EP3262713B1 - Reflector with an electronic circuit and antenna device comprising a reflector - Google Patents

Reflector with an electronic circuit and antenna device comprising a reflector Download PDF

Info

Publication number
EP3262713B1
EP3262713B1 EP16705555.7A EP16705555A EP3262713B1 EP 3262713 B1 EP3262713 B1 EP 3262713B1 EP 16705555 A EP16705555 A EP 16705555A EP 3262713 B1 EP3262713 B1 EP 3262713B1
Authority
EP
European Patent Office
Prior art keywords
reflector
antenna
electromagnetic wave
substrate
reflector structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16705555.7A
Other languages
German (de)
French (fr)
Other versions
EP3262713A1 (en
Inventor
Tristan Visentin
Wilhelm Keusgen
Richard Jürgen Weiler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3262713A1 publication Critical patent/EP3262713A1/en
Application granted granted Critical
Publication of EP3262713B1 publication Critical patent/EP3262713B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/148Reflecting surfaces; Equivalent structures with means for varying the reflecting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the present invention relates to a reflector with an electronic circuit which can be used, for example, for reflecting an incident electromagnetic wave, and to an antenna device.
  • the present invention also relates to a dual reflector system with active electronics integrated into the main reflector.
  • the directional antenna, data processing and radio front end i.e. electronic circuits
  • the directional antenna, data processing and radio front end represent independent modules that are connected to one another. This is done by means of coaxial connections, conductor tracks from the outputs of the electronic components, such as amplifiers, transitions from conductor tracks to waveguides, bond wire connections or the like.
  • Disadvantages here are the physical size of the overall system as well as losses in terms of weight and efficiency of the antenna system, such as losses in the transition from electronics to antenna, adjustment losses, etc.
  • PIFA Planar Inverted-F Antenna
  • patch antennas based on circuit boards or on-chip antennas that radiate out of a chip housing are used. These antennas have a wide radiation, do not develop a high directional effect and are therefore unsuitable for radio relay applications.
  • Phased-array antennas also use the principle of integrated electronics in combination with radiating antenna elements on a circuit board, but do not use reflector components to increase the directional effect, but use the combined radiation of many active antenna elements (e.g. patch antennas on the circuit board) to achieve a directional effect. This is associated with complicated active electronics, phase shifters and a complex control network of the individual antenna elements.
  • reflect array i.e. an array of reflector elements
  • circuit boards with layers of integrated solar cells that are used for energy generation, e.g. on a satellite. This is done on the basis of passive electronics.
  • FIG. 11 shows a schematic illustration of a reflect array 102 which comprises a substrate 104 and a multiplicity of scattering elements 106.
  • a feed antenna 108 arranged at a distance from the reflect array 102 can emit a radio signal in the direction of the reflect array 102, the radio signal being reflected by the reflect array 102.
  • the main reflector (reflect array 102) and optional sub-reflectors (further reflectors) can be implemented on the basis of printed circuit boards with individual reflective metallic elements on a substrate with an underlying metallic ground plane, i.e. reflect arrays.
  • the reflective elements on the printed circuit boards are used to impress a desired phase function on the incident radiation, in order to simulate the function of a physically curved main or subreflector.
  • a Dual Planar Reflectarray With Synthesized Phase and Amplitude Distribution (Ralf Leberer et al. IEEE Transactions on Antennas and Propagation, Vol 53, No. 11 November 2005 ) describes a quasi-planar reflector arrangement in which any phase and amplitude distribution can be set.
  • a reflector antenna for bundling radar waves for distance sensors is disclosed, which optionally has one or more subreflectors.
  • the object of the present invention is therefore to create a reflector and an antenna device which enable efficient operation and a compact, possibly lighter design of the same.
  • an antenna device comprises a reflector which has: a substrate and a multiplicity of reflector structures which are arranged on or in the substrate.
  • the reflector structures are designed to reflect an incident electromagnetic wave.
  • An electronic circuit is arranged on or in the substrate and is designed to control an antenna when the antenna is connected to the electronic circuit.
  • the antenna device further comprises: an antenna arranged on the substrate; and a subreflector which is designed to reflect the electromagnetic wave emitted by the antenna at least partially in the direction of the plurality of reflector structures, so that the electromagnetic wave reflected by the subreflector is directed in the direction of the plurality of reflector structures and is reflected again by them.
  • the antenna arranged on or in the substrate has the advantage that power losses between the electronic circuit and the antenna are also reduced, so that even more efficient operation of the reflector is made possible.
  • Another advantage is that a compact assembly can be realized in which the reflector and antenna are designed adjacent to one another or even integrated.
  • the advantage of the subreflector is that an integrated design of the antenna and / or efficient operation of the antenna device is made possible.
  • the antenna is connected to the electronic antenna control circuit and is designed to generate the electromagnetic wave based on a control of the electronic antenna control circuit and to transmit it in a direction of the subreflector.
  • the plurality of reflector structures are arranged in at least two mutually different substrate planes which are arranged parallel to a substrate surface which is arranged facing a direction in which the electromagnetic wave is reflected.
  • the plurality of reflector structures is designed to reflect the incident electromagnetic wave in such a way that the reflected electromagnetic wave is bundled as a result of the reflection at the plurality of reflector structures.
  • the advantage of this is that a directional effect (ie collimated or at least less scattered electromagnetic wave) of the radio signal to be transmitted is obtained by means of the reflector structures, so that a low transmission power signal transmission required and / or having a long transmission path is made possible by means of the reflector, which leads to a further increased operating efficiency.
  • At least one reflector structure of the plurality of reflector structures comprises a plurality (two or more) of dipole structures.
  • a plurality of transmission channels can be used or implemented is, for example, a transmission channel per dipole structure, a reception channel per dipole structure and / or a simultaneous transmission operation and reception operation of the electronic circuit and / or a connected antenna.
  • the reflector comprises a radome structure which is arranged with respect to the plurality of reflector structures and is designed to at least partially reduce a mechanical or chemical influence of an environment of the plurality of reflector structures on the plurality of reflector structures.
  • the radome structure comprises, at least in some areas, an electrically conductive structure which is designed to reflect the electromagnetic wave, the electrically conductive structure being arranged with respect to the plurality of reflector structures in such a way that the electromagnetic wave reflected by the electrically conductive structure in the direction of the plurality of Reflector structures are directed and reflected again by these.
  • the electrically conductive structure can be arranged as a sub-reflector with respect to a reflector used as the main reflector.
  • the advantage of this exemplary embodiment is that the reflector is less sensitive to external influences and that the reflector can be used as a Cassegrain reflector structure or as a Gregorian reflector structure.
  • the reflector structures and the sub-reflector have a Cassegrain configuration or a Gregorian configuration.
  • the advantage here is that a high directivity of the antenna device can be obtained, so that a low transmission power is required and / or a high transmission range is obtained.
  • the antenna is designed as a surface-mounted component (Surface Mounted Device - SMD). The advantage of this is that the antenna device as an overall structure has a high functional integration density and the antenna device can be designed with a small installation space and / or a low weight.
  • an axial relative position of the sub-reflector with respect to the reflector can be changed along an axial direction parallel to a surface normal of the substrate. It is advantageous here that a radiation characteristic of the antenna device, for example a focusing of the incident electromagnetic wave, can be set.
  • a lateral relative position of the subreflector with respect to the reflector can be changed along a lateral direction perpendicular to a surface normal of the substrate or an inclination of the main reflector or subreflector with respect to a surface of the substrate of the reflector.
  • the antenna comprises a plurality of antenna elements, wherein a first subset of the antenna elements is designed to generate the electromagnetic wave with a first polarization direction and wherein a second subset of the antenna elements is designed to transmit the electromagnetic wave with a second polarization direction produce.
  • a first subset of the plurality of reflector structures is designed to reflect the electromagnetic wave with a first degree of reflection when the electromagnetic wave has the first polarization direction and to reflect with a second degree of reflection when the electromagnetic wave has the second polarization.
  • a second subset of the plurality of reflector structures is designed to reflect the electromagnetic wave with a third degree of reflection when the electromagnetic wave has the second polarization direction and to reflect with a fourth degree of reflection when the electromagnetic wave has the first polarization.
  • the first reflectance and the third reflectance have a larger value than the second reflectance and the fourth reflectance.
  • the antenna is designed to guide an electromagnetic wave transmitted in the direction of the antenna device and received by the antenna device to the electrical circuit or a further electrical circuit.
  • the advantage here is that a transmission function, a reception function and the generation of the electromagnetic wave can be carried out in an integrated manner as a function of a device.
  • the antenna device comprises a plurality of antennas and a plurality of subreflectors, each subreflector being assigned to an antenna. It is advantageous here that the reflector can be arranged jointly with respect to the plurality of antennas and the plurality of subreflectors, so that a high degree of compactness of a multiple antenna device is obtained.
  • Fig. 1 shows a schematic block diagram of a reflector 10.
  • the reflector 10 comprises a substrate 12 and a plurality of reflector structures 14 which are arranged on a surface of the substrate 12.
  • the multiplicity of reflector structures 14 is designed to reflect an incident electromagnetic wave 16 (radio signal).
  • the reflector 10 further includes an electronic circuit 18 disposed on the same side of the substrate as the plurality of reflector structures.
  • the electronic Circuit 18 is configured to control an antenna (not shown) when the antenna is connected to the electronic circuit.
  • the antenna can be, for example, the antenna that generates or transmits the electromagnetic wave 16.
  • the substrate can be at least partially a silicon substrate (wafer or parts thereof) or around a printed circuit board (PCB).
  • the substrate 12 can have one or more layers (layers) which are connected to one another or separated by intermediate layers.
  • the intermediate layers can be metallic layers, for example, which enable shielding from the electromagnetic wave 16 and / or a supply of electronic components with a supply or reference potential (ground).
  • the intermediate layers can also be air layers; That is, two layers of the substrate can be connected to one another by means of spacers. It is also conceivable that different layers 22a and 22b or 22b and 22c have an intermediate layer of air and are, for example, screwed together or the like.
