EP3266914A1 - Reinforced composite fabric and method for preparing the same - Google Patents

Reinforced composite fabric and method for preparing the same Download PDF

Info

Publication number
EP3266914A1
EP3266914A1 EP17152774.0A EP17152774A EP3266914A1 EP 3266914 A1 EP3266914 A1 EP 3266914A1 EP 17152774 A EP17152774 A EP 17152774A EP 3266914 A1 EP3266914 A1 EP 3266914A1
Authority
EP
European Patent Office
Prior art keywords
thermoplastic elastomeric
hardness
hardness thermoplastic
low
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17152774.0A
Other languages
German (de)
French (fr)
Other versions
EP3266914B1 (en
Inventor
Chien-Chia Chu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bright Cheers International Ltd
Original Assignee
Bright Cheers International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bright Cheers International Ltd filed Critical Bright Cheers International Ltd
Priority to ES17152774T priority Critical patent/ES2762073T3/en
Priority to PL17152774T priority patent/PL3266914T3/en
Priority to PT171527740T priority patent/PT3266914T/en
Priority to EP17152774.0A priority patent/EP3266914B1/en
Publication of EP3266914A1 publication Critical patent/EP3266914A1/en
Application granted granted Critical
Publication of EP3266914B1 publication Critical patent/EP3266914B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/587Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads adhesive; fusible
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • D10B2321/0211Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene high-strength or high-molecular-weight polyethylene, e.g. ultra-high molecular weight polyethylene [UHMWPE]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/10Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyurethanes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs

