EP3265254B1 - Method for curing a polyurethane binders in moulding material mixtures by introducing tertiary amines, and solvents and kit for implementation of the method - Google Patents

Method for curing a polyurethane binders in moulding material mixtures by introducing tertiary amines, and solvents and kit for implementation of the method Download PDF

Info

Publication number
EP3265254B1
EP3265254B1 EP16722038.3A EP16722038A EP3265254B1 EP 3265254 B1 EP3265254 B1 EP 3265254B1 EP 16722038 A EP16722038 A EP 16722038A EP 3265254 B1 EP3265254 B1 EP 3265254B1
Authority
EP
European Patent Office
Prior art keywords
solvent
weight
molding material
isocyanate
solvents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16722038.3A
Other languages
German (de)
French (fr)
Other versions
EP3265254A1 (en
Inventor
Christian Priebe
Philip Schneider
Mark STANCLIFF
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASK Chemicals GmbH
Original Assignee
ASK Chemicals GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASK Chemicals GmbH filed Critical ASK Chemicals GmbH
Publication of EP3265254A1 publication Critical patent/EP3265254A1/en
Application granted granted Critical
Publication of EP3265254B1 publication Critical patent/EP3265254B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2273Polyurethanes; Polyisocyanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores

Definitions

  • the present invention relates to a method for producing cores and casting molds by exposing molding material mixtures comprising at least one refractory material and at least one polyurethane-based binder with gaseous or aerosol-form tertiary amines and gaseous or aerosol-form solvents for the amine catalysts and a kit for carrying out the process comprising tertiary amines as catalysts and a solvent for the amines as a component of the kit.
  • the core-making method known as the "cold box process” or "Ashland process” has gained great importance in the foundry industry.
  • Two-component polyurethane systems are used to bond a refractory base material.
  • the polyol component consists of a polyol with at least two OH groups per molecule
  • the isocyanate component consists of a polyisocyanate with at least two NCO groups per molecule.
  • the curing of the mixture of, among other things, the basic molding material and binder, also known as the molding material mixture for short takes place with the aid of tertiary amines, which are passed through the molding material mixture in gaseous form or as an aerosol after shaping ( US3409579 ). This is usually done using a carrier gas, for example air, nitrogen or CO 2 , into which the amines are metered.
  • a carrier gas for example air, nitrogen or CO 2
  • the EP 1057554 B1 describes cold box binders that contain an alkyl silicate as a solvent for the phenolic resin or isocyanate component. Gassing with amine is only referred to in the example. Mixtures of alkyl silicates or alkyl silanes with amines are not mentioned.
  • the US6288130B1 discloses the use of orthoesters in cold box binders.
  • the orthoester must be explicitly dissolved in the isocyanate component.
  • US6365646B1 discloses a method for producing a core with improved strength in which - especially in the cold-box method - tertiary amines are passed through the shaped core in a stream of inert gas until it has hardened.
  • the inventors have set themselves the task of looking for other ways of reducing the amine consumption in core/mold manufacture.
  • the aim was a solution that can be used advantageously with all known cold box binders, ie even with those whose amine requirement is already low.
  • the present invention in the method according to the EP 1955792 A1 be usable.
  • the invention relates to a method for producing a shaped body as a cast part or as a core, according to claim 1.
  • the invention further relates to a kit for producing a binder for molding mixtures according to claim 15.
  • Trimethylamine (TMA), dimethylethylamine (DMEA), dimethyl-n-propylamine (DMPA), dimethylisopropylamine (DMIPA), diethylmethylamine (DEMA) and triethylamine (TEA) are known as conventional gassing catalysts for the polyurethane cold box process , whereby mainly DMEA, DMPA, DMIPA and TEA are used in practice.
  • tertiary amines can all be used as catalysts used according to the invention, as can those from EP 1955792 A1 known mixtures of at least two tertiary amines.
  • Solvents within the meaning of the invention are those which are liquid at 25° C. and have a boiling point of 20° C. to 220° C. at 1013 mbar. Solvent further means that the catalyst completely dissolves in the solvent at room temperature (25°C). Furthermore, solvent means that the solvent is not a catalyst for the PU reaction and is different from a catalyst for the PU reaction. Above solvent means that the solvent is inert to an amine catalyst. However, it may well be desirable for the solvent to react with components of the mold material mixture, for example at temperatures of 5° C. to 80° C., in particular with water in the mold material mixture.
  • Suitable solvents for these amines are in principle all solvents which are miscible with the tertiary amines, which dissolve them homogeneously at room temperature and which can be brought into the gaseous state or in aerosol form together with the amines under the conditions prevailing in the gas-introduction apparatus.
  • Polar solvents such as esters, preferably orthoesters, or alkylsilanes, alkoxysilanes or mixed alkylalkoxysilanes are used as solvents, but also aromatic, cycloaliphatic and aliphatic hydrocarbon solvents and mixtures of the classes of substances mentioned.
  • orthoesters are, for example, trimethyl orthoformate or triethyl orthoformate.
  • alkylsilanes or alkylalkoxysilanes are: methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane and/or propyltrimethoxysilane.
  • the weight ratio of (A) to (B) is between 95:5 and 5:95, preferably between 80:20 and 20:80, and more preferably between 70:30 and 30:70.
  • the catalyst mixture according to the invention can be metered into the carrier gas (which can be air or an inert gas or gas mixture) as one component (mixture of A+B), but (A) and (B) can also be added individually to the carrier gas stream at the same time. What is surprising here is the fact that components (A) and (B) need not necessarily be added at the same time. An improvement in the catalysis is also observed when (A) and (B) or (B) and (A) are dosed in succession, the results being particularly good if first the non-catalytic solvent (B) and then the amine catalyst (A) is injected or gassed.
  • refractory basic mold material also referred to below as basic mold material for short
  • quartz, zirconium or chrome ore sand, olivine, vermiculite, bauxite, fireclay and so-called artificial mold raw materials are suitable, i.e. raw mold materials that have been brought into a spherical or almost spherical (e.g. ellipsoidal) shape by industrial shaping processes.
  • glass beads glass granules or artificial, spherical, ceramic sands - so-called Cerabeads ® but also Spherichrome ® , SpherOX ® or "Carboaccucast”, as well as hollow microspheres such as can be isolated as a component from fly ash, such as aluminum silicate hollow spheres (so-called microspheres ). Mixtures of the refractory materials mentioned are also possible.
  • Basic mold materials which contain more than 50% by weight of quartz sand, based on the refractory basic mold material, are particularly preferred.
  • a refractory basic molding material is understood to mean substances that have a high melting point (melting point).
  • the melting point of the refractory basic mold material is preferably greater than 600°C, preferably greater than 900°C, particularly preferably greater than 1200°C and particularly preferably greater than 1500°C.
  • the refractory basic mold material preferably makes up more than 80% by weight, in particular more than 90% by weight, particularly preferably more than 95% by weight, of the mold material mixture.
  • the mean diameter of the refractory basic mold materials is generally between 100 ⁇ m and 600 ⁇ m, preferably between 120 ⁇ m and 550 ⁇ m and particularly preferably between 150 ⁇ m and 500 ⁇ m.
  • the particle size can be determined, for example, by sieving according to DIN ISO 3310. Particular preference is given to particle shapes with the greatest length to the smallest length (at right angles to one another and for all spatial directions) of 1:1 to 1:5 or 1:1 to 1:3, i.e. those which are not fibrous, for example.
  • the refractory basic molding material preferably has a free-flowing state, in particular in order to be able to process the molding material mixture according to the invention in conventional core shooting machines.
  • the components of the binder system can first be combined and then added to the refractory base mold material. However, it is also possible to add the components of the binder simultaneously or one after the other in any order to the refractory base molding material.
  • the polyol component has phenol-aldehyde resins, referred to here as phenolic resins for short. All conventionally used phenolic compounds are suitable for producing the phenolic resins. In addition to unsubstituted phenols, substituted phenols or mixtures thereof can be used. The phenolic compounds are preferably unsubstituted either in both ortho positions or in one ortho and para position. The remaining ring carbons can be substituted. The choice of the substituent is not particularly limited. However, the substituent should not adversely affect the reaction of the phenol with the aldehyde. Examples of substituted phenols are alkyl substituted, alkoxy substituted, aryl substituted and aryloxy substituted phenols.
  • the substituents mentioned above have, for example, 1 to 26, preferably 1 to 15, carbon atoms.
  • suitable phenols are o-cresol, m-cresol, p-cresol, 3,5-xylenol, 3,4-xylenol, 3,4,5-trimethylphenol, 3-ethylphenol, 3,5-diethylphenol, p-butylphenol, 3,5-dibutyl phenol, p-amyl phenol, cyclohexyl phenol, p-octyl phenol, p-nonyl phenol, cardanol, 3,5-dicyclohexyl phenol, p-crotyl phenol, p-phenyl phenol, 3,5-dimethoxy phenol and p-phenoxy phenol.
  • Phenol itself is particularly preferred. Higher condensed phenols, such as bisphenol A, are also suitable. In addition, polyhydric phenols which have more than one phenolic hydroxyl group are also suitable.
  • Preferred polyhydric phenols have 2 to 4 phenolic hydroxyl groups.
  • suitable polyhydric phenols are catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, 2,5-dimethylresorcinol, 4,5-dimethylresorcinol, 5-methylresorcinol or 5-ethylresorcinol.
  • Mixtures of different mono- and polyhydric and/or substituted and/or condensed phenol components can also be used for the production of the polyol component.
  • phenols of general formula I used to produce the phenolic resin component, where A, B and C are independently selected from: a hydrogen atom, a branched or unbranched alkyl radical which can have, for example, 1 to 26, preferably 1 to 15 carbon atoms, a branched or unbranched alkoxy radical which, for example, has 1 can have up to 26, preferably 1 to 15 carbon atoms, a branched or unbranched alkenoxy radical, which can have, for example, 1 to 26, preferably 1 to 15 carbon atoms, an aryl or alkylaryl radical, which can have, for example, 6 (7 for aryl) to 26, preferably 6 (7) to 15 carbon atoms, such as bisphenols
  • Aldehydes of the formula are suitable as aldehydes for the production of the phenolic resin component: R-CHO, where R is a hydrogen atom or a carbon atom residue having preferably 1 to 8, more preferably 1 to 3 carbon atoms.
  • R is a hydrogen atom or a carbon atom residue having preferably 1 to 8, more preferably 1 to 3 carbon atoms.
  • Specific examples are formaldehyde, acetaldehyde, propionaldehyde, furfuryl aldehyde and benzaldehyde.
  • Formaldehyde is particularly preferably used, either in its aqueous form, as paraformaldehyde, or trioxane.
  • an at least equivalent number of moles of aldehyde based on the number of moles of the phenol component, is preferably used.
  • the molar ratio of aldehyde to phenol is preferably from 1:1.0 to 2.5:1, particularly preferably from 1.1:1 to 2.2:1, particularly preferably from 1.2:1 to 2.0:1.
  • reaction component can after EP 0177871 A2 aliphatic monoalcohols with one to eight carbon atoms are added.
  • the alkoxylation is said to give the phenolic resins increased thermal stability.
  • the phenolic resin is produced by methods known to those skilled in the art.
  • the phenol and the aldehyde are reacted under essentially anhydrous conditions, in particular in the presence of a divalent metal ion, at temperatures of preferably less than 130°C.
  • the water formed is distilled off.
  • a suitable entraining agent for example toluene or xylene, can be added to the reaction mixture, or the distillation is carried out under reduced pressure.
  • the phenolic resin is chosen so that crosslinking with the polyisocyanate component is possible.
  • Phenolic resins which contain molecules with at least two hydroxyl groups in the molecule, are necessary for the construction of a network.
  • phenolic resins are known under the designation “ortho-ortho” or “high-ortho” novolaks or benzyl ether resins. These can be obtained by condensing phenols with aldehydes in a weakly acidic medium using suitable catalysts.
  • Catalysts useful in the production of benzyl ether resins are divalent ion salts of metals such as Mn, Zn, Cd, Mg, Co, Ni, Fe, Pb, Ca and Ba. Zinc acetate is preferably used. The amount used is not critical. Typical amounts of metal catalyst are 0.02 to 0.3% by weight, preferably 0.02 to 0.15% by weight, based on the total amount of phenol and aldehyde.
  • Such resins are, for example, in US3485797 and in EP 1137500 B1 described, the disclosure of which is hereby expressly referred to both with regard to the definition of the resins and with regard to their production.
  • the isocyanate component of the binder system comprises an aliphatic, cycloaliphatic or aromatic isocyanate with at least 2 isocyanate groups per molecule (polyisocyanates), preferably with 2 to 5 isocyanate groups per molecule. Depending on the desired properties, mixtures of isocyanates can also be used. In addition to the polyisocyanates, monoisocyanates can also be used in one embodiment with a smaller proportion by weight.
  • Suitable polyisocyanates include aliphatic polyisocyanates such as hexamethylene diisocyanate, alicyclic polyisocyanates such as 4,4'-dicyclohexylmethane diisocyanate and dimethyl derivatives thereof.
  • suitable aromatic polyisocyanates are toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, 1,5-naphthalene diisocyanate, triphenylmethane triisocyanate, xylylene diisocyanate and methyl derivatives thereof, and polymethylene polyphenyl isocyanates.
  • polyisocyanates are aromatic polyisocyanates, particularly preferred are polymethylene polyphenyl polyisocyanates such as technical 4,4'-diphenylmethane diisocyanate, i.e. 4,4'-diphenylmethane diisocyanate with a proportion of isomers and higher homologues.
  • the polyisocyanates can also be derivatized by reacting difunctional isocyanates with one another in such a way that some of their isocyanate groups are derivatized to form isocyanurate, biuret, allophanate, uretdione or carbodiimide groups.
  • difunctional isocyanates with one another in such a way that some of their isocyanate groups are derivatized to form isocyanurate, biuret, allophanate, uretdione or carbodiimide groups.
  • dimerization products containing uretdione groups for example of MDI or TDI.
  • the polyisocyanate is preferably used in an amount such that the number of isocyanate groups is from 80 to 120%, based on the number of free hydroxyl groups in the resin.
  • the phenolic resin component or the isocyanate component of the binder system is preferably used as a solution in an organic solvent or a combination of organic solvents.
  • Solvents may be necessary, for example, to keep the components of the binder in a sufficiently low-viscosity state. This is necessary, among other things, to ensure that the refractory mold material is evenly cross-linked and that it is free-flowing.
  • oxygen-rich polar organic solvents can also be used as solvents for the phenolic resin or the phenolic resin component.
  • dicarboxylic acid esters, glycol ether esters, glycol diesters, glycol diethers, cyclic ketones, cyclic esters (lactones), cyclic carbonates or silicic acid esters or mixtures thereof are suitable.
  • Dicarboxylic acid esters, cyclic ketones and cyclic carbonates are preferably used.
  • the proportion of oxygen-rich polar solvents in the total binder can be up to 30%.
  • Typical dicarboxylic acid esters have the formula R 1 OOC-R 2 -COOR 1 where each R 1 is independently an alkyl group having 1 to 12, preferably 1 to 6, carbon atoms and R 2 is an alkylene group having 1 to 4 carbon atoms.
  • R 1 is independently an alkyl group having 1 to 12, preferably 1 to 6, carbon atoms
  • R 2 is an alkylene group having 1 to 4 carbon atoms.
  • dimethyl esters of carboxylic acids having 4 to 6 carbon atoms which are available, for example, from DuPont under the name Dibasic Ester.
  • Typical glycol ether esters are compounds of the formula R 3 -OR 4 -OOCR 5 where R 3 is an alkyl group of 1 to 4 carbon atoms, R 4 is an alkylene group of 2 to 4 carbon atoms and R 5 is an alkyl group of 1 to 3 carbon atoms, e.g Butyl glycol acetate, glycol ether acetates are preferred.
  • Typical glycol diesters accordingly have the general formula R 3 COO-R 4 -OOCR 5 , where R 3 to R 5 are as defined above and the radicals are each selected independently of one another (eg propylene glycol diacetate).
  • Glycol diacetates are preferred.
  • Glycol diethers can be characterized by the formula R 3 -OR 4 -OR 5 in which R 3 to R 5 are as defined above and the radicals are each selected independently of one another (eg dipropylene glycol dimethyl ether).
  • Typical cyclic ketones, cyclic esters and cyclic carbonates having 4 to 5 carbon atoms are also suitable (e.g. propylene carbonate).
  • the alkyl and alkylene groups can each be branched or unbranched.
  • Fatty acid esters such as rapeseed oil fatty acid methyl ester or oleic acid butyl ester are also suitable.
  • Either aromatic solvents, the polar solvents mentioned above or mixtures thereof are used as solvents for the polyisocyanate or the polyisocyanate component.
  • Fatty acid esters and silicic acid esters are also suitable.
  • the binder systems can contain additives, e.g. B. silanes (e.g. according to EP 1137500 B1 ), internal release agents, e.g. B. Fatty alcohols (e.g. according to US4602069 ), drying oils (e.g. according to US4268425 ), complexing agents (e.g. according to US5447968 ) and additives to extend the processing time (e.g. according to US4540724 ) or mixtures thereof.
  • additives e.g. B. silanes (e.g. according to EP 1137500 B1 )
  • internal release agents e.g. B. Fatty alcohols (e.g. according to US4602069 )
  • drying oils e.g. according to US4268425
  • complexing agents e.g. according to US5447968
  • additives to extend the processing time e.g. according to US4540724 or mixtures thereof.
  • the mold material mixture can also optionally contain sand additives to avoid casting defects.
  • the catalyst according to the invention is generally passed through the shaped mold material mixture in gaseous form or as an aerosol by means of a carrier gas. All known gassing apparatuses can be used
  • the moldings produced using the process according to the invention can have any shape that is customary in the field of foundry work.
  • the moldings are in the form of foundry molds or cores. These are characterized by high mechanical stability.
  • Table 2 shows that the amount by weight of amine required for complete curing of the test core is reduced with the catalysts according to the invention. This applies both to formulations with aromatic solvents (Isocure X 16 / Isocure X 28) and to formulations without aromatic solvents (Ecocure 30 HE 1 LF / Ecocure 60 HE 12 LF).