  • the intermediate air layers can also be used to accommodate reflector structures or act as reflector structures.
  • the multiplicity of reflector structures 14 is arranged, for example, on a first main side of the substrate 12, that is to say on a side of the substrate 12 that is arranged facing the incident electromagnetic wave 16.
  • the electronic circuit 18 is described in such a way that it is arranged on the same side as the plurality of reflector structures 14, the electronic circuit can also be arranged in whole or in part (for example in the form of subcircuits) on another, roughly opposite side of the substrate 12 be.
  • the plurality of reflector structures 14 and / or the electronic circuit 18 can also be arranged wholly or partially on or in the substrate 12, for example if the substrate 12 is a multilayer structure.
  • a further layer of the substrate 12 can be arranged with respect to some or all of the reflector structures 14 and / or the electronic circuit 18, so that the related reflector structure and / or the electrical circuit 18 are covered by the further layer.
  • the reflector structures 14 can comprise electrically conductive materials such as metals or semiconductors.
  • a surface geometry of the plurality of reflector structures can be selected such that the respective surface shape of the reflector structures 14 and / or their relative position to one another impresses a phase function on the incoming electromagnetic wave 16.
  • the electrically conductive material can be platinum, gold, silver, aluminum, copper, a (doped) semiconductor or the like.
  • the multiplicity of reflector structures can be arranged on the substrate 12, for example, by means of an adhesive, pressure or sputtering process or by means of vapor deposition.
  • the plurality of reflector structures can be formed in the form of island structures in a PCB by etching or milling. At least one reflector structure can be arranged by means of chemical gold plating or by vapor deposition.
  • a phase function impressed by the reflector structures 14 on the electromagnetic wave 16 can be designed such that the electromagnetic wave 16 is focused as a result of the reflection and is collimated or at least reflected by the reflector 10 in a less scattered manner.
  • the impressed phase function can simulate a curvature of the reflector 10, for example convex or concave.
  • the multitude of reflector structures are matched to one another based on the phase function in such a way that the electromagnetic wave 16 is reflected locally differently (direction, polarization, etc.) over the areal distribution and configuration of the reflector structures 14, so that the phase function of the electromagnetic wave 16 is impressed.
  • the phase function can be used to obtain beam shaping (beam contour or contoured beam).
  • Fig. 2 shows a schematic side sectional view of a reflector 20.
  • the reflector 20 comprises the substrate 12, the substrate 12 comprising a circuit board or being embodied as a multi-layer circuit board.
  • the substrate 12 comprises a first layer 22a, a second layer 22b and a third layer 22c, which together form parts of a stack, with a first at least partially electrically conductive layer 24a between the first layer 22a and the second layer 22b and between the second layer 22b and the third layer 22c, a second at least partially electrically conductive layer 24b is arranged.
  • the layers 22a, 22b and / or 22c can for example comprise an epoxy material, a semiconductor material and / or a glass fiber material such as FR-4, Kapton or the like, which can be glued together.
  • the stack of the substrate 12 is described in such a way that the plurality of reflector structures 14 at an upper end of the substrate 12 and the electronic circuit comprising electronic subcircuits 18a-c are arranged at a lower end of the stack. It is obvious that, depending on the orientation of the reflector 20 in space, the designation “top” or “bottom” can be replaced by any other designation.
  • a multi-layer substrate can also comprise only one layer and one conductive layer.
  • the conductive layers 24a and 24b can, for example, comprise metallic materials and can be used or contacted as a ground plane.
  • the conductive layers 24a and / or 24b enable (possibly complete) reflection of the electromagnetic wave 16. This can relate to portions of the electromagnetic wave 16 that are not reflected by the reflector structures 14 and penetrate into the substrate 12. Arranging the electronic circuit or subcircuits 18a, 18b and / or 18c on a side of the conductive layers 24a and / or 24b facing away from the incident electromagnetic wave 16 enables the electronic subcircuits 18a-c to be shielded from the electromagnetic wave .
  • this offers advantages in particular with regard to a low electromagnetic coupling of the electromagnetic wave 16 into circuit structures, which would lead to an impairment of the functionality of the electronic circuit.
  • the shielding thus enables an increased electromagnetic compatibility (EMC) of the reflector 20.
  • EMC electromagnetic compatibility
  • the arrangement of the electronic subcircuits 18a-c on a different side than the plurality of reflector structures 14 enables the reflector structures 14 to use more space on the top of the stack, since there is no space is required for the electronic circuit.
  • At least one reflector structure 14 is arranged in a substrate plane different from the top side of the substrate 12, for example as a structure arranged on or in the metallic layer 24a.
  • the metallic layer 24a can be structured. This enables a higher (surface) density of the reflector structures 14 in relation to the electromagnetic wave 16, so that a reflected portion of the electromagnetic wave 16 to which a phase function is applied is increased. During operation, this enables a smaller proportion of the electromagnetic wave 16 to be coupled into the electrically conductive layer. Alternatively or additionally, a higher or the entire portion of the electromagnetic wave 16 can be acted upon with a phase function.
  • the phase function of the reflected electromagnetic wave can, compared with the incoming electromagnetic wave 16, have a higher degree of linearity, which leads to an increased tolerance robustness.
  • one or more electronic subcircuits 18a-c are arranged facing the electromagnetic wave 16 on the first layer 22a.
  • one or more electronic subcircuits 18a-c can be arranged in the substrate 12, for example on the second layer 22b or the first or second electrically conductive layer 24a or 24b.
  • Another layer is located under the ground plane 24a, which has an electrical function or can serve purely for the stability of the printed circuit board.
  • a further ground surface 24b which, for example, galvanically separated from the upper ground surface 24a, can form the ground surface for the substrate layers on the underside of the circuit board for the active electronics (electronic subcircuits 18a-c).
  • the electronic components for controlling a feed antenna are located on the underside of a further layer (third layer 22c) for the electronics.
  • the substrate 12 can also comprise only one layer, two layers or more than three layers.
  • the second layer 22b can not be arranged or can be in the form of several layers.
  • the reflector structures 14 can also be embodied integrated (embedded) in one of the layers 22a, 22b or 22c, for example as conductive "islands" of a printed circuit board. If the second layer 22b is not arranged, for example, only one of the metallic layers 24a or 24b can be arranged between the layers 22a and 22c.
  • the reflector structures 14 can have different polarization directions (preferred directions) from one another. Different directions of polarization can be arranged in different substrate planes.
  • the substrate planes can be arranged parallel to a substrate surface (the side of the substrate 12 facing or facing away from the electromagnetic wave 16).
  • the substrate can, for example, comprise a liquid crystal (LC) substrate layer which is arranged such that the reflector structures are located between a (virtual) source of the electromagnetic wave and the LC substrate layer.
  • LC liquid crystal
  • a phase allocation of the main or subreflector on the basis of a printed circuit board can be realized in a readjusting manner, that is to say reflection properties can be influenced based on an activation of the liquid crystal elements.
  • Fig. 2 a possible layer structure of a main reflector circuit board.
  • the top layer (ie above the first layer 22a) is formed by the reflective elements (reflector structures 14) which can impress a phase function of the incident radiation 16 and which are located on a substrate (first layer 22a).
  • a metallic layer 24a Under this substrate there is a metallic layer 24a, which serves, for example, as a ground plane and ensures the reflection of all incident rays.
  • reflector 20 can also have only one common ground surface in the layer structure and therefore for reflective elements 14 and electronics 18a-c without any additional intermediate layer for the stability of the circuit board.
  • the (upper) substrate layers of the main reflector for the reflective elements can be made both single-layer and multi-layer, with further reflective elements being able to be arranged between the metallic layers in the multi-layer embodiment. Furthermore, adhesive layers that physically connect these layers (multi-layer reflect array) can be arranged.
  • One advantage, possibly the main advantage, of the multilayer design is the greater realizable bandwidth of the main reflector. The same applies to the layers of the sub-reflector, if it is designed as a printed circuit board version.
  • the lower substrate layers (22c) of the main reflector for the electronics can be single-layered or multi-layered, with multiple layers in turn being able to have metallic layers with conductor tracks and adhesive layers that connect the different substrate layers.
  • the Figures 3a-d each show schematic plan views of possible embodiments of the reflector structures.
  • Fig. 3a shows a schematic plan view of a reflector structure 14-1, which is designed as a rectangle with a first side dimension a and a second side dimension b.
  • the side dimensions a and b can have a different or equal value (square).
  • Figure 3b shows a schematic plan view of a reflector structure 14-2, which is designed as an ellipse. A ratio of major and minor axes is arbitrary.
  • Figure 3c shows a schematic plan view of a reflector structure 14-3, which is designed as a combination of two dipole structures 26a and 26b.
  • the dipole structures 26a and 26b are arranged perpendicular to one another, which enables a reflection of incident electromagnetic waves with different polarization directions that is highly isolated or decoupled from one another.
  • a perpendicular arrangement of the dipole structures 26a and 26b enables, for example, a reflection of mutually perpendicular polarization directions, for example horizontally and vertically, these orientations each or together being able to rotate freely in space or be referred to differently.
  • the dipole structures 26a and 26b can also have an angle different from 90 ° and / or reflect directions of polarization which have the same or a different angle.
  • the dipoles 26a and 26b each have an increased degree of reflection when the electromagnetic wave is received with a polarization that corresponds to the arrangement of the respective dipole 26a or 26b and, in contrast, a reduced degree of reflection when the electromagnetic wave with another, in particular with a polarization direction arranged perpendicular thereto is received.
  • the dipole structure 26a has a high (first) degree of reflection, for example.
  • the dipole structure 26a has a lower (second) reflectance.
  • the first polarization can be referred to as the preferred direction with respect to the dipole 26a.
  • the dipole 26b has, for example, a high (third) reflectance in the second polarization and, if the electromagnetic wave has the first polarization, a low (fourth) reflectance with which the electromagnetic wave is reflected.
  • the first and third reflectivities are greater than the second and fourth reflectivities.
  • the first and the third or the second and the fourth reflectance can also be the same.
  • the dipole 26a can be designed to the to reflect the first polarization and the dipole 26b to reflect the second polarization.
  • the dipole structures 26a and 26b can also be designed in order to impress mutually different phase functions on a reflected electromagnetic wave.
