 mm und darauf liegender Kationenaustauschermembran (4) sowie ein zweites Gitterrohrstück von definierter Länge, z.B. 640 mm und Durchmesser, z.B. 100 mm mit darauf liegender_Anionenaustauschermembran (3) hermetisch dicht zusammengefügt wird, z.B. Eingießen in Kunstharz. Der obere Teil des aus zwei Kammern bestehenden Zylinders ist in einem Kunststoffkragen (17) ebenfalls hermetisch dicht eingebaut, so dass beide Kammern keine Verbindung zueinander haben. Der röhrenförmige Kunststoffkragen (17) besitzt am oberen Ende ein Außengewinde, z.B. 2 ½". Die Anode (7) wird in den Kunststoffkörper eingesetzt. Unter der Platine befindet sich ein Flachdichtungsring (15). Mit einer Schraubkappe (8) aus Kunststoff, die oben eine Öffnung hat, welche ca. 10 mm im Durchmesser kleiner als der Durchmesser der Platine (14) sein muss und ein Innengewinde, z.B. 2 ½", aufweist, wird die Anode mit dem Kunststoffkörper verschraubt.The plastic body consists of a plastic foot cap, e.g. PVC (16) into which a plastic lattice tube, e.g. Polypropylene of defined length, e.g. 700 mm and defined diameter, e.g. 80 mm and cation exchange membrane (4) lying thereon and a second lattice tube piece of defined length, e.g. 640 mm and diameter, e.g. 100 mm with the anionic membrane lying on it (3) is hermetically sealed together, e.g. Pouring in synthetic resin. The upper part of the two-chamber cylinder is also hermetically sealed in a plastic collar (17), so that both chambers have no connection to each other. The tubular plastic collar (17) has an external thread at the top, e.g. The anode (7) is inserted into the plastic body, below the board is a flat sealing ring (15) with a screw cap (8) made of plastic, which has an opening at the top, which is smaller than 10 mm in diameter the diameter of the board (14) and an internal thread, eg 2 ½ ", has, the anode is screwed to the plastic body.
Im Kunststoffkragen sind gegenüberliegend zwei Gewindebohrungen vorhanden, die Durchgang zur äußeren Anolytkammer haben. Diese dienen zum Einschrauben von zwei Armaturen (9), (10), z.B. gewinkelte Gewindefittings mit Schlauchtüllen. Über eine dieser beiden Armaturen wird die äußere Anolytkammer (5) mit Natronlauge (Konzentration z.B. 160 g/l), in der weiteren Beschreibung als "Anolyt 2" bezeichnet, gefüllt, während über die andere Armatur die Entlüftung stattfindet. Danach wird eine der beiden Tüllen mit einer Abdeckkappe (12) versehen, um später ein Eindringen von Zink-/Zinklegierungselektrolyt in den Anolyt 2 während des Produktionsprozesses zu verhindern. Die Ablaufarmatur (10) für den überlaufenden Anolyt 2 im Arbeitszustand der Elektrodialysezelle ist aus dem gleichen Grund mit einem Schlauch (11) oder Rohrbogen (13) aus Kunststoff mit der Öffnung nach unten zeigend, versehen.In the plastic collar opposite two threaded holes are present, the passage to the outer Anolytekammer have. These are used to screw in two fittings (9), (10), eg angled threaded fittings with hose nozzles. The outer anolyte chamber (5) is filled with sodium hydroxide solution (concentration eg 160 g / l), referred to in the following description as "
Mit der Erfindung wird erreicht, dass bei Stromfluss im galvanischen Bad die an der Anode frei gesetzten positiv geladenen Natrium - Ionen von der inneren Anolytkammer (6) über die Kationenaustauschermembran (4) in die äußere Anolytkammer (5) gelangen und dort von der Anionenaustauschermembran (3) für den weiteren "Transport" in den Zink-oder Zinklegierungselektrolyt blockiert werden. Im Gegenzug "wandern" äquivalente Ladungsmengen negativ geladener Hydroxidionen aus dem Zink-oder Zinklegierungselektrolyt in Richtung Anode (7) und passieren die Anionenaustauschermembran (3) in die äußere Anolytkammer (5) der Elektrodialysezelle. Hier werden sie am Weitertransport zur Anode durch die Kationenaustauschermembran (4) gehindert.With the invention it is achieved that, when there is current flow in the galvanic bath, the positively charged sodium ions released at the anode pass from the inner anolyte chamber (6) via the cation exchange membrane (4) into the outer anolyte chamber (5), where they are separated from the anion exchange membrane (5). 3) for further "transport" into the zinc or zinc alloy electrolyte. In turn, equivalent charge amounts of negatively charged hydroxide ions "migrate" from the zinc or zinc alloy electrolyte toward the anode (7) and pass the anion exchange membrane (3) into the outer anolyte chamber (5) of the electrodialysis cell. Here they are prevented from further transport to the anode by the cation exchange membrane (4).