Definitions

  • the present invention relates to textile technology, and particularly relates to a reinforced composite fabric and a method for preparing a reinforced composite fabric.
  • the functional textiles Due to the development of technology, the demands for the functional textiles increase.
  • the functional textiles have different properties and functions according to different uses.
  • reinforced textiles are usually formed by adding a reinforcing agent or attaching a reinforcing film to enhance their strengths.
  • reinforcing agent is more widely used between these two means.
  • Common reinforcing agents include tear strength improver, rubbing fastness improver, or fabric enhancer. After the textile is immersed in a solution containing the reinforcing agent, a polymer layer is attached onto the surface of the textile, such that the strength of the textile can be enhanced.
  • the concentration of the reinforcing agent needs to be lower than 5% to sustain the texture of the reinforced textile, resulting in that the reinforced effect cannot be effectively improved.
  • Using the reinforcing agent to enhance the strength requires additional impregnation process and drying process, resulting in a more complicated process, longer processing time, and higher cost.
  • large consumptions of water and solvent during the process cause large burdens to the environment, and thus the conventional method is not suitable for the mass production of the reinforced fabrics in the future that people pay attention to the environmental protection increasingly.
  • Film lamination is also useful to reinforce the strength of the textile.
  • the surface of the textile is dot-coated with a hot melt adhesive solution, and then covered with a reinforcing film to form a laminated structure. Finally, the laminated structure is hot-pressed under 200°C to 300°C to form the reinforced textile.
  • the hot melt adhesive layer is aged over time and would peel from the textile, and thus lose the property of high strength.
  • the solvent contained in the hot melt adhesive solution might remain in the reinforced textile made by the film lamination, thereby limiting the applicability of the reinforced textile.
  • the objective of the present invention is to provide a reinforced composite fabric and a method for preparing a reinforced composite fabric which overcomes the problem of peeling of the reinforcing film and simplifies the fabrication process.
  • the present invention provides a method for preparing a reinforced composite fabric including:
  • the hot-pressing temperature is higher than the melting point of the low-hardness thermoplastic elastomeric yarn by 10°C to 50°C.
  • the hot-pressing temperature is higher than the melting point of the low-hardness thermoplastic elastomeric yarn by 10°C to 20°C. Therefore, the present invention can hot-press the fabric under a hot-pressing temperature lower than 200°C and make the low-hardness thermoplastic elastomeric yarn partially melted.
  • the hot-pressing temperature can be adjusted according to the melting point of the high-hardness thermoplastic elastomeric yarn and the melting point of the low-hardness thermoplastic elastomeric yarn.
  • the melting point of the low-hardness thermoplastic elastomeric yarn is from 50°C to 150°C. More preferably, the melting point of the low-hardness thermoplastic elastomeric yarn is from 70°C to 150°C. Therefore, the reinforced composite fabric is made under the lower hot-pressing temperature.
  • the melting point of the high-hardness thermoplastic elastomeric yarn is from 150°C to 300°C. More preferably, the melting point of the high-hardness thermoplastic elastomeric yarn is from 160°C to 300°C. Much more preferably, the melting point of the high-hardness thermoplastic elastomeric yarn is from 180°C to 250°C.
  • a shore hardness of the low-hardness thermoplastic elastomeric yarn is from 10A to 90A and a shore hardness of the high-hardness thermoplastic elastomeric yarn is from 95A to 90D.
  • the method further comprises the step of twisting a high-hardness thermoplastic elastomeric fiber and a reinforcing fiber into the high-hardness thermoplastic elastomeric yarn.
  • the step of twisting a high-hardness thermoplastic elastomeric fiber and a reinforcing fiber makes the high-hardness thermoplastic elastomeric yarn have the characteristic of the reinforcing fiber.
  • the addition of the reinforcing fiber widens the applicability of the reinforced composite fabric and may enhance the tensile strength and the impact strength of the reinforced composite fabric.
  • the reinforcing fiber is a synthetic fiber.
  • the applicable synthetic fiber of the present invention includes a carbon fiber, a glass fiber, a Kevlar fiber, or a Dyneema fiber.
  • a percentage of the reinforcing fiber ranges from 10 wt% to 90 wt% based on the overall weight of the high-hardness thermoplastic elastomeric yarn.
  • the method further comprises the steps of melt spinning a high-hardness thermoplastic elastomeric polymer into the high-hardness thermoplastic elastomeric yarn and of melt spinning a low-hardness thermoplastic elastomeric polymer into the low-hardness thermoplastic elastomeric yarn.
  • thermoplastic rubber elastomer TPR
  • thermoplastic polyurethane elastomer TPU
  • styrene-based thermoplastic elastomer TPS
  • thermoplastic olefinic elastomer TPO
  • thermoplastic vulcanizate elastomer TPV
  • thermoplastic ester elastomer TPEE
  • thermoplastic polyamide elastomer TPAE
  • the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer are classified as the identical thermoplastic elastomeric polymer. Therefore, the reinforced composite fabric may have higher tensile strength and higher impact strength due to the same or better affinity between the high-hardness thermoplastic elastomeric yarn and the low-hardness thermoplastic elastomeric yarn.
  • the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer each respectfully have a soft segment and a hard segment.
  • the hardness and the melting point of the thermoplastic elastomeric polymer may be adjusted according to a ratio of the soft segment to the hard segment.
  • the soft segment can be constructed by, but not limited to, butadiene rubber (BR), isoprene rubber (IR), natural rubber (NR), ethylene propylene diene monomer (EPDM), isobutylene isoprene rubber (IIR), polyisobutylene (PIB), polyethylene/polybutylene, amorphous polyethylene, polyether polyol, polyester polyol, or polyester.
  • BR butadiene rubber
  • IR isoprene rubber
  • NR natural rubber
  • EPDM ethylene propylene diene monomer
  • IIR isobutylene isoprene rubber
  • PIB polyisobutylene
  • polyethylene/polybutylene amorphous polyethylene
  • polyether polyol polyol
  • polyester polyol or polyester.
  • the hard segment can be constructed by, but not limited to, polystyrene (PS), polyethylene (PE), polypropylene (PP), syndiotactic 1,2-polybutadiene, trans -1,4-polyisoprene, polyurethanes (PU), diisocyanate, or polyamide (PA).
  • PS polystyrene
  • PE polyethylene
  • PP polypropylene
  • syndiotactic 1,2-polybutadiene polyurethanes
  • PU polyurethanes
  • diisocyanate or polyamide (PA).
  • the soft segment in the polyester-polyether type of TPEE system, can be constructed by polyether and the hard segment can be constructed by aromatic crystal polyester.
  • the soft segment in the polyester-polyester type of TPEE system, can be constructed by aliphatic polyester and the hard segment can be constructed by aromatic crystal polyester.
  • the ratio of the soft segment to the hard segment of the high-hardness thermoplastic elastomeric polymer is from 25:75 to 50:50.
  • the ratio of the soft segment to the hard segment of the low-hardness thermoplastic elastomeric polymer is from 51:49 to 80:20.
  • the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer are both TPO.
  • the ratio of the soft segment to the hard segment of the high-hardness thermoplastic elastomeric polymer is from 30:70 to 40:60.
  • the ratio of the soft segment to the hard segment of the low-hardness thermoplastic elastomeric polymer is from 55:45 to 75:25.
  • the step of forming a high-hardness thermoplastic elastomeric yarn and a low-hardness thermoplastic elastomeric yarn into a fabric by weaving further comprises twisting the high-hardness thermoplastic elastomeric yarn and the low-hardness thermoplastic elastomeric yarn into multiple complex yarns and forming the complex yarns into the fabric.
  • Each of the complex yarns comprises foresaid high-hardness thermoplastic elastomeric yarn and low-hardness thermoplastic elastomeric yarn twisted together.
  • the high-hardness thermoplastic elastomeric yarn and the low-hardness thermoplastic elastomeric yarn can form the fabric by a weaving method.
  • the fabrics can be, but not limited to, circular knitted fabric, knitted fabric, jersey fabric, woven fabric, plain fabric, ribbing fabric, or corrugated fabric.
  • the fabrics can be formed by different weaving methods in the same process, for example, the fabric can be formed by knitted weaving in combination with woven weaving and plain weaving.
  • the present invention provides a reinforced composite fabric comprising a high-hardness thermoplastic elastomeric yarn and a low-hardness thermoplastic elastomeric yarn. A part of a surface of the low-hardness thermoplastic elastomeric yarn is melted and attached on a surface of the high-hardness thermoplastic elastomeric yarn.
  • the reinforced composite fabric can be made by the method mentioned above.
  • the reinforced composite fabric and the method for preparing the reinforced composite fabric have advantages as follows.
  • Hot-pressing the fabric woven by the high-hardness thermoplastic elastomeric yarn and the low-hardness thermoplastic elastomeric yarn allows the reinforced composite fabric to have a higher tensile strength and a higher impact strength.
  • the method for preparing the reinforced composite fabric overcomes the problems to fabricate the reinforced textiles by the intensifiers impregnation and the film lamination.
  • the reinforced composite fabric can be hot-pressed under a lower hot-pressing temperature.
  • the reinforced composite fabric has a higher tensile strength and a higher impact strength
  • the reinforced composite fabric and the method for preparing the same is provided as follows.
  • one skilled in the arts can easily realize the advantages and effects of the present invention from the following examples.
  • Various modifications and variations can be made in order to practice or apply the present invention without departing from the spirit and scope of the invention.
  • thermoplastic elastomeric (abbreviated as HH-TPE) polymer used in the instant example was thermoplastic polyurethane elastomer (TPU), which had a soft segment and a hard segment at a ratio of 44:56.
  • the soft segment was constructed by polyol and the hard segment was constructed by diisocyanate.
  • the HH-TPE polymer having a shore hardness of 95A and a melting point of 190°C was melt spun to prepare a HH-TPE yarn (150D/72F).
  • a low-hardness thermoplastic elastomeric (abbreviated as LH-TPE) polymer used in the instant example was TPU and had a soft segment and a hard segment at a ratio of 65:35.
  • the soft segment was constructed by polyol and the hard segment was constructed by diisocyanate.
  • the LH- TPE polymer having a shore hardness of 80A and a melting point of 100°C was melt spun to prepare a LH-TPE yarn (150D/72F).
  • the HH-TPE yarn and the LH-TPE yarn were crossed upon each other at a ratio of 1:1 to form a woven fabric.
  • the size of the woven fabric was 21 cm x 30 cm.
  • the structure of the woven fabric was shown in Fig. 1 .
  • the woven fabric 1A was composed of the HH-TPE yarn 2 and the LH-TPE yarn 3.
  • the warp was composed of the HH-TPE yarn 2 and the LH-TPE yarn 3 at a ratio of 1:1
  • the weft was composed of the HH-TPE yarn 2 and the LH-TPE yarn 3 at a ratio of 1:1. That is, the HH-TPE yarn 2 and the LH-TPE yarn 3 were staggered together in both lateral direction and vertical direction.
  • the woven fabric 1A was preheated under 100°C for half an hour and hot-pressed under 110°C and a pressure of 1 kgf/cm 2 for 3 minutes. After cooling the hot-pressed woven fabric, a reinforced composite fabric was finally obtained.
  • a HH-TPE yarn (150D/72F) and a LH-TPE yarn (150D/72F) used in the instant example were similar with those in Example 1.
  • the HH-TPE yarn and the LH-TPE yarn were crossed upon each other at a ratio of 2:1 to form a woven fabric.
