EP3266019B1 - Sound transducer for sending and/or for receiving underwater acoustic signals, transducer device, sonar, and watercraft - Google Patents

Sound transducer for sending and/or for receiving underwater acoustic signals, transducer device, sonar, and watercraft Download PDF

Info

Publication number
EP3266019B1
EP3266019B1 EP16707380.8A EP16707380A EP3266019B1 EP 3266019 B1 EP3266019 B1 EP 3266019B1 EP 16707380 A EP16707380 A EP 16707380A EP 3266019 B1 EP3266019 B1 EP 3266019B1
Authority
EP
European Patent Office
Prior art keywords
transducer
sound
mass
acoustic
sound pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16707380.8A
Other languages
German (de)
French (fr)
Other versions
EP3266019A1 (en
Inventor
Christoph Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Elektronik GmbH
Original Assignee
Atlas Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Elektronik GmbH filed Critical Atlas Elektronik GmbH
Publication of EP3266019A1 publication Critical patent/EP3266019A1/en
Application granted granted Critical
Publication of EP3266019B1 publication Critical patent/EP3266019B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/004Mounting transducers, e.g. provided with mechanical moving or orienting device
    • G10K11/006Transducer mounting in underwater equipment, e.g. sonobuoys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/0681Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface and a damping structure
    • B06B1/0685Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface and a damping structure on the back only of piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/39Arrangements of sonic watch equipment, e.g. low-frequency, sonar
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/002Devices for damping, suppressing, obstructing or conducting sound in acoustic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
    • B06B1/0618Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile of piezo- and non-piezoelectric elements, e.g. 'Tonpilz'