In der Folge des elektrochemischen Metallabscheidungsprozesses steigt in der äußeren Anolytkammer (5) die Natriumhydroxidkonzentration kontinuierlich an und Osmose setzt ein, die dem Anwachsen des Konzentrationsgradienten zwischen äußerer Anolytkammer und Zink-/Zinklegierungselektrolyt entgegenwirkt. Dem Zink-/Zinklegierungselektrolyt wird dabei über die Anionenaustauschermembran (3) Wasser entzogen und gelangt in die äußere Anolytkammer (5). Das Volumen des Anolyt 2 in der äußeren Anolytkammer vergrößert sich dadurch kontinuierlich. Der Volumenüberhang wird über die Ablaufeinrichtung (10) aus der Elektrodialysezelle abgeführt. In der praktischen Anwendung soll die überlaufende Menge Natronlauge (Anolyt 2) zu je 50% in den Zink-/Zinklegierungselektrolyt und den Anolyt 1 rückgeführt werden, um die Konzentrations- und Volumenverhältnisse von Zink-/Zinklegierungselektrolyt und Anolyt 1 annähernd konstant zu halten, da die Ladungsträger Natrium-Ionen und Hydroxid-Ionen in äquivalenter Menge aus dem Anolyt 1 und dem Zink-/Zinklegierungselektrolyt in die Anolyt 2 -Kammer (5) gelangt sind.As a result of the electrochemical metal deposition process, in the outer anolyte chamber (5), the sodium hydroxide concentration continuously increases and osmosis sets in, counteracting the increase in the concentration gradient between the outer anolyte chamber and the zinc / zinc alloy electrolyte. Water is withdrawn from the zinc / zinc alloy electrolyte via the anion exchange membrane (3) and reaches the outer anolyte chamber (5). The volume of the
Die Zuführung des für die elektrochemische Oxydation an der Anode benötigten Anolyt 1 mit einer empfohlenen Konzentration von ca. 160 g/l Natiumhydroxid erfolgt, wie in
Die Ableitung des Anolyt 1 aus den Elektrodialysezellen muss ohne zusätzlichen Gegendruck in den Anolyt 1-Vorratsbehälter (23)erfolgen, um die lonenaustauschermembranen nicht zu überdehnen, wodurch Mikrorisse und Undichtheiten entstehen können. Eine praktische Realisierungsmöglichkeit ist das Einbinden der Rücklaufschläuche von Anolyt 1 in freiem Auslauf nach
In
Das Ableiten des Überhangvolumens von Anolyt 2 in den Zink-/Zinklegierungselektrolyten erfolgt sehr einfach durch freies Überlaufen über die Armatur mit Tülle (10) und Rohrbogen (13), siehe
Für eine sichere Funktion der beschriebenen Erfindung muss die folgende chemische Grundvoraussetzung erfüllt sein, die durch regelmäßige Analysentätigkeit zu gewährleisten ist:
Die Konzentration von Natriumhydroxid des Anolyt 1 soll stets ca. 30 g/l größer sein als die Natriumhydroxidkonzentration des Zink-/Zinklegierungselektrolyten. Sie muss aber kleiner sein als die Natriumhydroxid- Konzentration des Anolyt 2. Nur dann ist gewährleistet, dass das Osmose-Wasser hauptsächlich aus dem Zink-/Zinklegierungselektrolyten in die Anolyt 2 - Kammer der Elektrodialysezelle durch osmotischen Druck über die Anionenautauschermembran "gedrückt" wird.For a safe operation of the described invention, the following basic chemical requirement must be met, which is to be ensured by regular analysis activity:
The concentration of sodium hydroxide of the
Die Ausgangskonzentrationen von Natriumhydroxid der Anolyte 1 und 2 können vor der Inbetriebnahme der Elektrodialysezellen gleich groß sein, wie in der Bezugszeichenliste unter (5), (6) ersichtlich ist, da sich die Konzentration von Anolyt 2 nach Anlegen des Galvanisierstromes mit laufender Betriebszeit erhöht und die Konzentration von Anolyt 1 sinkt.The starting concentrations of sodium hydroxide of
Mit der Anwendung der beschriebenen Erfindung sind folgende Nutzeffekte zu erreichen:
- 1. Einsparung von Prozesschemikalien, da eine oxydative Umsetzung, vor allem von organischen Zusätzen wie Glanzzusatzlösungen und Komplexbildnern an der Anode unterbunden wird.