  • Several different polarizations can be obtained by connecting a plurality of antenna structures or elements to the electronic circuit, a first subset of the antenna structures or elements being designed to generate an electromagnetic wave with a first polarization and a second subset of the antenna structures or elements is designed to generate an electromagnetic wave with a second polarization.
  • further antenna structures or elements can be arranged which are designed to generate an electromagnetic wave with at least one further polarization.
  • Fig. 3d shows a schematic top view of a reflector structure 14-4, which comprises three dipole structures 26a, 26b and 26c each arranged at an angle to one another, which enables reflection of three corresponding polarizations.
  • the dipole structures 26a-c can have any desired angle to one another and, for example, be adapted to polarizations of electromagnetic waves to be transmitted. Alternatively, more than three dipole structures or only one dipole structure can be arranged.
  • the reflector structures can also have any other shape, such as a polygon shape, a circular shape, a free shape or a combination of shapes and / or dipole structures.
  • the reflective elements can have any geometry.
  • any method can be used to implement the desired phase change on the aperture of the reflector, for example a variable size of the elements, attached line pieces and / or a rotation of the elements with respect to one another.
  • Fig. 4 shows a schematic view of a reflector 40, which is widened in relation to the reflector 10 such that a housing part 28 is arranged on a side of the substrate 12 facing away from the reflector structures 14.
  • the housing part 28 can be used, for example, as a cover for the electronic circuit which the housing part 28 facing on the substrate 12 is arranged.
  • the housing part 28 may comprise non-conductive (e.g., comprising plastic materials or resin materials) or conductive materials (e.g., metals).
  • the housing part 28 can be a metallic cover.
  • a radome structure 32 is arranged on the side of the substrate 12 facing the reflector structures 14.
  • the substrate 12 is shown arranged offset with respect to the housing part 28 and the radome structure 32 only for the sake of better illustration; That is, the substrate 12, the housing part 28 and the radome structure 32 can also be arranged in such a way that the substrate 12 is enclosed (housed) by the housing part 28 and the radome structure 32.
  • the housing can be waterproof and / or chemically resistant.
  • the radome structure 32 comprises at least regionally an electrically conductive structure 34.
  • the electrically conductive structure 34 is designed to reflect the electromagnetic wave and is arranged with respect to the plurality of reflector structures 14 so that the electromagnetic wave reflected by the electrically conductive structure 34 in the direction the plurality of reflector structures 14 is directed and is reflected again by these. If, for example, an antenna is arranged between the housing part 28 and the radome structure 32 (for example on or in the substrate 12), this antenna can be designed to emit the electromagnetic wave in the direction of the electrically conductive structure 34, so that the electrically conductive structure 34 the electromagnetic wave is reflected in the direction of the reflector structures 14.
  • the electrically conductive structure 34 can provide the function of a subreflector.
  • the sub-reflector can be arranged as part of a double reflector system in which the reflector 10 or 20 is arranged as the main reflector.
  • the reflector structures 14 can then provide the electromagnetic wave with the phase function and transmit it (through the radome structure 32).
  • the radome structure 34 can also comprise a further multiplicity of reflector structures.
  • a radome layer can be arranged over the reflective elements / the electronics of the main reflector circuit board in order to cover the elements and to protect them from corrosion and external influences or at least to reduce the influence.
  • This radome position can also change the reflective properties of the reflective elements or serve for thermal heat dissipation for the electronics.
  • Fig. 5 shows a schematic side sectional view of a reflector 50, in which the substrate 12, compared to the reflector 20, comprises through-contacts (so-called vias) 36a and 36b, so that electrical signals from the electronic circuit 18 through the substrate 12 to the side opposite the electronic circuit 18 of the substrate 12 can be conducted.
  • An antenna 38 is arranged on the substrate 12 and is designed to transmit a radio signal, for example in the form of the electromagnetic wave 16.
  • the antenna 38 is connected, for example, by means of bonding wires 41a and 41b to the plated-through holes 36a and 36b and consequently to the electronic circuit 18.
  • the electronic circuit 18 is designed to control the antenna 38 so that parameters of the electromagnetic wave 16, such as a signal shape, a transmission duration, a signal amplitude and / or a transmission frequency, are influenced by the activation of the electronic circuit 18.
  • the reflector structures (not shown) are arranged on the same side of the substrate 12 as the antenna 38.
  • reflector structures can also be arranged in the substrate 12.
  • the electronic circuit 18 can also be arranged on the same side as the antenna 38 on the substrate 12 and / or in the form of partial circuits. Arranging the antenna 38 on the substrate 12 enables a highly integrated interconnection of the electronic circuit 18 and antenna 38, which can lead to low power losses and consequently efficient operation.
  • the reflector 50 can therefore also be described as an antenna device which comprises the electronic circuit 18, the substrate 12 and the antenna 38.
  • the antenna 38 can be any antenna.
  • it can be an on-chip feed antenna, a patch antenna, a PIFA antenna, a waveguide antenna, a silicon-based antenna or any other antenna.
  • an antenna shape comprising a double reflector system can be obtained.
  • This antenna shape can be designed, for example, as a Cassegrain antenna or as a Gregorian antenna, so that an integrated Cassegrain antenna or an integrated Gregorian antenna can be obtained.
  • Fig. 5 an example of the connection of the electronic components of the lower layers with the on-chip feed antenna on the top of the main reflector circuit board.
  • the electronics are connected to an SMD on-chip antenna by means of plated-through holes (vias) and optional bonding wires.
  • the sub-reflector 42 can be part of a radome structure.
  • Fig. 6 shows a schematic block diagram of an antenna device 60 comprising the substrate 12 on which the plurality of reflector structures 14 are arranged.
  • the antenna 38 is arranged on the substrate 12 on the same side as the plurality of reflector structures 14 and is designed to generate and emit the electromagnetic wave 16.
  • the electromagnetic wave 16 can be emitted (spatially) broadly, ie with a large opening angle. This means that the electromagnetic wave 16 can have a low directivity.
  • a further reflector structure hereinafter referred to as subreflector 42, is arranged.
  • the sub-reflector 42 can be, for example, a concave or convex shaped conductive layer.
  • the subreflector 42 can also be planar, for example comprising a substrate and / or a circuit board with reflector structures which are designed to impress a phase function on the received and reflected electromagnetic wave 16.
  • the sub-reflector 42 is arranged and designed to scatter the electromagnetic radiation received by the antenna 38 and to reflect it at least partially in the direction of the reflector structures 14.
  • the reflector structures 14 are designed to reflect the electromagnetic wave 16 reflected by the subreflector 42 again and to adapt the phase function of the electromagnetic wave 16 in such a way that the electromagnetic wave 16 is bundled with respect to the characteristics of the antenna 38.
  • the electromagnetic wave 16 can be emitted approximately or completely collimated, so that the antenna device 60 can be used as a directional radio antenna.
  • FIG. 4 shows a schematic block diagram of an antenna device 70 in which a multiplicity of reflector structures 14 - 3 are arranged on the substrate 12.
  • the electronic circuit comprises the subcircuits 18a and 18b, which are arranged on the same side of the substrate 12 as the reflector structures 14 - 3 and the antenna 38.
  • the electronic subcircuits 18a and 18b are connected to the antenna 38 by means of so-called microstrip lines (MSL) 43a and 43b, respectively.
  • MSL microstrip lines
  • the sub-reflector 42 is with respect to the substrate 12 or with respect to the antenna 38 and / or the reflector structures 14-3 tiltable by an angle ⁇ .
  • the subreflector is convexly shaped or is designed to impress a convex phase function on the electromagnetic wave.
  • the angle ⁇ can be, for example, less than 90 °, less than 60 ° or less than 30 °.
  • the electromagnetic wave can also be tilted in space with respect to the impressed phase function, so that overall a radiation characteristic with which the electromagnetic wave is reflected by the reflector structures 14-3 is changed.
  • the electromagnetic wave can be reflected in a spatial direction that changes with the angle ⁇ .
  • the sub-reflector 42 is also movable along an axial direction 44.
  • a distance between the subreflector 42 and the substrate 12 or the antenna 38 can thus be varied along the axial direction 44.
  • the axial direction 44 runs, for example, parallel to a surface normal 46 of the substrate 12.
  • a reduced distance between the antenna 38 and the subreflector 42 can, depending on the scattering characteristics of the subreflector 42, lead to a narrowing or widening of a radiation lobe of the electromagnetic wave. That is to say, a focus of the electromagnetic wave that is emitted by the reflector structures 14 - 3 is variable with the distance or the movement along the axial direction 44.
  • This enables the directivity of the antenna structure 70 to be adjusted or corrected, for example due to changing environmental influences such as heating and / or changing materials between the antenna device 70 and a further antenna device with which the antenna device 70 communicates.
  • the subreflector 42 can also be movable along a lateral direction 48 which is arranged perpendicular to the surface normal 46.
  • the subreflector 42 can also be arranged rigidly or only tiltable by the angle ⁇ or movable along the direction 44.
  • a position of the dipoles of the reflector structures 14-3 can be adapted to one polarization or to a plurality of polarizations with which the electromagnetic wave is emitted by the antenna device 70.
  • other reflector structures can also be arranged.
  • the antenna 38 is designed to guide an electromagnetic wave transmitted in the direction of the antenna device and received by the antenna device 70 to the electrical circuit (not shown) or another electrical circuit which is arranged, for example, on a side of the substrate 12 facing away from the antenna 38 is.
  • the substrate 12 or the (main) reflector can also have a plurality of antennas 38, which can be constructed identically or differently from one another.
  • a plurality of sub-reflectors 42 may be arranged.
  • each sub-reflector can be assigned to one of the antennas arranged. This enables a multi-antenna device to be constructed.
  • FIG. 11 shows a schematic block diagram of an antenna device 80 which comprises an antenna 38 ′.
  • the antenna 38 ' is designed as a horn antenna.
  • a subreflector 42 ' is arranged with respect to the antenna 38' and is designed to simulate a concave shape by means of the phase function.
  • the subreflector 42 'can for example, be designed as a concave metallic element.
  • the subreflector 42 'can also be designed as a (flat) board which is designed to impress a corresponding phase function by means of a suitable arrangement of reflector structures.
  • the antenna device 80 can be used, for example, as a Gregorian antenna.
  • the shape of the sub-reflector 42 or 42 ' can be selected independently of an embodiment of the antenna 38 and 38'.
  • the antenna device 80 can also include the antenna 38 and / or the subreflector 42.
  • Fig. 9 shows a schematic block diagram of an antenna device 90, in which a substrate 12 '(main reflector) has an uneven shape. This is obtained, for example, by an arrangement of a plurality of (possibly planar) partial substrates 12a-e arranged at an angle to one another. This can also be referred to as a sector paraboloid or as a multi-faceted reflect array (reflector having multiple surfaces).