  • the structure of the woven fabric was shown in Fig. 2 .
  • the woven fabric 1B was composed of the HH-TPE yarn 2 and the LH-TPE yarn 3.
  • the warp was composed of the HH-TPE yarn 2 and the LH-TPE yarn 3 at a ratio of 2:1
  • the weft was composed of the HH-TPE yarn 2 and the LH-TPE yarn 3 at a ratio of 2:1. That is, two HH-TPE yarns 2 and one LH-TPE yarn 3 were arranged repeatedly in both lateral direction and vertical direction.
  • Example 2 the woven fabric 1 B was preheated and hot-pressed as described in Example 1 to form a reinforced composite fabric of Example 2.
  • a HH-TPE polymer used in the instant example was thermoplastic polyether ester elastomer (TPEE), which had a soft segment and a hard segment at a ratio of 37:63.
  • the soft segment was constructed by aliphatic polyester and the hard segment was constructed by aromatic crystal polyester.
  • the HH-TPE polymer having a shore hardness of 72D and a melting point of 220°C was melt spun to prepare a HH-TPE yarn (150D/72F).
  • a LH-TPE polymer used in the instant example was TPEE, which had a soft segment and a hard segment at a ratio of 62:38.
  • the soft segment was constructed by aliphatic polyester and the hard segment was constructed by aromatic crystal polyester.
  • the LH-TPE polymer having a shore hardness of 30D and a melting point of 150°C was melt spun to prepare a LH-TPE yarn (150D/72F).
  • the HH-TPE yarn and the LH-TPE yarn were crossed upon each other at a ratio of 1:1 to form a woven fabric similarly as Example 1. Subsequently, the woven fabric was preheated and hot-pressed as described in Example 1 to form a reinforced composite fabric of Example 3. Differently, the preheating temperature to the woven fabric was 150°C and the hot-pressing temperature to the woven fabric was 170°C.
  • a HH-TPE polymer used in the instant example was thermoplastic olefinic elastomer (TPO), which had a soft segment and a hard segment at a ratio of 35:65.
  • the soft segment was constructed by ethylene propylene diene monomer (EPDM) and the hard segment was constructed by polypropylene (PP).
  • the HH-TPE polymer having a shore hardness of 75D and a melting point of 160°C was melt spun to prepare a HH-TPE yarn (150D/72F).
  • a LH-TPE polymer used in the instant example was TPO, which had a soft segment and a hard segment at a ratio of 68:32.
  • the soft segment was constructed by EPDM and the hard segment was constructed by PP.
  • the LH-TPE polymer having a shore hardness of 56A and a melting point of 70°C was melt spun to prepare a LH-TPE yarn (150D/72F).
  • the HH-TPE yarn and the LH-TPE yarn were crossed upon each other at a ratio of 1:1 to form a woven fabric similarly as in Example 1.
  • the woven fabric was preheated and hot-pressed as described in Example 1 to form a reinforced composite fabric of Example 4. Differently, the preheating temperature to the woven fabric was 70°C and the hot-pressing temperature to the woven fabric was 100°C.
  • a HH-TPE polymer used in the instant example similarly as in Example 1 was melt spun to prepare a HH-TPE fiber (75D/36F).
  • the HH-TPE fiber and a polyethylene terephthalate (PET) fiber (75D/36F) were twisted to form a HH-TPE yarn (150D/72F).
  • a LH-TPE polymer similarly as in Example 1 was melt spun to prepare a LH-TPE yarn (150D/72F).
  • Example 5 The HH-TPE yarn and the LH-TPE yarn were crossed upon each other at a ratio of 1:1 to form a woven fabric similarly as in Example 1. Subsequently, the woven fabric was preheated and hot-pressed as described in Example 1 to form a reinforced composite fabric of Example 5.
  • a HH-TPE yarn (150D/72F) and a LH-TPE yarn (150D/72F) used in the instant example were similar to those in Example 1. Differently, the HH-TPE yarn and the LH-TPE yarn were knitted at a ratio of 1:1 to form a knitted fabric. Subsequently, the knitted fabric was preheated and hot-pressed as described in Example 1 to form a reinforced composite fabric of Example 6.
  • a HH-TPE yarn (150D/72F) and a LH-TPE yarn (150D/72F) used in the instant example were similar to those in Example 5. Differently, the HH-TPE yarn and the LH-TPE yarn were knitted at a ratio of 1:1 to form a knitted fabric. Subsequently, the knitted fabric was preheated and hot-pressed as described in Example 5 to form a reinforced composite fabric of Example 7.
  • a HH-TPE yarn (150D/72F) used in the instant example was similar to that in Example 1.
  • a LH-TPE yarn (150D/72F) used in the instant example was similar to that in Example 4. Besides, the HH-TPE yarn and the LH-TPE yarn were crossed upon each other at a ratio of 1:1 to form a woven fabric.
  • Example 8 the woven fabric was preheated and hot-pressed as described in Example 4 to form a reinforced composite fabric of Example 8.
  • a HH-TPE polymer used in the instant comparative example similarly as in Example 1 was melt spun to prepare two identical HH-TPE yarns (150D/72F). The two HH-TPE yarns were crossed upon each other to form a woven fabric similarly as in Example 1.
  • the woven fabric was preheated and hot-pressed as described in Example 1.
  • a woven fabric used in the instant comparative example was similar to that in Comparative Example 1.
  • the woven fabric was preheated and hot-pressed as described in Example 1. Differently, the preheating temperature to the woven fabric was 190°C and the hot-pressing temperature to the woven fabric was 230°C.
  • the two HH-TPE yarns were melted and formed into a piece of TPU polymer film.
  • the piece of TPU polymer no longer had a texture of the woven fabric.
  • the tensile strength of the fabric and the tensile strength of the reinforced composite fabric were measured according to ASTM-D142 specified by American Society for Testing and Materials (ASTM). Also, the impact strength of the fabric and the impact strength of the reinforced composite fabric were measured according to ASTM-D256 specified by ASTM.
  • Table 1 the type of the HH-TPE polymers, the ratios of the soft segment to the hard segment (abbreviated as SS:HS) of the HH-TPE polymers, the shore hardness of the HH-TPE polymers, and the melting points of the HH-TPE polymers in Examples 1 to 8 (abbreviated as E1 to E8) and the type of the LH-TPE polymers, the SS:HS ratios of the LH-TPE polymers, the shore hardness of the LH-TPE polymers, and the melting points (°C) of the LH-TPE polymers in Examples 1 to 8 (abbreviated as E1 to E8).
  • HH-TPE polymer LH-TPE polymer Type SS HS Hardness Melting point
  • Type SS HS Hardness Melting point
  • Table 2 the ratios of the HH-TPE yarn to the LH-TPE yarn (abbreviated as HH-yarn:LH-yarn) of the fabrics
  • the HH-/LH-TPE yarns can be prepared by the HH-/LH-TPE polymers with different hardness or different melting points by controlling the SS:HS ratios of the HH-/LH-TPE polymers.
  • the tensile strengths and the impact strengths of the reinforced composite fabrics in Examples 1 to 8 were higher than those of the fabrics in Examples 1 to 8. Therefore, the present invention could prepare the reinforced composite fabrics with higher tensile strength and higher impact strength.
  • the HH-TPE polymer and the LH-TPE polymer were classified as identical thermoplastic elastomeric polymer in Examples 1 to 7.
  • the LH-TPE polymer and the HH-TPE polymer in Examples 1, 2, 5, and 8 were TPU.
  • the SS:HS ratios of the LH-TPE polymer ranged from 56:44 to 70:30
  • the shore hardness of the LH-TPE yarn ranged from 10A to 90A
  • the melting points of the LH-TPE yarn ranged from 50°C to 150°C.
  • the SS:HS ratios of the HH-TPE polymer ranged from 30:70 to 50:50
  • the shore hardness of the HH-TPE yarn ranged from 95A to 90D and the melting points of the HH-TPE yarn ranged from 170°C to 300°C.
  • the LH-TPE polymer and the HH-TPE polymer in Example 3 were TPEE.
  • the SS:HS ratio of the LH-TPE polymer ranged from 52:48 to 75:25
  • the shore hardness of the LH-TPE yarn ranged from 30D to 60D
  • the melting point of the LH-TPE yarn ranged from 100°C to 180°C.
  • the SS:HS ratio of the HH-TPE polymer ranged from 30:70 to 40:60
  • the shore hardness of the HH-TPE yarn ranged from 65D to 80D and the melting points of the HH-TPE yarn ranged from 185°C to 280°C.
  • the LH-TPE polymer and the HH-TPE polymer in Examples 4 and 8 were TPO.
  • the SS:HS ratios of the LH-TPE polymer ranged from 55:45 to 75:25
  • the shore hardness of the LH-TPE yarn ranged from 30A to 60A and the melting point of the LH-TPE yarn ranged from 50°C to 80°C.
  • the SS:HS ratios of the HH-TPE polymer ranged from 30:70 to 40:60
  • the shore hardness of the HH-TPE yarn ranged from 65A to 90A and the melting point of the HH-TPE yarn ranged from 100°C to 180°C.
  • the HH-TPE polymers in Examples 1 and 8 were both TPU. Differently, the LH-TPE polymer in Example 1 was TPU but the LH-TPE polymer in Example 8 was TPO. With reference to Table 2, the tensile strength and the impact strength of the reinforced composite fabric in Example 1 were higher than those in Example 8 due to the higher affinity between the HH-TPE yarn and the LH-TPE yarn.
  • the LH-TPE polymers in Examples 4 and 8 were both TPO.
  • the HH-TPE polymer in Example 4 was TPO but the HH-TPE polymer in Example 8 was TPU.
  • the tensile strength of the reinforced composite fabric in Example 8 was higher than that in Example 4.
  • the impact strength of the reinforced composite fabric in Example 4 was higher than that in Example 8. Therefore, the reinforced composite fabric prepared by various types of HH-TPE polymers or by various types of LH-TPE polymers would have different characteristics of mechanical strengths.
  • the PET fiber and the TPU fiber were twisted to form the HH-TPE yarn in Examples 5 and 7.
  • the tensile strengths and the impact strengths of the reinforced composite fabrics in Examples 5 and 7 were increased.
  • the tensile strength of the reinforced composite fabric in Example 5 was 531 kgf/cm 2 ;
  • the impact strength of the reinforced composite fabric in Example 5 was 287 J/m.
  • the tensile strength of the reinforced composite fabric in Example 7 was 267 kgf/cm 2 ; the impact strength of the reinforced composite fabric in Example 7 was 148 J/m.
  • Examples 1 and 6 were respectively prepared similarly. That is, the difference between the first group and the second group was only the types of the fabrics.
  • the tensile strength and the impact strength of the reinforced composite fabric made by woven fabrics were higher than those of the reinforced composite fabric made by knitted fabrics (Examples 6 and 7).
  • Comparing Example 1 with Comparative Example 1 the woven fabric in Comparative Example 1 was woven by two identical HH-TPE yarns. After preheating and hot-pressing the woven fabric, the woven fabric did not form the reinforced composite fabric. With reference to Table 2, the tensile strength and the impact strength of the reinforced composite fabric in Comparative Example 1 did not increase obviously.
  • Comparing Example 1 with Comparative Example 2 the woven fabric in Comparative Example 2 was woven by two identical HH-TPE yarns and the hot-pressing temperature was not higher than or equal to the melting point of the HH-TPE yarn. From the result, the woven fabric in the Comparative Example 2 not only could not form the reinforced composite fabric but also would lose the texture of the fabric. Therefore, using the HH-TPE yarn and the LH-TPE yarn and controlling the hot-pressing temperature to the fabrics in a specific range are important features to prepare the reinforced composite fabrics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Woven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The present invention provides a method of preparing a reinforced composite fabric. The method includes steps of: forming a high-hardness thermoplastic elastomeric yarn (2) and a low-hardness thermoplastic elastomeric yarn (3) with a melting point from 50°C to 150°C into a fabric; and hot-pressing the fabric under a hot-pressing temperature to form the reinforced composite fabric. The hot-pressing temperature is higher than or equal to the melting point of the low-hardness thermoplastic elastomeric yarn (3) but lower than the melting point of the high-hardness thermoplastic elastomeric yarn (2). The present invention also provides a reinforced composite fabric made by the method. The reinforced composite fabric can be made by a simple and an eco-friendly process, and has the advantages of high tensile strength and high impact strength.