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Kernen und Gießformen durch Aussetzen von Formstoffmischungen, umfassend mindestens einen Feuerfeststoff und mindestens ein Bindemittel auf Polyurethanbasis mit gasförmigen oder in Aerosol Form vorliegenden tertiären Aminen und gasförmigen oder in Aerosolform vorliegenden Lösungsmitteln für die Amin Katalysatoren und ein Kit zur Durchführung des Verfahrens umfassend tertiäre Amine als Katalysatoren und ein Lösemittel für die Amine als eine Komponente des Kits.The present invention relates to a method for producing cores and casting molds by exposing molding material mixtures comprising at least one refractory material and at least one polyurethane-based binder with gaseous or aerosol-form tertiary amines and gaseous or aerosol-form solvents for the amine catalysts and a kit for carrying out the process comprising tertiary amines as catalysts and a solvent for the amines as a component of the kit.

Einführung in den Stand der Technik und AufgabeIntroduction to the state of the art and task

Die unter der Bezeichnung "Cold-Box-Verfahren" oder "Ashland-Verfahren" bekannt gewordene Methode der Kernherstellung hat in der Gießereiindustrie große Bedeutung erlangt. Zur Bindung eines feuerfesten Formgrundstoffes werden dabei Zwei-Komponenten-Polyurethan-Systeme eingesetzt. Die Polyol-Komponente besteht aus einem Polyol mit mindestens zwei OH-Gruppen pro Molekül, die Isocyanat-Komponente aus einem Polyisocyanat mit mindestens zwei NCO-Gruppen pro Molekül. Die Aushärtung des Gemischs aus u.a. Formgrundstoff und Bindemittel, kurz auch Formstoffmischung genannt, erfolgt mit Hilfe von tertiären Aminen, die nach der Formgebung gasförmig oder als Aerosol durch die Formstoffmischung geleitet werden ( US 3409579 ). Üblicherweise erfolgt dies mit Hilfe eines Trägergases, z.B. Luft, Stickstoff oder CO2, in das die Amine eindosiert werden.The core-making method known as the "cold box process" or "Ashland process" has gained great importance in the foundry industry. Two-component polyurethane systems are used to bond a refractory base material. The polyol component consists of a polyol with at least two OH groups per molecule, the isocyanate component consists of a polyisocyanate with at least two NCO groups per molecule. The curing of the mixture of, among other things, the basic molding material and binder, also known as the molding material mixture for short, takes place with the aid of tertiary amines, which are passed through the molding material mixture in gaseous form or as an aerosol after shaping ( US3409579 ). This is usually done using a carrier gas, for example air, nitrogen or CO 2 , into which the amines are metered.

Beim Kontakt mit dem Katalysator, d.h. wenn dieser mittels des Trägergases durch die Formstoffmischung geleitet wird, sollen die Bindemittel möglichst rasch aushärten. Dabei ist es vorteilhaft, den Bedarf an Amin möglichst gering zu halten. Dafür gibt es vor allem die folgenden Gründe:

  • Die derzeit im Gießereiwesen als PU-Katalysatoren eingesetzten Amine sind als giftig klassifiziert und die zulässigen Arbeitsplatzgrenzwerte sind dementsprechend sehr niedrig. Außerdem zeichnen sich die Amine durch einen sehr unangenehmen Geruch aus. Dies macht es notwendig, die Amine nach dem Austritt aus dem Formwerkzeug, sei es an den dafür vorgesehenen oder an undichten Stellen, durch Absaugen zu sammeln und anschließend wieder aus der Abluft zu entfernen. Dies erfolgt üblicherweise mit Hilfe von Abgaswäschern, in denen die mit dem Amin beladene Luft durch eine schwefelsaure Lösung geleitet und dadurch vom Amin befreit wird. Das Amin kann anschließend in einer Recyclinganlage wieder aus der Lösung zurückgewonnen und einer erneuten Verwendung zugeführt werden.
  • Die Einsparung an Amin ist auch von wirtschaftlichem Interesse, da die Absauganlage kleiner konzipiert werden kann, was sich sowohl bei den Anschaffungs- als auch bei den laufenden Betriebskosten positiv bemerkbar macht.
On contact with the catalyst, ie when it is passed through the mold material mixture by means of the carrier gas, the binders should harden as quickly as possible. It is advantageous here to keep the requirement for amine as low as possible. There are mainly the following reasons for this:
  • The amines currently used in foundries as PU catalysts are classified as toxic and the permissible occupational exposure limits are correspondingly very low. In addition, the amines are characterized by a very unpleasant odor. This makes it necessary to collect the amines by suction after they have exited the mold, either at the designated points or at leaking points, and then to remove them from the exhaust air again. This is usually done with the help of waste gas scrubbers, in which the air laden with the amine is passed through a sulfuric acid solution and the amine is thereby removed. The amine can then be recovered from the solution in a recycling plant and reused.
  • The saving in amine is also of economic interest, since the extraction system can be designed smaller, which has a positive effect on both the acquisition and ongoing operating costs.

Es hat nicht an Versuchen gefehlt, die Zusammensetzung der Bindemittel hinsichtlich eines möglichst geringen Aminbedarfs zu verbessern, z.B. durch die Verwendung von wenig aciden Bestandteilen, von speziellen Lösemittelkombinationen oder durch den Einsatz von Co-Katalysatoren als Teil der Binderformulierung. Diese Bemühungen stießen aber immer wieder an Grenzen, da oft andere wichtige Bindemitteleigenschaften wie z.B. die Verarbeitungszeit oder die Festigkeiten unter den gewählten Maßnahmen litten.There has been no lack of attempts to improve the composition of the binder with a view to requiring as little amine as possible, e.g. by using less acidic components, special solvent combinations or by using co-catalysts as part of the binder formulation. However, these efforts repeatedly reached their limits, since other important binder properties, such as processing time or strength, often suffered from the measures chosen.