  • a concave or convex or piece-wise continuous shape for example a parabolic shape
  • the main reflector and / or the substrate 12 ' can be configured in several parts, wherein the parts can be arranged parallel to one another or at an angle.
  • the antenna 38 is arranged shifted from a central position, for example (so-called offset feed).
  • the antenna 38 can also be arranged in a geometric or area-based center of gravity.
  • the antenna device 90 can also be described as a 1D multi-faceted reflect array configuration.
  • the main reflector based on printed circuit boards with the electronics for controlling the feed antenna (s) can be designed as a sector paraboloid (multi-faceted reflect array) and / or in a physically curved shape (conformal antenna) with one or more printed circuit boards to achieve the desired phase function to realize.
  • the electronics for controlling the feed antenna (s) are arranged on at least one of these circuit boards (i.e. sectors, facets or panels 12a-e).
  • a subreflector based on printed circuit boards can, for example, be constructed from a plurality of printed circuit boards in sector form. The advantage of a sector shape is that, compared with a flat design, a higher bandwidth of the antenna can be realized and a higher phase reserve of the reflector structure can be obtained.
  • Fig. 10 shows a schematic plan view of the substrate 12, on which a plurality of reflector structures 14-1 and subcircuits 18-d are arranged. Alternatively or additionally, further and / or different reflector structures can also be arranged.
  • Fig. 11 shows a schematic side view of the reflector 10 to illustrate the function of the impressed phase function, wherein the explanations can be transferred to a subreflector.
  • the phase function impressed by the reflector structures 14 on the electromagnetic wave 16 enables implementation of a virtual structural shape of the reflector 10.
  • the implemented virtual parabolic shape of the reflector is shown by the dashed concave line.
  • the reflector 10 can have a planar substrate 12 with the reflector structures 14 arranged thereon.
  • the electromagnetic wave 16 can be reflected as if it were reflected by a concave (or alternatively convex) or parabolic reflector.
  • Fig. 12 shows a schematic side view of an antenna device 120, which is designed as a folded reflect array antenna.
  • the antenna device 120 comprises, for example, the horn antenna 38 'or, alternatively, any other antenna shape.
  • a subreflector in the form of a polarizing grating or a slot array 44 is arranged with respect to the antenna 38 ′.
  • the polarizing grating or slit array 44 is designed to polarize and reflect the electromagnetic wave 16 when it has a first polarization.
  • the reflector structures 14 are designed to rotate a polarization of the electromagnetic wave and to focus the electromagnetic wave 16.
  • the slot array 44 can be formed be in order to let the electromagnetic wave 16 pass largely or completely when it has the rotated (second) polarization.
  • the subreflector can be designed as a physically curved variant convex (for example for a Cassegrain antenna), concave (for example for a Gregorian antenna) or also as a printed circuit board (reflect array).
  • a folded antenna folded reflect array
  • a focussing or contoured beam function of the main reflector based on printed circuit boards as a reflect array is still given in such a case.
  • a sub-reflector for example, a polarization-selective grating of a size similar to or the same as that of the main reflector can be attached above it.
  • the feed antenna can also be located in a position below the subreflector grid. The incident beams from the feed antenna are reflected by this grid in a polarization-dependent manner, whereby the polarization can be partially rotated during the reflection. During the reflection on the main reflector reflect array, the polarization of the incident radiation is then partially rotated again and at the same time focused or formed in a deliberate manner.
  • the rays can now pass the subreflector without reflection.
  • This folded shape of the antenna can also be made very compact, however, due to the polarization selectivity of the subreflector, it can only be implemented with one polarization and certain reflective elements on the main reflector that rotate the polarization of the incident rays when the reflection is carried out.
  • FIG. 11 shows a schematic view of an antenna device 130 comprising the horn antenna 38 ′ and the reflector 10.
  • the reflector 10 By means of the reflector 10, a reflector property analogous to a parabolic main reflector is obtained.
  • the subreflector 42 With respect to the reflector 10, the subreflector 42 is arranged, which reflects the electromagnetic wave 16 emitted with an opening angle of 2 ⁇ f and throws it back in the direction of the reflector 10.
  • this acts like a virtual antenna (virtual feed) 38 v , which emits the electromagnetic wave 16 with the opening angle 2 ⁇ vf . In simple terms, this implements a function of a Cassegrain antenna.
  • some of the exemplary embodiments described above can be designed as a double reflector system, for example as a Cassegrain antenna, Gregorian antenna or folded antenna.
  • a feed antenna can be arranged centrally on a main reflector and be designed around the subreflector to irradiate (illuminate), which in turn is designed to illuminate the main reflector.
  • the sub-reflector can virtually mirror the function of the feed antenna via the main reflector.
  • the virtual mirror point can be shifted by the convex or concave (Gregorian antenna) shape of the subreflector in contrast to a reflection on a planar metallic surface.
  • the entire antenna device can be made very compact.
  • the main reflector can be designed or designed to be parabolic in order to implement a corresponding phase function, ie it leads to a collimation of the incident radiation and thus to a directional effect.
  • the antenna can therefore combine high directivity with a very compact design.
  • the exemplary embodiments relate to a main reflector, which is designed as a printed circuit board (PCB), on the lower or upper side (or another side) of which the electronics for feeding the feed antenna are additionally located.
  • the elements of the reflect array and a feed antenna are arranged on one side (for example the top). This feed antenna can be controlled by electronics that are located on the same or a different side or on both sides of the circuit board.
  • the electronic circuit can be located on the same side of the substrate (main reflector) as the reflector structures and can be designed to control the feed antenna from there. This can be done, for example, by means of conductor tracks, microstrip configurations, bond wire connections or the like.
  • the feed antenna can be any antenna and have a narrow or a wide radiation characteristic.
  • the feed antenna can be designed, for example, as an on-chip antenna, horn antenna, open waveguide or phased array antenna.
  • the feed antenna can also comprise several distributed antenna elements which can be excited to emit radiation individually or in groups. Further examples of feed antennas are, for example, substrate-integrated waveguides, possibly with horn, (planar) mode converters with attached horn, packaged antennas, printed planar antennas such as a patch antenna, PIFA antennas or the like.
  • the feed antenna can comprise one or more individual feed antennas with the same or different polarizations. In combination with certain reflective elements on the main or subreflector levels, it can also be polarization-dependent a multiplex, demultiplex or duplex transmission of electromagnetic waves (radio signals) can be realized.
  • crossed dipoles can be arranged as reflective elements.
  • the individual dipolar arms can selectively reflect the phase of the incident rays with polarization in a longitudinal direction.
  • the scattering elements can therefore reflect different, for example orthogonal linear polarizations, selectively with high isolation and thus impress different phase assignments on the different, for example orthogonally polarized beams. This enables, for example, a spatial separation, ie two focal points, of the two linearly orthogonally polarized feed antennas. That is, two feed antennas are arranged.
  • the feed antenna can be arranged at a (e.g. vertical) position, ie perpendicular to the aperture of the main reflector, which is on the plane of the main reflector (e.g. in the form of a patch antenna), but higher (e.g. in the form of a horn antenna) also located deeper (e.g. integrated in one of the layers of the substrate).
  • a (e.g. vertical) position ie perpendicular to the aperture of the main reflector, which is on the plane of the main reflector (e.g. in the form of a patch antenna), but higher (e.g. in the form of a horn antenna) also located deeper (e.g. integrated in one of the layers of the substrate).
  • Embodiments include two or more feed antennas which are designed to each emit an electromagnetic wave at frequencies different from one another (so-called multi-band reflect array).
  • the feed antennas can be controlled using the time division multiplex method.
  • a horizontal (lateral) position of the feed antenna in the aperture plane of the main reflector
  • the axial or lateral position of the sub-reflector can be variable.
  • the subreflector can also be tilted by any desired angle ⁇ (e.g. less than 90 °).
  • One (possibly essential) function of the double reflector system is, for example, beam bundling, that is, a high level of directivity of the antenna.
  • the antenna can thus be used for directional radio and / or point-to-point connections (direct connections).
  • the possibility of a contoured radiation (Contured Beam) by means of suitable phase assignment of the main reflector reflect array is also possible.
  • a main application here is, for example, satellite radio.
  • the phase assignment (phase function) can also be implemented in such a way that multi-beam, tilted beam or any other feasible form of radiation from the overall antenna is achieved.
  • the main or subreflector can be moved mechanically relative to one another in order to carry out beam control or pivoting, for example.
  • the above-described exemplary embodiments describe realizations of a main reflector that combines the electronics and the radiation reflection with specific phase assignment of the radiation from a subreflector, for example in a Cassegrain antenna system or in a folding antenna on a printed circuit board.
  • One advantage here is the compactness of the antenna system and the ability to integrate the electronics together with the reflector properties of the antenna on a printed circuit board.
  • antenna devices can be used, for example, in directional radio links (point-to-point), satellite radio and / or in radar applications.
  • antenna devices according to the exemplary embodiments described above can be used wherever a highly integrated antenna with a high level of directivity or contoured radiation is required.
  • a Cassegrain reflect array antenna with main and sub mirror (reflector) as a printed circuit board design can be seen as a typical application example.
  • the subreflector as a circuit board can be embedded in a radome housing that is permeable to radiation, while the main reflector circuit board is placed on a metallic housing, whose function includes protecting the electronics and shielding them (in terms of EMC) and / or dissipating heat from the electronic components.
  • the two housing components can be joined together mechanically (possibly waterproof and / or chemical-resistant) and enclose the main reflector circuit board with an on-chip feed antenna.
  • the connections to the outside, i.e. for contacting the antenna device, can be implemented, for example, in the form of a data connection and as a connection for the power supply.
  • antenna and / or the antenna device have been described above in such a way that they are designed to generate and transmit the electromagnetic wave 16, exemplary embodiments can also be used to receive the electromagnetic wave 16 alternatively or in addition, so that it can be transmitted with the electronic circuit or another electronic circuit can be evaluated.
  • aspects have been described in connection with a device, it goes without saying that these aspects also represent a description of the corresponding method, so that a block or a component of a device is also to be understood as a corresponding method step or as a feature of a method step. Analogously, aspects that have been described in connection with or as a method step also represent a description of a corresponding block or details or features of a corresponding device.