Definitions

  • the invention relates to a sound transducer for transmitting and/or receiving acoustic underwater signals, which has an acoustic transducer element, at least one first spring element, a filling compound and a transducer carrier, the at least one first spring element being assigned to the acoustic transducer element. Furthermore, the invention relates to a converter device, a sonar and a watercraft.
  • sound converters for transmitting and/or receiving acoustic underwater signals are designed to be rigid, in particular the acoustic converter element is permanently installed.
  • DE 10 2009 059902 B3 , DE 38 34 669 A1 , EP 2 200 017 A2 each disclose a sound transducer for transmitting and/or receiving acoustic underwater signals, which has an acoustic transducer element, at least a first spring element, a filling compound and a transducer carrier.
  • Such a sound transducer is often constructed according to the principle of the clay mushroom. For example, a piezoelectric ceramic is clamped between two rigid plates. The piezoelectric ceramic acts as a spring, which is "set” by an electrical voltage, for example. When the sound transducer is used as a transmitter, a voltage is applied to the piezoelectric ceramic, causing it to move mechanically. The ceramic expands and "vibrates". The vibration is transmitted to the mechanically coupled plates as masses. This will make the Pressure and thus the emitted acoustic signal amplified.
  • the clay mushroom forms a closed vibration structure made up of two masses (the plates in the example above), which are connected by an “elasticity” (piezoelectric ceramics in the example) as a spring.
  • the masses are designed to be free of elasticity and the elasticity is ideally mass-free.
  • the vibration amplitudes of the two masses fall in the direction of the line connecting the points of elasticity.
  • a stack of piezo rings is prestressed by a bolt between a solid tail and head mass.
  • the tail and head masses lower the resonant frequency below that of the piezo stack. Biasing causes high intensity transmission and delivery.
  • the head mass usually has a lower mass than the tail mass.
  • the head mass is widened on the side facing away from the piezo stack and has a foam at the widened end in order to achieve better coupling of the sound energy to the low impedance of the surrounding medium (air and/or water).
  • a sonar In underwater vehicles, a sonar usually has an acoustic absorber behind the acoustic converter element, which absorber has the task of “swallowing” the sound pressure on the rear side of the acoustic converter element and is therefore sensitive to pressure.
  • a clay mushroom there is a risk that the acoustic absorber will be destroyed due to the direct transmission with high sound intensity. This disrupts the communication, navigation and/or location on board the underwater vehicle.
  • the object of the invention is to improve the prior art.
  • the acoustic transducer element By designing the acoustic transducer element as a mass with an associated spring element, the acoustic effectiveness of the sound transducer is increased.
  • an open, elastic oscillating system is set by the acoustic transducer element as a mass, which is elastically connected to the transducer carrier via the first spring element.
  • the acoustic transducer element is designed as the first spring element and, contrary to the configuration as a clay mushroom, is designed without tension, it can oscillate freely and can therefore also be set specifically for higher frequencies and intensities.
  • the design of the acoustic transducer element in conjunction with the spring element and the transducer carrier can achieve the greatest possible acoustic sensitivity (receiver) and/or the greatest possible transmission factor (transmitter) in a desired frequency range, and set and optimize it in a targeted manner.
  • an acoustic absorber which usually follows the wave transducer in a sonar of a watercraft, also remains intact.
  • An essential idea of the invention is based on the fact that the acoustic transducer element is not designed to be rigidly braced, but rather that the acoustic transducer element is arranged on an elastic spring element and the transducer carrier, which in particular are mechanically capable of oscillating.
  • the spring element and/or the transducer carrier Due to the mechanical oscillating ability of the spring element and/or the transducer carrier, there is not only decoupling from the acoustic absorber, which is usually mounted behind the transducer carrier, but also feedback to the acoustic transducer element, so that part of the output variable of the incident sound pressure wave is applied directly or in a modified form to the acoustic Transducer element is returned. As a result, amplification occurs in particular.
  • the oscillating system is not limited in its ability to oscillate and thus in its amplitude and/or frequency by rigidity and/or strain. As a result, the oscillating system can be set specifically according to the needs of the user.
  • the elastic properties of the oscillating system are used and bring about a reduction in sound pressure (damping), while in the case of acoustic sound pressure waves with a small amplitude, the elastic system, in particular the spring element and the transducer carrier, is essentially acoustically transparent.
  • a "sound transducer” is a device for transmitting and/or receiving underwater acoustic signals, such as is used when using active and passive sonars.
  • the sound converter receives underwater sound signals and converts them into an electrical signal for further processing (receiver) and/or converts an electrical signal into an acoustic signal, with the latter being transmitted (transmitter).
  • hydrophones are used under water as sound transducers in order to record underwater sound noises there.
  • a hydrophone converts the water noise into an electrical quantity corresponding to the sound pressure.
  • a frequency range between approximately 10 Hz and 1 MHz is used in particular.
  • An "acoustic converter element” is in particular a component of a sound converter or a hydrophone which converts acoustic signals as sound pressure changes into electrical voltage or, conversely, converts electrical voltage into acoustic signals.
  • piezoelectric transducers are nowadays used as the acoustic transducer element.
  • piezo elements are also made Known plastic, in particular polyvinylidene fluoride (PVDF) is used in hydrophones.
  • a "spring element” is in particular a component and/or a material which yields under load (tension or pressure) and returns to its original shape after the load is relieved, i.e., ideally, behaves in an elastically restoring manner.
  • the spring element has high elasticity and low mass.
  • “Elastic” in this sense means in particular that the spring element or another elastic material deforms when pressure is applied, so that it assumes a different shape than before the pressure was applied. This deformation is essentially reversible and after the applied force/compression stress has ended, the spring element or the other material resumes its original shape. Consequently, a sound pressure is converted into a mechanical deformation.
  • a “filling compound” is understood to mean, in particular, a compound for filling the space between the acoustic transducer element and the transducer carrier and the other components of the sound transducer.
  • This can be a plastic mass and/or cork and/or another filling material.
  • soft polyurethane or polyoxymethylene can be used as the plastic.
  • Material with a hardness of 40shore A to 60shore A and/or a modulus of elasticity between 5MPa and 250MPa is understood here as "soft”. The hardness is according to the mass of the system and the to select the operating frequency range.
  • the filling compound has the task of gluing the components of a sound transducer together and thereby ensuring stability.
  • the filling compound can in particular also have an elastic and sound-damping effect.
  • the filling compound prevents seawater from penetrating the transducer and causing corrosive damage in particular.
  • a “transducer support” is in communication with the acoustic transducer element and at least partially encloses the acoustic transducer element.
  • the transducer carrier is arranged behind and next to the acoustic transducer element in the sound pressure direction.
  • the transducer carrier is designed in particular to be elastic.
  • a “mass” is understood in particular as the mass of an oscillating system, which is rigid and free of elasticity. The mass is in particular excited by a sound field to oscillate and generates an electrical useful sound signal and/or, as a transmitter, a sound field output.
  • sound pressure direction is understood to mean the direction from which the sound pressure with the highest intensity from a sound source impinges on the sound transducer.
  • the direction of sound pressure is in particular identical to the main direction of reception.
  • the sound pressure direction is in particular opposite to the main transmission direction.
  • An "oscillating system” is in particular the arrangement of the acoustic transducer element and other components of the sound transducer for acoustic-mechanical and/or mechanical-acoustic conversion.
  • the spring-mass principle is used in the oscillating system.
  • the "sensitivity" of a sound transducer is in particular a measure of the electrical voltage generated in relation to the sound pressure at a specific frequency in a sound receiver or a measure of the applied voltage in relation to the sound pressure generated at a specific frequency in a sound transmitter.
  • the sensitivity can also be specified as a transfer factor, in which the output voltage (as open-circuit voltage) is specified in relation to the incident sound pressure for a receiver.
  • a mechanically directly coupled impedance mass is arranged behind the acoustic transducer element in the sound pressure direction, with the first spring element and then the transducer carrier being arranged behind the impedance mass in the sound pressure direction.
  • the oscillating system can be adjusted in a targeted manner.
  • the acoustic sensitivity of the acoustic transducer element (as receiver) and/or the radiated sound energy (as transmitter) can be increased by increasing the sound pressure.
  • the acoustic effectiveness of the arrangement can thus be increased by additionally attaching an elastically mounted impedance mass.
  • the effectiveness of the oscillating system can be optimized for the selected frequency range by selecting and arranging the impedance mass and/or the spring element and/or the spring stiffness.
  • an “impedance mass” is understood to mean, in particular, a mass made of a specifically heavy material compared to the surrounding material, in particular the surrounding acoustic transducer element, the filling compound and/or the spring element, as a result of which a jump in the acoustic impedance occurs.
  • the impinging sound (pressure) is reflected and/or delayed by the impedance mass, so that an increase in sound pressure occurs on the side of the impinging sound (pressure).
  • the impedance mass takes place a sound pressure damping.
  • brass with a density of approx. 8.41 g/cm 3 to 8.86 g/cm 3 can be used as an impedance mass for a greater increase in sound pressure, or aluminum with a density of approx. 2.7 g/cm 3 for a lower increase in sound pressure.
  • An impedance mass can be used in the sound pressure direction in front of and/or behind the acoustic transducer element.
  • a second mass is arranged in front of and/or behind the acoustic transducer element in the sound pressure direction, with a second spring element being arranged between the second mass and the acoustic transducer element.
  • the acoustic effectiveness of the arrangement is further increased by the additional attachment of a second elastically mounted mass.
  • the effectiveness of the system for the selected frequency range can be further optimized by selecting and arranging the second mass for the acoustic transducer element as the first mass.
  • the choice of the masses as well as the spring stiffness results from the desired frequency range.
  • the introduction of a second mass in front of the acoustic transducer element is particularly useful for compensating against high hydrostatic pressure and high sound pressure advantageous.
  • This arrangement has the advantage that two states of resonance (two-mass oscillator) of the acoustic transducer element can be used in order to increase the acoustic effectiveness on the one hand and at the same time to reduce direct shock pressure stress on the acoustic transducer element.
  • This "multi-mass oscillator” can be tailored to the respective application and the required frequency range by selecting material parameters such as mass (specific density, dimensions, acoustic impedance properties) and selecting the spring stiffness of the spring elements.
  • the “second spring element” corresponds in its structure and in its properties in particular to the first spring element described above.
  • the impedance mass and/or the second mass are greater than the first mass of the acoustic converter element.
  • the incident sound pressure is increased by reflection and/or delay due to the greater mass.
  • the sound pressure can thus be increased on the front side by the larger mass, while sound pressure damping occurs behind the impedance mass and/or the second mass in the direction of sound pressure due to the jump in impedance.
  • this ensures that the larger amount of vibration energy is in the smaller mass of the acoustic transducer element, but at the same time an increase in sound pressure and/or sound damping is achieved by the impedance mass and/or the second mass.
  • the acoustic Transducer element In order to convert an acoustic signal into an electrical signal and/or to convert an electrical signal into an acoustic signal, the acoustic Transducer element on a piezo ceramic and / or a piezo composite ceramic.
  • piezo-ceramic and/or a “piezo-composite ceramic” is understood to mean, in particular, a full ceramic or a composite material as the transducer element. While a piezoceramic is an all-ceramic, a piezocomposite ceramic consists of a composite material which has, in particular, piezoelectric, ceramic filaments and a filling compound.
  • Both ceramics act as piezo transducers and generate an electrical voltage when mechanical pressure is applied or perform a mechanical movement when electrical voltage is applied.
  • the ceramic filaments in the piezocomposite ceramic are in particular thin and/or thread-like structures.
  • these can take the form of rods, cylinders, tubes and/or plates.
  • the sound transducer is designed here as a sound receiver.
  • the piezoceramic and/or piezocomposite ceramic are usually designed with two conductive layers, through which a voltage is applied or discharged.
  • the density of piezoceramics is around 7.7g/cm 3 , while the Density of piezo composite ceramic is lower and depends on the proportion of ceramic filaments and the filling compound.
  • the first spring element and/or the second spring element has/have an elastomer and/or the transducer carrier has/have a fiber composite material.
  • This choice of material allows an elastic arrangement of the acoustic transducer element and/or the impedance mass and/or the second mass.
  • the oscillating system and the acoustic properties, in particular the sensitivity of the sound transducer can be optimally adjusted for a specific frequency range.
  • An “elastomer” is in particular a dimensionally stable but elastically deformable plastic. Elastomers can deform elastically under tensile and compressive loads, but then return to their original shape.
  • rubber and/or polyurethane can be used as the elastomer.
  • an elastomer can also have insulating properties.
  • a “fiber composite material” is in particular a multi-phase and/or mixed material usually consisting of two main components, one component being a matrix and the other being reinforcing fibers.
  • a “fiber” is in particular a structure that is thin and flexible in relation to its length and consists of a fibrous material.
  • the ratio of length to diameter is at least 3:1 or preferably at least 10:1.
  • fibers have a length to diameter ratio of 1000:1. Due to the length-diameter ratio, the fibers give the material the necessary reversible flexibility.
  • glass fibers and/or carbon fibers can be used as fibers.
  • thermosetting plastic such.
  • polyester resin and / or epoxy resin and / or thermoplastics such.
  • the required material properties and thus the elastic behavior of the transducer carrier can be adjusted by the choice and number of the fiber material as well as the matrix material.
  • the object is achieved by a converter device with a sound converter as described above.
  • the converter device can thus be designed according to the needs of the user; in particular, the converter device can have different sound converters for transmitting and/or receiving.
  • the object is achieved by a sonar for transmitting and/or receiving acoustic underwater signals, the sonar having a sound converter or a plurality of sound converters as described above or a converter device or a plurality of converter devices as described above.
  • “Sonar” is a system for locating objects in space and under water by means of received sound pulses. This can be an active sonar, which itself emits a signal, or a passive sonar, which only receives emitted sound pulses. It can also be a bi- or multi-static sonar, which can transmit and receive on different platforms at the same time.
  • This transducer and / or transducer device are particularly advantageous for a sonar, since a location of unknown objects with high sensitivity and at different frequencies.
  • the object is achieved by a watercraft, in particular a submarine, which has a sonar as described above.
  • the sonar For a submarine in particular, it is necessary for the sonar to be located, navigated and communicated with high sensitivities and different, wide frequency ranges. This is particularly advantageous since a submarine needs to detect and identify unknown sound sources underwater and identify potential hazards.
  • the acoustic absorber of the sonar is not destroyed by a sound shock pressure wave, since otherwise the above-mentioned functions no longer exist and the submarine is endangered.
  • a sound transmitter 101 has a piezoelectric ceramic 105 which has a front copper layer 106 and a rear copper layer 107 .
  • a rubber layer 108 follows behind the piezoelectric ceramic 105 in the sound pressure direction 102 and sits directly on a GRP carrier 103 .
  • a PU mass 111 is arranged to the side of the piezoelectric ceramic 105 and the rubber layer 108 and connects the piezoelectric ceramic 105 and the rubber layer 108 to the GRP carrier 103 .
  • a PU high-frequency absorber 104 is arranged behind the GRP carrier 103 in the sound pressure direction 102 .
  • the piezoelectric ceramic 105 corresponds to a first mass 120.
  • the first mass 120 is directly connected to the rubber layer 108, the rubber layer 108 corresponding to a spring 123.
  • FIG. On the side facing away from the sound pressure direction 102, the spring 123 is connected to the GRP carrier 103 as an elastic mount 125.
  • the thin front copper layer 106 and rear copper layer 107 are assigned to the first mass 120 in this case.
  • the sound transmitter 101 emits an acoustic signal counter to the sound pressure direction 102 .
  • a voltage is applied between the front copper layer 106 and the rear copper layer 107, as a result of which the piezoelectric ceramic 105 expands and moves mechanically.
  • the movement pressure is released into the surrounding water as sound pressure.
  • a frequency of 150kHz is used, which is broadcast with a high level of transmittance.
  • the piezoelectric ceramic 105 is designed as a mass 120 and is arranged elastically by the rubber layer 108 following in the sound pressure direction 102 and the GRP carrier 103 .
  • the sound transducer thus represents a simply elastically coupled system.
  • a hydrophone 201 has a piezoelectric ceramic 205 as a receiver, which initially has a front copper layer 206 and a rear copper layer in the sound pressure direction 202 207 has. Then follows in the sound pressure direction 202 a brass block 209 and a rubber layer 208, which sits directly on the GRP carrier 203. On the side, the piezoelectric ceramic 205, the brass block 209 and the rubber layer 208 are connected to the GRP carrier 203 via the PU mass 211.
  • the PU high-frequency absorber 204 is arranged behind the GRP carrier 203 in the sound pressure direction 202 .
  • the piezoelectric ceramic 205 corresponds to the first mass 220 which is mechanically connected directly to an impedance mass 221 .
  • the impedance ground 221 is carried out through the brass block 209.
  • the rubber layer 208 corresponds to a spring 223 which connects the impedance mass 221 to an elastic mount 225, with the elastic mount 225 being designed as a GRP support 203.
  • a brass block 209 is connected to the piezoelectric ceramic 205 as an additional and impedance mass and these are arranged elastically on the GRP carrier 203, which is also elastic.
  • the frequency range in particular is defined by the masses and the spring stiffness.
  • the brass block 209 Since the brass block 209 has a higher specific mass than the piezoelectric ceramic 205, an acoustic impedance jump occurs.
  • the brass block 209 reflects and delays the incident sound pressure, so that on the side of the incident sound pressure, a sound pressure increase occurs.
  • the impedance jump at the transition from the brass block 209 to the specifically lighter material of the rubber layer 208 results in sound pressure damping, so that the PU high-frequency absorber downstream of the GRP support 203 in the sound pressure direction 202 remains intact even when a sound shock pressure wave strikes.
  • an active bow sonar 301 has a multiplicity of piezocomposite ceramics 305, a sound transducer segment being described here by way of example.
  • a copper grid 306 as a conductive layer, a piezo-composite ceramic 305, a rubber layer 308, a brass block 309 connected downstream and a rubber layer 310.
  • a PU mass 311 is arranged on the side, which connects this sound transducer segment to the next, not segment shown, connects.
  • the rubber layer 310 connects this arrangement to the oscillating support 303, which is designed in the shape of a semicircle (only half of the semicircle is shown here) and can oscillate both in the sound pressure direction 302 and transversely to the sound pressure direction 302.
  • the rubber layer 308 has both the task of damping and isolation, while the rubber layer 310 is used for damping and acoustic decoupling.
  • the piezo composite ceramic 305 corresponds to a first mass 320.
  • the rubber layer 308 corresponds to a second spring 324 and the brass block 309 to a second mass 321.
  • the first mass 320 is connected to the second mass 321 via the second spring 324.
  • the second mass 321 is in turn connected to an elastic mount 325 via a first spring 323 , which is embodied through the rubber layer 310 , the latter being embodied by the oscillating support 303 .
  • the brass block 309 is arranged as an additional second mass 321 decoupled by the rubber layers 308 and the rubber layer 310 behind the piezoelectric ceramic 305 in the sound pressure direction 302 .
  • this system is again arranged in an elastically mounted manner on the oscillating support 303 .
  • two states of resonance (two-mass oscillator) of the piezoelectric ceramic 305 are used in order, on the one hand, to increase the acoustic effectiveness and, at the same time, to reduce the sound shock wave stress.
  • a sound shock pressure wave occurs as a result of an explosion 50 m in front of the active bow sonar 301. Due to the double, elastic arrangement of the piezocomposite ceramic 305 via the rubber layers 308 and 310 and due to the impedance jump from the brass block 309 to the rubber layer 310, sound damping occurs. As a result, and due to the further elastic design of the vibrating beam 303, the Acoustic shock pressure stress is reduced and the pressure which is passed on by the vibrating beam 303 is reduced to the extent that a downstream acoustic absorber (not shown) remains intact.
  • an active bow sonar 401 has a plurality of piezocomposite ceramics, with only one piezocomposite ceramic 405 being considered as an example.
  • a sound pressure first hits a brass block 409, followed by a rubber layer 408, the piezo composite ceramic 405 and a subsequent rubber layer 410.
  • the rubber layer 410 connects this transducer arrangement to the oscillating support 403, which oscillates in the sound pressure direction 402 and transversely to the sound pressure direction when stressed.
  • the brass block 409 as the second mass 421 is connected to the piezocomposite ceramic 405 as the first mass 420 via the rubber layer 408 as the second spring 424 .
  • the piezocomposite ceramic 405 as the first mass 420 is in turn connected via the rubber layer 410 as the first spring 423 to the oscillating support 403 as the elastic mount 425 .
  • the brass block 409 is elastically mounted as an additional mass in front of the piezo composite ceramic 405.
  • the piezocomposite ceramic 405 is in turn arranged elastically on the oscillating support 403 on the rear side.
  • there is also a multi-mass oscillator in this alternative which is matched to the application and the required frequency range by the selection of the material parameters of the first and second masses 420 and 421 and the spring stiffness of the rubber layers 408 and 410 .
  • the upstream connection of the second mass 421 is advantageous for the following application, in which an explosion occurs in the immediate vicinity of the active bow sonar 401 at a small distance of 20 m and a very strong sound shock pressure wave first hits the brass block 409 as the second mass 421. Due to the jump in impedance from the brass block 409 to the elastic rubber layer 408, sound pressure damping takes place before the sound pressure continues to impinge on the piezocomposite ceramic 405 following in the sound pressure direction 402. This avoids excessive stress on the piezocomposite ceramic 405 when the sound shock pressure wave hits the active bow sonar 401 .
  • the subsequent elastic arrangement of the piezocomposite ceramic 405 on the rear side via the rubber layer 410 and the elastic vibrating support 403 also prevents the downstream acoustic absorber (not shown) from being destroyed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

Die Erfindung betrifft einen Schallwandler zum Senden und/oder zum Empfangen von akustischen Unterwassersignalen, welcher ein akustisches Wandlerelement, mindestens ein erstes Federelement, eine Verfüllmasse und einen Wandlerträger aufweist, wobei dem akustischem Wandlerelement das mindestens eine erste Federelement zugeordnet ist. Des Weiteren betriff die Erfindung eine Wandlervorrichtung, ein Sonar und ein Wasserfahrzeug.The invention relates to a sound transducer for transmitting and/or receiving acoustic underwater signals, which has an acoustic transducer element, at least one first spring element, a filling compound and a transducer carrier, the at least one first spring element being assigned to the acoustic transducer element. Furthermore, the invention relates to a converter device, a sonar and a watercraft.

Nach dem Stand der Technik werden Schallwandler zum Senden und/oder zum Empfangen von akustischen Unterwassersignalen steif ausgelegt, insbesondere wird das akustische Wandlerelement fest eingebaut.According to the prior art, sound converters for transmitting and/or receiving acoustic underwater signals are designed to be rigid, in particular the acoustic converter element is permanently installed.