- 2. Deutlich weniger Natriumkarbonatbildung im Zink-/Zinklegierungselektrolyten.
- 3. Steigerung der kathodischen Stromausbeute.
- 4. Steigerung des Warendurchsatzes an der galvanischen Anlage.
- 5. Einsparung von Elektroenergie pro Quadratmeter galvanisierter Oberfläche.
- 6. Regenerierung von Alt-Elektrolyten, indem keine neuen Abbauprodukte durch anodische Oxydation mehr entstehen und die vorhandenen mit der beschichteten Ware nach und nach ausgeschleppt werden.
- 7. Einsparung von Zusatzgeräten zum Eindampfen von Volumenüberhang, z.B. Vakuumverdampfer.
- 8. Einsparung von Entsorgungskosten für Volumenüberhang von Zink-/Zinklegierungs-elektrolyt.
- 1. Saving of process chemicals, as an oxidative conversion, especially of organic additives such as brightener solutions and complexing agents is prevented at the anode.
- 2. Significantly less sodium carbonate formation in the zinc / zinc alloy electrolyte.
- 3. Increase in cathodic current efficiency.
- 4. Increasing the throughput of the galvanic plant.
- 5. Saving of electrical energy per square meter of galvanized surface.
- 6. Regeneration of old electrolytes by no new degradation products caused by anodic oxidation and the existing with the coated goods are gradually removed.
- 7. Saving of additional equipment for evaporation of volume surplus, eg vacuum evaporator.
- 8. Saving disposal costs for volume overhang of zinc / zinc alloy electrolyte.
- 1
Zulaufarmatur für Anolyt 1- 2
Ablaufarmatur für Anolyt 1- 3
- Gitterrohr / Kunststoffgitter mit Anionenaustauschermembran
- 4
- Gitterrohr/Kunststoffgitter mit Kationenaustauschermembran
- 5
- Äußere Anolytkammer mit Anolyt 2 (Natronlauge, Ausgangskonzentration 160g/l)
- 6
- Innere Anolytkammer mit Anolyt 1 (Natronlauge, Ausgangskonzentration 160 g/l)
- 7
- Anode (Rohr)
- 8
- Kunststoff-Schraubkappe mit Innengewinde
- 9
- Armatur mit Zu-/Ablauftülle für Anolyt 2 (Natronlauge, Ausgangskonzentration 160 g/l)
- 10
- Armatur mit Zu-/Ablauftülle für Anolyt 2 (Natronlauge, Ausgangskonzentration 160 g/l)
- 11
Ablaufschlauch für Anolyt 2 zur zentralen Rücklaufleitung in den Anolyt 1-Vorratsbehälter- 12
- Abdeckkappe für
Ablauftülle von Anolyt 2 - 13
- Rohrbogen für
Ablauftülle von Anolyt 2 - 14
- Angeschweißte Platine am Anodenrohr mit Zulauf-und Ablauftülle für Anolyt 1
- 15
- Flachdichtung
- 16
- Kunststoff-Fußkappe
- 17
- Kunststoff-Kragen
- 18
- Aufhänge-und Stromzuführung
- 19
- Zentrale
Rücklaufleitung von Anolyt 2 in denVorratsbehälter von Anolyt 1 - 20
- Absperrventil in der
Zulaufleitung von Anolyt 1 - 21
- Durchflussmengenmesser
- 22
Umwälzpumpe für Anolyt 1- 23
Vorratsbehälter für Anolyt 1- 24
Rücklaufleitung von Anolyt 1 von der Elektrodialyszelle in eine zentrale Rücklaufleitung- 25
- Zentrale Rücklaufleitung in den Anolyt 1-Vorratsbehälter
- 1
- Inlet fitting for
Anolyt 1 - 2
- Drain fitting for
Anolyt 1 - 3
- Grid pipe / plastic grid with anion exchange membrane
- 4
- Grid pipe / plastic grid with cation exchange membrane
- 5
- Outer anolyte chamber with anolyte 2 (sodium hydroxide solution, initial concentration 160g / l)
- 6
- Inner anolyte chamber with Anolyte 1 (sodium hydroxide solution, initial concentration 160 g / l)
- 7
- Anode (tube)
- 8th
- Plastic screw cap with internal thread
- 9
- Fitting with inlet / outlet grommet for Anolyt 2 (caustic soda, initial concentration 160 g / l)
- 10
- Fitting with inlet / outlet grommet for Anolyt 2 (caustic soda, initial concentration 160 g / l)
- 11
- Drain hose for