Description

Die vorliegende Erfindung bezieht sich auf einen Reflektor mit einer elektronischen Schaltung, der beispielsweise zum Reflektieren einer einfallenden elektromagnetischen Welle einsetzbar ist, und auf eine Antennenvorrichtung. Die vorliegende Erfindung bezieht sich ferner auf ein Doppelreflektorsystem mit in den Hauptreflektor integrierter aktiver Elektronik.The present invention relates to a reflector with an electronic circuit which can be used, for example, for reflecting an incident electromagnetic wave, and to an antenna device. The present invention also relates to a dual reflector system with active electronics integrated into the main reflector.

Es existieren entkoppelte, nicht integrierte Lösungen, die bei denen Richtantenne, Datenverarbeitung und Funk-Frontend (d.h. elektronische Schaltungen) eigenständige Module darstellen, die miteinander verbunden werden. Dies geschieht mittels Koaxialverbindungen, Leiterbahnen von den Ausgängen der elektronischen Bauteile, wie z.B. Verstärkern, Übergängen von Leiterbahnen zu Hohlleitern, Bonddrahtverbindungen oder Ähnlichem. Nachteilig hierbei sind die physikalische Größe des Gesamtsystems sowie Einbußen in Bezug auf Gewicht und Effizienz des Antennensystems, wie etwa Verluste bei den Übergängen von Elektronik zu Antenne, Anpassungsverluste, etc.There are decoupled, non-integrated solutions in which the directional antenna, data processing and radio front end (i.e. electronic circuits) represent independent modules that are connected to one another. This is done by means of coaxial connections, conductor tracks from the outputs of the electronic components, such as amplifiers, transitions from conductor tracks to waveguides, bond wire connections or the like. Disadvantages here are the physical size of the overall system as well as losses in terms of weight and efficiency of the antenna system, such as losses in the transition from electronics to antenna, adjustment losses, etc.

Integrierte Lösungen, die die Elektronik der Datenverarbeitung, des Funk-Frontends und die Sende- bzw. Empfangsantenne (Speiseantenne) gemeinsam auf einer Leiterplatte realisieren, werden bei sogenannten PIFA (Planar Inverted-F Antenna - planare frequenzinvertierte Antenne) oder Patch-Antennen auf Leiterplattenbasis oder On-Chip Antennen, die aus einem Chipgehäuse heraus abstrahlen, angewendet. Diese Antennen haben eine breite Abstrahlung, entwickeln keine hohe Richtwirkung und sind daher für Richtfunkanwendungen ungeeignet. Phased-Array (Phasenarray)-Antennen nutzen ebenfalls das Prinzip integrierter Elektronik in Kombination mit abstrahlenden Antennenelemente auf einer Leiterplatte, machen hierbei aber keinen Gebrauch von Reflektorkomponenten, um die Richtwirkung zu erhöhen, sondern nutzen die kombinierte Abstrahlung vieler aktiver Antennenelemente (z.B. Patch-Antennen auf der Leiterplatte), um eine Richtwirkung zu erreichen. Dies ist mit komplizierter aktiver Elektronik, Phasenschiebern und einem komplexen Ansteuerungsnetzwerk der Einzelantennenelemente verbunden.Integrated solutions that implement the electronics of the data processing, the radio front end and the transmitting or receiving antenna (feed antenna) together on a circuit board are used in so-called PIFA (Planar Inverted-F Antenna) or patch antennas based on circuit boards or on-chip antennas that radiate out of a chip housing are used. These antennas have a wide radiation, do not develop a high directional effect and are therefore unsuitable for radio relay applications. Phased-array antennas also use the principle of integrated electronics in combination with radiating antenna elements on a circuit board, but do not use reflector components to increase the directional effect, but use the combined radiation of many active antenna elements (e.g. patch antennas on the circuit board) to achieve a directional effect. This is associated with complicated active electronics, phase shifters and a complex control network of the individual antenna elements.

Bei einem anderen Ansatz werden sogenannte Reflectarray (d.h. ein Array von Reflektorelementen)-Leiterplatten mit Schichten integrierter Solarzellen verwendet, die für die Energieerzeugung gebraucht werden, z.B. auf einem Satelliten. Dies erfolgt auf Basis passiver Elektronik.Another approach uses so-called reflect array (i.e. an array of reflector elements) circuit boards with layers of integrated solar cells that are used for energy generation, e.g. on a satellite. This is done on the basis of passive electronics.

Fig. 14 zeigt eine schematische Darstellung eines Reflectarrays 102, das ein Substrat 104 und eine Vielzahl von Streuelementen 106 umfasst. Eine beabstandet zu dem Reflectarray 102 angeordnete Speiseantenne 108 kann ein Funksignal in Richtung des Reflectarrays 102 aussenden, wobei das Funksignal von dem Reflectarray 102 reflektiert wird. Fig. 14 FIG. 11 shows a schematic illustration of a reflect array 102 which comprises a substrate 104 and a multiplicity of scattering elements 106. A feed antenna 108 arranged at a distance from the reflect array 102 can emit a radio signal in the direction of the reflect array 102, the radio signal being reflected by the reflect array 102.

Die Ausführung des Hauptreflektors (Reflectarray 102) sowie optionaler Subreflektoren (weiterer Reflektoren) kann auf Basis von Leiterplatten mit reflektierenden metallischen Einzelelementen auf einem Substrat mit darunterliegender metallischer Massefläche, d.h. Reflectarrays, geschehen. Die reflektierenden Elemente auf den Leiterplatten dienen dazu, der einfallenden Strahlung eine gewünschte Phasenfunktion aufzuprägen, um somit die Funktion eines physikalisch gewölbten Haupt- bzw. Subreflektors nachzubilden.The main reflector (reflect array 102) and optional sub-reflectors (further reflectors) can be implemented on the basis of printed circuit boards with individual reflective metallic elements on a substrate with an underlying metallic ground plane, i.e. reflect arrays. The reflective elements on the printed circuit boards are used to impress a desired phase function on the incident radiation, in order to simulate the function of a physically curved main or subreflector.

In " Design of Millimeter Wave Microstrip Reflectarrays" (David M. Pozar et al., IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, Februar 1997 ) ist eine Modellierung eines Reflectarrays beschrieben, das für die gesamte Welle ausgelegt ist.In " Design of Millimeter Wave Microstrip Reflectarrays "(David M. Pozar et al., IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, February 1997 ) a modeling of a reflect array is described, which is designed for the entire wave.

In " A Dual Planar Reflectarray With Synthesized Phase and Amplitude Distribution (Ralf Leberer et al. IEEE Transactions on Antennas and Propagation, Vol 53, No. 11 November 2005 ) ist eine quasi-planare Reflektoranordnung beschrieben, bei der eine beliebige Phasen- und Amplitudenverteilung einstellbar ist.In " A Dual Planar Reflectarray With Synthesized Phase and Amplitude Distribution (Ralf Leberer et al. IEEE Transactions on Antennas and Propagation, Vol 53, No. 11 November 2005 ) describes a quasi-planar reflector arrangement in which any phase and amplitude distribution can be set.

In WO 2005/031921 A1 ist eine Reflektorantenne zur Bündelung von Radarwellen für Abstandssensoren offenbart, die optional einen oder mehrere Subreflektoren aufweist.In WO 2005/031921 A1 a reflector antenna for bundling radar waves for distance sensors is disclosed, which optionally has one or more subreflectors.

Wünschenswert wäre demnach ein Konzept für Antennenreflektoren und/oder Antennenvorrichtungen, das einen effizienten Betrieb derselben ermöglicht.Accordingly, a concept for antenna reflectors and / or antenna devices that enables efficient operation of the same would be desirable.

Die Aufgabe der vorliegenden Erfindung besteht deshalb darin, einen Reflektor und eine Antennenvorrichtung zu schaffen, die einen effizienten Betrieb und eine kompakte ggf. leichtere Bauweise derselben ermöglichen.The object of the present invention is therefore to create a reflector and an antenna device which enable efficient operation and a compact, possibly lighter design of the same.