DE 10 2009 059902 B3 , DE 38 34 669 A1 , EP 2 200 017 A2 offenbaren jeweils einen Schallwandler zum Senden und/oder zum Empfangen von akustischen Unterwassersignalen, welcher ein akustisches Wandlerelement, mindestens ein erstes Federelement, eine Verfüllmasse und einen Wandlerträger aufweist. DE 10 2009 059902 B3 , DE 38 34 669 A1 , EP 2 200 017 A2 each disclose a sound transducer for transmitting and/or receiving acoustic underwater signals, which has an acoustic transducer element, at least a first spring element, a filling compound and a transducer carrier.

Häufig ist ein derartiger Schallwandler nach dem Prinzip des Tonpilzes aufgebaut. Beispielsweise ist dazu eine piezoelektrische Keramik zwischen zwei starren Platten verspannt. Die piezoelektrische Keramik wirkt dabei als Feder, welche beispielsweise durch eine elektrische Spannung "eingestellt" wird. Bei Verwendung des Schallwandlers als Sender wird der piezoelektrischen Keramik eine Spannung aufgeprägt, wodurch diese eine mechanische Bewegung ausführt. Die Keramik dehnt sich aus und "schwingt". Die Schwingung wird auf die mechanisch gekoppelten Platten als Massen übertragen. Dadurch wird der Druck und somit das ausgesandte akustische Signal verstärkt.Such a sound transducer is often constructed according to the principle of the clay mushroom. For example, a piezoelectric ceramic is clamped between two rigid plates. The piezoelectric ceramic acts as a spring, which is "set" by an electrical voltage, for example. When the sound transducer is used as a transmitter, a voltage is applied to the piezoelectric ceramic, causing it to move mechanically. The ceramic expands and "vibrates". The vibration is transmitted to the mechanically coupled plates as masses. This will make the Pressure and thus the emitted acoustic signal amplified.

Durch den Tonpilz wird ein geschlossenes Schwingungsgebilde aus zwei Massen (im obigen Beispiel die Platten) ausgebildet, welche durch eine "Elastizität" (im Beispiel die piezoelektrische Keramik) als Feder verbunden sind. Die Massen sind dabei elastizitätsfrei ausgelegt und die Elastizität ist idealerweise massenfrei. Die Schwingungsamplituden der beiden Massen fallen hierbei in die Richtung der Verbindungslinie der Angriffspunkte der Elastizität.The clay mushroom forms a closed vibration structure made up of two masses (the plates in the example above), which are connected by an “elasticity” (piezoelectric ceramics in the example) as a spring. The masses are designed to be free of elasticity and the elasticity is ideally mass-free. The vibration amplitudes of the two masses fall in the direction of the line connecting the points of elasticity.

In einer üblichen Ausführungsform des Tonpilzes als Schallsender in ein umgebendes Medium ist ein Piezo-Ringstapel zwischen einer massiven Schwanz- und Kopfmasse durch einen Bolzen vorgespannt. Durch die Schwanz- und die Kopfmasse wird die Resonanzfrequenz unter der des Piezostapels vermindert. Die Vorspannung bewirkt eine hohe Intensitätsübertragung und -abgabe. Hierbei weist die Kopfmasse üblicherweise eine geringere Masse als die Schwanzmasse auf. Zudem ist die Kopfmasse auf der dem Piezostapel abgewandten Seite aufgeweitet und weist am aufgeweiteten Ende einen Schaumstoff auf, um eine bessere Kopplung der Schallenergie zu der niedrigen Impedanz des umgebenden Mediums (Luft und/oder Wasser) zu erreichen.In a common embodiment of the clay mushroom as a sound transmitter into a surrounding medium, a stack of piezo rings is prestressed by a bolt between a solid tail and head mass. The tail and head masses lower the resonant frequency below that of the piezo stack. Biasing causes high intensity transmission and delivery. Here, the head mass usually has a lower mass than the tail mass. In addition, the head mass is widened on the side facing away from the piezo stack and has a foam at the widened end in order to achieve better coupling of the sound energy to the low impedance of the surrounding medium (air and/or water).

Durch die festgelegte Anordnung mit der Verspannung des akustischen Wandlerelementes zwischen zwei starren Massen ist ein derartiger ausgeführter Schallwandler auf niedrige Frequenzen und hohe Intensitäten beschränkt.Due to the fixed arrangement with the bracing of the acoustic transducer element between two rigid masses, such a designed sound transducer is limited to low frequencies and high intensities.

Somit ist es praktisch nicht möglich, einen derartigen Schallwandler hinsichtlich der Frequenz, der Intensität und seiner Empfindlichkeit frei anzupassen.It is therefore practically impossible to freely adjust such a sound transducer in terms of frequency, intensity and sensitivity.

Weiterhin besteht der Nachteil, dass beim Auftreffen einer Schalldruckwelle mit insbesondere sehr hohem Schalldruck ein Tonpilz aufgrund seiner Steifigkeit den Druck im hohen Maße direkt an nachfolgendes Material überträgt.Furthermore, there is the disadvantage that when a sound pressure wave hits it, with a particularly high sound pressure level, a clay mushroom transmits the pressure directly to the following material to a large extent due to its rigidity.

In Unterwasserfahrzeugen weist ein Sonar üblicherweise hinter dem akustischen Wandlerelement einen akustischen Absorber auf, welcher die Aufgabe hat, den Schalldruck auf der Rückseite des akustischen Wandlerelementes zu "schlucken" und deshalb druckempfindlich ist. Somit besteht bei der Verwendung eines Tonpilzes die Gefahr, dass der akustische Absorber aufgrund der direkten Übertragung mit hoher Schallintensität zerstört wird. Dadurch wird die Kommunikation, Navigation und/oder Ortung an Bord des Unterwasserfahrzeuges gestört.In underwater vehicles, a sonar usually has an acoustic absorber behind the acoustic converter element, which absorber has the task of “swallowing” the sound pressure on the rear side of the acoustic converter element and is therefore sensitive to pressure. Thus, when using a clay mushroom, there is a risk that the acoustic absorber will be destroyed due to the direct transmission with high sound intensity. This disrupts the communication, navigation and/or location on board the underwater vehicle.

Folglich kann sowohl die Empfindlichkeit als auch die generelle Funktionsfähigkeit von Sonaren an Bord eingeschränkt sein.As a result, both the sensitivity and the general functionality of sonars on board can be reduced.

Aufgabe der Erfindung ist es, den Stand der Technik zu verbessern.The object of the invention is to improve the prior art.

Gelöst wird die Aufgabe durch einen Schallwandler nach Anspruch 1.The object is achieved by a sound transducer according to claim 1.

Durch die Ausführung des akustischen Wandlerelementes als Masse mit einem zugeordneten Federelement wird die akustische Wirksamkeit des Schallwandlers erhöht.By designing the acoustic transducer element as a mass with an associated spring element, the acoustic effectiveness of the sound transducer is increased.

Zudem wird durch das akustische Wandlerelement als Masse, welches elastisch über das erste Federelement mit dem Wandlerträger verbunden ist, ein offenes, elastisches Schwingsystem eingestellt.In addition, an open, elastic oscillating system is set by the acoustic transducer element as a mass, which is elastically connected to the transducer carrier via the first spring element.

Da das akustische Wandlerelement als erstes Federelement ausgelegt und entgegen der Ausgestaltung als Tonpilz verspannungsfrei ausgestaltet ist, kann dieses frei schwingen und somit insbesondere auch für höhere Frequenzen und Intensitäten gezielt eingestellt werden.Since the acoustic transducer element is designed as the first spring element and, contrary to the configuration as a clay mushroom, is designed without tension, it can oscillate freely and can therefore also be set specifically for higher frequencies and intensities.

Es kann durch die Ausgestaltung des akustischen Wandlerelementes in Verbindung mit dem Federelement und dem Wandlerträger die größtmögliche akustische Empfindlichkeit (Empfänger) und/oder das größtmögliche Sendemaß (Sender) in einem gewünschten Frequenzbereich erreicht, gezielt eingestellt und optimiert werden.The design of the acoustic transducer element in conjunction with the spring element and the transducer carrier can achieve the greatest possible acoustic sensitivity (receiver) and/or the greatest possible transmission factor (transmitter) in a desired frequency range, and set and optimize it in a targeted manner.

Durch die elastische Ausführung bleibt zudem ein akustischer Absorber intakt, welcher üblicherweise in einem Sonar eines Wasserfahrzeuges dem Schwallwandler nachfolgt.Due to the elastic design, an acoustic absorber, which usually follows the wave transducer in a sonar of a watercraft, also remains intact.

Ein wesentlicher Gedanke der Erfindung beruht darauf, dass das akustische Wandlerelement nicht steif verspannt ausgelegt wird, sondern dass das akustische Wandlerelement an einem elastischen Federelement und dem Wandlerträger angeordnet ist, welche insbesondere mechanisch schwingfähig sind.An essential idea of the invention is based on the fact that the acoustic transducer element is not designed to be rigidly braced, but rather that the acoustic transducer element is arranged on an elastic spring element and the transducer carrier, which in particular are mechanically capable of oscillating.

Durch die mechanische Schwingfähigkeit des Federelements und/oder des Wandlerträgers findet nicht nur eine Entkopplung zum hinter dem Wandlerträger üblicherweise gelagertem akustischen Absorber statt, sondern auch eine Rückkopplung zum akustischem Wandlerelement, sodass ein Teil der Ausgangsgröße der auftreffenden Schalldruckwelle direkt oder in modifizierter Form auf das akustische Wandlerelement zurückgeführt wird. Dadurch tritt insbesondere eine Verstärkung auf.Due to the mechanical oscillating ability of the spring element and/or the transducer carrier, there is not only decoupling from the acoustic absorber, which is usually mounted behind the transducer carrier, but also feedback to the acoustic transducer element, so that part of the output variable of the incident sound pressure wave is applied directly or in a modified form to the acoustic Transducer element is returned. As a result, amplification occurs in particular.

Durch die Ausprägung des akustischen Wandlerelementes als Masse mit dem zugeordneten Federelement ist das Schwingsystem nicht durch Steifigkeit und/oder Verspannung in seiner Schwingfähigkeit und dadurch seiner Amplitude und/oder Frequenz begrenzt. Dadurch kann das Schwingsystem gezielt nach den Bedürfnissen des Benutzers eingestellt werden.Due to the design of the acoustic transducer element as a mass with the associated spring element, the oscillating system is not limited in its ability to oscillate and thus in its amplitude and/or frequency by rigidity and/or strain. As a result, the oscillating system can be set specifically according to the needs of the user.

Zudem werden die elastischen Eigenschaften des Schwingsystems insbesondere beim Auftreffen von Schallschockdruckwellen mit großer Amplitude genutzt und bewirken eine Schalldruckminderung (Dämpfung), während bei akustischen Schalldruckwellen mit kleiner Amplitude das elastische System, insbesondere das Federelement und der Wandlerträger, im Wesentlichen akustisch transparent ist.In addition, the elastic properties of the oscillating system are used and bring about a reduction in sound pressure (damping), while in the case of acoustic sound pressure waves with a small amplitude, the elastic system, in particular the spring element and the transducer carrier, is essentially acoustically transparent.

Folgendes Begriffliche sei erläutert:The following terms are explained:

Ein "Schallwandler" ist insbesondere ein Gerät zum Senden und/oder zum Empfangen von akustischen Unterwassersignalen, wie dieses beim Verwenden von aktiven und passiven Sonaren eingesetzt wird. Der Schallwandler empfängt Unterwasserschallsignale und wandelt diese in ein elektrisches Signal zur Weiterverarbeitung um (Empfänger) und/oder wandelt ein elektrisches Signal in ein akustisches Signal um, wobei letzteres ausgesandt wird (Sender). Beispielsweise werden als Schallwandler Hydrophone unter Wasser eingesetzt, um dort Unterwasserschallgeräusche aufzunehmen. Hierbei wandelt ein Hydrophon den Wasserschall in eine dem Schalldruck entsprechende elektrische Größe. Bei Einsatz unter Wasser wird insbesondere ein Frequenzbereich zwischen ca. 10 Hz und 1 MHz verwendet.In particular, a "sound transducer" is a device for transmitting and/or receiving underwater acoustic signals, such as is used when using active and passive sonars. The sound converter receives underwater sound signals and converts them into an electrical signal for further processing (receiver) and/or converts an electrical signal into an acoustic signal, with the latter being transmitted (transmitter). For example, hydrophones are used under water as sound transducers in order to record underwater sound noises there. A hydrophone converts the water noise into an electrical quantity corresponding to the sound pressure. When used under water, a frequency range between approximately 10 Hz and 1 MHz is used in particular.