Description

    1. Field of the Invention
  • The present invention relates to textile technology, and particularly relates to a reinforced composite fabric and a method for preparing a reinforced composite fabric.
  • 2. Description of the Related Art
  • Due to the development of technology, the demands for the functional textiles increase. The functional textiles have different properties and functions according to different uses. Among the functional textiles, reinforced textiles are usually formed by adding a reinforcing agent or attaching a reinforcing film to enhance their strengths.
  • The use of reinforcing agent is more widely used between these two means. Common reinforcing agents include tear strength improver, rubbing fastness improver, or fabric enhancer. After the textile is immersed in a solution containing the reinforcing agent, a polymer layer is attached onto the surface of the textile, such that the strength of the textile can be enhanced.
  • However, the concentration of the reinforcing agent needs to be lower than 5% to sustain the texture of the reinforced textile, resulting in that the reinforced effect cannot be effectively improved. Using the reinforcing agent to enhance the strength requires additional impregnation process and drying process, resulting in a more complicated process, longer processing time, and higher cost. Besides, large consumptions of water and solvent during the process cause large burdens to the environment, and thus the conventional method is not suitable for the mass production of the reinforced fabrics in the future that people pay attention to the environmental protection increasingly.
  • Film lamination is also useful to reinforce the strength of the textile. The surface of the textile is dot-coated with a hot melt adhesive solution, and then covered with a reinforcing film to form a laminated structure. Finally, the laminated structure is hot-pressed under 200°C to 300°C to form the reinforced textile.
  • However, the hot melt adhesive layer is aged over time and would peel from the textile, and thus lose the property of high strength. Besides, the solvent contained in the hot melt adhesive solution might remain in the reinforced textile made by the film lamination, thereby limiting the applicability of the reinforced textile.
  • The objective of the present invention is to provide a reinforced composite fabric and a method for preparing a reinforced composite fabric which overcomes the problem of peeling of the reinforcing film and simplifies the fabrication process.
  • In order to achieve the aforementioned objective, the present invention provides a method for preparing a reinforced composite fabric including:
    • forming a high-hardness thermoplastic elastomeric yarn and a low-hardness thermoplastic elastomeric yarn into a fabric by weaving; a melting point of the low-hardness thermoplastic elastomeric yarn ranging from 50°C to 150°C;
    • hot-pressing the fabric under a hot-pressing temperature (less than 200°C) and a hot-pressing pressure to form the reinforced composite fabric; the hot-pressing temperature being higher than or equal to the melting point of the low-hardness thermoplastic elastomeric yarn, and lower than a melting point of the high-hardness thermoplastic elastomeric yarn.
  • In accordance with the present invention, two thermoplastic elastomeric yarns with different hardness or different melting points are hot-pressed at a suitable temperature to allow the low-hardness thermoplastic elastomeric yarn to be partially melted and attached on the surface of the high-hardness thermoplastic elastomeric yarn, so as to obtain the reinforced composite fabric. By means of the method described, the tensile strength and the impact strength are enhanced without using the hot melt adhesive solution. The drawbacks of aging of the hot melt adhesive layer, peeling of the reinforcing film, and residuals of the solvent are overcome. Further, the fabrication process of the reinforced fabric is simpler than the prior art.
  • Preferably, the hot-pressing pressure is from 0.1 kgf/cm2 to 10 kgf/cm2.
  • As for the method for preparing the reinforced composite fabric, the hot-pressing temperature is higher than the melting point of the low-hardness thermoplastic elastomeric yarn by 10°C to 50°C. Preferably, the hot-pressing temperature is higher than the melting point of the low-hardness thermoplastic elastomeric yarn by 10°C to 20°C. Therefore, the present invention can hot-press the fabric under a hot-pressing temperature lower than 200°C and make the low-hardness thermoplastic elastomeric yarn partially melted.
  • According to the present invention, the hot-pressing temperature can be adjusted according to the melting point of the high-hardness thermoplastic elastomeric yarn and the melting point of the low-hardness thermoplastic elastomeric yarn. Preferably, the melting point of the low-hardness thermoplastic elastomeric yarn is from 50°C to 150°C. More preferably, the melting point of the low-hardness thermoplastic elastomeric yarn is from 70°C to 150°C. Therefore, the reinforced composite fabric is made under the lower hot-pressing temperature. Besides, the melting point of the high-hardness thermoplastic elastomeric yarn is from 150°C to 300°C. More preferably, the melting point of the high-hardness thermoplastic elastomeric yarn is from 160°C to 300°C. Much more preferably, the melting point of the high-hardness thermoplastic elastomeric yarn is from 180°C to 250°C.
  • Preferably, a shore hardness of the low-hardness thermoplastic elastomeric yarn is from 10A to 90A and a shore hardness of the high-hardness thermoplastic elastomeric yarn is from 95A to 90D.
  • In addition, the method further comprises the step of twisting a high-hardness thermoplastic elastomeric fiber and a reinforcing fiber into the high-hardness thermoplastic elastomeric yarn.
  • The step of twisting a high-hardness thermoplastic elastomeric fiber and a reinforcing fiber makes the high-hardness thermoplastic elastomeric yarn have the characteristic of the reinforcing fiber. The addition of the reinforcing fiber widens the applicability of the reinforced composite fabric and may enhance the tensile strength and the impact strength of the reinforced composite fabric.
  • Preferably, the reinforcing fiber is a synthetic fiber. Further, the applicable synthetic fiber of the present invention includes a carbon fiber, a glass fiber, a Kevlar fiber, or a Dyneema fiber. A percentage of the reinforcing fiber ranges from 10 wt% to 90 wt% based on the overall weight of the high-hardness thermoplastic elastomeric yarn.
  • Preferably, the method further comprises the steps of melt spinning a high-hardness thermoplastic elastomeric polymer into the high-hardness thermoplastic elastomeric yarn and of melt spinning a low-hardness thermoplastic elastomeric polymer into the low-hardness thermoplastic elastomeric yarn. Besides, the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer independently are, but not limited to, thermoplastic rubber elastomer (TPR), thermoplastic polyurethane elastomer (TPU), styrene-based thermoplastic elastomer (TPS), thermoplastic olefinic elastomer (TPO), thermoplastic vulcanizate elastomer (TPV), thermoplastic ester elastomer (TPEE), or thermoplastic polyamide elastomer (TPAE).
  • Preferably, the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer are classified as the identical thermoplastic elastomeric polymer. Therefore, the reinforced composite fabric may have higher tensile strength and higher impact strength due to the same or better affinity between the high-hardness thermoplastic elastomeric yarn and the low-hardness thermoplastic elastomeric yarn.
  • The high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer each respectfully have a soft segment and a hard segment. The hardness and the melting point of the thermoplastic elastomeric polymer may be adjusted according to a ratio of the soft segment to the hard segment.
  • The soft segment can be constructed by, but not limited to, butadiene rubber (BR), isoprene rubber (IR), natural rubber (NR), ethylene propylene diene monomer (EPDM), isobutylene isoprene rubber (IIR), polyisobutylene (PIB), polyethylene/polybutylene, amorphous polyethylene, polyether polyol, polyester polyol, or polyester.
  • The hard segment can be constructed by, but not limited to, polystyrene (PS), polyethylene (PE), polypropylene (PP), syndiotactic 1,2-polybutadiene, trans-1,4-polyisoprene, polyurethanes (PU), diisocyanate, or polyamide (PA).
  • Moreover, in the polyester-polyether type of TPEE system, the soft segment can be constructed by polyether and the hard segment can be constructed by aromatic crystal polyester. In the polyester-polyester type of TPEE system, the soft segment can be constructed by aliphatic polyester and the hard segment can be constructed by aromatic crystal polyester.
  • Preferably, the ratio of the soft segment to the hard segment of the high-hardness thermoplastic elastomeric polymer is from 25:75 to 50:50. The ratio of the soft segment to the hard segment of the low-hardness thermoplastic elastomeric polymer is from 51:49 to 80:20.
  • Preferably, the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer are both TPU. The ratio of the soft segment to the hard segment of the high-hardness thermoplastic elastomeric polymer is from 30:70 to 50:50. The ratio of the soft segment to the hard segment of the low-hardness thermoplastic elastomeric polymer is from 56:44 to 70:30.
  • Preferably, the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer are both TPEE. The ratio of the soft segment to the hard segment of the high-hardness thermoplastic elastomeric polymer is from 30:70 to 40:60. The ratio of the soft segment to the hard segment of the low-hardness thermoplastic elastomeric polymer is from 52:48 to 75:25.
  • Preferably, the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer are both TPO. The ratio of the soft segment to the hard segment of the high-hardness thermoplastic elastomeric polymer is from 30:70 to 40:60. The ratio of the soft segment to the hard segment of the low-hardness thermoplastic elastomeric polymer is from 55:45 to 75:25.