Ein anderer Weg wird in der EP 1955792 A1 offenbart, indem gezeigt wird, dass Mischungen aus mindestens zwei tertiären Aminen mehr Formstoff aushärten, als auf Grund der Wirksamkeit der Einzelkomponenten der Mischungszusammensetzung zu erwarten gewesen wäre.Another way is in the EP 1955792 A1 disclosed by showing that mixtures of at least two tertiary amines cure more mold material than would have been expected based on the effectiveness of the individual components of the mixture composition.

Die sequentielle Einleitung mehrerer gasförmiger Amin-Katalysatoren ist aus der WO 2013/013015 A1 bekannt. Es wird ein Begasungsverfahren offenbart, in dem zwei Amine, zeitgleich oder hintereinander zur Aushärtung von "Cold-Box" Formstoffmischungen zugeführt werden. Es werden nur Amine, keine Amin-Gemische, auch keine Begasung mit Amin und Silanen oder Amin mit Orthoestern hintereinander erwähnt.The sequential introduction of several gaseous amine catalysts is from WO 2013/013015 A1 known. A gassing process is disclosed in which two amines are fed in simultaneously or one after the other for curing "cold box" molding material mixtures. Only amines are mentioned, not amine mixtures, nor successive gassing with amine and silanes or amine with orthoesters.

Die EP 1057554 B1 beschreibt Cold Box Bindemittel, die als Lösemittel für die Phenolharz- oder Isocyanatkomponente ein Alkysilikat enthalten. Auf die Begasung mit Amin wird nur in dem Beispiel Bezug genommen. Mischungen von Alkysilikaten oder Alkylsilanen mit Aminen werden nicht erwähnt.the EP 1057554 B1 describes cold box binders that contain an alkyl silicate as a solvent for the phenolic resin or isocyanate component. Gassing with amine is only referred to in the example. Mixtures of alkyl silicates or alkyl silanes with amines are not mentioned.

Die US 6288130 B1 offenbart die Verwendung von Orthoestern in Cold-Box Bindemitteln. Hier muss der Orthoester explizit in der Isocyanatkomponente gelöst sein. Auch hier fehlt ein Hinweis auf die Zumischung zum Aminkatalysator.the US6288130B1 discloses the use of orthoesters in cold box binders. Here, the orthoester must be explicitly dissolved in the isocyanate component. Here, too, there is no reference to the addition to the amine catalyst.

Die US 2006/0270753 A1 beschreibt die Verwendung von Orthoestern in Resolharz-Formulierung zur Verbesserung der Lagerstabilität. Auch hier fehlt ein Hinweis auf die Zumischung zum Aminkatalysator.the U.S. 2006/0270753 A1 describes the use of orthoesters in resole resin formulations to improve storage stability. Here, too, there is no reference to the addition to the amine catalyst.

US 6365646 B1 offenbart ein Verfahren zum Herstellen eines Kerns mit verbesserter Festigkeit, bei welchem - speziell im cold-box-Verfahren - tertiäre Amine in einem Inertgasstrom durch den geformten Kern geleitet werden, bis dieser ausgehärtet ist. US6365646B1 discloses a method for producing a core with improved strength in which - especially in the cold-box method - tertiary amines are passed through the shaped core in a stream of inert gas until it has hardened.

Zusammenfassung der ErfindungSummary of the Invention

Die Erfinder haben es sich zur Aufgabe gemacht, nach weiteren Möglichkeiten zu suchen, den Aminverbrauch bei der Kern-/Formherstellung zu reduzieren. Dabei wurde eine Lösung angestrebt, die mit allen bekannten Cold Box-Bindemitteln vorteilhaft einsetzbar ist, d.h. auch mit solchen, deren Aminbedarf ohnehin schon gering ist. Außerdem sollte die vorliegende Erfindung in dem Verfahren nach der EP 1955792 A1 einsetzbar sein.The inventors have set themselves the task of looking for other ways of reducing the amine consumption in core/mold manufacture. The aim was a solution that can be used advantageously with all known cold box binders, ie even with those whose amine requirement is already low. In addition, the present invention in the method according to the EP 1955792 A1 be usable.

Diese und weitere Aufgaben werden durch den Gegenstand der unabhängigen Patentansprüche gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen oder nachfolgend beschrieben.These and other objects are solved by the subject matter of the independent patent claims. Advantageous configurations of the invention are described in the dependent claims or below.

Die Erfindung betrifft ein Verfahren zur Herstellung eines Formkörpers als Gießformteil oder als Kern, gemäß Anspruch 1.The invention relates to a method for producing a shaped body as a cast part or as a core, according to claim 1.

Die Erfindung betrifft weiterhin ein Kit zur Herstellung eines Bindemittels für Formstoffmischungen gemäß Anspruch 15.The invention further relates to a kit for producing a binder for molding mixtures according to claim 15.

Detaillierte Beschreibung der ErfindungDetailed description of the invention

Als herkömmliche Begasungskatalysatoren für das Polyurethan-Cold Box-Verfahren sind Trimethylamin (TMA), Dimethylethylamin (DMEA), Dimethyl-n-propylamin (DMPA), Dimethyl-iso-propylamin (DMIPA), Diethylmethylamin (DEMA) und Triethylamin (TEA) bekannt, wobei in der Praxis hauptsächlich DMEA, DMPA, DMIPA und TEA eingesetzt werden. Diese tertiären Amine können alle als erfindungsgemäß eingesetzte Katalysatoren herangezogen werden, ebenso wie die aus EP 1955792 A1 bekannten Mischungen von mindestens zwei tertiären Aminen.Trimethylamine (TMA), dimethylethylamine (DMEA), dimethyl-n-propylamine (DMPA), dimethylisopropylamine (DMIPA), diethylmethylamine (DEMA) and triethylamine (TEA) are known as conventional gassing catalysts for the polyurethane cold box process , whereby mainly DMEA, DMPA, DMIPA and TEA are used in practice. These tertiary amines can all be used as catalysts used according to the invention, as can those from EP 1955792 A1 known mixtures of at least two tertiary amines.

Lösungsmittel im Sinne der Erfindung sind solche, die bei 25°C flüssig sind und bei 1013 mbar einen Siedepunkt von 20°C bis 220°C aufweisen. Lösungsmittel meint weiterhin, dass sich der Katalysator in dem Lösemittel bei Raumtemperatur (25°C) vollständig löst. Weiterhin meint Lösungsmittel, dass das Lösungsmittel kein Katalysator für die PU-Reaktion ist und unterschiedlich von einem Katalysator für die PU-Reaktion ist. Darüber meint Lösungsmittel, dass das Lösungsmittel gegenüber einem Amin-Katalysator inert ist. Es kann aber durchaus erwünscht sein, dass das Lösungsmittel mit Komponenten der Formstoffmischung reagiert, z.B. bei Temperaturen von 5°C bis 80°C, insbesondere mit Wasser in der Formstoffmischung. Als Lösemittel für diese Amine sind prinzipiell alle Lösemittel geeignet, die mit den tertiären Aminen mischbar sind, diese bei Raumtemperatur homogen in Lösung aufnehmen und die sich unter den in den Begasungsapparaturen herrschenden Bedingungen zusammen mit den Aminen in den gasförmigen Zustand oder in Aerosolform bringen lassen. Dies umfasst Lösemittel mit Siedepunkten zwischen 20°C und 220°C, bevorzugt zwischen 20°C und 190°C und besonders bevorzugt zwischen 20°C und 160°C, jeweils gemessen unter Normaldruck (1013 mbar). Als Lösungsmittel werden polare Lösemittel wie z.B. Ester, bevorzugt Orthoester, oder Alkylsilane, Alkoxysilane oder gemischte Alkylalkoxysilane eingesetzt, aber auch aromatische, cycloaliphatische und aliphatische Kohlenwasserstoff-Lösemittel sowie Gemische der genannten Substanzklassen. Solvents within the meaning of the invention are those which are liquid at 25° C. and have a boiling point of 20° C. to 220° C. at 1013 mbar. Solvent further means that the catalyst completely dissolves in the solvent at room temperature (25°C). Furthermore, solvent means that the solvent is not a catalyst for the PU reaction and is different from a catalyst for the PU reaction. Above solvent means that the solvent is inert to an amine catalyst. However, it may well be desirable for the solvent to react with components of the mold material mixture, for example at temperatures of 5° C. to 80° C., in particular with water in the mold material mixture. Suitable solvents for these amines are in principle all solvents which are miscible with the tertiary amines, which dissolve them homogeneously at room temperature and which can be brought into the gaseous state or in aerosol form together with the amines under the conditions prevailing in the gas-introduction apparatus. This includes solvents with boiling points between 20° C. and 220° C., preferably between 20° C. and 190° C. and particularly preferably between 20° C. and 160° C., measured in each case under normal pressure (1013 mbar). Polar solvents such as esters, preferably orthoesters, or alkylsilanes, alkoxysilanes or mixed alkylalkoxysilanes are used as solvents, but also aromatic, cycloaliphatic and aliphatic hydrocarbon solvents and mixtures of the classes of substances mentioned.

Besonders geeignete Orthoester sind Orthoester der allgemeinen Formel:

        R-C(-OR1)(-OR2)(-OR3)

worin

R=
H oder ein C1- bis C8-Kohlenwasserstoff-Rest, insbesondere ein C1- bis C3- Kohlenwasserstoff-Rest und insbesondere ein entsprechender Alkyl-Rest oder H ist, und
R1 bis R3
unabhängig voneinander ein C1 bis C8-Kohlenwasserstoff-Rest, insbesondere ein C1- bis C3- Kohlenwasserstoff-Rest und insbesondere ein entsprechender Alkyl-Rest ist.
Particularly suitable orthoesters are orthoesters of the general formula:

RC(-OR 1 )(-OR 2 )(-OR 3 )

wherein
R=
H or a C1 to C8 hydrocarbon radical, in particular a C1 to C3 hydrocarbon radical and in particular a corresponding alkyl radical, or H, and
R1 to R3
independently of one another is a C1 to C8 hydrocarbon radical, in particular a C1 to C3 hydrocarbon radical and in particular a corresponding alkyl radical.

Besonders geeignete Orthoester sind beispielsweise Trimethylorthoformiat, oder Triethylorthoformiat.Particularly suitable orthoesters are, for example, trimethyl orthoformate or triethyl orthoformate.

Besonders geeignete Alkylsilane (ggf. auch mit H gebunden), Alkoxysilane (mit mindestens einem H gebunden) oder gemischte Alkylalkoxysilane (ggf. auch mit H gebunden) sind Verbindungen der allgemeinen Formel:

        Si(-R1) (-R2) (-R3) (-R4)

worin

R1 =
H oder ein C1- bis C8-Kohlenwasserstoff-Rest, insbesondere ein C1- bis C6- Kohlenwasserstoff-Rest, insbesondere bevorzugt ein C1- bis C4- Kohlenwasserstoff-Rest, und insbesondere ein entsprechender Alkyl-Rest ist, und
R2 bis R4 =
unabhängig voneinander - ein C1- bis C8-Kohlenwasserstoff-Rest, insbesondere ein C1- bis C3- Kohlenwasserstoff-Rest und insbesondere ein entsprechender Alkyl-Rest oder H ist, - für OR steht mit R = C1- bis C8-Kohlenwasserstoff-Rest, insbesondere ein C1- bis C4- Kohlenwasserstoff-Rest und insbesondere ein entsprechender Alkyl-Rest, ausgenommen dass R1 bis R4 alle gleich H sind.
Particularly suitable alkylsilanes (possibly also bound to H), alkoxysilanes (possibly also bound to H) or mixed alkylalkoxysilanes (possibly also bound to H) are compounds of the general formula:

Si(-R 1 ) (-R 2 ) (-R 3 ) (-R 4 )

wherein
R1 =
H or a C1 to C8 hydrocarbon radical, in particular a C1 to C6 hydrocarbon radical, particularly preferably a C1 to C4 hydrocarbon radical, and in particular a corresponding alkyl radical, and
R2 to R4 =
independently of one another - is a C1 to C8 hydrocarbon radical, in particular a C1 to C3 hydrocarbon radical and in particular a corresponding alkyl radical or H, - represents OR where R = C1 to C8 hydrocarbon radical, in particular a C1 to C4 hydrocarbon radical and in particular a corresponding alkyl radical, except that R 1 to R 4 are all H.