Ein "akustisches Wandlerelement" ist insbesondere ein Bauelement eines Schallwandlers oder eines Hydrophons, welches akustische Signale als Schallwechseldrücke in elektrische Spannung umwandelt oder umgekehrt elektrische Spannung in akustische Signale umwandelt. Insbesondere im Ultraschallbereich unter Wasser werden heutzutage als akustisches Wandlerelement Piezowandler eingesetzt. Neben piezoelektrischen Keramiken sind auch Piezoelemente aus Kunststoff bekannt, insbesondere wird Polyvinylidenfluorid (PVDF) in Hydrophonen eingesetzt.An "acoustic converter element" is in particular a component of a sound converter or a hydrophone which converts acoustic signals as sound pressure changes into electrical voltage or, conversely, converts electrical voltage into acoustic signals. In particular in the ultrasonic range under water, piezoelectric transducers are nowadays used as the acoustic transducer element. In addition to piezoelectric ceramics, piezo elements are also made Known plastic, in particular polyvinylidene fluoride (PVDF) is used in hydrophones.

Ein "Federelement" ist insbesondere ein Bauteil und/oder ein Material, welches unter Belastung (Zug oder Druck) nachgibt und nach Entlastung in die ursprüngliche Form zurückkehrt, sich also, im Idealfall, elastisch rückstellend verhält. Das Federelement weist insbesondere eine hohe Elastizität und eine geringe Masse auf.A "spring element" is in particular a component and/or a material which yields under load (tension or pressure) and returns to its original shape after the load is relieved, i.e., ideally, behaves in an elastically restoring manner. In particular, the spring element has high elasticity and low mass.

"Elastisch" in diesem Sinne bedeutet insbesondere, dass sich das Federelement oder ein anderes elastisches Material bei einem einwirkenden Druck verformt, sodass dieses eine andere Form als vor der Druckeinwirkung einnimmt. Diese Verformung ist im Wesentlichen reversibel und nach Ende der einwirkenden Kraft-/Druckbeanspruchung nimmt das Federelement oder das andere Material wieder seine ursprüngliche Form ein. Mithin wird ein Schalldruck in eine mechanische Verformung überführt.“Elastic” in this sense means in particular that the spring element or another elastic material deforms when pressure is applied, so that it assumes a different shape than before the pressure was applied. This deformation is essentially reversible and after the applied force/compression stress has ended, the spring element or the other material resumes its original shape. Consequently, a sound pressure is converted into a mechanical deformation.

Unter einer "Verfüllmasse" wird insbesondere eine Masse zum Verfüllen des Raumes zwischen dem akustischen Wandlerelement und dem Wandlerträger sowie den weiteren Bauteilen des Schallwandlers verstanden. Hierbei kann es sich um eine Kunststoffmasse und/oder Kork und/oder einem anderen Verfüllmaterial handeln. Als Kunststoff kann insbesondere weiches Polyurethan oder Polyoxymethylen eingesetzt werden. Als "weich" wird hier Material mit einer Härte von 40shore A bis 60shore A und/oder einem Elastizitätsmodul zwischen 5MPa und 250MPa verstanden. Die Härte ist entsprechend der Masse des Systems und dem Einsatzfrequenzbereich zu wählen. Die Verfüllmasse hat insbesondere die Aufgabe, die Bauteile eines Schallwandlers zu verkleben und dadurch Stabilität zu gewährleisten. Zudem kann die Verfüllmasse insbesondere auch elastisch und schalldämpfend wirken. Zudem verhindert die Verfüllmasse, dass Meerwasser in den Schallwandler eindringt und insbesondere korrosive Schäden verursacht.A "filling compound" is understood to mean, in particular, a compound for filling the space between the acoustic transducer element and the transducer carrier and the other components of the sound transducer. This can be a plastic mass and/or cork and/or another filling material. In particular, soft polyurethane or polyoxymethylene can be used as the plastic. Material with a hardness of 40shore A to 60shore A and/or a modulus of elasticity between 5MPa and 250MPa is understood here as "soft". The hardness is according to the mass of the system and the to select the operating frequency range. In particular, the filling compound has the task of gluing the components of a sound transducer together and thereby ensuring stability. In addition, the filling compound can in particular also have an elastic and sound-damping effect. In addition, the filling compound prevents seawater from penetrating the transducer and causing corrosive damage in particular.

Ein "Wandlerträger" steht in Verbindung zu dem akustischen Wandlerelement und umschließt zumindest teilweise das akustische Wandlerelement. Der Wandlerträger ist in Schalldruckrichtung hinter und neben dem akustischen Wandlerelement angeordnet. Der Wandlerträger ist insbesondere elastisch ausgestaltet.A "transducer support" is in communication with the acoustic transducer element and at least partially encloses the acoustic transducer element. The transducer carrier is arranged behind and next to the acoustic transducer element in the sound pressure direction. The transducer carrier is designed in particular to be elastic.

Unter einer "Masse" wird insbesondere die Masse eines Schwingsystems verstanden, welche starr und elastizitätsfrei ist. Die Masse wird insbesondere in sich durch ein Schallfeld zur Schwingung angeregt und erzeugt ein elektrisches Nutzschallsignal und/oder als Sender einen Schallfeldabgabe.A "mass" is understood in particular as the mass of an oscillating system, which is rigid and free of elasticity. The mass is in particular excited by a sound field to oscillate and generates an electrical useful sound signal and/or, as a transmitter, a sound field output.

Unter "Schalldruckrichtung" wird vorliegend die Richtung verstanden, aus welcher der Schalldruck mit der höchsten Intensität von einer Schallquelle auf den Schallwandler auftrifft. Bei einem Empfänger ist die Schalldruckrichtung insbesondere identisch mit der Hauptempfangsrichtung. Bei einem Sender ist die Schalldruckrichtung insbesondere entgegengesetzt zur Hauptsenderichtung.In the present case, “sound pressure direction” is understood to mean the direction from which the sound pressure with the highest intensity from a sound source impinges on the sound transducer. In the case of a receiver, the direction of sound pressure is in particular identical to the main direction of reception. In the case of a transmitter, the sound pressure direction is in particular opposite to the main transmission direction.

Ein "Schwingsystem" ist insbesondere die Anordnung des akustischen Wandlerelementes und weiterer Bauteile des Schallwandlers zur akustisch-mechanischen und/oder mechanisch-akustischen Umwandlung. Im Schwingsystem wird insbesondere das Feder-Masse-Prinzip genutzt.An "oscillating system" is in particular the arrangement of the acoustic transducer element and other components of the sound transducer for acoustic-mechanical and/or mechanical-acoustic conversion. In particular, the spring-mass principle is used in the oscillating system.

Die "Empfindlichkeit" eines Schallwandlers ist insbesondere ein Maß der erzeugten elektrischen Spannung bezogen auf den einwirkenden Schalldruck bei einer bestimmten Frequenz bei einem Schallempfänger oder ein Maß für die angelegte Spannung bezogen auf den erzeugten Schalldruck bei einer bestimmten Frequenz bei einem Schallsender. Die Empfindlichkeit lässt sich insbesondere auch als Übertragungsfaktor angeben, bei dem die Ausgangsspannung (als Leerlaufspannung) im Verhältnis zum einfallenden Schalldruck für einen Empfänger angegeben.The "sensitivity" of a sound transducer is in particular a measure of the electrical voltage generated in relation to the sound pressure at a specific frequency in a sound receiver or a measure of the applied voltage in relation to the sound pressure generated at a specific frequency in a sound transmitter. In particular, the sensitivity can also be specified as a transfer factor, in which the output voltage (as open-circuit voltage) is specified in relation to the incident sound pressure for a receiver.

In einer weiteren Ausführungsform des Schallwandlers ist in der Schalldruckrichtung hinter dem akustischen Wandlerelement eine mechanisch direkt gekoppelte Impedanzmasse angeordnet, wobei in der Schalldruckrichtung hinter der Impedanzmasse das erste Federelement und anschließend der Wandlerträger angeordnet sind.In a further embodiment of the sound transducer, a mechanically directly coupled impedance mass is arranged behind the acoustic transducer element in the sound pressure direction, with the first spring element and then the transducer carrier being arranged behind the impedance mass in the sound pressure direction.

Durch die direkte mechanische Kopplung einer Impedanzmasse an das akustische Wandlerelement kann das Schwingsystem gezielt eingestellt werden.Due to the direct mechanical coupling of an impedance mass to the acoustic transducer element, the oscillating system can be adjusted in a targeted manner.

Insbesondere kann durch diese direkte mechanische Kopplung eine Schalldruckerhöhung und somit eine Verstärkung erzielt werden.In particular, an increase in sound pressure and thus amplification can be achieved through this direct mechanical coupling.

Durch das lokale Einbringen der Impedanzmasse kann die akustische Empfindlichkeit des akustischen Wandlerelementes (als Empfänger) und/oder die abgestrahlte Schallenergie (als Sender) durch Schalldruckerhöhung vergrößert werden.By introducing the impedance mass locally, the acoustic sensitivity of the acoustic transducer element (as receiver) and/or the radiated sound energy (as transmitter) can be increased by increasing the sound pressure.

Auch kann durch die Anordnung des ersten Federelementes und des anschließenden Wandlerträgers hinter der Impedanzmasse ein Impedanzsprung und somit eine Schalldämmung, insbesondere vor dem nachgeschalteten akustischem Absorber, erreicht werden.Also, by arranging the first spring element and the subsequent transducer carrier behind the impedance mass, an impedance jump and thus soundproofing, in particular in front of the downstream acoustic absorber, can be achieved.

Somit kann die akustische Wirksamkeit der Anordnung durch eine zusätzliche Anbringung einer elastisch gelagerten Impedanzmasse erhöht werden. Die Wirksamkeit des Schwingsystems kann durch Wahl und Anordnung der Impedanzmasse und/oder des Federelements und/oder der Federsteifigkeit für den gewählten Frequenzbereich optimiert werden.The acoustic effectiveness of the arrangement can thus be increased by additionally attaching an elastically mounted impedance mass. The effectiveness of the oscillating system can be optimized for the selected frequency range by selecting and arranging the impedance mass and/or the spring element and/or the spring stiffness.

Unter einer "Impedanzmasse" wird insbesondere eine Masse aus einem spezifisch schweren Material im Vergleich zum umgebenen Material insbesondere dem umgebenden akustischen Wandlerelement, der Verfüllmasse und/oder dem Federelement, verstanden, wodurch ein Sprung der akustischen Impedanz auftritt. Durch die Impedanzmasse erfolgt insbesondere eine Reflektion und/oder eine Verzögerung des auftreffenden Schall(druck)s statt, sodass auf der Seite des auftreffenden Schall(druck)s eine Schalldruckerhöhung auftritt.An “impedance mass” is understood to mean, in particular, a mass made of a specifically heavy material compared to the surrounding material, in particular the surrounding acoustic transducer element, the filling compound and/or the spring element, as a result of which a jump in the acoustic impedance occurs. In particular, the impinging sound (pressure) is reflected and/or delayed by the impedance mass, so that an increase in sound pressure occurs on the side of the impinging sound (pressure).

Dagegen tritt insbesondere durch den Impedanzsprung bei Übergang auf ein spezifisch leichteres Material hinter der Impedanzmasse eine Schalldruckdämpfung statt. Als Impedanzmasse kann beispielsweise Messing mit einer Dichte von ca. 8,41g/cm3 bis 8,86g/cm3 für eine größere Schalldruckerhöhung oder Aluminium mit einer Dichte von ca. 2,7g/cm3 für eine geringere Schalldruckerhöhung eingesetzt werden.On the other hand, due to the jump in impedance in particular, there is a transition to a specifically lighter material the impedance mass takes place a sound pressure damping. For example, brass with a density of approx. 8.41 g/cm 3 to 8.86 g/cm 3 can be used as an impedance mass for a greater increase in sound pressure, or aluminum with a density of approx. 2.7 g/cm 3 for a lower increase in sound pressure.