  • Preferably, the step of forming a high-hardness thermoplastic elastomeric yarn and a low-hardness thermoplastic elastomeric yarn into a fabric by weaving further comprises twisting the high-hardness thermoplastic elastomeric yarn and the low-hardness thermoplastic elastomeric yarn into multiple complex yarns and forming the complex yarns into the fabric. Each of the complex yarns comprises foresaid high-hardness thermoplastic elastomeric yarn and low-hardness thermoplastic elastomeric yarn twisted together.
  • The high-hardness thermoplastic elastomeric yarn and the low-hardness thermoplastic elastomeric yarn can form the fabric by a weaving method. The fabrics can be, but not limited to, circular knitted fabric, knitted fabric, jersey fabric, woven fabric, plain fabric, ribbing fabric, or corrugated fabric. Besides, the fabrics can be formed by different weaving methods in the same process, for example, the fabric can be formed by knitted weaving in combination with woven weaving and plain weaving.
  • Furthermore, the present invention provides a reinforced composite fabric comprising a high-hardness thermoplastic elastomeric yarn and a low-hardness thermoplastic elastomeric yarn. A part of a surface of the low-hardness thermoplastic elastomeric yarn is melted and attached on a surface of the high-hardness thermoplastic elastomeric yarn. The reinforced composite fabric can be made by the method mentioned above.
  • In conclusion, the reinforced composite fabric and the method for preparing the reinforced composite fabric have advantages as follows.
  • (1) High mechanical strength property
  • Hot-pressing the fabric woven by the high-hardness thermoplastic elastomeric yarn and the low-hardness thermoplastic elastomeric yarn allows the reinforced composite fabric to have a higher tensile strength and a higher impact strength.
  • (2) Simple and eco-friendly process
  • The method for preparing the reinforced composite fabric overcomes the problems to fabricate the reinforced textiles by the intensifiers impregnation and the film lamination.
  • (3) Low hot-pressing temperature
  • By adjusting the melting point of the low-hardness thermoplastic elastomeric yarn, the reinforced composite fabric can be hot-pressed under a lower hot-pressing temperature.
  • In the drawings:
    • Fig. 1 is a perspective view of a reinforced woven fabric made from high-hardness thermoplastic elastomeric yarns and low-hardness thermoplastic elastomeric yarns at a ratio of 1:1;
    • Fig. 2 is a perspective view of the reinforced woven fabric made from the high-hardness thermoplastic elastomeric yarns and low-hardness thermoplastic elastomeric yarns at a ratio of 2:1.
  • To prove that the reinforced composite fabric has a higher tensile strength and a higher impact strength, the reinforced composite fabric and the method for preparing the same is provided as follows. Hereinafter, one skilled in the arts can easily realize the advantages and effects of the present invention from the following examples. Various modifications and variations can be made in order to practice or apply the present invention without departing from the spirit and scope of the invention.
  • Example 1
  • A high-hardness thermoplastic elastomeric (abbreviated as HH-TPE) polymer used in the instant example was thermoplastic polyurethane elastomer (TPU), which had a soft segment and a hard segment at a ratio of 44:56. The soft segment was constructed by polyol and the hard segment was constructed by diisocyanate. The HH-TPE polymer having a shore hardness of 95A and a melting point of 190°C was melt spun to prepare a HH-TPE yarn (150D/72F).
  • A low-hardness thermoplastic elastomeric (abbreviated as LH-TPE) polymer used in the instant example was TPU and had a soft segment and a hard segment at a ratio of 65:35. The soft segment was constructed by polyol and the hard segment was constructed by diisocyanate. The LH- TPE polymer having a shore hardness of 80A and a melting point of 100°C was melt spun to prepare a LH-TPE yarn (150D/72F).
  • The HH-TPE yarn and the LH-TPE yarn were crossed upon each other at a ratio of 1:1 to form a woven fabric. The size of the woven fabric was 21 cm x 30 cm. The structure of the woven fabric was shown in Fig. 1.
  • With reference to Fig. 1, the woven fabric 1A was composed of the HH-TPE yarn 2 and the LH-TPE yarn 3. The warp was composed of the HH-TPE yarn 2 and the LH-TPE yarn 3 at a ratio of 1:1, and the weft was composed of the HH-TPE yarn 2 and the LH-TPE yarn 3 at a ratio of 1:1. That is, the HH-TPE yarn 2 and the LH-TPE yarn 3 were staggered together in both lateral direction and vertical direction. Subsequently, the woven fabric 1A was preheated under 100°C for half an hour and hot-pressed under 110°C and a pressure of 1 kgf/cm2 for 3 minutes. After cooling the hot-pressed woven fabric, a reinforced composite fabric was finally obtained.
  • Example 2
  • A HH-TPE yarn (150D/72F) and a LH-TPE yarn (150D/72F) used in the instant example were similar with those in Example 1.
  • Differently, the HH-TPE yarn and the LH-TPE yarn were crossed upon each other at a ratio of 2:1 to form a woven fabric. The structure of the woven fabric was shown in Fig. 2.
  • With reference to Fig. 2, the woven fabric 1B was composed of the HH-TPE yarn 2 and the LH-TPE yarn 3. The warp was composed of the HH-TPE yarn 2 and the LH-TPE yarn 3 at a ratio of 2:1, and the weft was composed of the HH-TPE yarn 2 and the LH-TPE yarn 3 at a ratio of 2:1. That is, two HH-TPE yarns 2 and one LH-TPE yarn 3 were arranged repeatedly in both lateral direction and vertical direction.
  • Subsequently, the woven fabric 1 B was preheated and hot-pressed as described in Example 1 to form a reinforced composite fabric of Example 2.
  • Example 3
  • A HH-TPE polymer used in the instant example was thermoplastic polyether ester elastomer (TPEE), which had a soft segment and a hard segment at a ratio of 37:63. The soft segment was constructed by aliphatic polyester and the hard segment was constructed by aromatic crystal polyester. The HH-TPE polymer having a shore hardness of 72D and a melting point of 220°C was melt spun to prepare a HH-TPE yarn (150D/72F).
  • A LH-TPE polymer used in the instant example was TPEE, which had a soft segment and a hard segment at a ratio of 62:38. The soft segment was constructed by aliphatic polyester and the hard segment was constructed by aromatic crystal polyester. The LH-TPE polymer having a shore hardness of 30D and a melting point of 150°C was melt spun to prepare a LH-TPE yarn (150D/72F).
  • The HH-TPE yarn and the LH-TPE yarn were crossed upon each other at a ratio of 1:1 to form a woven fabric similarly as Example 1. Subsequently, the woven fabric was preheated and hot-pressed as described in Example 1 to form a reinforced composite fabric of Example 3. Differently, the preheating temperature to the woven fabric was 150°C and the hot-pressing temperature to the woven fabric was 170°C.
  • Example 4
  • A HH-TPE polymer used in the instant example was thermoplastic olefinic elastomer (TPO), which had a soft segment and a hard segment at a ratio of 35:65. The soft segment was constructed by ethylene propylene diene monomer (EPDM) and the hard segment was constructed by polypropylene (PP). The HH-TPE polymer having a shore hardness of 75D and a melting point of 160°C was melt spun to prepare a HH-TPE yarn (150D/72F).
  • A LH-TPE polymer used in the instant example was TPO, which had a soft segment and a hard segment at a ratio of 68:32. The soft segment was constructed by EPDM and the hard segment was constructed by PP. The LH-TPE polymer having a shore hardness of 56A and a melting point of 70°C was melt spun to prepare a LH-TPE yarn (150D/72F).
  • The HH-TPE yarn and the LH-TPE yarn were crossed upon each other at a ratio of 1:1 to form a woven fabric similarly as in Example 1. The woven fabric was preheated and hot-pressed as described in Example 1 to form a reinforced composite fabric of Example 4. Differently, the preheating temperature to the woven fabric was 70°C and the hot-pressing temperature to the woven fabric was 100°C.
  • Example 5
  • A HH-TPE polymer used in the instant example similarly as in Example 1 was melt spun to prepare a HH-TPE fiber (75D/36F). The HH-TPE fiber and a polyethylene terephthalate (PET) fiber (75D/36F) were twisted to form a HH-TPE yarn (150D/72F).
  • A LH-TPE polymer similarly as in Example 1 was melt spun to prepare a LH-TPE yarn (150D/72F).
  • The HH-TPE yarn and the LH-TPE yarn were crossed upon each other at a ratio of 1:1 to form a woven fabric similarly as in Example 1. Subsequently, the woven fabric was preheated and hot-pressed as described in Example 1 to form a reinforced composite fabric of Example 5.
  • Example 6
  • A HH-TPE yarn (150D/72F) and a LH-TPE yarn (150D/72F) used in the instant example were similar to those in Example 1. Differently, the HH-TPE yarn and the LH-TPE yarn were knitted at a ratio of 1:1 to form a knitted fabric. Subsequently, the knitted fabric was preheated and hot-pressed as described in Example 1 to form a reinforced composite fabric of Example 6.
  • Example 7
  • A HH-TPE yarn (150D/72F) and a LH-TPE yarn (150D/72F) used in the instant example were similar to those in Example 5. Differently, the HH-TPE yarn and the LH-TPE yarn were knitted at a ratio of 1:1 to form a knitted fabric. Subsequently, the knitted fabric was preheated and hot-pressed as described in Example 5 to form a reinforced composite fabric of Example 7.
  • Example 8
  • A HH-TPE yarn (150D/72F) used in the instant example was similar to that in Example 1. A LH-TPE yarn (150D/72F) used in the instant example was similar to that in Example 4. Besides, the HH-TPE yarn and the LH-TPE yarn were crossed upon each other at a ratio of 1:1 to form a woven fabric.
  • Subsequently, the woven fabric was preheated and hot-pressed as described in Example 4 to form a reinforced composite fabric of Example 8.
  • Comparative Example 1