Besonders geeignete Alkylsilane bzw. Alkylalkoxysilane sind: Methyltrimethoxysilan, Methyltriethoxysilan Ethyltrimethoxysilan, Ethyltriethoxylsilan und/oder Propyltrimethoxysilan.Particularly suitable alkylsilanes or alkylalkoxysilanes are: methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane and/or propyltrimethoxysilane.

Das Gewichtsverhältnis von (A) zu (B) liegt zwischen 95:5 und 5:95, vorzugsweise zwischen 80:20 und 20:80, und besonders bevorzugt zwischen 70:30 und 30:70.The weight ratio of (A) to (B) is between 95:5 and 5:95, preferably between 80:20 and 20:80, and more preferably between 70:30 and 30:70.

Die erfindungsgemäße Katalysatormischung kann dem Trägergas (welches Luft oder ein inertes Gas oder Gasgemisch sein kann) als eine Komponente (Mischung von A+B) zu dosiert werden, (A) und (B) können dem Trägergasstrom aber auch zeitgleich einzeln zugegeben werden. Überraschend ist dabei die Tatsache, dass die Zugabe der Komponenten (A) und (B) nicht notwendigerweise gleichzeitig erfolgen muss. Eine Verbesserung der Katalyse wird auch dann beobachtet, wenn (A) und (B) oder (B) und (A) nacheinander dosiert werden, wobei die Ergebnisse besonders gut sind, wenn zuerst das nicht katalytisch wirkende Lösemittel (B) und dann der Aminkatalysator (A) eingedüst bzw. eingegast wird.The catalyst mixture according to the invention can be metered into the carrier gas (which can be air or an inert gas or gas mixture) as one component (mixture of A+B), but (A) and (B) can also be added individually to the carrier gas stream at the same time. What is surprising here is the fact that components (A) and (B) need not necessarily be added at the same time. An improvement in the catalysis is also observed when (A) and (B) or (B) and (A) are dosed in succession, the results being particularly good if first the non-catalytic solvent (B) and then the amine catalyst (A) is injected or gassed.

Als feuerfester Formgrundstoff (nachfolgend auch kurz Formgrundstoff) können für die Herstellung von Gießformen übliche und bekannte Materialien sowie deren Mischungen verwendet werden. Geeignet sind beispielsweise Quarz-, Zirkon- oder Chromerzsand, Olivin, Vermiculit, Bauxit, Schamotte sowie sogenannte künstliche Formgrundstoffe, also Formgrundstoffe, die durch industrielle Verfahren der Formgebung in sphärische oder annähernd sphärische (zum Beispiel ellipsoide) Form gebracht wurden. Beispiele hierfür sind Glasperlen, Glasgranulat oder künstliche, spherische, keramische Sande - sogenannte Cerabeads® aber auch Spherichrome®, SpherOX® oder "Carboaccucast", sowie Mikrohohlkugeln wie sie unter anderem als Komponente aus Flugaschen isoliert werden können, wie z.B. Aluminiumsilikathohlkugeln (sog. Microspheres). Mischungen der genannten Feuerfeststoffe sind ebenfalls möglich.Conventional and known materials and mixtures thereof can be used as the refractory basic mold material (also referred to below as basic mold material for short) for the production of casting molds. For example, quartz, zirconium or chrome ore sand, olivine, vermiculite, bauxite, fireclay and so-called artificial mold raw materials are suitable, i.e. raw mold materials that have been brought into a spherical or almost spherical (e.g. ellipsoidal) shape by industrial shaping processes. Examples of this are glass beads, glass granules or artificial, spherical, ceramic sands - so-called Cerabeads ® but also Spherichrome ® , SpherOX ® or "Carboaccucast", as well as hollow microspheres such as can be isolated as a component from fly ash, such as aluminum silicate hollow spheres (so-called microspheres ). Mixtures of the refractory materials mentioned are also possible.

Besonders bevorzugt sind Formgrundstoffe, die mehr als 50 Gew.% Quarzsand bezogen auf den feuerfesten Formgrundstoff enthalten. Unter einem feuerfesten Formgrundstoff werden Stoffe verstanden, die einen hohen Schmelzpunkt (Schmelztemperatur) aufweisen. Vorzugsweise ist der Schmelzpunkt des feuerfesten Formgrundstoffs größer als 600°C, bevorzugt größer als 900°C, besonders bevorzugt größer als 1200°C und insbesondere bevorzugt größer als 1500°C.Basic mold materials which contain more than 50% by weight of quartz sand, based on the refractory basic mold material, are particularly preferred. A refractory basic molding material is understood to mean substances that have a high melting point (melting point). The melting point of the refractory basic mold material is preferably greater than 600°C, preferably greater than 900°C, particularly preferably greater than 1200°C and particularly preferably greater than 1500°C.

Der feuerfeste Formgrundstoff macht vorzugsweise größer 80 Gew.%, insbesondere größer 90 Gew.%, besonders bevorzugt größer 95 Gew.%, der Formstoffmischung aus.The refractory basic mold material preferably makes up more than 80% by weight, in particular more than 90% by weight, particularly preferably more than 95% by weight, of the mold material mixture.

Der mittlere Durchmesser der feuerfesten Formgrundstoffe liegt in der Regel zwischen 100 µm und 600 µm, bevorzugt zwischen 120 µm und 550 µm und besonders bevorzugt zwischen 150 µm und 500 µm. Die Partikelgröße lässt sich z.B. durch Siebung nach DIN ISO 3310 bestimmen. Besonders bevorzugt sind Teilchenformen mit größter Längenausdehnung zu kleinster Längenausdehnung (rechtwinkelig zueinander und jeweils für alle Raumrichtungen) von 1:1 bis 1:5 oder 1:1 bis 1:3, d.h. solche die z.B. nicht faserförmig sind.The mean diameter of the refractory basic mold materials is generally between 100 μm and 600 μm, preferably between 120 μm and 550 μm and particularly preferably between 150 μm and 500 μm. The particle size can be determined, for example, by sieving according to DIN ISO 3310. Particular preference is given to particle shapes with the greatest length to the smallest length (at right angles to one another and for all spatial directions) of 1:1 to 1:5 or 1:1 to 1:3, i.e. those which are not fibrous, for example.

Der feuerfeste Formgrundstoff weist vorzugsweise einen rieselfähigen Zustand auf, insbesondere um die erfindungsgemäße Formstoffmischung in üblichen Kernschießmaschinen verarbeiten zu können.The refractory basic molding material preferably has a free-flowing state, in particular in order to be able to process the molding material mixture according to the invention in conventional core shooting machines.

Für die Herstellung der Formstoffmischung können zuerst die Komponenten des Bindemittelsystems vereinigt und dann zu dem feuerfesten Formgrundstoff zugegeben werden. Es ist jedoch auch möglich, die Komponenten des Bindemittels gleichzeitig oder nacheinander in beliebiger Reihenfolge zu dem feuerfesten Formgrundstoff zu geben.To produce the mold material mixture, the components of the binder system can first be combined and then added to the refractory base mold material. However, it is also possible to add the components of the binder simultaneously or one after the other in any order to the refractory base molding material.

Die Polyolkomponente weist Phenol-Aldehyd-Harze auf, hier vorliegend verkürzt Phenolharze genannt. Zur Herstellung der Phenolharze sind alle herkömmlich verwendeten Phenol-Verbindungen geeignet. Neben unsubstituierten Phenolen können substituierte Phenole oder Gemische hiervon eingesetzt werden. Die Phenol-Verbindungen sind vorzugsweise entweder in beiden ortho-Positionen oder in einer ortho- und in der para-Position nicht substituiert. Die verbleibenden Ring-Kohlenstoffatome können substituiert sein. Die Wahl des Substituenten ist nicht besonders beschränkt. Der Substituent sollte aber die Reaktion des Phenols mit dem Aldehyd nicht nachteilig beeinflussen. Beispiele substituierter Phenole sind alkylsubstituierte, alkoxysubstituierte, arylsubstituierte und aryloxysubstituierte Phenole.The polyol component has phenol-aldehyde resins, referred to here as phenolic resins for short. All conventionally used phenolic compounds are suitable for producing the phenolic resins. In addition to unsubstituted phenols, substituted phenols or mixtures thereof can be used. The phenolic compounds are preferably unsubstituted either in both ortho positions or in one ortho and para position. The remaining ring carbons can be substituted. The choice of the substituent is not particularly limited. However, the substituent should not adversely affect the reaction of the phenol with the aldehyde. Examples of substituted phenols are alkyl substituted, alkoxy substituted, aryl substituted and aryloxy substituted phenols.

Die vorstehend genannten Substituenten haben beispielsweise 1 bis 26, bevorzugt 1 bis 15 Kohlenstoffatome. Beispiele geeigneter Phenole sind o-Kresol, m-Kresol, p-Kresol, 3,5-Xylenol, 3,4-Xylenol, 3,4,5-Trimethylphenol, 3-Ethylphenol, 3,5-Diethylphenol, p-Butylphenol, 3,5-Dibutylphenol, p-Amylphenol, Cyclohexylphenol, p-Octylphenol, p-Nonylphenol, Cardanol, 3,5-Dicyclohexylphenol, p-Crotylphenol, p-Phenylphenol, 3,5-Dimethoxyphenol und p-Phenoxyphenol.The substituents mentioned above have, for example, 1 to 26, preferably 1 to 15, carbon atoms. Examples of suitable phenols are o-cresol, m-cresol, p-cresol, 3,5-xylenol, 3,4-xylenol, 3,4,5-trimethylphenol, 3-ethylphenol, 3,5-diethylphenol, p-butylphenol, 3,5-dibutyl phenol, p-amyl phenol, cyclohexyl phenol, p-octyl phenol, p-nonyl phenol, cardanol, 3,5-dicyclohexyl phenol, p-crotyl phenol, p-phenyl phenol, 3,5-dimethoxy phenol and p-phenoxy phenol.

Besonders bevorzugt ist Phenol selbst. Auch höher kondensierte Phenole, wie Bisphenol A, sind geeignet. Darüber hinaus eignen sich auch mehrwertige Phenole, die mehr als eine phenolische Hydroxylgruppe aufweisen.Phenol itself is particularly preferred. Higher condensed phenols, such as bisphenol A, are also suitable. In addition, polyhydric phenols which have more than one phenolic hydroxyl group are also suitable.

Bevorzugte mehrwertige Phenole weisen 2 bis 4 phenolische Hydroxylgruppen auf. Spezielle Beispiele geeigneter mehrwertiger Phenole sind Brenzkatechin, Resorcin, Hydrochinon, Pyrogallol, Phloroglucin, 2,5-Dimethylresorcin, 4,5-Dimethylresorcin, 5-Methylresorcin oder 5-Ethylresorcin. Es können auch Gemische aus verschiedenen ein- und mehrwertigen und/oder substituierten und/oder kondensierten Phenolkomponenten für die Herstellung der Polyolkomponente verwendet werden.Preferred polyhydric phenols have 2 to 4 phenolic hydroxyl groups. Specific examples of suitable polyhydric phenols are catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, 2,5-dimethylresorcinol, 4,5-dimethylresorcinol, 5-methylresorcinol or 5-ethylresorcinol. Mixtures of different mono- and polyhydric and/or substituted and/or condensed phenol components can also be used for the production of the polyol component.