Eine Impedanzmasse kann in Schalldruckrichtung vor und/oder hinter dem akustischen Wandlerelement eingesetzt werden.An impedance mass can be used in the sound pressure direction in front of and/or behind the acoustic transducer element.

Um das Schwingsystem weiter einzustellen sowie die Schalldämpfung und die schwingungstechnische Entkopplung weiter zu verbessern, ist in der Schalldruckrichtung vor und/oder hinter dem akustischen Wandlerelement eine zweite Masse angeordnet, wobei zwischen der zweiten Masse und dem akustischem Wandlerelement ein zweites Federelement angeordnet ist.In order to further adjust the oscillating system and to further improve the sound damping and the vibration-related decoupling, a second mass is arranged in front of and/or behind the acoustic transducer element in the sound pressure direction, with a second spring element being arranged between the second mass and the acoustic transducer element.

Durch das zusätzliche Anbringen einer zweiten elastisch gelagerten Masse wird die akustische Wirksamkeit der Anordnung weiter erhöht.The acoustic effectiveness of the arrangement is further increased by the additional attachment of a second elastically mounted mass.

Zudem kann durch Wahl und Anordnung der zweiten Masse zum akustischen Wandlerelement als erste Masse die Wirksamkeit des Systems für den gewählten Frequenzbereich weiter optimiert werden. Die Wahl der Massen wie auch der Federsteifigkeiten ergibt sich aus dem gewünschten Frequenzeinsatzbereich.In addition, the effectiveness of the system for the selected frequency range can be further optimized by selecting and arranging the second mass for the acoustic transducer element as the first mass. The choice of the masses as well as the spring stiffness results from the desired frequency range.

Das Einbringen einer zweiten Masse vor dem akustischen Wandlerelement ist insbesondere zur Kompensation gegen hohen hydrostatischen Druck und hohen Schalldruck vorteilhaft.The introduction of a second mass in front of the acoustic transducer element is particularly useful for compensating against high hydrostatic pressure and high sound pressure advantageous.

Somit ist diese Anordnung bei einer Schallschockdruckwelle vorteilhaft, da die Schallschockdruckwelle mit hoher Intensität zunächst auf die vorgelagerte zweite Masse trifft. Durch die vorgelagerte und elastisch angeordnete zweite Masse tritt eine Schockdämpfung des Schalldrucks auf.This arrangement is therefore advantageous in the case of a sonic shock pressure wave, since the sonic shock pressure wave first strikes the upstream second mass with high intensity. Shock absorption of the sound pressure occurs due to the elastically arranged second mass in front of it.

Aus dieser Anordnung ergibt sich der Vorteil, dass zwei Resonanzzustände (Zweimassenschwinger) des akustischen Wandlerelementes genutzt werden können, um einerseits die akustische Wirksamkeit zu erhöhen und gleichzeitig eine direkte Schockdruckbeanspruchung auf das akustische Wandlerelement zu reduzieren.This arrangement has the advantage that two states of resonance (two-mass oscillator) of the acoustic transducer element can be used in order to increase the acoustic effectiveness on the one hand and at the same time to reduce direct shock pressure stress on the acoustic transducer element.

Dieser "Mehrmassenschwinger" kann durch Wahl von Materialparametern wie Masse (spezifische Dichte, Abmessung, akustische Impedanzeigenschaften) und Wahl der Federsteifigkeiten der Federelemente auf den jeweiligen Einsatzfall und den geforderten Frequenzbereich abgestimmt werden.This "multi-mass oscillator" can be tailored to the respective application and the required frequency range by selecting material parameters such as mass (specific density, dimensions, acoustic impedance properties) and selecting the spring stiffness of the spring elements.

Sowohl bei Vor- als auch bei Nachschaltung einer zweiten Masse wird durch das Einbringen eines zweiten Federelements die Elastizität des Gesamtsystems erhöht, sodass die Schalldämpfung und die schwingungstechnische Entkopplung verbessert werden.Both with upstream and downstream connection of a second mass, the elasticity of the overall system is increased by the introduction of a second spring element, so that the soundproofing and the vibration-related decoupling are improved.

Die "zweite Masse" entspricht in ihren Eigenschaften weitgehend der oben beschriebenen Masse.The properties of the "second mass" largely correspond to those of the mass described above.

Das "zweite Federelement" entspricht in seinem Aufbau und in seinen Eigenschaften insbesondere dem oben beschriebenen ersten Federelement.The "second spring element" corresponds in its structure and in its properties in particular to the first spring element described above.

In einer weiteren Ausführungsform des Schallwandlers sind die Impedanzmasse und/oder die zweite Masse größer als die erste Masse des akustischen Wandlerelementes.In a further embodiment of the sound converter, the impedance mass and/or the second mass are greater than the first mass of the acoustic converter element.

Dadurch tritt einerseits ein stärkerer Impedanzsprung zwischen dem akustischen Wandlerelement und der Impedanzmasse sowie der Impedanzmasse und dem Federelement sowie der zweiten Masse und dem Federelement auf.As a result, on the one hand, there is a stronger jump in impedance between the acoustic transducer element and the impedance mass and also between the impedance mass and the spring element and between the second mass and the spring element.

Mithin wird andererseits durch die größere Masse durch Reflektion und/oder Verzögerung der auftreffende Schalldruck erhöht.Consequently, on the other hand, the incident sound pressure is increased by reflection and/or delay due to the greater mass.

Somit kann auf der Vorderseite der Schalldruck durch die größere Masse erhöht werden, während in Schalldruckrichtung hinter der Impedanzmasse und/oder der zweiten Masse aufgrund des Impedanzsprunges eine Schalldruckdämpfung erfolgt.The sound pressure can thus be increased on the front side by the larger mass, while sound pressure damping occurs behind the impedance mass and/or the second mass in the direction of sound pressure due to the jump in impedance.

Zudem wird dadurch sichergestellt, dass der größere Betrag der Schwingungsenergie in der kleineren Masse des akustischen Wandlerelementes besteht, jedoch gleichzeitig durch die Impedanzmasse und/oder die zweite Masse eine Schalldruckerhöhung und/oder Schalldämpfung erzielt wird.In addition, this ensures that the larger amount of vibration energy is in the smaller mass of the acoustic transducer element, but at the same time an increase in sound pressure and/or sound damping is achieved by the impedance mass and/or the second mass.

Um ein akustisches Signal in ein elektrisches Signal umzuwandeln und/oder ein elektrisches Signal in ein akustisches Signal umzuwandeln, weist das akustische Wandlerelement eine Piezo-Keramik und/oder eine Piezokomposit-Keramik auf.In order to convert an acoustic signal into an electrical signal and/or to convert an electrical signal into an acoustic signal, the acoustic Transducer element on a piezo ceramic and / or a piezo composite ceramic.

Unter einer "Piezo-Keramik" und/oder einer "Piezokomposit-Keramik" werden insbesondere eine Vollkeramik oder ein Verbundwerkstoff als Wandlerelement verstanden. Während eine Piezokeramik eine Vollkeramik ist, besteht eine Piezokomposit-Keramik aus einem Verbundwerkstoff, welcher insbesondere piezoelektrische, keramische Filamente und eine Verfüllmasse aufweist.A “piezo-ceramic” and/or a “piezo-composite ceramic” is understood to mean, in particular, a full ceramic or a composite material as the transducer element. While a piezoceramic is an all-ceramic, a piezocomposite ceramic consists of a composite material which has, in particular, piezoelectric, ceramic filaments and a filling compound.

Beide Keramiken wirken als Piezowandler und erzeugen beim Einwirken eines mechanischen Drucks eine elektrische Spannung oder führen bei Anlegen einer elektrischen Spannung eine mechanische Bewegung aus.Both ceramics act as piezo transducers and generate an electrical voltage when mechanical pressure is applied or perform a mechanical movement when electrical voltage is applied.

Die keramischen Filamente in der Piezokomposit-Keramik sind insbesondere dünne und/oder fadenförmige Strukturen. Diese können insbesondere die Formen von Stäbchen, Zylindern, Rohren und/oder Platten annehmen.The ceramic filaments in the piezocomposite ceramic are in particular thin and/or thread-like structures. In particular, these can take the form of rods, cylinders, tubes and/or plates.

Bei Auftreffen und/oder Aufprägen eines Schalldrucks werden die keramischen Filamente elastisch verformt, wobei eine Änderung der elektrischen Polarisation erfolgt und somit eine elektrische Spannung am keramischen Feststoff erzeugt wird. Somit ist der Schallwandler hier als Schallempfänger ausgebildet.When impacting and/or imposing a sound pressure, the ceramic filaments are elastically deformed, with a change in the electrical polarization taking place and thus an electrical voltage being generated on the ceramic solid. Thus, the sound transducer is designed here as a sound receiver.

Die Piezokeramik und/oder Piezokomposit-Keramik sind üblicherweise mit zwei leitenden Schichten ausgeführt, worüber eine Spannung aufgeprägt oder abgeführt wird. Die Dichte von Piezokeramik liegt bei ca. 7,7g/cm3, während die Dichte von Piezokomposit-Keramik niedriger liegt und vom Anteil der keramischen Filamente und der Verfüllmasse abhängt.The piezoceramic and/or piezocomposite ceramic are usually designed with two conductive layers, through which a voltage is applied or discharged. The density of piezoceramics is around 7.7g/cm 3 , while the Density of piezo composite ceramic is lower and depends on the proportion of ceramic filaments and the filling compound.

In einer weiteren Ausführungsform des Schallwandlers weist oder weisen das erste Federelement und/oder das zweite Federelement ein Elastomer auf und/oder weist der Wandlerträger einen Faserverbundwerkstoff auf.In a further embodiment of the sound transducer, the first spring element and/or the second spring element has/have an elastomer and/or the transducer carrier has/have a fiber composite material.

Durch diese Materialwahl kann eine elastische Anordnung des akustischen Wandlerelementes und/oder der Impedanzmasse und/oder der zweiten Masse erfolgen.This choice of material allows an elastic arrangement of the acoustic transducer element and/or the impedance mass and/or the second mass.

Dadurch können das Schwingsystem und die akustischen Eigenschaften insbesondere die Empfindlichkeit des Schallwandlers für einen bestimmten Frequenzbereich optimal eingestellt werden.As a result, the oscillating system and the acoustic properties, in particular the sensitivity of the sound transducer, can be optimally adjusted for a specific frequency range.

Auch können dadurch die Schwingungseigenschaften des Systems, die Dämpfungseigenschaften und die akustische Entkopplung weiter verbessert werden.This can also further improve the vibration properties of the system, the damping properties and the acoustic decoupling.

Ein "Elastomer" ist insbesondere ein formfester, aber elastisch verformbarer Kunststoff. Elastomere können sich bei Zug- und Druckbelastung elastisch verformen, finden anschließend wieder in ihre ursprüngliche Form zurück. Als Elastomer kann insbesondere Gummi und/oder Polyurethan eingesetzt werden. Neben schalldämpfenden Eigenschaften kann ein Elastomer auch isolierende Eigenschaften aufweisen.An "elastomer" is in particular a dimensionally stable but elastically deformable plastic. Elastomers can deform elastically under tensile and compressive loads, but then return to their original shape. In particular, rubber and/or polyurethane can be used as the elastomer. In addition to sound-damping properties, an elastomer can also have insulating properties.

Ein "Faserverbundswerkstoff" ist insbesondere ein aus üblicherweise zwei Hauptkomponenten bestehender Mehrphasen- und/oder Mischwerkstoff, wobei die eine Komponente eine Matrix und die andere verstärkende Fasern sind.A “fiber composite material” is in particular a multi-phase and/or mixed material usually consisting of two main components, one component being a matrix and the other being reinforcing fibers.