  • A HH-TPE polymer used in the instant comparative example similarly as in Example 1 was melt spun to prepare two identical HH-TPE yarns (150D/72F). The two HH-TPE yarns were crossed upon each other to form a woven fabric similarly as in Example 1.
  • Subsequently, the woven fabric was preheated and hot-pressed as described in Example 1.
  • After hot-pressing the woven fabric, an appearance of the hot-pressed woven fabric was unchanged.
  • Comparative Example 2
  • A woven fabric used in the instant comparative example was similar to that in Comparative Example 1.
  • Subsequently, the woven fabric was preheated and hot-pressed as described in Example 1. Differently, the preheating temperature to the woven fabric was 190°C and the hot-pressing temperature to the woven fabric was 230°C.
  • After hot-pressing the woven fabric, the two HH-TPE yarns were melted and formed into a piece of TPU polymer film. The piece of TPU polymer no longer had a texture of the woven fabric.
  • Test Example
  • In order to clarify the differences among Examples 1 to 8, the properties of the HH-TPE polymers and the properties of the LH-TPE polymers were listed in Table 1.
  • To measure the mechanical properties of the reinforced composite fabric, the tensile strength of the fabric and the tensile strength of the reinforced composite fabric were measured according to ASTM-D142 specified by American Society for Testing and Materials (ASTM). Also, the impact strength of the fabric and the impact strength of the reinforced composite fabric were measured according to ASTM-D256 specified by ASTM.
  • To clarify the differences among Examples and Comparative Examples, the operating conditions and the properties of the reinforced composite fabrics in Examples 1 to 8 and in Comparative Example 1 were listed in Table 2. Table 1: the type of the HH-TPE polymers, the ratios of the soft segment to the hard segment (abbreviated as SS:HS) of the HH-TPE polymers, the shore hardness of the HH-TPE polymers, and the melting points of the HH-TPE polymers in Examples 1 to 8 (abbreviated as E1 to E8) and the type of the LH-TPE polymers, the SS:HS ratios of the LH-TPE polymers, the shore hardness of the LH-TPE polymers, and the melting points (°C) of the LH-TPE polymers in Examples 1 to 8 (abbreviated as E1 to E8).
    HH-TPE polymer LH-TPE polymer
    Type SS:HS Hardness Melting point Type SS:HS Hardness Melting point
    E1 TPU 44 : 56 95A 190 TPU 65 : 35 80A 100
    E2 TPU 44 : 56 95A 190 TPU 65 : 35 80A 100
    E3 TPEE 37 : 63 72D 220 TPEE 62 : 38 30D 150
    E4 TPO 35 : 65 75D 160 TPO 68 : 32 56A 70
    E5 TPU 44 : 56 95A 190 TPU 65 : 35 80A 100
    E6 TPU 44 : 56 95A 190 TPU 65 : 35 80A 100
    E7 TPU 44 : 56 95A 190 TPU 65 : 35 80A 100
    E8 TPU 44 : 56 95A 190 TPO 68 : 32 56A 70
    Table 2: the ratios of the HH-TPE yarn to the LH-TPE yarn (abbreviated as HH-yarn:LH-yarn) of the fabrics, the preheating temperatures (°C) to the fabrics, the hot-pressing temperatures (°C) to the fabrics, tensile strengths (kgf/cm2) of the fabrics, tensile strengths (kgf/cm2) of the reinforced composite fabrics, impact strengths (J/m) of the fabrics, and impact strengths (J/m) of the reinforced composite fabrics in Examples 1 to 8 and Comparative Example 1 (abbreviated as E1 to E8 and C1).
    HH-yarn: LH-yarn Preheating temperature Hot-pressing temperature Tensile strength Impact strength
    Fabric Reinforced composite fabric Fabric Reinforced composite fabric
    E1 1 : 1 100 110 253 651 43 871
    E2 2 : 1 100 110 350 453 69 556
    E3 1 : 1 150 170 169 436 32 583
    E4 1 : 1 70 100 106 243 83 638
    E5 1 : 1 100 110 384 531 33 287
    E6 1 : 1 100 110 131 374 24 418
    E7 1 : 1 100 110 198 261 30 148
    E8 1 : 1 70 100 183 347 63 323
    C1 1 : 1 100 110 286 281 62 61
  • With reference to Table 1, the HH-/LH-TPE yarns can be prepared by the HH-/LH-TPE polymers with different hardness or different melting points by controlling the SS:HS ratios of the HH-/LH-TPE polymers.
  • With reference to Table 2, the tensile strengths and the impact strengths of the reinforced composite fabrics in Examples 1 to 8 were higher than those of the fabrics in Examples 1 to 8. Therefore, the present invention could prepare the reinforced composite fabrics with higher tensile strength and higher impact strength.
  • In order to enhance the affinities between the HH-TPE yarn and the LH-TPE yarn, the HH-TPE polymer and the LH-TPE polymer were classified as identical thermoplastic elastomeric polymer in Examples 1 to 7.
  • With reference to Table 1, the LH-TPE polymer and the HH-TPE polymer in Examples 1, 2, 5, and 8 were TPU. When the SS:HS ratios of the LH-TPE polymer ranged from 56:44 to 70:30, the shore hardness of the LH-TPE yarn ranged from 10A to 90A and the melting points of the LH-TPE yarn ranged from 50°C to 150°C. When the SS:HS ratios of the HH-TPE polymer ranged from 30:70 to 50:50, the shore hardness of the HH-TPE yarn ranged from 95A to 90D and the melting points of the HH-TPE yarn ranged from 170°C to 300°C.
  • With reference to Table 1, the LH-TPE polymer and the HH-TPE polymer in Example 3 were TPEE. When the SS:HS ratio of the LH-TPE polymer ranged from 52:48 to 75:25, the shore hardness of the LH-TPE yarn ranged from 30D to 60D and the melting point of the LH-TPE yarn ranged from 100°C to 180°C. When the SS:HS ratio of the HH-TPE polymer ranged from 30:70 to 40:60, the shore hardness of the HH-TPE yarn ranged from 65D to 80D and the melting points of the HH-TPE yarn ranged from 185°C to 280°C.
  • With reference to Table 1, the LH-TPE polymer and the HH-TPE polymer in Examples 4 and 8 were TPO. When the SS:HS ratios of the LH-TPE polymer ranged from 55:45 to 75:25, the shore hardness of the LH-TPE yarn ranged from 30A to 60A and the melting point of the LH-TPE yarn ranged from 50°C to 80°C. When the SS:HS ratios of the HH-TPE polymer ranged from 30:70 to 40:60, the shore hardness of the HH-TPE yarn ranged from 65A to 90A and the melting point of the HH-TPE yarn ranged from 100°C to 180°C.
  • With reference to Table 2, by using identical type of the LH-TPE polymer and the HH-TPE polymer, the tensile strengths and the impact strengths of the reinforced composite fabrics in Examples 1 to 7 were enhanced after hot-pressing.
  • Comparing Examples 1 with 8, the HH-TPE polymers in Examples 1 and 8 were both TPU. Differently, the LH-TPE polymer in Example 1 was TPU but the LH-TPE polymer in Example 8 was TPO. With reference to Table 2, the tensile strength and the impact strength of the reinforced composite fabric in Example 1 were higher than those in Example 8 due to the higher affinity between the HH-TPE yarn and the LH-TPE yarn.
  • Comparing Examples 4 with 8, the LH-TPE polymers in Examples 4 and 8 were both TPO. Differently, the HH-TPE polymer in Example 4 was TPO but the HH-TPE polymer in Example 8 was TPU. With reference to Table 2, due to the tensile reinforcement of the TPU, the tensile strength of the reinforced composite fabric in Example 8 was higher than that in Example 4. In addition, due to the higher affinity between the HH-TPE yarn and the LH-TPE yarn, the impact strength of the reinforced composite fabric in Example 4 was higher than that in Example 8. Therefore, the reinforced composite fabric prepared by various types of HH-TPE polymers or by various types of LH-TPE polymers would have different characteristics of mechanical strengths.
  • Further, other kinds of fiber could be included in the HH-TPE yarn or the LH-TPE yarn hence to form the reinforced composite fabric with different characteristics. With reference to Table 2, the PET fiber and the TPU fiber were twisted to form the HH-TPE yarn in Examples 5 and 7. The tensile strengths and the impact strengths of the reinforced composite fabrics in Examples 5 and 7 were increased. The tensile strength of the reinforced composite fabric in Example 5 was 531 kgf/cm2; the impact strength of the reinforced composite fabric in Example 5 was 287 J/m. The tensile strength of the reinforced composite fabric in Example 7 was 267 kgf/cm2; the impact strength of the reinforced composite fabric in Example 7 was 148 J/m.
  • Comparing Examples 1 to 5 with Examples 6 and 7, the fabrics in Examples 1 to 5 were woven fabrics and the fabrics in Examples 6 and 7 were knitted fabrics. With reference to Table 2, no matter what fabrics were made, the tensile strengths and the impact strengths of the reinforced composite fabrics were increased after hot-pressing. Therefore, various types of fabrics were suitable for use in the method for preparing the reinforced composite fabric.
  • To compare the woven fabrics with knitted fabrics, a first group (Examples 1 and 6) and a second group (Examples 5 and 7) were respectively prepared similarly. That is, the difference between the first group and the second group was only the types of the fabrics. With reference to Table 2, the tensile strength and the impact strength of the reinforced composite fabric made by woven fabrics (Examples 1 and 5) were higher than those of the reinforced composite fabric made by knitted fabrics (Examples 6 and 7).
  • Comparing Example 1 with Comparative Example 1, the woven fabric in Comparative Example 1 was woven by two identical HH-TPE yarns. After preheating and hot-pressing the woven fabric, the woven fabric did not form the reinforced composite fabric. With reference to Table 2, the tensile strength and the impact strength of the reinforced composite fabric in Comparative Example 1 did not increase obviously.
  • Comparing Example 1 with Comparative Example 2, the woven fabric in Comparative Example 2 was woven by two identical HH-TPE yarns and the hot-pressing temperature was not higher than or equal to the melting point of the HH-TPE yarn. From the result, the woven fabric in the Comparative Example 2 not only could not form the reinforced composite fabric but also would lose the texture of the fabric. Therefore, using the HH-TPE yarn and the LH-TPE yarn and controlling the hot-pressing temperature to the fabrics in a specific range are important features to prepare the reinforced composite fabrics.