In einer Ausführungsform werden Phenole der allgemeinen Formel I:

Figure imgb0001
zur Herstellung der Phenolharzkomponente verwendet, wobei A, B und C unabhängig voneinander ausgewählt sind aus: einem Wasserstoffatom, einem verzweigten oder unverzweigten Alkylrest, der beispielsweise 1 bis 26, vorzugsweise 1 bis 15 Kohlenstoffatome aufweisen kann, einem verzweigten oder unverzweigten Alkoxyrest, der beispielsweise 1 bis 26, vorzugsweise 1 bis 15 Kohlenstoffatome aufweisen kann, einem verzweigten oder unverzweigten Alkenoxyrest, der beispielsweise 1 bis 26, vorzugsweise 1 bis 15 Kohlenstoffatome aufweisen kann, einem Aryl- oder Alkylarylrest, der beispielsweise 6 (7 bei Aryl) bis 26, vorzugsweise 6(7) bis 15 Kohlenstoffatome aufweisen kann, wie beispielsweise BisphenoleIn one embodiment, phenols of general formula I:
Figure imgb0001
used to produce the phenolic resin component, where A, B and C are independently selected from: a hydrogen atom, a branched or unbranched alkyl radical which can have, for example, 1 to 26, preferably 1 to 15 carbon atoms, a branched or unbranched alkoxy radical which, for example, has 1 can have up to 26, preferably 1 to 15 carbon atoms, a branched or unbranched alkenoxy radical, which can have, for example, 1 to 26, preferably 1 to 15 carbon atoms, an aryl or alkylaryl radical, which can have, for example, 6 (7 for aryl) to 26, preferably 6 (7) to 15 carbon atoms, such as bisphenols

Als Aldehyd zur Herstellung der Phenolharzkomponente eignen sich Aldehyde der Formel:

        R-CHO,

wobei R ein Wasserstoffatom oder ein Kohlenstoffatomrest mit vorzugsweise 1 bis 8, besonders bevorzugt 1 bis 3 Kohlenstoffatomen ist. Spezielle Beispiele sind Formaldehyd, Acetaldehyd, Propionaldehyd, Furfurylaldehyd und Benzaldehyd. Besonders bevorzugt wird Formaldehyd eingesetzt, entweder in seiner wässrigen Form, als para-Formaldehyd, oder Trioxan.
Aldehydes of the formula are suitable as aldehydes for the production of the phenolic resin component:

R-CHO,

where R is a hydrogen atom or a carbon atom residue having preferably 1 to 8, more preferably 1 to 3 carbon atoms. Specific examples are formaldehyde, acetaldehyde, propionaldehyde, furfuryl aldehyde and benzaldehyde. Formaldehyde is particularly preferably used, either in its aqueous form, as paraformaldehyde, or trioxane.

Um die Phenolharze zu erhalten, wird vorzugsweise eine mindestens äquivalente Molzahl an Aldehyd, bezogen auf die Molzahl der Phenolkomponente, eingesetzt. Bevorzugt beträgt das Molverhältnis Aldehyd zu Phenol 1 : 1,0 bis 2,5: 1, besonders bevorzugt 1,1 : 1 bis 2,2 : 1, insbesondere bevorzugt 1,2 : 1 bis 2,0 : 1.In order to obtain the phenolic resins, an at least equivalent number of moles of aldehyde, based on the number of moles of the phenol component, is preferably used. The molar ratio of aldehyde to phenol is preferably from 1:1.0 to 2.5:1, particularly preferably from 1.1:1 to 2.2:1, particularly preferably from 1.2:1 to 2.0:1.

Als weitere Reaktionskomponente können nach EP 0177871 A2 aliphatische Monoalkohole mit eins bis acht Kohlenstoffatomen zugesetzt werden, Durch die Alkoxylierung sollen die Phenolharze eine erhöhte thermische Stabilität besitzen.As a further reaction component can after EP 0177871 A2 aliphatic monoalcohols with one to eight carbon atoms are added. The alkoxylation is said to give the phenolic resins increased thermal stability.

Die Herstellung des Phenolharzes erfolgt nach dem Fachmann bekannten Verfahren. Dabei werden das Phenol und der Aldehyd unter im Wesentlichen wasserfreien Bedingungen, insbesondere in Gegenwart eines zweiwertigen Metallions, bei Temperaturen von vorzugsweise weniger als 130°C umgesetzt. Das entstehende Wasser wird abdestilliert. Dazu kann der Reaktionsmischung ein geeignetes Schleppmittel zugesetzt werden, beispielsweise Toluol oder Xylol, oder die Destillation wird bei reduziertem Druck durchgeführt.The phenolic resin is produced by methods known to those skilled in the art. Here, the phenol and the aldehyde are reacted under essentially anhydrous conditions, in particular in the presence of a divalent metal ion, at temperatures of preferably less than 130°C. The water formed is distilled off. For this purpose, a suitable entraining agent, for example toluene or xylene, can be added to the reaction mixture, or the distillation is carried out under reduced pressure.

Das Phenolharz wird so gewählt, dass eine Vernetzung mit der Polyisocyanatkomponente möglich ist. Für den Aufbau eines Netzwerkes sind Phenolharze, die Moleküle mit mindestens zwei Hydroxylgruppen im Molekül umfassen, notwendig.The phenolic resin is chosen so that crosslinking with the polyisocyanate component is possible. Phenolic resins, which contain molecules with at least two hydroxyl groups in the molecule, are necessary for the construction of a network.

Besonders geeignete Phenolharze sind unter der Bezeichnung "ortho-ortho"' oder "high-ortho"-Novolake bzw. Benzyletherharze bekannt. Diese sind durch Kondensation von Phenolen mit Aldehyden in schwach saurem Medium unter Verwendung geeigneter Katalysatoren erhältlich.Particularly suitable phenolic resins are known under the designation “ortho-ortho” or “high-ortho” novolaks or benzyl ether resins. These can be obtained by condensing phenols with aldehydes in a weakly acidic medium using suitable catalysts.

Zur Herstellung von Benzyletherharzen geeignete Katalysatoren sind Salze zweiwertiger Ionen von Metallen, wie Mn, Zn, Cd, Mg, Co, Ni, Fe, Pb, Ca und Ba. Bevorzugt wird Zinkacetat verwendet. Die eingesetzte Menge ist nicht kritisch. Typische Mengen an Metallkatalysator betragen 0,02 bis 0,3 Gew.%, bevorzugt 0,02 bis 0,15 Gew.%, bezogen auf die Gesamtmenge an Phenol und Aldehyd.Catalysts useful in the production of benzyl ether resins are divalent ion salts of metals such as Mn, Zn, Cd, Mg, Co, Ni, Fe, Pb, Ca and Ba. Zinc acetate is preferably used. The amount used is not critical. Typical amounts of metal catalyst are 0.02 to 0.3% by weight, preferably 0.02 to 0.15% by weight, based on the total amount of phenol and aldehyde.

Solche Harze sind z.B. in US 3485797 und in EP 1137500 B1 beschrieben, auf deren Offenbarung hiermit sowohl hinsichtlich der Definition der Harze, als auch hinsichtlich ihrer Herstellung ausdrücklich Bezug genommen wird.Such resins are, for example, in US3485797 and in EP 1137500 B1 described, the disclosure of which is hereby expressly referred to both with regard to the definition of the resins and with regard to their production.

Die Isocyanatkomponente des Bindemittelsystems umfasst ein aliphatisches, cycloaliphatisches oder aromatisches Isocyanat mit zumindest 2 Isocyanatgruppen pro Molekül (Polyisocyanate), bevorzugt mit 2 bis 5 Isocyanatgruppen pro Molekül. Je nach den gewünschten Eigenschaften können auch Gemische von Isocyanaten eingesetzt werden. Zusätzlich zu den Polyisocyanate können nach einer Ausführungsform mit einem kleineren Gewichtsanteil auch Monoisocyanate eingesetzt werden.The isocyanate component of the binder system comprises an aliphatic, cycloaliphatic or aromatic isocyanate with at least 2 isocyanate groups per molecule (polyisocyanates), preferably with 2 to 5 isocyanate groups per molecule. Depending on the desired properties, mixtures of isocyanates can also be used. In addition to the polyisocyanates, monoisocyanates can also be used in one embodiment with a smaller proportion by weight.

Geeignete Polyisocyanate umfassen aliphatische Polyisocyanate, wie z.B. Hexamethylendiisocyanat, alicyclische Polyisocyanate wie z.B. 4,4'-Dicyclohexylmethandiisocyanat und Dimethylderivate hiervon. Beispiele geeigneter aromatischer Polyisocyanate sind Toluol-2,4-diisocyanat, Toluol-2,6-diisocyanat, 1,5-Naphthalendiisocyanat, Triphenylmethantriisocyanat, Xylylendiisocyanat und Methylderivate hiervon, sowie Polymethylenpolyphenylisocyanate. Insbesondere bevorzugte Polyisocyanate sind aromatische Polyisocyanate, besonders bevorzugt sind Polymethylenpolyphenylpolyisocyanate wie z.B. technisches 4,4'-Diphenylmethandiisocyanat, d.h. 4,4'-Diphenylmethandiisocyanat mit einem Anteil an Isomeren und höheren Homologen.Suitable polyisocyanates include aliphatic polyisocyanates such as hexamethylene diisocyanate, alicyclic polyisocyanates such as 4,4'-dicyclohexylmethane diisocyanate and dimethyl derivatives thereof. Examples of suitable aromatic polyisocyanates are toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, 1,5-naphthalene diisocyanate, triphenylmethane triisocyanate, xylylene diisocyanate and methyl derivatives thereof, and polymethylene polyphenyl isocyanates. Particularly preferred polyisocyanates are aromatic polyisocyanates, particularly preferred are polymethylene polyphenyl polyisocyanates such as technical 4,4'-diphenylmethane diisocyanate, i.e. 4,4'-diphenylmethane diisocyanate with a proportion of isomers and higher homologues.

Die Polyisocyanate können auch derivatisiert sein, indem zweiwertige Isocyanate derart miteinander umgesetzt werden, dass ein Teil ihrer Isocyanatgruppen zu Isocyanurat-, Bi-uret-, Allophanat-, Uretdion - oder Carbodiimidgruppen derivatisiert ist. Interessant sind z.B. Uretdion -Gruppen aufweisende Dimerisierungsprodukte, z.B. von MDI oder TDI.The polyisocyanates can also be derivatized by reacting difunctional isocyanates with one another in such a way that some of their isocyanate groups are derivatized to form isocyanurate, biuret, allophanate, uretdione or carbodiimide groups. Of interest are, for example, dimerization products containing uretdione groups, for example of MDI or TDI.

Bevorzugt wird das Polyisocyanat in einer Menge eingesetzt, dass die Anzahl der Isocyanatgruppen von 80 bis 120 %, bezogen auf die Anzahl der freien Hydroxylgruppen des Harzes, beträgt.The polyisocyanate is preferably used in an amount such that the number of isocyanate groups is from 80 to 120%, based on the number of free hydroxyl groups in the resin.

Die Phenolharzkomponente bzw. die Isocyanatkomponente des Bindemittelsystems wird bevorzugt als Lösung in einem organischen Lösemittel oder einer Kombination von organischen Lösemitteln eingesetzt. Lösemittel können z.B. deshalb erforderlich sein, um die Komponenten des Bindemittels in einem ausreichend niedrigviskosen Zustand zu halten. Dieser ist u. a. erforderlich, um eine gleichmäßige Vernetzung des feuerfesten Formstoffes und dessen Rieselfähigkeit zu erhalten.The phenolic resin component or the isocyanate component of the binder system is preferably used as a solution in an organic solvent or a combination of organic solvents. Solvents may be necessary, for example, to keep the components of the binder in a sufficiently low-viscosity state. This is necessary, among other things, to ensure that the refractory mold material is evenly cross-linked and that it is free-flowing.