Diese Aufgabe wird durch den Gegenstand des unabhängigen Patentanspruchs gelöst. Gemäß diesem umfasst eine Antennenvorrichtung einen Reflektor, der aufweist: ein Substrat und eine Vielzahl von Reflektorstrukturen, die an oder in dem Substrat angeordnet sind. Die Reflektorstrukturen sind ausgebildet, um eine einfallende elektromagnetische Welle zu reflektieren. Eine elektronische Schaltung ist an oder in dem Substrat angeordnet und ausgebildet, um eine Antenne zu steuern, wenn die Antenne mit der elektronischen Schaltung verbunden ist. Vorteilhaft an dieser Ausführung ist, dass Leistungsverluste zwischen einer Datenverarbeitung und einem Funk-Frontend gering sein können, etwa wenn die elektronische Schaltung die Datenverarbeitung und das Funk-Frontend umfasst. Der Reflektor kann kompakt, d. h., einen geringen Bauraum aufweisend, und ggf. mit einem geringen Gewicht realisiert werden. Die Antennenvorrichtung weist ferner auf: eine an dem Substrat angeordneten Antenne; und einen Subreflektor, der ausgebildet ist, um die von der Antenne ausgesendete elektromagnetische Welle zumindest teilweise in Richtung der Vielzahl von Reflektorstrukturen zu reflektieren, so dass die von dem Subreflektor reflektierte elektromagnetische Welle in Richtung der Vielzahl von Reflektorstrukturen gelenkt und von diesen erneut reflektiert wird. Die an oder in dem Substrat angeordnete Antenne hat zum Vorteil, dass Leistungsverluste zwischen der elektronischen Schaltung und der Antenne ebenfalls reduziert sind, so dass ein noch effizienterer Betrieb des Reflektors ermöglicht ist. Ein weiterer Vorteil besteht darin, dass eine Kompakte Baugruppe realisierbar ist, bei der Reflektor und Antenne benachbart zueinander oder gar integriert ausgeführt werden. Vorteilhaft an dem Subreflektor ist, dass eine integrierte Bauform der Antenne und/oder ein effizienter Betrieb der Antennenvorrichtung ermöglicht ist. Die Antenne ist mit der elektronischen Antennensteuerschaltung verbunden und ist ausgebildet, um basierend auf einer Ansteuerung der elektronischen Antennensteuerschaltung die elektromagnetische Welle zu erzeugen und in eine Richtung des Subreflektors auszusenden. Die Vielzahl von Reflektorstrukturen sind in zumindest zwei voneinander verschiedenen Substratebenen angeordnet die parallel zu einer Substratoberfläche angeordnet sind, die einer Richtung, in die die elektromagnetische Welle reflektiert wird, zugewandt angeordnet ist.This object is achieved by the subject matter of the independent patent claim. According to this, an antenna device comprises a reflector which has: a substrate and a multiplicity of reflector structures which are arranged on or in the substrate. The reflector structures are designed to reflect an incident electromagnetic wave. An electronic circuit is arranged on or in the substrate and is designed to control an antenna when the antenna is connected to the electronic circuit. The advantage of this embodiment is that power losses between data processing and a radio front end can be small, for example if the electronic circuit includes the data processing and the radio front end. The reflector can be compact, i.e. that is, having a small installation space and, if necessary, can be implemented with a low weight. The antenna device further comprises: an antenna arranged on the substrate; and a subreflector which is designed to reflect the electromagnetic wave emitted by the antenna at least partially in the direction of the plurality of reflector structures, so that the electromagnetic wave reflected by the subreflector is directed in the direction of the plurality of reflector structures and is reflected again by them. The antenna arranged on or in the substrate has the advantage that power losses between the electronic circuit and the antenna are also reduced, so that even more efficient operation of the reflector is made possible. Another advantage is that a compact assembly can be realized in which the reflector and antenna are designed adjacent to one another or even integrated. The advantage of the subreflector is that an integrated design of the antenna and / or efficient operation of the antenna device is made possible. The antenna is connected to the electronic antenna control circuit and is designed to generate the electromagnetic wave based on a control of the electronic antenna control circuit and to transmit it in a direction of the subreflector. The plurality of reflector structures are arranged in at least two mutually different substrate planes which are arranged parallel to a substrate surface which is arranged facing a direction in which the electromagnetic wave is reflected.

Gemäß einem Ausführungsbeispiel ist die Vielzahl von Reflektorstrukturen ausgebildet, um die einfallende elektromagnetische Welle so zu reflektieren, dass die reflektierte elektromagnetische Welle durch die Reflexion an der Vielzahl von Reflektorstrukturen eine Strahlbündelung erfährt. Vorteilhaft daran ist, dass mittels der Reflektorstrukturen eine Richtwirkung (d.h. kollimierte oder zumindest weniger gestreute elektromagnetische Welle) des zu übertragenden Funksignals erhalten wird, so dass eine geringe Sendeleistung benötigende und/oder eine hohe Übertragungsstrecke aufweisende Signalübertragung mittels des Reflektors ermöglicht ist, was zu einer weiter erhöhten Betriebseffizienz führt.According to one exemplary embodiment, the plurality of reflector structures is designed to reflect the incident electromagnetic wave in such a way that the reflected electromagnetic wave is bundled as a result of the reflection at the plurality of reflector structures. The advantage of this is that a directional effect (ie collimated or at least less scattered electromagnetic wave) of the radio signal to be transmitted is obtained by means of the reflector structures, so that a low transmission power signal transmission required and / or having a long transmission path is made possible by means of the reflector, which leads to a further increased operating efficiency.

Gemäß einem weiteren Ausführungsbeispiel umfasst zumindest eine Reflektorstruktur der Vielzahl von Reflektorstrukturen eine Mehrzahl (zwei oder mehr) von Dipolstrukturen. Vorteilhaft daran ist, dass basierend auf den Reflektorstrukturen und in Verbindung mit der elektronischen Schaltung eine Mehrzahl von Sendekanälen nutzbar oder implementierbar ist, etwa ein Sendekanal je Dipolstruktur, ein Empfangskanal je Dipolstruktur und/oder ein gleichzeitiger Sendebetrieb und Empfangsbetrieb der elektronischen Schaltung und/oder einer verbundenen Antenne.According to a further exemplary embodiment, at least one reflector structure of the plurality of reflector structures comprises a plurality (two or more) of dipole structures. This has the advantage that, based on the reflector structures and in connection with the electronic circuit, a plurality of transmission channels can be used or implemented is, for example, a transmission channel per dipole structure, a reception channel per dipole structure and / or a simultaneous transmission operation and reception operation of the electronic circuit and / or a connected antenna.

Gemäß einem weiteren Ausführungsbeispiel umfasst der Reflektor eine Radomstruktur, die bezüglich der Vielzahl von Reflektorstrukturen angeordnet ist und ausgebildet ist, um einen mechanischen oder chemischen Einfluss einer Umgebung der Vielzahl von Reflektorstrukturen auf die Vielzahl von Reflektorstrukturen zumindest teilweise zu reduzieren. Die Radomstruktur umfasst zumindest bereichsweise eine elektrisch leitfähige Struktur, die ausgebildet ist, um die elektromagnetische Welle zu reflektieren, wobei die elektrisch leitfähige Struktur bezüglich der Vielzahl von Reflektorstrukturen so angeordnet ist, dass die von der elektrisch leitfähigen Struktur reflektierte elektromagnetische Welle in Richtung der Vielzahl von Reflektorstrukturen gelenkt und von diesen erneut reflektiert wird. Vereinfacht ausgedrückt, kann die elektrisch leitfähige Struktur als ein Subreflektor bezüglich eines als Hauptreflektor verwendeten Reflektors angeordnet werden. Vorteilhaft an diesem Ausführungsbeispiel ist, dass eine geringe Empfindlichkeit des Reflektors auf äußere Einflüsse erhalten wird und dass der Reflektor als Cassegrain-Reflektorstruktur oder als Gregorian- Reflektorstruktur einsetzbar ist.According to a further exemplary embodiment, the reflector comprises a radome structure which is arranged with respect to the plurality of reflector structures and is designed to at least partially reduce a mechanical or chemical influence of an environment of the plurality of reflector structures on the plurality of reflector structures. The radome structure comprises, at least in some areas, an electrically conductive structure which is designed to reflect the electromagnetic wave, the electrically conductive structure being arranged with respect to the plurality of reflector structures in such a way that the electromagnetic wave reflected by the electrically conductive structure in the direction of the plurality of Reflector structures are directed and reflected again by these. In simple terms, the electrically conductive structure can be arranged as a sub-reflector with respect to a reflector used as the main reflector. The advantage of this exemplary embodiment is that the reflector is less sensitive to external influences and that the reflector can be used as a Cassegrain reflector structure or as a Gregorian reflector structure.

Gemäß einem Ausführungsbeispiel weisen die Reflektorstrukturen und der Subreflektor eine Cassegrain-Konfiguration oder eine Gregorian-Konfiguration auf. Vorteilhaft daran ist, dass eine hohe Richtwirkung der Antennenvorrichtung erhalten werden kann, so dass eine geringe Sendeleistung benötigt und/oder eine hohe Sendereichweite erhalten wird. Gemäß einem weiteren Ausführungsbeispiel ist die Antenne als oberflächenmontiertes Bauteil (Surface Mounted Device - SMD) ausgeführt. Vorteilhaft daran ist, dass die Antennenvorrichtung als Gesamtstruktur eine hohe Funktionsintegrationsdichte aufweist und die Antennenvorrichtung mit einem geringen Bauraum und/oder einem geringen Gewicht ausgeführt werden kann.According to one embodiment, the reflector structures and the sub-reflector have a Cassegrain configuration or a Gregorian configuration. The advantage here is that a high directivity of the antenna device can be obtained, so that a low transmission power is required and / or a high transmission range is obtained. According to a further exemplary embodiment, the antenna is designed as a surface-mounted component (Surface Mounted Device - SMD). The advantage of this is that the antenna device as an overall structure has a high functional integration density and the antenna device can be designed with a small installation space and / or a low weight.