Claims (20)

  1. A method for preparing a reinforced composite fabric, characterized in that the method comprises steps of:
    forming a high-hardness thermoplastic elastomeric yarn (2) and a low-hardness thermoplastic elastomeric yarn (3) into a fabric by weaving; a melting point of the low-hardness thermoplastic elastomeric yarn (3) ranging from 50°C to 150°C;
    hot-pressing the fabric under a hot-pressing temperature and a hot-pressing pressure to form the reinforced composite fabric; the hot-pressing temperature being higher than or equal to the melting point of the low-hardness thermoplastic elastomeric yarn (3), and lower than a melting point of the high-hardness thermoplastic elastomeric yarn (2).
  2. The method for preparing the reinforced composite fabric as claimed in claim 1, wherein the hot-pressing temperature is higher than the melting point of the low-hardness thermoplastic elastomeric yarn (3) by 10°C to 50°C.
  3. The method for preparing the reinforced composite fabric as claimed in claim 1, wherein the melting point of the high-hardness thermoplastic elastomeric yarn (2) is from 150°C to 300°C.
  4. The method for preparing the reinforced composite fabric as claimed in claim 1, wherein a shore hardness of the low-hardness thermoplastic elastomeric yarn (3) is from 10A to 90A and a shore hardness of the high-hardness thermoplastic elastomeric yarn (2) is from 95A to 90D.
  5. The method for preparing the reinforced composite fabric as claimed in claim 1, wherein the method comprises twisting a high-hardness thermoplastic elastomeric fiber and a reinforcing fiber into the high-hardness thermoplastic elastomeric yarn (2).
  6. The method for preparing the reinforced composite fabric as claimed in claim 5, wherein the reinforcing fiber includes a carbon fiber, a glass fiber, a Kevlar fiber, or a Dyneema fiber; a percentage of the reinforcing fiber ranges from 10 wt% to 90 wt% based on the overall weight of the high-hardness thermoplastic elastomeric yarn (2).
  7. The method for preparing the reinforced composite fabric as claimed in claim 1, wherein the method comprises:
    melt spinning a high-hardness thermoplastic elastomeric polymer into the high-hardness thermoplastic elastomeric yarn (2); and
    melt spinning a low-hardness thermoplastic elastomeric polymer into the low-hardness thermoplastic elastomeric yarn (3); wherein
    the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer independently are thermoplastic rubber elastomer, thermoplastic polyurethane elastomer, styrene-based thermoplastic elastomer, thermoplastic olefinic elastomer, thermoplastic vulcanizate elastomer, thermoplastic ester elastomer, or thermoplastic polyamide elastomer.
  8. The method for preparing the reinforced composite fabric as claimed in claim 2, wherein the method comprises:
    melt-spinning a high-hardness thermoplastic elastomeric polymer into the high-hardness thermoplastic elastomeric yarn (2); and
    melt-spinning a low-hardness thermoplastic elastomeric polymer into the low-hardness thermoplastic elastomeric yarn (3); wherein
    the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer independently are thermoplastic rubber elastomer, thermoplastic polyurethane elastomer, styrene-based thermoplastic elastomer, thermoplastic olefinic elastomer, thermoplastic vulcanizate elastomer, thermoplastic ester elastomer, or thermoplastic polyamide elastomer.
  9. The method for preparing the reinforced composite fabric as claimed in claim 3, wherein the method comprises:
    melt-spinning a high-hardness thermoplastic elastomeric polymer into the high-hardness thermoplastic elastomeric yarn (2); and
    melt-spinning a low-hardness thermoplastic elastomeric polymer into the low-hardness thermoplastic elastomeric yarn (3); wherein
    the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer independently are thermoplastic rubber elastomer, thermoplastic polyurethane elastomer, styrene-based thermoplastic elastomer, thermoplastic olefinic elastomer, thermoplastic vulcanizate elastomer, thermoplastic ester elastomer, or thermoplastic polyamide elastomer.
  10. The method for preparing the reinforced composite fabric as claimed in claim 4, wherein the method comprises:
    melt-spinning a high-hardness thermoplastic elastomeric polymer into the high-hardness thermoplastic elastomeric yarn (2); and
    melt-spinning a low-hardness thermoplastic elastomeric polymer into the low-hardness thermoplastic elastomeric yarn (3); wherein
    the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer independently are thermoplastic rubber elastomer, thermoplastic polyurethane elastomer, styrene-based thermoplastic elastomer, thermoplastic olefinic elastomer, thermoplastic vulcanizate elastomer, thermoplastic ester elastomer, or thermoplastic polyamide elastomer.
  11. The method for preparing the reinforced composite fabric as claimed in claim 7, wherein the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer are classified as identical thermoplastic elastomeric polymer.
  12. The method for preparing the reinforced composite fabric as claimed in claim 7, wherein the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer each respectively have a soft segment and a hard segment; a ratio of the soft segment to the hard segment of the high-hardness thermoplastic elastomeric polymer ranges from 25:75 to 50:50; a ratio of the soft segment to the hard segment of the low-hardness thermoplastic elastomeric polymer ranges from 51:49 to 80:20.
  13. The method for preparing the reinforced composite fabric as claimed in claim 7, wherein the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer are both classified as thermoplastic polyurethane elastomer; the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer each respectfully have a soft segment and a hard segment; a ratio of the soft segment to the hard segment of the high-hardness thermoplastic elastomeric polymer ranges from 30:70 to 50:50; a ratio of the soft segment to the hard segment of the low-hardness thermoplastic elastomeric polymer ranges from 56:44 to 70:30.
  14. The method for preparing the reinforced composite fabric as claimed in claim 7, wherein the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer are both classified as thermoplastic polyether ester elastomer; the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer each respectively have a soft segment and a hard segment; a ratio of the soft segment to the hard segment of the high-hardness thermoplastic elastomeric polymer ranges from 30:70 to 40:60; a ratio of the soft segment to the hard segment of the low-hardness thermoplastic elastomeric polymer ranges from 52:48 to 75:25.
  15. The method for preparing the reinforced composite fabric as claimed in claim 7, wherein the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer are both classified as thermoplastic olefinic elastomer; the high-hardness thermoplastic elastomeric polymer and the low-hardness thermoplastic elastomeric polymer each respectively have a soft segment and a hard segment; a ratio of the soft segment to the hard segment of the high-hardness thermoplastic elastomeric polymer ranges from 30:70 to 40:60; a ratio of the soft segment to the hard segment of the low-hardness thermoplastic elastomeric polymer ranges from 55:45 to 75:25.
  16. The method for preparing the reinforced composite fabric as claimed in claim 1, wherein the step of forming a high-hardness thermoplastic elastomeric yarn (2) and a low-hardness thermoplastic elastomeric yarn (3) into a fabric by weaving further comprises twisting the high-hardness thermoplastic elastomeric yarn (2) and the low-hardness thermoplastic elastomeric yarn (3) into multiple complex yarns and weaving the multiple complex yarns into the fabric; each of the complex yarns comprises foresaid high-hardness thermoplastic elastomeric yarn (2) and low-hardness thermoplastic elastomeric yarn (3) twisted together.
  17. A reinforced composite fabric, characterized in that the reinforced composite fabric comprises:
    a high-hardness thermoplastic elastomeric yarn (2) and a low-hardness thermoplastic elastomeric yarn (3); a part of a surface of the low-hardness thermoplastic elastomeric yarn (3) being melted and attached on a surface of the high-hardness thermoplastic elastomeric yarn (2).
  18. The reinforced composite fabric as claimed in claim 17, wherein the reinforced composite fabric is made by the method of claim 1.
  19. The reinforced composite fabric as claimed in claim 17, wherein the reinforced composite fabric is made by the method of claim 5.
  20. The reinforced composite fabric as claimed in claim 17, wherein the reinforced composite fabric is made by the method of claim 16.
EP17152774.0A 2017-01-24 2017-01-24 Reinforced composite fabric and method for preparing the same Active EP3266914B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES17152774T ES2762073T3 (en) 2017-01-24 2017-01-24 Reinforced composite fabric and its manufacturing process
PL17152774T PL3266914T3 (en) 2017-01-24 2017-01-24 Reinforced composite fabric and method for preparing the same
PT171527740T PT3266914T (en) 2017-01-24 2017-01-24 Reinforced composite fabric and method for preparing the same
EP17152774.0A EP3266914B1 (en) 2017-01-24 2017-01-24 Reinforced composite fabric and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17152774.0A EP3266914B1 (en) 2017-01-24 2017-01-24 Reinforced composite fabric and method for preparing the same