Eine "Faser" ist insbesondere ein im Verhältnis zu seiner Länge dünnes und flexibles Gebilde, welches aus einem Faserstoff besteht. Vorliegend ist das Verhältnis von Länge zu Durchmesser mindestens 3:1 oder bevorzugt mindestens 10:1. Insbesondere haben Fasern ein Verhältnis von Länge zu Durchmesser von 1.000:1. Durch das Längen-Durchmesser-Verhältnis verleihen die Fasern dem Werkstoff die nötige reversible Flexibilität. Als Fasern können insbesondere Glasfasern und/oder Kohlefasern eingesetzt werden. Als Kunststoffmatrix wird duroplastischer Kunststoff wie z. B. Polyesterharz und/oder Epoxidharz und/oder thermoplastische Kunststoffe wie z. B. Polyamid eingesetzt.A "fiber" is in particular a structure that is thin and flexible in relation to its length and consists of a fibrous material. Here the ratio of length to diameter is at least 3:1 or preferably at least 10:1. In particular, fibers have a length to diameter ratio of 1000:1. Due to the length-diameter ratio, the fibers give the material the necessary reversible flexibility. In particular, glass fibers and/or carbon fibers can be used as fibers. As a plastic matrix thermosetting plastic such. As polyester resin and / or epoxy resin and / or thermoplastics such. B. polyamide used.

Besonders vorteilhaft ist, dass durch die Wahl und Anzahl des Fasermaterials wie auch des Matrixmaterials die erforderlichen Materialeigenschaften und somit das elastische Verhalten des Wandlerträgers eingestellt werden kann.It is particularly advantageous that the required material properties and thus the elastic behavior of the transducer carrier can be adjusted by the choice and number of the fiber material as well as the matrix material.

Zusätzlich ist das Korrosionsverhalten von faserverstärktem Kunststoff im Meerwasser vorteilhaft.In addition, the corrosion behavior of fiber-reinforced plastic in seawater is advantageous.

In einem weiteren Aspekt wird die Aufgabe gelöst durch eine Wandlervorrichtung mit einem zuvor beschriebenen Schallwandler.In a further aspect, the object is achieved by a converter device with a sound converter as described above.

Dadurch können mehrere Schallwandler parallel und/oder in Reihe angeordnet und auf verschiedene Frequenzbereiche abgestimmt werden. Somit kann die Wandlervorrichtung nach den Bedürfnissen des Benutzers ausgeführt werden, insbesondere kann die Wandlervorrichtung verschiedene Schallwandler zum Senden und/oder Empfangen aufweisen.As a result, several sound transducers can be arranged in parallel and/or in series and tuned to different frequency ranges. The converter device can thus be designed according to the needs of the user; in particular, the converter device can have different sound converters for transmitting and/or receiving.

Insbesondere können auch mehrere Schallwandler mit unterschiedlichen Empfindlichkeiten und unterschiedlichen Frequenzbereichen in der Wandlervorrichtung senden und/oder empfangen.In particular, several sound converters with different sensitivities and different frequency ranges can also transmit and/or receive in the converter device.

In einem weiteren Aspekt wird die Aufgabe gelöst durch ein Sonar zum Senden und/oder zum Empfangen von akustischen Unterwassersignalen, wobei das Sonar ein Schallwandler oder mehrere Schallwandler wie zuvor beschrieben oder eine Wandlervorrichtung oder mehrere Wandlervorrichtungen wie zuvor beschrieben aufweist.In a further aspect, the object is achieved by a sonar for transmitting and/or receiving acoustic underwater signals, the sonar having a sound converter or a plurality of sound converters as described above or a converter device or a plurality of converter devices as described above.

Unter "Sonar" wird ein System zur Ortung von Gegenständen in Raum und unter Wasser mittels empfangener Schallimpulse verstanden. Dabei kann es sich um ein aktives Sonar handeln, welches selbst ein Signal ausstrahlt, oder um ein passives Sonar, welches nur ausgestrahlte Schallimpulse empfängt. Ebenso kann es sich hierbei um ein bi- oder multistatisches Sonar handeln, welches gleichzeitig auf verschiedenen Plattformen senden und empfangen kann."Sonar" is a system for locating objects in space and under water by means of received sound pulses. This can be an active sonar, which itself emits a signal, or a passive sonar, which only receives emitted sound pulses. It can also be a bi- or multi-static sonar, which can transmit and receive on different platforms at the same time.

Diese Schallwandler und/oder Wandlervorrichtung sind insbesondere für ein Sonar vorteilhaft, da eine Ortung von unbekannten Objekten mit hoher Empfindlichkeit und bei unterschiedlichen Frequenzen erfolgen kann.This transducer and / or transducer device are particularly advantageous for a sonar, since a location of unknown objects with high sensitivity and at different frequencies.

Zudem ist eine Schalldämpfung insbesondere bei Schallschockdruckwellen notwendig, wie diese beispielsweise bei einer nah gelegenen Explosion auftreten. Dadurch kann sichergestellt werden, dass der akustische Absorber des Sonars intakt bleibt.In addition, soundproofing is necessary, particularly in the case of sonic shock pressure waves, such as those that occur, for example, in the case of a nearby explosion. This ensures that the sonar's acoustic absorber remains intact.

In einem zusätzlichen Aspekt der Erfindung wird die Aufgabe gelöst durch ein Wasserfahrzeug, insbesondere ein U-Boot, welches ein Sonar wie zuvor beschrieben aufweist.In an additional aspect of the invention, the object is achieved by a watercraft, in particular a submarine, which has a sonar as described above.

Insbesondere für ein U-Boot ist es notwendig, dass die Ortung, Navigation und Kommunikation mit hohen Empfindlichkeiten und unterschiedlichen, weiten Frequenzbereichen des Sonars erfolgen. Dies ist insbesondere vorteilhaft, da ein U-Boot unbekannte Schallquellen unter Wasser detektieren und identifizieren sowie mögliche Gefahren erkennen muss.For a submarine in particular, it is necessary for the sonar to be located, navigated and communicated with high sensitivities and different, wide frequency ranges. This is particularly advantageous since a submarine needs to detect and identify unknown sound sources underwater and identify potential hazards.

Des Weiteren ist es auch hier vorteilhaft, dass der akustische Absorber des Sonars nicht durch eine Schallschockdruckwelle zerstört wird, da ansonsten oben genannte Funktionen nicht mehr bestehen und das U-Boot gefährdet wird.Furthermore, it is also advantageous here that the acoustic absorber of the sonar is not destroyed by a sound shock pressure wave, since otherwise the above-mentioned functions no longer exist and the submarine is endangered.

Im Weiteren wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Es zeigen:

Figur 1
eine stark schematische Schnittdarstellung eines Schallsenders mit einer nachfolgenden Gummischicht und einem Wandlerträger sowie das zugehörige Masse-Feder-Schema,
Figur 2
eine stark schematische Schnittdarstellung eines Hydrophons mit einer piezoelektrischen Keramik, einem Messing-Block und einer Gummischicht sowie das zugehörige Masse-Feder-Schema,
Figur 3
einen schematischen, halbseitigen Schnitt durch ein aktives Bugsonar mit einer beispielhaft gezeigten Piezokomposit-Keramik, einem nachgeschalteten Messing-Block und zwei Gummischichten sowie das dazugehörige Masse-Feder-Schema und
Figur 4
ein schematischen, halbseitigen Schnitt durch ein aktives Bugsonar mit beispielhaft gezeigter Piezokomposit-Keramik mit einem vorgelagerten Messing-Block und zwei Gummischichten sowie das zugehörige Masse-Feder-Schema.
The invention is explained in more detail below using exemplary embodiments. Show it:
figure 1
a highly schematic sectional view of a sound transmitter with a following rubber layer and a converter carrier as well as the associated mass-spring scheme,
figure 2
a highly schematic sectional representation of a hydrophone with a piezoelectric ceramic, a brass block and a rubber layer as well as the associated mass-spring scheme,
figure 3
a schematic, half-page section through an active bow sonar with a piezo composite ceramic shown as an example, a downstream brass block and two rubber layers as well as the associated mass-spring scheme and
figure 4
a schematic, half-page section through an active bow sonar with piezocomposite ceramic shown as an example with a brass block in front and two rubber layers as well as the associated mass-spring scheme.

Ein Schallsender 101 weist eine piezoelektrische Keramik 105 auf, welche eine vordere Kupferschicht 106 und eine hintere Kupferschicht 107 aufweist. In Schalldruckrichtung 102 folgt hinter der piezoelektrischen Keramik 105 eine Gummischicht 108, welche direkt auf einem GFK-Träger 103 aufsitzt. Seitlich von der piezoelektrischen Keramik 105 und der Gummischicht 108 ist eine PU-Masse 111 angeordnet, welche die piezoelektrische Keramik 105 und die Gummischicht 108 mit dem GFK-Träger 103 verbindet. In Schalldruckrichtung 102 hinter dem GFK-Träger 103 ist ein PU-Hochfrequenz-Absorber 104 angeordnet.A sound transmitter 101 has a piezoelectric ceramic 105 which has a front copper layer 106 and a rear copper layer 107 . A rubber layer 108 follows behind the piezoelectric ceramic 105 in the sound pressure direction 102 and sits directly on a GRP carrier 103 . A PU mass 111 is arranged to the side of the piezoelectric ceramic 105 and the rubber layer 108 and connects the piezoelectric ceramic 105 and the rubber layer 108 to the GRP carrier 103 . In A PU high-frequency absorber 104 is arranged behind the GRP carrier 103 in the sound pressure direction 102 .

Die piezoelektrische Keramik 105 entspricht einer ersten Masse 120. Die erste Masse 120 ist direkt mit der Gummischicht 108 verbunden, wobei die Gummischicht 108 einer Feder 123 entspricht. Auf der der Schalldruckrichtung 102 abgewandten Seite, ist die Feder 123 mit dem GFK-Träger 103 als elastische Halterung 125 verbunden. Die dünne vordere Kupferschicht 106 und hintere Kupferschicht 107 sind hierbei der ersten Masse 120 zugeordnet.The piezoelectric ceramic 105 corresponds to a first mass 120. The first mass 120 is directly connected to the rubber layer 108, the rubber layer 108 corresponding to a spring 123. FIG. On the side facing away from the sound pressure direction 102, the spring 123 is connected to the GRP carrier 103 as an elastic mount 125. The thin front copper layer 106 and rear copper layer 107 are assigned to the first mass 120 in this case.

Der Schallsender 101 sendet ein akustisches Signal entgegen der Schalldruckrichtung 102 aus. Dazu wird eine Spannung zwischen der vorderen Kupferschicht 106 und der hinteren Kupferschicht 107 aufgeprägt, wodurch die piezoelektrische Keramik 105 sich ausdehnt und mechanisch bewegt. Der Bewegungsdruck wird als Schalldruck in das umgebende Wasser abgegeben. Hierbei wird eine Frequenz von 150kHz verwendet, welche mit einem hohen Sendemaß ausgestrahlt wird.The sound transmitter 101 emits an acoustic signal counter to the sound pressure direction 102 . For this purpose, a voltage is applied between the front copper layer 106 and the rear copper layer 107, as a result of which the piezoelectric ceramic 105 expands and moves mechanically. The movement pressure is released into the surrounding water as sound pressure. Here, a frequency of 150kHz is used, which is broadcast with a high level of transmittance.

Dies ist möglich, da die piezoelektrische Keramik 105 als Masse 120 ausgeführt ist und durch die in Schalldruckrichtung 102 folgende Gummischicht 108 und den GFK-Träger 103 elastisch angeordnet sind. Somit stellt der Schallwandler ein einfach elastisch gekoppeltes System dar.This is possible because the piezoelectric ceramic 105 is designed as a mass 120 and is arranged elastically by the rubber layer 108 following in the sound pressure direction 102 and the GRP carrier 103 . The sound transducer thus represents a simply elastically coupled system.

In einem alternativen Ausführungsbeispiel weist ein Hydrophon 201 als Empfänger eine piezoelektrische Keramik 205 auf, welche in Schalldruckrichtung 202 zunächst eine vordere Kupferschicht 206 und eine hintere Kupferschicht 207 aufweist. Anschließend folgt in Schalldruckrichtung 202 ein Messing-Block 209 sowie eine Gummischicht 208, welche direkt auf dem GFK-Träger 203 aufsitzt. Seitlich sind die piezoelektrische Keramik 205, der Messing-Block 209 und die Gummischicht 208 über die PU-Masse 211 mit dem GFK-Träger 203 verbunden. In Schalldruckrichtung 202 hinter dem GFK-Träger 203 ist der PU-Hochfrequenz-Absorber 204 angeordnet.In an alternative exemplary embodiment, a hydrophone 201 has a piezoelectric ceramic 205 as a receiver, which initially has a front copper layer 206 and a rear copper layer in the sound pressure direction 202 207 has. Then follows in the sound pressure direction 202 a brass block 209 and a rubber layer 208, which sits directly on the GRP carrier 203. On the side, the piezoelectric ceramic 205, the brass block 209 and the rubber layer 208 are connected to the GRP carrier 203 via the PU mass 211. The PU high-frequency absorber 204 is arranged behind the GRP carrier 203 in the sound pressure direction 202 .