Gemäß einem weiteren Ausführungsbeispiel ist eine axiale Relativposition des Subreflektors bezüglich des Reflektors entlang einer axialen Richtung parallel zu einer Oberflächennormalen des Substrats veränderlich. Vorteilhaft daran ist, dass eine Abstrahlcharakteristik der Antennenvorrichtung, etwa eine Fokussierung der einfallenden elektromagnetischen Welle, einstellbar ist.According to a further exemplary embodiment, an axial relative position of the sub-reflector with respect to the reflector can be changed along an axial direction parallel to a surface normal of the substrate. It is advantageous here that a radiation characteristic of the antenna device, for example a focusing of the incident electromagnetic wave, can be set.

Gemäß einem weiteren Ausführungsbeispiel ist eine laterale Relativposition des Subreflektors bezüglich des Reflektors entlang einer lateralen Richtung senkrecht zu einer Oberflächennormalen des Substrats oder eine Neigung des Hauptreflektors oder Subreflektors bezüglich einer Oberfläche des Substrats des Reflektors veränderlich. Vorteilhaft an diesem Ausführungsbeispiel ist, dass eine Abstrahlrichtung der Antennenvorrichtung verändert werden kann, ohne eine Phasenfunktion der Vielzahl von Reflektorstrukturen zu verändern.According to a further exemplary embodiment, a lateral relative position of the subreflector with respect to the reflector can be changed along a lateral direction perpendicular to a surface normal of the substrate or an inclination of the main reflector or subreflector with respect to a surface of the substrate of the reflector. The advantage of this exemplary embodiment is that a radiation direction of the antenna device can be changed without changing a phase function of the multiplicity of reflector structures.

Gemäß einem weiteren Ausführungsbeispiel umfasst die Antenne eine Vielzahl von Antennenelementen, wobei eine erste Teilmenge der Antennenelemente ausgebildet ist, um die elektromagnetische Welle mit einer ersten Polarisationsrichtung zu erzeugen und wobei eine zweite Teilmenge der Antennenelemente ausgebildet ist, um die elektromagnetische Welle mit einer zweiten Polarisationsrichtung zu erzeugen. Eine erste Teilmenge der Vielzahl von Reflektorstrukturen ist ausgebildet, um die elektromagnetische Welle mit einem ersten Reflexionsgrad zu reflektieren, wenn die elektromagnetische Welle die erste Polarisationsrichtung aufweist und mit einem zweiten Reflexionsgrad zu reflektieren, wenn die elektromagnetische Welle die zweite Polarisation aufweist. Eine zweite Teilmenge der Vielzahl von Reflektorstrukturen ist ausgebildet, um die elektromagnetische Welle mit einem dritten Reflexionsgrad zu reflektieren, wenn die elektromagnetische Welle die zweite Polarisationsrichtung aufweist und mit einem vierten Reflexionsgrad zu reflektieren, wenn die elektromagnetische Welle die erste Polarisation aufweist. Der erste Reflexionsgrad und der dritte Reflexionsgrad weisen einen größeren Wert auf als der zweite Reflexionsgrad und der vierte Reflexionsgrad. Vorteilhaft daran ist, dass voneinander verschiedene Signale mit voneinander verschiedenen Polarisationen gleichzeitig gesendet und/oder empfangen werden können und so eine Übertragungseffizienz der Antennenvorrichtung hoch ist.According to a further embodiment, the antenna comprises a plurality of antenna elements, wherein a first subset of the antenna elements is designed to generate the electromagnetic wave with a first polarization direction and wherein a second subset of the antenna elements is designed to transmit the electromagnetic wave with a second polarization direction produce. A first subset of the plurality of reflector structures is designed to reflect the electromagnetic wave with a first degree of reflection when the electromagnetic wave has the first polarization direction and to reflect with a second degree of reflection when the electromagnetic wave has the second polarization. A second subset of the plurality of reflector structures is designed to reflect the electromagnetic wave with a third degree of reflection when the electromagnetic wave has the second polarization direction and to reflect with a fourth degree of reflection when the electromagnetic wave has the first polarization. The first reflectance and the third reflectance have a larger value than the second reflectance and the fourth reflectance. This has the advantage that signals that differ from one another and have polarizations that differ from one another can be transmitted and / or received at the same time, so that a transmission efficiency of the antenna device is high.

Gemäß einem Ausführungsbeispiel ist die Antenne ausgebildet, um eine in Richtung der Antennenvorrichtung ausgesendete und von der Antennenvorrichtung empfangene elektromagnetische Welle an die elektrische Schaltung oder eine weitere elektrische Schaltung zu leiten. Vorteilhaft daran ist, dass eine Sendefunktion, eine Empfangsfunktion sowie das Erzeugen der elektromagnetischen Welle als Funktion einer Vorrichtung integriert ausgeführt werden können.According to one embodiment, the antenna is designed to guide an electromagnetic wave transmitted in the direction of the antenna device and received by the antenna device to the electrical circuit or a further electrical circuit. The advantage here is that a transmission function, a reception function and the generation of the electromagnetic wave can be carried out in an integrated manner as a function of a device.

Gemäß einem weiteren Ausführungsbeispiel umfasst die Antennenvorrichtung eine Mehrzahl von Antennen und eine Mehrzahl von Subreflektoren, wobei jeder Subreflektor einer Antenne zugeordnet ist. Vorteilhaft daran ist, dass der Reflektor gemeinsam bezüglich der Mehrzahl von Antennen und der Mehrzahl von Subreflektoren angeordnet werden kann, so dass eine hohe Kompaktheit einer Mehrantennenvorrichtung erhalten wird.According to a further exemplary embodiment, the antenna device comprises a plurality of antennas and a plurality of subreflectors, each subreflector being assigned to an antenna. It is advantageous here that the reflector can be arranged jointly with respect to the plurality of antennas and the plurality of subreflectors, so that a high degree of compactness of a multiple antenna device is obtained.

Weitere vorteilhafte Ausführungsformen sind der Gegenstand der abhängigen Patentansprüche.Further advantageous embodiments are the subject of the dependent claims.

Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend Bezug nehmend auf die beiliegenden Zeichnungen erläutert. Es zeigen:

Fig. 1
ein schematisches Blockschaltbild eines Reflektors gemäß einem Ausführungsbeispiel;
Fig. 2
eine schematische Seitenschnittansicht eines Reflektors mit einem Substrat, das eine mehrlagige Platine umfasst gemäß einem Ausführungsbeispiel;
Fig. 3a
eine schematische Aufsicht auf eine Reflektorstruktur, die als Rechteck ausgeführt ist gemäß einem Ausführungsbeispiel;
Fig. 3b
eine schematische Aufsicht auf eine Reflektorstruktur, die als Ellipse ausgeführt ist gemäß einem Ausführungsbeispiel;
Fig. 3c
eine schematische Aufsicht auf eine Reflektorstruktur, die als Kombination zweier Dipolstrukturen ausgeführt ist gemäß einem Ausführungsbeispiel;
Fig. 3d
eine schematische Aufsicht einer Reflektorstruktur, die drei jeweils mit einem Winkel zueinander angeordnete Dipolstrukturen umfasst gemäß einem Ausführungsbeispiel;
Fig. 4
eine schematische Ansicht eines Reflektors, der gegenüber dem Reflektor aus Fig. 1 um ein Gehäuseteil erweitert ist gemäß einem Ausführungsbeispiel;
Fig. 5
eine schematische Seitenschnittansicht eines Reflektors, bei dem das Substrat Durchkontaktierungen umfasst gemäß einem Ausführungsbeispiel;
Fig. 6
ein schematisches Blockschaltbild einer Antennenvorrichtung einen Reflektor und eine Antenne gemäß einem Ausführungsbeispiel;
Fig. 7
ein schematisches Blockschaltbild einer Antennenvorrichtung, bei der eine Vielzahl von Reflektorstrukturen gem. Fig. 3c an dem Substrat gemäß einem Ausführungsbeispiel;
Fig. 8
ein schematisches Blockschaltbild einer Antennenvorrichtung, die eine Hornantenne umfasst gemäß einem Ausführungsbeispiel;
Fig. 9
ein schematisches Blockschaltbild einer Antennenvorrichtung, bei der ein Substrat eine unebene Form aufweist gemäß einem Ausführungsbeispiel;
Fig. 10
eine schematische Aufsicht auf ein Substrat, an dem eine Vielzahl von Reflektorstrukturen und elektrische Teilschaltungen angeordnet sind gemäß einem Ausführungsbeispiel;
Fig. 11
eine schematische Seitenansicht des Reflektors aus Fig. 1 zur Verdeutlichung der Funktion der aufgeprägten Phasenfunktion gemäß einem Ausführungsbeispiel;
Fig. 12
eine schematische Seitenansicht einer Antennenvorrichtung, die als gefaltete Reflectarray-Antenne ausgeführt ist gemäß einem Ausführungsbeispiel;
Fig. 13
eine schematische Ansicht einer Antennenvorrichtung, die die Hornantenne und den Reflektor gem. Fig. 1 umfasst gemäß einem Ausführungsbeispiel; und
Fig. 14
eine schematische Darstellung eines Reflectarrays gemäß dem Stand der Technik.
Preferred embodiments of the present invention are explained below with reference to the accompanying drawings. Show it:
Fig. 1
a schematic block diagram of a reflector according to an embodiment;
Fig. 2
a schematic side sectional view of a reflector with a substrate comprising a multi-layer circuit board according to an embodiment;
Fig. 3a
a schematic plan view of a reflector structure, which is designed as a rectangle according to an embodiment;
Figure 3b
a schematic plan view of a reflector structure, which is designed as an ellipse according to an embodiment;
Figure 3c
a schematic plan view of a reflector structure, which is designed as a combination of two dipole structures according to an embodiment;
Fig. 3d
a schematic plan view of a reflector structure comprising three dipole structures each arranged at an angle to one another according to an embodiment;
Fig. 4
a schematic view of a reflector opposite the reflector from Fig. 1 is expanded by a housing part according to an embodiment;
Fig. 5
a schematic side sectional view of a reflector in which the substrate comprises vias according to an embodiment;
Fig. 6
a schematic block diagram of an antenna device, a reflector and an antenna according to an embodiment;
Fig. 7
a schematic block diagram of an antenna device in which a plurality of reflector structures according to. Figure 3c on the substrate according to an embodiment;
Fig. 8
a schematic block diagram of an antenna device comprising a horn antenna according to an embodiment;
Fig. 9
a schematic block diagram of an antenna device in which a substrate has an uneven shape according to an embodiment;
Fig. 10
a schematic plan view of a substrate on which a plurality of reflector structures and electrical subcircuits are arranged according to an embodiment;
Fig. 11
a schematic side view of the reflector from Fig. 1 to illustrate the function of the impressed phase function according to an embodiment;
Fig. 12
a schematic side view of an antenna device which is designed as a folded reflect array antenna according to an embodiment;
Fig. 13
a schematic view of an antenna device, the horn antenna and the reflector according to. Fig. 1 includes according to an embodiment; and
Fig. 14
a schematic representation of a reflect array according to the prior art.