Anolyte 2 to the central return line in theAnolyte 1 storage tank - 12
- Drain cap of
Anolyt 2 - 13
- Pipe bend for drainage nozzle of
Anolyt 2 - 14
- Welded board on anode tube with inlet and drainage nozzle for
Anolyt 1 - 15
- gasket
- 16
- Plastic foot cap
- 17
- Plastic collar
- 18
- Hanging and power supply
- 19
- Central return line of
Anolyt 2 in the storage tank ofAnolyt 1 - 20
- Shut-off valve in the supply line of
Anolyt 1 - 21
- Flow meters
- 22
- Circulation pump for
Anolyt 1 - 23
- Storage tank for
Anolyt 1 - 24
- Return line of
Anolyte 1 from the electrodialysis cell into a central return line - 25
- Central return line in the
Anolyte 1 storage tank
Claims (12)
- An electroplating system comprising a two-chamber electrodialysis cell as an anode (7) in an alkaline zinc and zinc alloy electrolyte, said two-chamber electrodialysis cell containing an anode (7) separated from an alkaline zinc or zinc alloy electrolyte by a cation (4) and an anion exchange membrane (3), the cation exchange membrane (4) and the anion exchange membrane (3) forming two separate anolyte chambers (5, 6), wherein a first anolyte can flow through an inner anolyte chamber (6), in which the anode (7) is located, and an outer anolyte chamber (5) has openings with inflow (9) and outflow devices (10) for filling with a second anolyte or overflow of a second anolyte, respectively.
- The electroplating system according to claim 1, characterized in that the cation exchange membrane (4) is mounted towards the anode (7) and the anion exchange membrane (3) is mounted towards a cathode.
- The electroplating system according to one of the preceding claims, characterized in that the inner anolyte chamber (6) has an inflow device (1) via which the anolyte stream is conducted to the foot of the anode (7).
- The electroplating system according to one of the preceding claims, characterized in that the internal anolyte chamber (6) has a discharge device (2) via which the anolyte flow rising at the anode surface is conveyed into a discharge line (24), which opens into a collecting line (25), to an anolyte storage container (23).
- The electroplating system according to one of the preceding claims, characterized in that the first anolyte consists of sodium hydroxide solution or potassium hydroxide solution.
- The electroplating system according to one of the preceding claims, characterised in that the outer anolyte chamber (5) has angle fittings or hose nozzles for filling with second anolyte or overflowing of second anolyte.
- The electroplating system according to one of the preceding claims, characterized in that the second anolyte consists of sodium hydroxide solution or potassium hydroxide solution.
- The electroplating system according to one of the preceding claims, characterized in that the anode material is steel, stainless steel, nickel or nickel-plated steel.
- The electroplating system according to claim 8, characterized in that the anode is designed as a round tube, square tube, U-profile, T-profile, spiral both in solid material and expanded metal.
- The electroplating system according to one of the preceding claims, characterized in that the electrodialysis cell is of box design.
- The electroplating system according to one of the preceding claims, characterized in that the anode (7) is a membrane anode (7) provided with the cation exchange membrane (4) and adapted to be retrofitted with the outer anolyte chamber (5) based on the anion exchange membrane (3).