Als Lösemittel für das Phenolharz bzw. die Phenolharzkomponente können neben den z.B. unter der Bezeichnung Solvent Naphtha bekannten aromatischen Lösemitteln weiterhin sauerstoffreiche polare, organische Lösemittel verwendet werden. Geeignet sind vor allem Dicarbonsäureester, Glykoletherester, Glykoldiester, Glykoldiether, cyclische Ketone, cyclische Ester (Lactone), cyclische Carbonate oder Kieselsäureester oder deren Mischungen. Bevorzugt werden Dicarbonsäureester, cyclische Ketone und cyclische Carbonate verwendet.In addition to the aromatic solvents known, for example, under the name Solvent Naphtha, oxygen-rich polar organic solvents can also be used as solvents for the phenolic resin or the phenolic resin component. Above all, dicarboxylic acid esters, glycol ether esters, glycol diesters, glycol diethers, cyclic ketones, cyclic esters (lactones), cyclic carbonates or silicic acid esters or mixtures thereof are suitable. Dicarboxylic acid esters, cyclic ketones and cyclic carbonates are preferably used.

Der Anteil der sauerstoffreichen polaren Lösemittel am Gesamtbindemittel kann bis zu 30 % betragen.The proportion of oxygen-rich polar solvents in the total binder can be up to 30%.

Typische Dicarbonsäureester weisen die Formel R1OOC-R2-COOR1 auf, wobei R1 jeweils unabhängig voneinander eine Alkylgruppe mit 1 bis 12, bevorzugt 1 bis 6, Kohlenstoffatomen darstellt und R2 eine Alkylengruppe mit 1 bis 4 Kohlenstoffatomen ist. Beispiele sind Dimethylester von Carbonsäuren mit 4 bis 6 Kohlenstoffatomen, die z.B. unter der Bezeichnung Dibasic Ester von DuPont erhältlich sind.Typical dicarboxylic acid esters have the formula R 1 OOC-R 2 -COOR 1 where each R 1 is independently an alkyl group having 1 to 12, preferably 1 to 6, carbon atoms and R 2 is an alkylene group having 1 to 4 carbon atoms. Examples are dimethyl esters of carboxylic acids having 4 to 6 carbon atoms, which are available, for example, from DuPont under the name Dibasic Ester.

Typische Glykoletherester sind Verbindungen der Formel R3-O-R4-OOCR5, wobei R3 eine Alkylgruppe mit 1 bis 4 Kohlenstoffatomen darstellt, R4 eine Alkylengruppe mit 2 bis 4 Kohlenstoffatomen ist und R5 eine Alkylgruppe mit 1 bis 3 Kohlenstoffatomen ist, z.B. Butylglykolacetat, bevorzugt sind Glykoletheracetate. Typische Glykoldiester weisen entsprechend die allgemeine Formel R3COO-R4-OOCR5 auf, wobei R3 bis R5 wie oben definiert sind und die Reste jeweils unabhängig voneinander ausgewählt werden (z.B. Propylenglykoldiacetat).Typical glycol ether esters are compounds of the formula R 3 -OR 4 -OOCR 5 where R 3 is an alkyl group of 1 to 4 carbon atoms, R 4 is an alkylene group of 2 to 4 carbon atoms and R 5 is an alkyl group of 1 to 3 carbon atoms, e.g Butyl glycol acetate, glycol ether acetates are preferred. Typical glycol diesters accordingly have the general formula R 3 COO-R 4 -OOCR 5 , where R 3 to R 5 are as defined above and the radicals are each selected independently of one another (eg propylene glycol diacetate).

Bevorzugt sind Glykoldiacetate. Glykoldiether lassen sich durch die Formel R3-O-R4-O-R5 charakterisieren, in der R3 bis R5 wie oben definiert sind und die Reste jeweils unabhängig voneinander ausgewählt werden (z.B. Dipropylenglykoldimethylether).Glycol diacetates are preferred. Glycol diethers can be characterized by the formula R 3 -OR 4 -OR 5 in which R 3 to R 5 are as defined above and the radicals are each selected independently of one another (eg dipropylene glycol dimethyl ether).

Typische cyclische Ketone, cyclische Ester und cyclische Carbonate mit 4 bis 5 Kohlenstoffatomen sind ebenfalls geeignet (z.B. Propylencarbonat). Die Alkyl- und Alkylengruppen können jeweils verzweigt oder unverzweigt sein. Geeignet sind auch Fettsäurester wie z.B. Rapsölfettsäuremethylester oder Ölsäurebutylester.Typical cyclic ketones, cyclic esters and cyclic carbonates having 4 to 5 carbon atoms are also suitable (e.g. propylene carbonate). The alkyl and alkylene groups can each be branched or unbranched. Fatty acid esters such as rapeseed oil fatty acid methyl ester or oleic acid butyl ester are also suitable.

Als Lösemittel für das Polyisocyanat bzw. die Polyisocyanat-Komponente werden entweder aromatische Lösemittel, die oben genannten polaren Lösemittel oder Gemische davon, eingesetzt. Auch Fettsäureester und Kieselsäureester sind geeignet.Either aromatic solvents, the polar solvents mentioned above or mixtures thereof are used as solvents for the polyisocyanate or the polyisocyanate component. Fatty acid esters and silicic acid esters are also suitable.

Neben den bereits erwähnten Bestandteilen können die Bindemittelsysteme Zusätze enthalten, z. B. Silane (z.B. gemäß EP 1137500 B1 ), interne Trennmittel, z. B. Fettalkohole (z.B. gemäß US 4602069 ), trocknende Öle (z.B. gemäß US 4268425 ), Komplexbildner (z.B. gemäß US 5447968 ) und Additive zur Verlängerung der Verarbeitungszeit (z.B. gemäß US 4540724 ) oder Gemische davon.In addition to the components already mentioned, the binder systems can contain additives, e.g. B. silanes (e.g. according to EP 1137500 B1 ), internal release agents, e.g. B. Fatty alcohols (e.g. according to US4602069 ), drying oils (e.g. according to US4268425 ), complexing agents (e.g. according to US5447968 ) and additives to extend the processing time (e.g. according to US4540724 ) or mixtures thereof.

Um eine gleichmäßige Mischung der Komponenten der Formstoffmischung zu erzielen, können übliche Verfahren verwendet werden. Die Formstoffmischung kann zusätzlich gegebenenfalls Sandadditive zur Gußfehlervermeidung enthalten.Conventional methods can be used to achieve a uniform mixture of the components of the molding material mixture. The mold material mixture can also optionally contain sand additives to avoid casting defects.

Erfindungsgemäß erfolgt die Aushärtung nach dem PU-Cold-Box-Verfahren. Dazu wird der erfindungsgemäße Katalysator i.d.R. mittels eines Trägergases gasförmig oder als Aerosol durch die geformte Formstoffmischung geleitet. Es können dabei alle bekannten Begasungsapparaturen verwendet werdenAccording to the invention, curing takes place using the PU cold box method. For this purpose, the catalyst according to the invention is generally passed through the shaped mold material mixture in gaseous form or as an aerosol by means of a carrier gas. All known gassing apparatuses can be used

Die mit dem erfindungsgemäßen Verfahren hergestellten Formkörper können an sich jede auf dem Gebiet der Gießerei übliche Form aufweisen. In einer bevorzugten Ausführungsform liegen die Formkörper in Form von Gießereiformen oder - kernen vor. Diese zeichnen sich durch eine hohe mechanische Stabilität aus.The moldings produced using the process according to the invention can have any shape that is customary in the field of foundry work. In a preferred embodiment, the moldings are in the form of foundry molds or cores. These are characterized by high mechanical stability.

Beispieleexamples Versuch 1:Attempt 1: Ermittlung der Menge an ausgehärtetem Sand bei konstanter AminmengeDetermination of the amount of hardened sand with a constant amount of amine

Zu 100 Gewichtsteilen (GT) Quarzsand H 32 (Firma Quarzwerke Frechen) wurden nacheinander jeweils 0,6 GT der in Tabelle 1 angegebenen Polyol- und Polyisocyanatkomponenten gegeben und in einem Labormischer (Firma Vogel und Schemmann AG) intensiv gemischt. Nach 2 Minuten Mischzeit wurden die Formstoffmischungen in den Vorratsbehälter einer Kernschießmaschine (Firma Röperwerke Gießereimaschinen GmbH) überführt und von dort mittels Druckluft (4 bar) in ein zylindrisches Formwerkzeug von 300 mm Länge und 50 mm Durchmesser eingebracht. Anschließend wurden die in Tab.1 angegebenen Mengen Katalysator (2 bar Druck, danach 10 Sek. Nachspülen mit erwärmter Luft, Temperatur am Begasungsplatten Austritt ca. 40 bis 45°C) durch die Form geleitet. Unmittelbar nach dem Spülen wurde die Form geöffnet und der Anteil an nicht ausgehärtetem Formstoff entfernt. Danach wurde durch Wiegen bestimmt, wie viel Formstoffgemisch durch die vorgegebene Aminmenge ausgehärtet worden war.0.6 parts by weight of the polyol and polyisocyanate components listed in Table 1 were added one after the other to 100 parts by weight (pbw) of quartz sand H 32 (from Quartzwerke Frechen) and mixed intensively in a laboratory mixer (from Vogel and Schemmann AG). After a mixing time of 2 minutes, the mold material mixtures were transferred to the reservoir of a core shooter (from Röperwerke Gießereimaschinen GmbH) and from there introduced into a cylindrical mold 300 mm long and 50 mm in diameter using compressed air (4 bar). Subsequently, the amounts of catalyst indicated in Table 1 (2 bar pressure, then 10 seconds of rinsing with heated air, temperature at the gassing plate outlet about 40 to 45° C.) were passed through the mold. Immediately after rinsing, the mold was opened and the proportion of uncured mold material was removed. It was then determined by weighing how much mold material mixture had been cured by the specified amount of amine.