Dabei entspricht die piezoelektrische Keramik 205 der ersten Masse 220, welche direkt mechanisch mit einer Impedanzmasse 221 verbunden ist. Die Impedanzmasse 221 ist durch den Messing-Block 209 ausgeführt. Die Gummischicht 208 entspricht einer Feder 223, welche die Impedanzmasse 221 mit einer elastischen Halterung 225 verbindet, wobei die elastischen Halterung 225 als GFK-Träger 203 ausgeführt ist.In this case, the piezoelectric ceramic 205 corresponds to the first mass 220 which is mechanically connected directly to an impedance mass 221 . The impedance ground 221 is carried out through the brass block 209. The rubber layer 208 corresponds to a spring 223 which connects the impedance mass 221 to an elastic mount 225, with the elastic mount 225 being designed as a GRP support 203.

Aufgrund der Massenverhältnisse der piezoelektrischen Keramik 205 und des GFK-Trägers 203 ist ein Messing-Block 209 als Zusatz- und Impedanzmasse mit der piezoelektrischen Keramik 205 verbunden und diese sind elastisch auf den ebenfalls elastischen GFK-Träger 203 angeordnet.Due to the mass ratios of the piezoelectric ceramic 205 and the GRP carrier 203, a brass block 209 is connected to the piezoelectric ceramic 205 as an additional and impedance mass and these are arranged elastically on the GRP carrier 203, which is also elastic.

Durch die Massen und die Federsteifigkeit wird insbesondere der Frequenzeinsatzbereich definiert.The frequency range in particular is defined by the masses and the spring stiffness.

Da der Messing-Block 209 eine höhere spezifische Masse als die piezoelektrische Keramik 205 aufweist, tritt ein Sprung der akustischen Impedanz auf. Durch den Messing-Block 209 findet eine Reflektion und Verzögerung des auftreffenden Schalldrucks statt, sodass auf der Seite des auftreffenden Schalldrucks eine Schalldruckerhöhung auftritt.Since the brass block 209 has a higher specific mass than the piezoelectric ceramic 205, an acoustic impedance jump occurs. The brass block 209 reflects and delays the incident sound pressure, so that on the side of the incident sound pressure, a sound pressure increase occurs.

Zum anderen findet durch den Impedanzsprung beim Übergang vom Messing-Block 209 auf das spezifisch leichtere Material der Gummischicht 208 eine Schalldruckdämpfung statt, sodass der in Schalldruckrichtung 202 dem GFK-Träger 203 nachgeschaltete PU-Hochfrequenz-Absorber auch bei Auftreffen einer Schallschockdruckwelle intakt bleibt.On the other hand, the impedance jump at the transition from the brass block 209 to the specifically lighter material of the rubber layer 208 results in sound pressure damping, so that the PU high-frequency absorber downstream of the GRP support 203 in the sound pressure direction 202 remains intact even when a sound shock pressure wave strikes.

In einem alternativen Ausführungsbeispiel weist ein aktives Bugsonars 301 eine Vielzahl von Piezokomposit-Keramiken 305 auf, wobei hier beispielhaft ein Schallwandlersegment beschrieben wird.In an alternative exemplary embodiment, an active bow sonar 301 has a multiplicity of piezocomposite ceramics 305, a sound transducer segment being described here by way of example.

In Schalldruckrichtung 302 folgt zunächst ein Kupfergitter 306 als leitende Schicht, eine Piezokomposit-Keramik 305, eine Gummischicht 308, ein nachgeschalteter Messing-Block 309 und eine Gummischicht 310. Seitlich ist eine PU-Masse 311 angeordnet, welche dieses Schallwandlersegment mit dem nächsten, nicht gezeigten Segment, verbindet.In the sound pressure direction 302, there is first a copper grid 306 as a conductive layer, a piezo-composite ceramic 305, a rubber layer 308, a brass block 309 connected downstream and a rubber layer 310. A PU mass 311 is arranged on the side, which connects this sound transducer segment to the next, not segment shown, connects.

Die Gummischicht 310 verbindet diese Anordnung mit dem Schwingträger 303, welcher halbkreisförmig ausgebildet ist (hier ist nur eine Hälfte des Halbkreises gezeigt) und sowohl in Schalldruckrichtung 302 als auch quer zur Schalldruckrichtung 302 schwingen kann. Die Gummischicht 308 hat hier sowohl die Aufgabe der Dämpfung als auch der Isolation, während die Gummischicht 310 zur Dämpfung und akustischen Entkopplung dient.The rubber layer 310 connects this arrangement to the oscillating support 303, which is designed in the shape of a semicircle (only half of the semicircle is shown here) and can oscillate both in the sound pressure direction 302 and transversely to the sound pressure direction 302. The rubber layer 308 has both the task of damping and isolation, while the rubber layer 310 is used for damping and acoustic decoupling.

Die Piezokomposit-Keramik 305 entspricht einer ersten Masse 320. Die Gummischicht 308 entspricht einer zweiten Feder 324 und der Messing-Block 309 einer zweiten Masse 321. Die erste Masse 320 ist über die zweite Feder 324 mit der zweiten Masse 321 verbunden. Die zweite Masse 321 ist wiederrum über eine erste Feder 323, welche durch die Gummischicht 310 ausgeführt ist, mit einer elastischen Halterung 325 verbunden, wobei letztere durch den Schwingträger 303 ausgeführt ist.The piezo composite ceramic 305 corresponds to a first mass 320. The rubber layer 308 corresponds to a second spring 324 and the brass block 309 to a second mass 321. The first mass 320 is connected to the second mass 321 via the second spring 324. The second mass 321 is in turn connected to an elastic mount 325 via a first spring 323 , which is embodied through the rubber layer 310 , the latter being embodied by the oscillating support 303 .

In dieser Alternative ist der Messing-Block 309 als zusätzliche zweite Masse 321 durch die Gummischichten 308 und die Gummischicht 310 entkoppelt hinter der piezoelektrischen-Keramik 305 in der Schalldruckrichtung 302 angeordnet.In this alternative, the brass block 309 is arranged as an additional second mass 321 decoupled by the rubber layers 308 and the rubber layer 310 behind the piezoelectric ceramic 305 in the sound pressure direction 302 .

Hierbei ist dieses System wiederum elastisch gelagert auf dem Schwingträger 303 angeordnet. Dadurch werden zwei Resonanzzustände (Zweimassenschwinger) der piezoelektrischen Keramik 305 genutzt, um einerseits die akustische Wirksamkeit zu erhöhen und gleichzeitig die Schallschockwellenbeanspruchung zu reduzieren.In this case, this system is again arranged in an elastically mounted manner on the oscillating support 303 . As a result, two states of resonance (two-mass oscillator) of the piezoelectric ceramic 305 are used in order, on the one hand, to increase the acoustic effectiveness and, at the same time, to reduce the sound shock wave stress.

In Schalldruckrichtung 302 tritt durch eine Explosion 50m vor dem aktiven Bugsonar 301 eine Schallschockdruckwelle auf. Durch die doppelte, elastische Anordnung der Piezokomposit-Keramik 305 über die Gummischichten 308 und 310 sowie durch den Impedanzsprung von dem Messing-Block 309 zu der Gummischicht 310 tritt eine Schalldämpfung auf. Dadurch und durch die weitere elastische Auslegung des Schwingträgers 303 wird die Schallschockdruckbeanspruchung reduziert und der Druck, welcher vom Schwingträger 303 weitergegeben wird, soweit reduziert, dass ein nachgelagerter akustischer Absorber (nicht dargestellt) intakt bleibt.In the sound pressure direction 302, a sound shock pressure wave occurs as a result of an explosion 50 m in front of the active bow sonar 301. Due to the double, elastic arrangement of the piezocomposite ceramic 305 via the rubber layers 308 and 310 and due to the impedance jump from the brass block 309 to the rubber layer 310, sound damping occurs. As a result, and due to the further elastic design of the vibrating beam 303, the Acoustic shock pressure stress is reduced and the pressure which is passed on by the vibrating beam 303 is reduced to the extent that a downstream acoustic absorber (not shown) remains intact.

In einem alternativen Ausführungsbeispiel weist ein aktives Bugsonar 401 eine Mehrzahl von Piezokomposit-Keramiken auf, wobei beispielhaft nur eine Piezokomposit-Keramik 405 betrachtet wird.In an alternative exemplary embodiment, an active bow sonar 401 has a plurality of piezocomposite ceramics, with only one piezocomposite ceramic 405 being considered as an example.

In Schalldruckrichtung 402 trifft ein Schalldruck zunächst auf einen Messing-Block 409, gefolgt von einer Gummischicht 408, der Piezokomposit-Keramik 405 und einer nachfolgenden Gummischicht 410.In the sound pressure direction 402, a sound pressure first hits a brass block 409, followed by a rubber layer 408, the piezo composite ceramic 405 and a subsequent rubber layer 410.

Die Gummischicht 410 verbindet diese Wandleranordnung mit dem Schwingträger 403, welcher in Schalldruckrichtung 402 und quer zur Schalldruckrichtung bei Beanspruchung schwingt.The rubber layer 410 connects this transducer arrangement to the oscillating support 403, which oscillates in the sound pressure direction 402 and transversely to the sound pressure direction when stressed.

Der Messingblock 409 als zweite Masse 421 ist über die Gummischicht 408 als zweite Feder 424 mit der Piezokomposit-Keramik 405 als erste Masse 420 verbunden.The brass block 409 as the second mass 421 is connected to the piezocomposite ceramic 405 as the first mass 420 via the rubber layer 408 as the second spring 424 .

Die Piezokomposit-Keramik 405 als erste Masse 420 ist wiederum über die Gummischicht 410 als erste Feder 423 mit dem Schwingträger 403 als elastische Halterung 425 verbunden.The piezocomposite ceramic 405 as the first mass 420 is in turn connected via the rubber layer 410 as the first spring 423 to the oscillating support 403 as the elastic mount 425 .

Aufgrund des Frequenzeinsatzbereiches und der Masse der Piezokomposit-Keramik 405 ist in dieser Alternative der Messing-Block 409 als Zusatzmasse elastisch vor der Piezokomposit-Keramik 405 gelagert.Due to the frequency range and the mass of the piezo composite ceramic 405 is in this Alternatively, the brass block 409 is elastically mounted as an additional mass in front of the piezo composite ceramic 405.

Die Piezokomposit-Keramik 405 ist wiederum auf der Rückseite elastisch auf dem Schwingträger 403 angeordnet. Dadurch besteht auch in dieser Alternative ein Mehrmassenschwinger, welcher durch die Wahl der Materialparameter der ersten und der zweiten Masse 420 und 421 und der Federsteifigkeiten der Gummischichten 408 und 410 auf den Einsatzfall und den geforderten Frequenzbereich abgestimmt ist.The piezocomposite ceramic 405 is in turn arranged elastically on the oscillating support 403 on the rear side. As a result, there is also a multi-mass oscillator in this alternative, which is matched to the application and the required frequency range by the selection of the material parameters of the first and second masses 420 and 421 and the spring stiffness of the rubber layers 408 and 410 .