- A use of a two-chamber electrodialysis cell as an anode (7) in an alkaline zinc and zinc alloy electrolyte of an electroplating plant for the purpose of metal deposition, wherein the two-chamber electrodialysis cell contains an anode (7) separated from the alkaline zinc or zinc alloy electrolyte by a cation (4) and an anion exchange membrane (3), the cation exchange membrane (4) and the anion exchange membrane (3) forming two separate anolyte chambers (5, 6), wherein a first anolyte can flow through an inner anolyte chamber (6), in which the anode (7) is located, and an outer anolyte chamber (5) has openings with inflow (9) and outflow devices (10) for filling with a second anolyte or overflow of a second anolyte, respectively.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202015002289.8U DE202015002289U1 (en) | 2015-03-25 | 2015-03-25 | Two-chamber electrodialysis cell with anion and cation exchange membrane for use as an anode in alkaline zinc and zinc alloy electrolytes for the purpose of metal deposition in electroplating plants |
DE102015009379.7A DE102015009379A1 (en) | 2015-03-25 | 2015-07-18 | Two-compartment electrodialysis cell with anion and cation exchange membrane for use as an anode in alkaline zinc and zinc alloy electrolytes for the purpose of metal deposition in galvanic plants |
PCT/EP2016/055690 WO2016150793A2 (en) | 2015-03-25 | 2016-03-16 | Two-chamber electrodialysis cell with anion and cation exchange membrane for use as an anode in alkaline zinc electrolytes and zinc alloy electrolytes for the purpose of deposition of metal in electroplating systems |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3274489A2 EP3274489A2 (en) | 2018-01-31 |
EP3274489B1 true EP3274489B1 (en) | 2019-08-07 |
Family
ID=53185708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16711218.4A Active EP3274489B1 (en) | 2015-03-25 | 2016-03-16 | Two-chamber electrodialysis cell with anion and cation exchange membrane for use as an anode in alkaline zinc electrolytes and zinc alloy electrolytes for the purpose of deposition of metal in electroplating systems |
Country Status (5)
Country | Link |
---|---|
US (1) | US10738391B2 (en) |
EP (1) | EP3274489B1 (en) |
DE (2) | DE202015002289U1 (en) |
ES (1) | ES2751633T3 (en) |
WO (1) | WO2016150793A2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106550606B (en) | 2015-07-22 | 2019-04-26 | 迪普索股份公司 | Kirsite method for plating |
CN105350063B (en) * | 2015-11-09 | 2018-10-30 | 科文特亚环保电镀技术(江苏)有限公司 | A kind of anode system of electroplate liquid separation |
MX2021008925A (en) | 2019-01-24 | 2021-08-24 | Atotech Deutschland Gmbh | Membrane anode system for electrolytic zinc-nickel alloy deposition. |
EP4077771A1 (en) | 2019-12-20 | 2022-10-26 | Atotech Deutschland GmbH & Co. KG | Method and system for depositing a zinc-nickel alloy on a substrate |
EP3875642A1 (en) * | 2020-03-04 | 2021-09-08 | AT & S Austria Technologie & Systemtechnik Aktiengesellschaft | Method for preparing rinsing water from printed circuit board and / or substrate production |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3929137C1 (en) | 1989-09-01 | 1991-02-28 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De | |
DE4016000C2 (en) | 1990-05-18 | 1993-10-21 | Hager & Elsaesser | Device for the treatment of metal-containing liquids by ion exchange and simultaneous or periodic regeneration of the ion exchange resin by electrodialysis |
US5162079A (en) * | 1991-01-28 | 1992-11-10 | Eco-Tec Limited | Process and apparatus for control of electroplating bath composition |
DE19834353C2 (en) | 1998-07-30 | 2000-08-17 | Hillebrand Walter Gmbh & Co Kg | Alkaline zinc-nickel bath |
EP1292724B2 (en) | 2000-06-15 | 2015-12-23 | Coventya, Inc. | Zinc-nickel electroplating |
WO2004108995A1 (en) | 2003-06-03 | 2004-12-16 | Taskem Inc. | Zinc and zinc-alloy electroplating |
US7442286B2 (en) | 2004-02-26 | 2008-10-28 | Atotech Deutschland Gmbh | Articles with electroplated zinc-nickel ternary and higher alloys, electroplating baths, processes and systems for electroplating such alloys |
DE102010044551A1 (en) | 2010-09-07 | 2012-03-08 | Coventya Gmbh | Anode and their use in an alkaline electroplating bath |
-
2015
- 2015-03-25 DE DE202015002289.8U patent/DE202015002289U1/en not_active Expired - Lifetime
- 2015-07-18 DE DE102015009379.7A patent/DE102015009379A1/en not_active Withdrawn
-
2016
- 2016-03-16 ES ES16711218T patent/ES2751633T3/en active Active
- 2016-03-16 US US15/553,445 patent/US10738391B2/en active Active
- 2016-03-16 WO PCT/EP2016/055690 patent/WO2016150793A2/en active Application Filing
- 2016-03-16 EP EP16711218.4A patent/EP3274489B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3274489A2 (en) | 2018-01-31 |