Die Ergebnisse sind ebenfalls in Tab. 1 aufgelistet. Tab. 1 Vergleich erfindungsgemäß Binder Teil I Isocure X 16(a) Isocure X 16(a) Isocure X 16(a) Binder Teil II Isocure X 28(c) Isocure X 28(c) Isocure X 28(c) Katalysator 0,1 ml TEA(e) 0,2 ml TEA/TEOF(f) 0,2 ml TEA/MTMS(g) ausgehärtete Formstoffmischung 554 g 633 g (+ 14%) 635 g (+ 14% Katalysator 0,05 ml DMEA(h) 0,1 ml DMEA/TEOF(i) 0,1 ml DMEA/MTMS(k) ausgehärtete Formstoffmischung 550 g 715 g (+ 30%) 787 g (+ 43%) Katalysator 0,1 ml DMPA(l) 0,2 ml DMPA/TEOF(m) 0,2 ml DMPA/MTMS(n) ausgehärtete Formstoffmischung 590 g 650 g (+ 10%) 651 g (+ 10%) Katalysator 0,1 ml DMIPA(o) 0,2 ml DMIPA/TEOF(p) 0,2 ml DMIPA/MTMS(q) ausgehärtete Formstoff mischung [g] 585 g 651 g (+ 11%) 652 g (+ 11%) Binder Teil I Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Binder Teil II Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) Katalysator 0,1 ml TEA(e) 0,2 ml TEA/TEOF(f) 0,2 ml TEA/MTMS(g) ausgehärtete Formstoffmischung 920 g 1080 g (+ 17%) 1032 g (+ 12%) Katalysator 0,05 ml DMEA(h) 0,1 ml DMEA/TEOF(i) 0,1 ml DMEA/MTMS(k) ausgehärtete Formstoffmischung 935 g 1380 g (+ 48%) 1540 g (+ 65%) Katalysator 0,1 ml DMPA(l) 0,2 ml DMPA/TEOF(m) 0,2 ml DMPA/MTMS(n) ausgehärtete Formstoffmischung 1119 g 1281 g (+ 15%) 1302 g (+ 16%) Katalysator 0,1 ml DMIPA(o) 0,2 ml DMIPA/TEOF(p) 0,2 ml DMIPA/MTMS(q) ausgehärtete Formstoffmischung 943 g 1059 g (+ 12%) 1035 g (+ 10%) Legende zur Tabelle 1:
(a) - (d) Verkaufsprodukte der ASK Chemicals GmbH, Hilden
(e) Triethylamin
(f) 50:50 Gew.% Triethylamin : Triethylorthoformiat
(g) 50:50 Gew.% Triethylamin : Methyltrimethoxysilan
(h) Dimethylethylamin
(i) 50:50 Gew.% Dimethylethylamin : Triethylorthoformiat
(k) 50:50 Gew.% Dimethylethylamin : Methyltrimethoxysilan
(l) Dimethyl-n-Propylamin
(m) 50:50 Gew.% Dimethyl-n-propylamin : Triethylorthoformiat
(n) 50:50 Gew.% Dimethyl-n-propylamin : Methyltrimethoxysilan
(o) Dimethylisopropylamin
(p) 50:50 Gew.% Dimethylisopropylamin : Triethylorthoformiat
(q) 50:50 Gew.% Dimethylisopropylamin : Methyltrimethoxysilan
The results are also listed in Table 1. <u>Tab. 1</u> comparison according to the invention Binder Part I Isocure X 16(a) Isocure X 16(a) Isocure X 16(a) Binder Part II Isocure X 28(c) Isocure X 28(c) Isocure X 28(c) catalyst 0.1ml TEA(s) 0.2ml TEA/TEOF(f) 0.2mL TEA/MTMS(g) hardened mold mixture 554g 633g (+14%) 635g (+ 14% catalyst 0.05mL DMEA(h) 0.1mL DMEA/TEOF(i) 0.1mL DMEA/MTMS(k) hardened mold mixture 550g 715g (+30%) 787g (+43%) catalyst 0.1ml DMPA(l) 0.2mL DMPA/TEOF(m) 0.2mL DMPA/MTMS(n) hardened mold mixture 590g 650g (+ 10%) 651g (+10%) catalyst 0.1 ml DMIPA(o) 0.2mL DMIPA/TEOF(p) 0.2mL DMIPA/MTMS(q) cured mold mix [g] 585g 651g (+11%) 652g (+11%) Binder Part I Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Binder Part II Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) catalyst 0.1ml TEA(s) 0.2ml TEA/TEOF(f) 0.2mL TEA/MTMS(g) hardened mold mixture 920g 1080g (+17%) 1032g (+12%) catalyst 0.05mL DMEA(h) 0.1mL DMEA/TEOF(i) 0.1mL DMEA/MTMS(k) hardened mold mixture 935g 1380g (+ 48%) 1540g (+ 65%) catalyst 0.1ml DMPA(l) 0.2mL DMPA/TEOF(m) 0.2mL DMPA/MTMS(n) hardened mold mixture 1119 g 1281g (+15%) 1302g (+16%) catalyst 0.1 ml DMIPA(o) 0.2mL DMIPA/TEOF(p) 0.2mL DMIPA/MTMS(q) hardened mold mixture 943g 1059 g (+ 12%) 1035g (+ 10%) Legend for Table 1:
(a) - (d) Products sold by ASK Chemicals GmbH, Hilden
(e) triethylamine
(f) 50:50 wt% triethylamine : triethyl orthoformate
(g) 50:50 wt% triethylamine : methyltrimethoxysilane
(h) dimethylethylamine
(i) 50:50 wt% dimethylethylamine: triethyl orthoformate
(k) 50:50 wt% dimethylethylamine:methyltrimethoxysilane
(l) dimethyl-n-propylamine
(m) 50:50 wt% dimethyl-n-propylamine: triethyl orthoformate
(n) 50:50 wt% dimethyl-n-propylamine:methyltrimethoxysilane
(o) dimethylisopropylamine
(p) 50:50 wt% dimethylisopropylamine: triethyl orthoformate
(q) 50:50 wt% dimethylisopropylamine:methyltrimethoxysilane

Aus Tab. 1 erkennt man,

  1. 1. dass die Erfindung die Wirksamkeit aller in der Praxis eingesetzten Aminkatalysatoren verbessert und
  2. 2. dass die Erfindung sowohl bei aromatenreichen Lösemittel-Formulierungen (Isocure X 16 / Isocure X 28), als auch mit Bindemitteln, die frei von aromatischen Lösemitteln sind (Ecocure 30 HE1 LF / Ecocure 60 HE 12 LF) wirkt.
Table 1 shows
  1. 1. that the invention improves the effectiveness of all amine catalysts used in practice and
  2. 2. that the invention works both with aromatic-rich solvent formulations (Isocure X 16 / Isocure X 28) and with binders that are free of aromatic solvents (Ecocure 30 HE1 LF / Ecocure 60 HE 12 LF).

Versuch 2:Attempt 2: Ermittlung der für die vollständige Füllung der Probeform notwendigen AminmengeDetermination of the amount of amine required to completely fill the test mold

Prinzipiell wurde wie in Versuch 1 vorgegangen mit dem Unterschied, dass die Aminmengen bzw. Katalysatorgemisch-Mengen bei der Katalyse schrittweise so lange erhöht wurden, bis nach dem Öffnen der Prüfform keine ungehärtete Formstoffmischung mehr vorhanden war. Die Spülzeit (2 bar mit erwärmter Luft) betrug 60 sec, die Temperatur am Begasungsplatten-Austritt betrug ca. 40 bis 45°C. Die verwendeten Binder, die Katalysatorzusammensetzungen und die Ergebnisse sind in Tab.2 aufgelistet.

Figure imgb0002
Figure imgb0003
In principle, the procedure was the same as in Experiment 1, with the difference that the amounts of amine or catalyst mixture during catalysis were gradually increased until the test mold was opened and no more uncured mold material mixture was present. The rinsing time (2 bar with heated air) was 60 seconds, the temperature at the gassing plate outlet was about 40 to 45°C. The binders used, the catalyst compositions and the results are listed in Table 2.
Figure imgb0002
Figure imgb0003

Aus Tab. 2 erkennt man, dass die Gewichtsmenge an Amin, die zur vollständigen Aushärtung des Prüfkerns benötigt wird, mit den erfindungsmäßigen Katalysatoren reduziert wird. Dies gilt sowohl für Formulierungen mit aromatischen Lösemitteln (Isocure X 16 / Isocure X 28), wie auch mit Formulierungen ohne aromatische Lösemittel (Ecocure 30 HE 1 LF / Ecocure 60 HE 12 LF).Table 2 shows that the amount by weight of amine required for complete curing of the test core is reduced with the catalysts according to the invention. This applies both to formulations with aromatic solvents (Isocure X 16 / Isocure X 28) and to formulations without aromatic solvents (Ecocure 30 HE 1 LF / Ecocure 60 HE 12 LF).

Versuch 3:Attempt 3: Getrennte Zugabe der Katalysatorkomponenten (sequenzielle Begasung)Separate addition of the catalyst components (sequential gassing)

In diesem Versuch wurde die katalytische Wirkung des Systems Amin (A) / Lösemittel (B) bei getrennter Zugabe der Komponenten geprüft. Die Spülzeit betrug insgesamt 60 sec und es wurde je Komponente 30 sec mit 2 bar erwärmter Luft (Temperatur am Begasungsplatten Austritt ca. 40 - 45°C) gespült. Die Ergebnisse sind in Tab. 3 aufgelistet. Zur besseren Vergleichbarkeit wurde das Volumen an dosierten Amin gleichgelassen und der nicht gehärtete Sand ausgewogen.In this experiment, the catalytic effect of the amine (A)/solvent (B) system was tested when the components were added separately. The flushing time was a total of 60 seconds and each component was flushed for 30 seconds with air heated to 2 bar (temperature at the gassing plate outlet about 40-45° C.). The results are listed in Table 3. For better comparability, the volume of dosed amine was kept the same and the unhardened sand was weighed.

Aus Tab. 3 erkennt man,

  1. 1. dass (A) und (B) auch bei getrennter Zugabe eine Verbesserung der katalytischen Wirkung des Amins bewirken
  2. 2. dass die Zugabe der Einzelkomponenten nicht gleichzeitig erfolgen muss
  3. 3. dass das Ergebnis besonders gut ist, wenn das Lösemittel (B) als erste Komponente zugegeben wird.
Tab 3 erfindungsgemäß Binder Teil I Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Binder Teil II Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) Katalysator DMPA/TEOF (f) Mischg. 0,26 ml DMPA 0,13 ml TEOF 0,13 ml (A)/(B) getrennt, gleichzeitig DMPA 0,13 ml TEOF 0,13 ml (A)/(B) getrennt, nacheinander TEOF 0,13 ml DMPA 0,13 ml (B)/(A) getrennt, nacheinander nicht ausgehärtete Formstoffmischung (g) 40 43 46 10 Binder Teil I Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Binder Teil II Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) Katalysator DMPA/MTMS (g) Mischg. 0,26 ml DMPA 0,13 ml MTMS 0,13 ml (A)/(B) getrennt, gleichzeitig DMPA 0,13 ml MTMS 0,13 ml (A)/(B) getrennt, nacheinander MTMS 0,13 ml DMPA 0,13 ml (B)/(A) getrennt, nacheinander nicht ausgehärtete Formstoffmischung (g) 25 28 30 8 Legende zur Tabelle 3
(b) u. (d) Verkaufsprodukte der ASK Chemicals GmbH, Hilden
(f) 50:50 Gew.% Dimethyl-n-propylamin : Triethylorthoformiat
(g) 50:50 Gew.% Dimethyl-n-propylamin : Methyltrimethoxysilan
Table 3 shows that
  1. 1. that (A) and (B) bring about an improvement in the catalytic action of the amine even when added separately
  2. 2. that the addition of the individual components does not have to take place at the same time
  3. 3. that the result is particularly good when the solvent (B) is added as the first component.
<u>Tab 3</u> according to the invention Binder Part I Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Binder Part II Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) catalyst DMPA/TEOF (f) mix. 0.26mL DMPA 0.13mL TEOF 0.13mL (A)/(B) separately, simultaneously DMPA 0.13mL TEOF 0.13mL (A)/(B) separately, sequentially TEOF 0.13 ml DMPA 0.13 ml (B)/(A) separately, sequentially uncured mold mix (g) 40 43 46 10 Binder Part I Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Ecocure 30 HE 1 LF(b) Binder Part II Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) Ecocure 60 HE 12 LF(d) catalyst DMPA/MTMS (g) Mix. 0.26mL DMPA 0.13mL MTMS 0.13mL (A)/(B) separately, simultaneously DMPA 0.13mL MTMS 0.13mL (A)/(B) separately, sequentially MTMS 0.13 mL DMPA 0.13 mL (B)/(A) separately, sequentially uncured mold mix (g) 25 28 30 8th Legend for Table 3
(b) and (d) Products sold by ASK Chemicals GmbH, Hilden
(f) 50:50 wt% dimethyl-n-propylamine: triethyl orthoformate
(g) 50:50 wt% dimethyl-n-propylamine : methyltrimethoxysilane

Claims (17)