Die Vorschaltung der zweiten Masse 421 ist für folgenden Einsatzfall vorteilhaft, bei dem in unmittelbarer Umgebung des aktiven Bugsonars 401 im geringen Abstand von 20m eine Explosion auftritt und eine sehr starke Schallschockdruckwelle zunächst auf den Messing-Block 409 als zweite Masse 421 trifft. Durch den Impedanzsprung vom Messing-Block 409 auf die elastische Gummischicht 408 findet eine Schalldruckdämpfung statt, bevor der Schalldruck weiter auf die in Schalldruckrichtung 402 nachfolgende Piezokomposit-Keramik 405 auftrifft. Dadurch wird eine zu hohe Beanspruchung der Piezokomposit-Keramik 405 bei Auftreffen der Schallschockdruckwelle auf das aktive Bugsonar 401 vermieden.The upstream connection of the second mass 421 is advantageous for the following application, in which an explosion occurs in the immediate vicinity of the active bow sonar 401 at a small distance of 20 m and a very strong sound shock pressure wave first hits the brass block 409 as the second mass 421. Due to the jump in impedance from the brass block 409 to the elastic rubber layer 408, sound pressure damping takes place before the sound pressure continues to impinge on the piezocomposite ceramic 405 following in the sound pressure direction 402. This avoids excessive stress on the piezocomposite ceramic 405 when the sound shock pressure wave hits the active bow sonar 401 .

Durch die nachfolgende elastische Anordnung der Piezokomposit-Keramik 405 auf der Rückseite über die Gummischicht 410 und den elastischen Schwingträger 403 wird auch eine Zerstörung des nicht gezeigten nachgeschalteten akustischen Absorbers vermieden.The subsequent elastic arrangement of the piezocomposite ceramic 405 on the rear side via the rubber layer 410 and the elastic vibrating support 403 also prevents the downstream acoustic absorber (not shown) from being destroyed.

BezugszeichenlisteReference List

101101
Schallsendersound transmitter
102102
Schalldruckrichtungsound pressure direction
103103
GFK-TrägerGRP carrier
104104
PU-Hochfrequenz-AbsorberPU high frequency absorber
105105
Piezoelektrische KeramikPiezoelectric Ceramics
106106
vordere Kupferschichtfront copper layer
107107
hintere Kupferschichtback copper layer
108108
Gummischichtrubber layer
111111
PU-MassePU mass
120120
Masse 1mass 1
123123
FederFeather
125125
elastische Halterungelastic mount
201201
Hydrophon (Empfänger)hydrophone (receiver)
202202
Schalldruckrichtungsound pressure direction
203203
GFK-TrägerGRP carrier
204204
PU-Hochfrequenz-AbsorberPU high frequency absorber
205205
Piezoelektrische KeramikPiezoelectric Ceramics
206206
vordere Kupferschichtfront copper layer
207207
hintere Kupferschichtback copper layer
208208
Gummischichtrubber layer
209209
Messing-Blockbrass block
211211
PU-MassePU mass
220220
Masse 1mass 1
221221
Impedanzmasseimpedance ground
223223
FederFeather
225225
elastische Halterungelastic mount
301301
aktives Bugsonaractive bow sonar
302302
Schalldruckrichtungsound pressure direction
303303
Schwingträgerswing beam
305305
Piezokomposit-KeramikPiezo composite ceramic
306306
Kupfergittercopper grid
308308
Gummischichtrubber layer
309309
Messing-Blockbrass block
310310
Gummischichtrubber layer
311311
PU-MassePU mass
320320
erste Massefirst mass
321321
zweite Massesecond mass
323323
erste Federfirst spring
324324
zweite Federsecond spring
325325
elastische Halterungelastic mount
401401
aktives Bugsonaractive bow sonar
402402
Schalldruckrichtungsound pressure direction
403403
Schwingträgerswing beam
405405
Piezokomposit-KeramikPiezo composite ceramic
408408
Gummischichtrubber layer
409409
Messing-Blockbrass block
410410
Gummischichtrubber layer
411411
PU-MassePU mass
420420
erste Massefirst mass
421421
zweite Massesecond mass
423423
erste Federfirst spring
424424
zweite Federsecond spring
425425
elastische Halterungelastic mount

Claims (9)

  1. Sound transducer (101, 201) for sending and/or receiving acoustic underwater signals, which comprises an acoustic transducer element (105, 205, 305, 405), at least one first spring element (123, 223, 323, 423), a filling compound (111, 211, 311, 411) and a transducer support (103, 203, 303, 403), the at least one first spring element being associated with the acoustic transducer element, wherein the acoustic transducer element is in the form of a first mass (120, 220, 320, 420) of an oscillating system, and in a sound pressure direction (102, 202, 302, 402) downstream of the acoustic transducer element the first spring element and then the transducer support are arranged , with the result that the oscillating system is set and therefore an acoustic sensitivity of the sound transducer is improved, characterized in that the transducer support at least partly surrounds the acoustic transducer element and wherein the transducer support is arranged downstream of and next to the acoustic transducer element in the sound pressure direction, and wherein a space between the acoustic transducer element and the transducer support and also further components of the sound transducer is filled by the filling compound.
  2. Sound transducer according to Claim 1, characterized in that a mechanically directly coupled impedance mass (209, 221) is arranged downstream of the acoustic transducer element in the sound pressure direction, wherein the first spring element and then the transducer support are arranged downstream of the impedance mass in the sound pressure direction.
  3. Sound transducer according to one of the preceding claims, characterized in that a second mass (309, 321, 409, 421) is arranged upstream and/or downstream of the acoustic transducer element in the sound pressure direction, wherein a second spring element (308, 324, 408, 424) is arranged between the second mass and the acoustic transducer element.
  4. Sound transducer according to one of Claims 2 and 3, characterized in that the impedance mass and/or the second mass is larger than the first mass of the acoustic transducer element.
  5. Sound transducer according to one of the preceding claims, characterized in that the acoustic transducer element comprises a piezo-ceramic (105, 205) and/or a piezo-composite ceramic (305, 405).
  6. Sound transducer according to one of the preceding claims, characterized in that the first spring element and/or the second spring element comprises or comprise an elastomer and/or the transducer support comprises a fibre composite material.
  7. Transducer apparatus having a sound transducer according to one of preceding Claims 1 to 6.
  8. Sonar (301, 401) for sending and/or receiving acoustic underwater signals, characterized in that the sonar comprises a sound transducer or multiple sound transducers according to one of Claims 1 to 6 or a transducer apparatus or multiple transducer apparatuses according to Claim 7.
  9. Watercraft, in particular a submarine, comprising a sonar according to Claim 8.
EP16707380.8A 2015-03-06 2016-02-03 Sound transducer for sending and/or for receiving underwater acoustic signals, transducer device, sonar, and watercraft Active EP3266019B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015103295.3A DE102015103295A1 (en) 2015-03-06 2015-03-06 Sound transducer for transmitting and / or receiving underwater acoustic signals, transducer, sonar and watercraft
PCT/DE2016/100048 WO2016141914A1 (en) 2015-03-06 2016-02-03 Sound transducer for sending and/or for receiving underwater acoustic signals, transducer device, sonar, and watercraft

Publications (2)

Publication Number Publication Date
EP3266019A1 EP3266019A1 (en) 2018-01-10
EP3266019B1 true EP3266019B1 (en) 2023-06-07

Family

ID=55450926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16707380.8A Active EP3266019B1 (en) 2015-03-06 2016-02-03 Sound transducer for sending and/or for receiving underwater acoustic signals, transducer device, sonar, and watercraft

Country Status (4)

Country Link
EP (1) EP3266019B1 (en)
DE (1) DE102015103295A1 (en)
IL (1) IL253960B (en)
WO (1) WO2016141914A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116331456B (en) * 2023-03-17 2023-11-24 中国科学院声学研究所 A broadside array subassembly for unmanned submarine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3834669A1 (en) * 1988-10-12 1996-07-04 Stn Atlas Elektronik Gmbh Acoustic insulating device for acoustic antenna in marine craft esp. submarines
EP2200017A2 (en) * 2008-12-19 2010-06-23 ATLAS Elektronik GmbH Underwater antenna
DE102009059902B3 (en) * 2009-12-21 2011-05-05 Atlas Elektronik Gmbh Reflector device for use in antenna arrangement to attach transducer arrangement of underwater antenna at boat wall of submarine boat, has clamps fastening reflector plate on carrier and incorporating carrier and plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1902849C3 (en) * 1968-01-25 1978-06-29 Pioneer Electronic Corp., Tokio Mechanical-electrical or electrical-mechanical converter
JPS6318800A (en) * 1986-07-09 1988-01-26 Nec Corp Underwater ultrasonic transducer
JP4795748B2 (en) * 2004-09-13 2011-10-19 株式会社デンソー Piezoelectric actuator
US7905007B2 (en) * 2009-03-18 2011-03-15 General Electric Company Method for forming a matching layer structure of an acoustic stack
GB2486680A (en) * 2010-12-22 2012-06-27 Morgan Electro Ceramics Ltd Ultrasonic or acoustic transducer that supports two or more frequencies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3834669A1 (en) * 1988-10-12 1996-07-04 Stn Atlas Elektronik Gmbh Acoustic insulating device for acoustic antenna in marine craft esp. submarines
EP2200017A2 (en) * 2008-12-19 2010-06-23 ATLAS Elektronik GmbH Underwater antenna
DE102009059902B3 (en) * 2009-12-21 2011-05-05 Atlas Elektronik Gmbh Reflector device for use in antenna arrangement to attach transducer arrangement of underwater antenna at boat wall of submarine boat, has clamps fastening reflector plate on carrier and incorporating carrier and plate

Also Published As

Publication number Publication date
DE102015103295A1 (en) 2016-09-08
IL253960A0 (en) 2017-10-31
WO2016141914A1 (en) 2016-09-15
IL253960B (en) 2020-07-30
EP3266019A1 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
EP2559024B1 (en) Method for driving an ultrasound sensor and ultrasound sensor
DE102006055168A1 (en) The obstacle detection system
DE3602351C1 (en) Sound converter system
EP3010653B1 (en) Electroacoustic transducer
DE102018126387A1 (en) Sound transducer and method for operating the sound transducer
DE102009040264A1 (en) Ultrasonic waves producing method for e.g. aircraft, involves causing thickness mode of vibrations between converter and component during activation of converter, and producing ultrasonic waves by thickness mode of vibrations
EP3010651B1 (en) Surroundings-sensing system having a modular ultrasonic transducer, and a motor vehicle having such a surroundings-sensing system
EP1340964B1 (en) Ultrasonic transducer system with ultrasonic filter
EP3266019B1 (en) Sound transducer for sending and/or for receiving underwater acoustic signals, transducer device, sonar, and watercraft
EP3183142B1 (en) Trim device for a motor vehicle, assembly, motor vehicle, and production method
EP3039448B1 (en) Sensor arrangement
EP3244172B1 (en) Ultrasonic transducer with spreader element
WO2018224325A1 (en) Ultrasonic sensor
EP2737336A1 (en) Capacitive sound transducer with fibre reinforcement
EP0927987B1 (en) Sound transducer system
WO2019137784A1 (en) Ultrasonic sensor assembly for a motor vehicle, comprising elements for reducing the propagation of flexural waves, and corresponding production method
DE102013211630A1 (en) Electroacoustic transducer
EP3280545A1 (en) Transducer device, transducer apparatus, sonar and water craft
EP3265245A1 (en) Acoustic transducer for receiving waterborne sound shock waves, acoustic transducer device, and sonar
EP3822661A1 (en) Object detection sensor
DE102015103304A1 (en) Sound transducer for receiving water sound waves, transducer device, sonar and watercraft
EP1033179B1 (en) Electroacoustic transducer arrangement
EP3325180B1 (en) Device for transmitting and/or receiving acoustic signals
EP3319738B1 (en) Sound transducer
EP1790420A2 (en) Device for determining and monitoring the level of a medium in a container according to the transit time measurement method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATLAS ELEKTRONIK GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210430

RIC1 Information provided on ipc code assigned before grant

Ipc: B06B 1/06 19680901ALN20230105BHEP

Ipc: B63G 8/39 19680901ALN20230105BHEP

Ipc: G10K 11/00 19680901AFI20230105BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: B06B 1/06 20060101ALN20230116BHEP

Ipc: B63G 8/39 20060101ALN20230116BHEP

Ipc: G10K 11/00 20060101AFI20230116BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B06B 1/06 20060101ALN20230209BHEP

Ipc: B63G 8/39 20060101ALN20230209BHEP

Ipc: G10K 11/00 20060101AFI20230209BHEP

INTG Intention to grant announced

Effective date: 20230224

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1577380

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016015815

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016015815

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 9

Ref country code: GB

Payment date: 20240219

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

26N No opposition filed

Effective date: 20240308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240221

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240203