DE202015002289U1 (en) | 2015-05-06 |
US20180087177A1 (en) | 2018-03-29 |
WO2016150793A3 (en) | 2016-11-10 |
ES2751633T3 (en) | 2020-04-01 |
US10738391B2 (en) | 2020-08-11 |
WO2016150793A2 (en) | 2016-09-29 |
DE102015009379A1 (en) | 2016-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3274489B1 (en) | Two-chamber electrodialysis cell with anion and cation exchange membrane for use as an anode in alkaline zinc electrolytes and zinc alloy electrolytes for the purpose of deposition of metal in electroplating systems | |
CN100482594C (en) | Electrodeionization water-purifying device and method for recovering cation and anion without scaling | |
AT401739B (en) | DEVICE FOR TREATING METAL CONTAINING LIQUIDS BY ION EXCHANGE AND SIMULTANEOUSLY OR PERIODICALLY REGENERATING THE ION EXCHANGE RESIN BY ELECTRODIALYSIS | |
CN103833167B (en) | Chromic acid wastewater treatment method and treatment system | |
WO2012031753A1 (en) | Anode and use thereof in an alkaline electroplating bath | |
EP3093269B1 (en) | Electrodialytic preparation of phosphoric acid and device | |
DE2523117A1 (en) | METHOD AND DEVICE FOR REGENERATING A PAPER SOLUTION | |
CN201021439Y (en) | An antiscaling electric ion removal and cleaning device and recycling negative ion and positive ion | |
EP4200464A1 (en) | Apparatus and method for performing electrolysis | |
EP2910669B1 (en) | Galvanic coating system and method for operating the same | |
DE695322C (en) | Method and device for the sterilization of flowing water | |
DE1289518B (en) | Multi-cell electrodialysis device | |
DE2253366A1 (en) | METHOD AND DEVICE FOR INFLUENCING THE PH VALUE OF A LIQUID | |
DE102004038693B4 (en) | Apparatus and method for removing foreign matter from process solutions and process for regenerating a cation exchanger | |
EP2384800B1 (en) | Regeneration of alkaline zinc nickel electrolytes by removing cyanide ions | |
CN205115659U (en) | Anode system of plating solution separation | |
CN104556498A (en) | System for treating low-concentration copper-containing waste water | |
CN104313619B (en) | The regeneration treating method of low-concentration sulfuric acid copper sulfuric acid solution and device | |
CN105350063A (en) | Electroplating-liquid-separated anode system | |
DE2456058A1 (en) | PROCEDURE AND ARRANGEMENT FOR THE PROCESSING OF PICKLING SOLUTIONS, CONNECTED TO IRON PICKLING, IN A CIRCUIT OR IN Batches | |
AT413037B (en) | Device for electrodeposition of tin or tin alloys on metal objects uses at least one insoluble anode with avoidance of formation of impurities and slime, e.g. tin oxide slime | |
DE672851C (en) | Device for electrolyte circulation in water decomposers, in particular pressure decomposers | |
AT412973B (en) | METHOD FOR THE ELECTROLYTIC COATING OF A METAL OBJECT WITH TIN OR A TIN ALLOY | |
DE19962672A1 (en) | (Re)generation of peroxodisulfate, useful as polymerization initiator or pickle, oxidant or bleach in chemical, metal-working or electronics industry, uses two-part cell divided by combined microporous and anion exchange membranes | |
DE1808471C3 (en) | Process for the recovery of gold from galvanic washing water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170925 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181116 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25D 3/56 20060101ALI20190208BHEP Ipc: C25D 3/22 20060101ALI20190208BHEP Ipc: C25D 17/00 20060101ALI20190208BHEP Ipc: C25D 17/12 20060101ALI20190208BHEP Ipc: C25D 17/10 20060101ALI20190208BHEP Ipc: C25D 21/22 20060101AFI20190208BHEP |
|
INTG | Intention to grant announced |
Effective date: 20190320 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1164008 Country of ref document: AT Kind code of ref document: T Effective date: 20190815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016005932 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191209 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191107 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191108 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191207 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2751633 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016005932 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200316 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200316 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1164008 Country of ref document: AT Kind code of ref document: T Effective date: 20210316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210316 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240220 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240220 Year of fee payment: 9 Ref country code: FR Payment date: 20240221 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240402 Year of fee payment: 9 |