  1. A method for producing a molded body as casting mold part or as core, comprising
    (i) mixing refractory base molding materials with a binding agent containing
    (P) one or several polyol compounds with at least 2 hydroxy groups per molecule and
    (I) one or several isocyanate compounds with at least two 2 isocyanate groups per molecule,
    to obtain a molding material mixture, and
    (ii) introducing the molding material mixture or the constituents thereof into a molding tool;
    (iii) curing the molding material mixture in the molding tool with at least one tertiary amine (A) as catalyst, in order to obtain a self-supporting mold; and
    (iv) subsequent separating of the cured mold from the tool and optionally further curing, whereby a cured molded body is obtained,
    wherein the curing of the molding material mixture takes place in the molding tool in that the tertiary amine or a mixture of tertiary amines is introduced in a gaseous manner into the molding material mixture located in a molding tool,
    - together with at least one gaseous solvent (B) or
    - the gaseous tertiary amine is introduced first into the molding material mixture and subsequently at least one gaseous solvent (B), or
    - the gaseous solvent (B) is introduced first into the molding material mixture and subsequently the gaseous tertiary amine,
    optionally in each case together with a carrier gas and
    wherein (A) and (B) are used at a weight ratio of 95 : 5 to 5 : 95 and the amine (A) dissolves completely in the solvent (B) at room temperature (25°C) and the solvent (B) has a boiling point of between 20°C and 220°C, measured at normal pressure (1013 mbar), wherein polar solvents, alkyl silanes, alkoxy silanes, mixed alkyl alkoxy silanes, aromatic, cycloaliphatic, and aliphatic hydrocarbon solvents as well as mixtures of the mentioned substance classes are used as solvent (B).
  2. The method according to claim 1, wherein the tertiary amines (A) are selected from one or several members of the group of: trimethylamine (TMA), dimethylethylamine (DMEA), dimethyl-n-propylamine (DMPA), dimethylisopropylamine (DMIPA), diethylmethylamine (DEMA), triethylamine (TEA), tri-n-propylamine, triisopropylamine, tri-n-butylamine, and triisobutylamine.
  3. The method according to claim 1 or 2, wherein the solvent (B) is characterized by at least one of the following features, independently of one another:
    a) the solvent (B) has a boiling point of between 20°C and 190°C, and preferably of between 20°C and 160°C, in each case measured at normal pressure (1013 mbar);
    b) the solvent (B) is a polar solvent and preferably an ortho ester or an alkyl silane with optionally up to 3 H groups or an alkyl alkoxy silane with at least one alkyl group or an alkoxysilane with at least one H group
    or the mixtures thereof;
    c) the solvent (B) is an aromatic, cycloaliphatic, or aliphatic hydrocarbon solvent, including the mixtures thereof.
  4. The method according to at least any one of the preceding claims, wherein the solvent (B) is selected from one or several members of the group of trimethyl orthoformate, triethyl orthoformate, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxylsilane, and propyltrimethoxysilane.
  5. The method according to at least any one of the preceding claims, wherein at least one of the components (P) and/or (I) contains a solvent, preferably an ester or an aromatic hydrocarbon, or both, in particular at least the polyol component (P), and wherein the isocyanate component (I) preferably contains up to 40% by weight of solvent, in particular up to 30% by weight, based on the isocyanate component.
  6. The method according to at least any one of the preceding claims, wherein the molding material mixture contains at least:
    greater than 20% by weight, preferably 30 to 60% by weight, of isocyanate compounds (I) with at least 2 isocyanate groups per molecule, based on the binding agent.
  7. The method according to at least any one of the preceding claims, wherein (A) and (B) are used at a weight ratio of 80 : 20 to 20 : 80, and particularly preferably of 70 : 30 to 30 : 70.
  8. The method according to at least any one of the preceding claims, wherein the isocyanate component contains aromatic di- or polyisocyanates.
  9. The method according to at least any one of the preceding claims, wherein the phenolic resin can be obtained by conversion of a phenol compound with an aldehyde compound in the slightly acidic medium by using transition metal catalysts, wherein
    i) the phenolic compound is preferably selected from one or several members of the following group: phenol, o-Cresol, p-Cresol, bisphenol-A or cardanol; or
    ii) the transition metal catalyst is preferably a zinc compound, in particular zinc acetate dihydrate.
  10. The method according to any one of the preceding claims, wherein the phenolic resin is a benzyl ether resin, the methylol groups are preferably completely or partially etherified with a C1 to C8 alcohol, preferably at least 20 mole percent of the methylol groups, and, independently thereof, preferably in each case with a water content of less than 0.5% by weight.
  11. The method according to claim 9, wherein the aldehyde compound is an aldehyde of the formula:

            R-CHO,

    in which R represents a hydrogen atom or a carbon residue with preferably 1 to 8, particularly preferably 1 to 3, carbon atoms.
  12. The method according to at least any one of the preceding claims, wherein the molding material mixture, based on the binding agent, contains:
    8 to 70% by weight, in particular 10 to 62% by weight, of polyol compounds, in particular phenolic resins, or the conversion products thereof, respectively;
    13 to 78% by weight, in particular 17 to 70% by weight, of isocyanate compounds, or the conversion products thereof, respectively; and
    2 to 57% by weight, in particular 3 to 53% by weight, of solvents for the polyol compound(s) and/or the isocyanate compound(s).
  13. The method according to at least any one of the preceding claims, wherein the refractory base molding material is selected from olivine, chamotte, bauxite, aluminum silicate hollow spheres, glass beads, glass granulate, synthetic ceramic base molding materials and/or silicon dioxide, in particular in the form of quartz, zirconium, or chrome sand.
  14. The method according to at least any one of the preceding claims, wherein a carrier gas is used and the carrier gas is air, argon, or nitrogen, or carbon dioxide, or carbon dioxide-enriched air.
  15. A kit for producing a binding agent for molding material mixtures having the following components, present separately from one another:
    (a) at least one polyol component, which is free from isocyanate compounds, containing at least one phenolic resin (P) as polyol compound with at least 2 hydroxy groups per molecule;
    (b) at least one isocyanate component, which is free from polyol compounds, containing one or several isocyanate compounds (I) with at least 2 isocyanate groups per molecule;
    (c) at least one catalyst component containing one or several tertiary amines (A) as catalyst,
    characterized in that the kit furthermore
    (d) contains a solvent component, containing one or several solvents (B) for the tertiary amine (A) or
    one or several solvents (B) are part of the catalyst component,
    wherein (A) and (B) are used in a weight ratio of 95 : 5 to 5 : 95, and the solvent (B) has a boiling point of between 20°C and 220°C, measured at normal pressure (1013 mbar), and the amine (A) dissolves completely in the solvent (B) at room temperature (25°C) and
    wherein polar solvents, alkyl silanes, alkoxy silanes, mixed alkyl alkoxy silanes, aromatic, cycloaliphatic, and aliphatic hydrocarbon solvents as well as mixtures of the mentioned substance classes are used as solvent (B).
  16. The kit according to claim 15, wherein the solvent (B) is a polar solvent and preferably is
    - an ortho ester or
    - an alkyl silane with up to 3 H groups or
    - an alkyl alkoxy silane with at least one alkyl group or
    - an alkoxy silane with at least one H group or
    - the mixtures thereof.
  17. The kit according to claim 15 or 16, wherein the solvent (B) is selected from one or several members of the group of trimethyl orthoformate, triethyl orthoformate, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxylsilane, and propyltrimethoxysilane.
EP16722038.3A 2015-03-02 2016-03-02 Method for curing a polyurethane binders in moulding material mixtures by introducing tertiary amines, and solvents and kit for implementation of the method Active EP3265254B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015102952.9A DE102015102952A1 (en) 2015-03-02 2015-03-02 Process for curing polyurethane binders in molding material mixtures by introducing tertiary amines and solvents and kit for carrying out the process
PCT/DE2016/000092 WO2016138886A1 (en) 2015-03-02 2016-03-02 Method for curing a polyurethane binders in moulding material mixtures by introducing tertiary amines, and solvents and kit for implementation of the method

Publications (2)

Publication Number Publication Date
EP3265254A1 EP3265254A1 (en) 2018-01-10
EP3265254B1 true EP3265254B1 (en) 2022-02-02

Family

ID=55966954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16722038.3A Active EP3265254B1 (en) 2015-03-02 2016-03-02 Method for curing a polyurethane binders in moulding material mixtures by introducing tertiary amines, and solvents and kit for implementation of the method

Country Status (3)

Country Link
EP (1) EP3265254B1 (en)
DE (1) DE102015102952A1 (en)
WO (1) WO2016138886A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108467279A (en) * 2018-05-31 2018-08-31 武汉钢铁有限公司 Lightweight insulated pouring material and preparation method thereof for tundish cover

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485797A (en) 1966-03-14 1969-12-23 Ashland Oil Inc Phenolic resins containing benzylic ether linkages and unsubstituted para positions
US3429848A (en) 1966-08-01 1969-02-25 Ashland Oil Inc Foundry binder composition comprising benzylic ether resin,polyisocyanate,and tertiary amine
FR2031636A5 (en) * 1969-01-16 1970-11-20 Plastimer Composition for foundry sand binders and - preparation of cores and moulds by cold rapid
GB1365094A (en) * 1971-08-03 1974-08-29 Ciba Geigy Ag Synthetic resin compositions
US4268425A (en) 1979-05-14 1981-05-19 Ashland Oil, Inc. Phenolic resin-polyisocyanate binder systems containing a drying oil and use thereof
US4540724A (en) 1984-01-30 1985-09-10 Ashland Oil Inc. Phenolic resin-polyisocyanate binder systems containing a phosphorus halide and use thereof
US4602069A (en) 1984-04-11 1986-07-22 Ashland Oil, Inc. Phenolic resin-polyisocyanate binder systems containing a phosphorus based acid
US4546124A (en) 1984-10-12 1985-10-08 Acme Resin Corporation Polyurethane binder compositions
US5447968A (en) 1993-07-23 1995-09-05 Ashland Inc. Polyurethane-forming binder systems containing 2,2'-dipyridyl, 1,10-phenanthroline, and their substituted alkyl derivatives
DE19713096A1 (en) 1997-03-27 1998-10-01 Sueddeutsche Kalkstickstoff Oil-free glycerophospholipid formulations and process for their preparation
DE19850833C2 (en) 1998-11-04 2001-06-13 Ashland Suedchemie Kernfest Binder system for the production of cores and molds based on polyurethane, their use and method for producing a mold part based on polyurethane
DE19925115A1 (en) 1999-06-01 2000-12-07 Huettenes Albertus Binder system for molding material mixtures for the production of molds and cores
US6365646B1 (en) * 1999-12-08 2002-04-02 Borden Chemical, Inc. Method to improve humidity resistance of phenolic urethane foundry binders
WO2002060985A1 (en) * 2001-01-31 2002-08-08 Borden Chemical, Inc. Phenolic urethane foundry binders containing methyl benzoate
US20050020723A1 (en) 2003-07-24 2005-01-27 Chia-Hung Chen Stabilized phenolic resole resin compositions and their use
PL1955792T3 (en) 2007-01-22 2019-11-29 Arkema France Process for making foundry shaped cores and for casting metals
CN103702783B (en) 2011-07-19 2016-03-09 亚世科化学有限公司 By the method for gaseous catalyst sclerosis cold-box casting mold

Also Published As

Publication number Publication date
DE102015102952A1 (en) 2016-09-08
WO2016138886A1 (en) 2016-09-09
EP3265254A1 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
EP2640764B2 (en) Binder based on polyurethane for producing cores and moulds using isocyanates containing a urethonimine and/or carbodiimide group, a mould material mixture containing said binder, and a method for using said binder
EP2598550B1 (en) Binder system based on polyurethane for producing cores and casting molds using cyclic formaldehydes, molding material mixture, and method
JP6023714B2 (en) Binder, mold material mixture and method containing substituted benzene and naphthalene for casting core and mold production
EP3558560B1 (en) Binder based on phenolic resins of the benzyl ether type, containing free phenol and free hydroxybenzyl alcohols
WO2000025957A1 (en) Binder system for producing polyurethane-based cores and melting moulds
EP2249982B1 (en) Use of branched alkane diol carboxylic acid diesters in polyurethane-based foundry binders
EP1567576A1 (en) Method for producing shaped bodies, particularly cores, molds and feeders for use in foundry practice
EP3737707A1 (en) Phenolic resin binder with reduced formadehyde content
EP3169463A1 (en) Co-catalysts for polyurethane cold box binders
WO2008017476A1 (en) Use of cashew nutshell derivatives in foundry binding agents on polyurethane basis
DE102015107016A1 (en) Process for reducing free formaldehyde in benzyl ether resins
EP3265254B1 (en) Method for curing a polyurethane binders in moulding material mixtures by introducing tertiary amines, and solvents and kit for implementation of the method
EP3333205B1 (en) Polyurethane binder with improved flowability
EP3558559B1 (en) Component system for producing cores and molds
WO2023217325A1 (en) Process for layer-by-layer building of built articles with a viscosity-modified binder
DE102014117284A1 (en) Polyurethane binder system for producing cores and casting molds, molding material mixture containing the binder and a method using the binder
WO2014146940A1 (en) Use of carboxylic acids and fatty amines in pu-binders for producing cores and moulds for metal casting

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181008

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210326

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20210824

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1466452

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016014479

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220602

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220502

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016014479

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220302

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220302

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1466452

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220502

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230530

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160302