Publications (2)

Publication Number Publication Date
EP3266914A1 true EP3266914A1 (en) 2018-01-10
EP3266914B1 EP3266914B1 (en) 2019-11-06

Family

ID=58046460

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17152774.0A Active EP3266914B1 (en) 2017-01-24 2017-01-24 Reinforced composite fabric and method for preparing the same

Country Status (4)

Country Link
EP (1) EP3266914B1 (en)
ES (1) ES2762073T3 (en)
PL (1) PL3266914T3 (en)
PT (1) PT3266914T (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0101305A2 (en) * 1982-08-12 1984-02-22 E.I. Du Pont De Nemours And Company Oriented woven furniture support material
JPH04146235A (en) * 1990-10-09 1992-05-20 Teijin Ltd Woven and knit fabric having excellent flexural resilience
EP0768406A1 (en) * 1995-10-11 1997-04-16 Hoechst Trevira GmbH & Co. KG High density flat textile structure made of polyester hybrid yarns, process for producing composite materials and use of the flat textile structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0101305A2 (en) * 1982-08-12 1984-02-22 E.I. Du Pont De Nemours And Company Oriented woven furniture support material
JPH04146235A (en) * 1990-10-09 1992-05-20 Teijin Ltd Woven and knit fabric having excellent flexural resilience
EP0768406A1 (en) * 1995-10-11 1997-04-16 Hoechst Trevira GmbH & Co. KG High density flat textile structure made of polyester hybrid yarns, process for producing composite materials and use of the flat textile structure

Also Published As

Publication number Publication date
PL3266914T3 (en) 2020-05-18
ES2762073T3 (en) 2020-05-22
EP3266914B1 (en) 2019-11-06
PT3266914T (en) 2019-11-22

Similar Documents

Publication Publication Date Title
JP6625392B2 (en) Artificial leather for steering wheel cover with improved durability and method of manufacturing the same
CN105142928B (en) Tire
US3085027A (en) Polyurethane coated fabric filled with isocyanate free elastomer and method of making same
CN101959699B (en) Polyurethane elastomer articles from low free diphenylmethane diisocyanate prepolymers
KR101913812B1 (en) Polyolefin-based artificial leather and manfacturing method thereof
CN105163957A (en) Tire
CN107075113B (en) Tire
WO2008010531A1 (en) Pneumatic tire
CN103596779A (en) Tire
US20160288577A1 (en) Hybrid reinforcement
RU190363U1 (en) POLYESTER CARD TISSUE
EP3580378A1 (en) Process for producing elastic fiber, process for producing elastic fiber article, elastic fiber and elastic fiber article
EP3266914A1 (en) Reinforced composite fabric and method for preparing the same
US11060215B2 (en) Reinforced composite fabric and method for preparing the same
TWI618827B (en) Composite reinforced fabric and preparation method thereof
CN107523920B (en) Composite reinforced fabric and method for making same
JP6379237B2 (en) Reinforced composite fabric and method for producing the same
CN106108237B (en) A kind of resistant to bending material for sole of shoe
CN113544227B (en) Composite structure comprising a bonding layer and method for manufacturing the same
CN109476184B (en) Article made of elastomeric material, reinforcement layer preferably for a pneumatic vehicle tyre, and pneumatic vehicle tyre
Abitha et al. Raw Materials—Rubber Dam
KR20210027659A (en) Knitted suede and its manufacturing method
WO2014126543A1 (en) A hybrid cord
JPS6139189B2 (en)
JPH02196643A (en) Flexible laminate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20171220

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: D03D 1/00 20060101AFI20190510BHEP

Ipc: D03D 15/00 20060101ALI20190510BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190724

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1198845

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3266914

Country of ref document: PT

Date of ref document: 20191122

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20191113

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017008303

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200207

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200126

Year of fee payment: 4

Ref country code: RO

Payment date: 20200115

Year of fee payment: 4

Ref country code: BG

Payment date: 20200130

Year of fee payment: 4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2762073

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20200109

Year of fee payment: 4

Ref country code: CZ

Payment date: 20200116

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200106

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017008303

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20200120

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200124

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210201

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210201

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20211115

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211028

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211110

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1198845

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210124

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1198845

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231102

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240213

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231108

Year of fee payment: 8