Bevor nachfolgend Ausführungsbeispiele der vorliegenden Erfindung im Detail anhand der Zeichnungen näher erläutert werden, wird darauf hingewiesen, dass identische, funktionsgleiche oder gleichwirkende Elemente, Objekte und/oder Strukturen in den unterschiedlichen Figuren mit den gleichen Bezugszeichen versehen sind, so dass die in unterschiedlichen Ausführungsbeispielen dargestellte Beschreibung dieser Elemente untereinander austauschbar ist bzw. aufeinander angewendet werden kann.Before exemplary embodiments of the present invention are explained in more detail below with reference to the drawings, it is pointed out that identical, functionally identical or identically acting elements, objects and / or structures in the different figures are provided with the same reference numerals, so that those shown in different exemplary embodiments Description of these elements is interchangeable or can be applied to one another.

Fig. 1 zeigt ein schematisches Blockschaltbild eines Reflektors 10. Der Reflektor 10 umfasst ein Substrat 12 und eine Vielzahl von Reflektorstrukturen 14, die an einer Oberfläche des Substrats 12 angeordnet sind. Die Vielzahl von Reflektorstrukturen 14 ist ausgebildet, um eine einfallende elektromagnetische Welle 16 (Funksignal) zu reflektieren. Der Reflektor 10 umfasst ferner eine elektronische Schaltung 18, die an der gleichen Seite des Substrats angeordnet ist, wie die Vielzahl von Reflektorstrukturen. Die elektronische Schaltung 18 ist ausgebildet, um eine (nicht gezeigte) Antenne zu steuern, wenn die Antenne mit der elektronischen Schaltung verbunden ist. Bei der Antenne kann es sich beispielsweise um die Antenne handeln, die die elektromagnetische Welle 16 erzeugt bzw. aussendet. Fig. 1 shows a schematic block diagram of a reflector 10. The reflector 10 comprises a substrate 12 and a plurality of reflector structures 14 which are arranged on a surface of the substrate 12. The multiplicity of reflector structures 14 is designed to reflect an incident electromagnetic wave 16 (radio signal). The reflector 10 further includes an electronic circuit 18 disposed on the same side of the substrate as the plurality of reflector structures. The electronic Circuit 18 is configured to control an antenna (not shown) when the antenna is connected to the electronic circuit. The antenna can be, for example, the antenna that generates or transmits the electromagnetic wave 16.

Bei dem Substrat 12 kann es sich um ein beliebiges Trägermaterial, wie beispielsweise verlustarme HF-Materialen (HF = Hochfrequenz) handeln. Verlustarme HF-Materialien können auf Grundlage von PTFE Kompositmaterialien (PTFE = Polytetrafluorethylen bzw. Polytetrafluorethen) erhalten werden. Alternativ oder zusätzlich kann das Substrat zumindest teilweise ein Siliziumsubstrat (Wafer oder Teile davon) oder um eine Platine (Printed Circuit Board - PCB) sein. Das Substrat 12 kann eine oder mehrere Lagen (Schichten) aufweisen, die untereinander verbunden oder durch Zwischenschichten getrennt sind. Bei den Zwischenschichten kann es sich beispielsweise um metallische Schichten handeln, die eine Abschirmung von der elektromagnetischen Welle 16 und/oder eine Versorgung elektronischer Komponenten mit einem Versorgungs- oder Referenzpotenzial (Masse) ermöglichen. Bei den Zwischenschichten kann es sich auch um Luftschichten handeln, d. h., zwei Lagen des Substrats können mittels Abstandshaltern miteinander verbunden sein. Es ist ebenfalls vorstellbar, dass verschiedene Lagen 22a und 22b oder 22b und 22c eine zwischengeordnete Luftschicht aufweisen und beispielsweise miteinander verschraubt oder dergleichen sind. Die zwischengeordneten Luftlagen können zur Aufnahme von ebenfalls Reflektorstrukturen genutzt werden oder als Reflektorstrukturen wirken.The substrate 12 can be any desired carrier material, such as, for example, low-loss HF materials (HF = high frequency). Low-loss HF materials can be obtained on the basis of PTFE composite materials (PTFE = polytetrafluoroethylene or polytetrafluoroethene). As an alternative or in addition, the substrate can be at least partially a silicon substrate (wafer or parts thereof) or around a printed circuit board (PCB). The substrate 12 can have one or more layers (layers) which are connected to one another or separated by intermediate layers. The intermediate layers can be metallic layers, for example, which enable shielding from the electromagnetic wave 16 and / or a supply of electronic components with a supply or reference potential (ground). The intermediate layers can also be air layers; That is, two layers of the substrate can be connected to one another by means of spacers. It is also conceivable that different layers 22a and 22b or 22b and 22c have an intermediate layer of air and are, for example, screwed together or the like. The intermediate air layers can also be used to accommodate reflector structures or act as reflector structures.

Die Vielzahl von Reflektorstrukturen 14 ist beispielhaft an einer ersten Hauptseite des Substrats 12 angeordnet, d.h. an einer Seite des Substrats 12, die der einfallenden elektromagnetischen Welle 16 zugewandt angeordnet ist. Obwohl die elektronische Schaltung 18 so beschrieben ist, dass sie an der gleichen Seite wie die Vielzahl von Reflektorstrukturen 14 angeordnet ist, kann die elektronische Schaltung auch ganz oder teilweise (etwa in Form von Teilschaltungen) an einer anderen, etwa gegenüberliegenden Seite des Substrats 12 angeordnet sein. Auch können die Vielzahl von Reflektorstrukturen 14 und/oder die elektronische Schaltung 18 ganz oder teilweise an oder in dem Substrat 12 angeordnet sein, beispielsweise wenn es sich bei dem Substrat 12 um einen mehrlagigen Aufbau handelt. Vereinfacht ausgedrückt kann bezüglich einiger oder aller Reflektorstrukturen 14 und/oder der elektronischen Schaltung 18 eine weitere Lage des Substrats 12 angeordnet sein, so dass die bezogene Reflektorstruktur und/oder die elektrische Schaltung 18 von der weiteren Lage bedeckt sind.The multiplicity of reflector structures 14 is arranged, for example, on a first main side of the substrate 12, that is to say on a side of the substrate 12 that is arranged facing the incident electromagnetic wave 16. Although the electronic circuit 18 is described in such a way that it is arranged on the same side as the plurality of reflector structures 14, the electronic circuit can also be arranged in whole or in part (for example in the form of subcircuits) on another, roughly opposite side of the substrate 12 be. The plurality of reflector structures 14 and / or the electronic circuit 18 can also be arranged wholly or partially on or in the substrate 12, for example if the substrate 12 is a multilayer structure. In simple terms, a further layer of the substrate 12 can be arranged with respect to some or all of the reflector structures 14 and / or the electronic circuit 18, so that the related reflector structure and / or the electrical circuit 18 are covered by the further layer.

Die Reflektorstrukturen 14 können elektrisch leitfähige Materialien, wie etwa Metalle oder Halbleiter, aufweisen. Eine Oberflächengeometrie der Vielzahl von Reflektorstrukturen kann so gewählt sein, dass die jeweilige Oberflächenform der Reflektorstrukturen 14 und/oder deren Relativposition zueinander eine Phasenfunktion auf die eintreffende elektromagnetische Welle 16 aufprägt. Beispielsweise kann es sich bei dem elektrisch leitfähigen Material um Platin, Gold, Silber, Aluminium, Kupfer, einen (dotierten) Halbleiter oder dergleichen handeln. Die Vielzahl von Reflektorstrukturen kann beispielsweise mittels eines Klebe-, Druck- oder Sputtering-Verfahrens oder mittels Bedampfen an dem Substrat 12 angeordnet werden. Alternativ kann die Vielzahl von Reflektorstrukturen in Form von Inselstrukturen in einer PCB durch Ätzen oder Fräsen gebildet werden. Zumindest eine Reflektorstruktur kann mittels eines chemischen Vergoldens oder mittels Bedampfen angeordnet werden.The reflector structures 14 can comprise electrically conductive materials such as metals or semiconductors. A surface geometry of the plurality of reflector structures can be selected such that the respective surface shape of the reflector structures 14 and / or their relative position to one another impresses a phase function on the incoming electromagnetic wave 16. For example, the electrically conductive material can be platinum, gold, silver, aluminum, copper, a (doped) semiconductor or the like. The multiplicity of reflector structures can be arranged on the substrate 12, for example, by means of an adhesive, pressure or sputtering process or by means of vapor deposition. Alternatively, the plurality of reflector structures can be formed in the form of island structures in a PCB by etching or milling. At least one reflector structure can be arranged by means of chemical gold plating or by vapor deposition.

Eine von den Reflektorstrukturen 14 auf die elektromagnetische Welle 16 aufgeprägte Phasenfunktion kann so ausgeführt sein, dass die elektromagnetische Welle 16 durch die Reflexion eine Bündelung erfährt und kollimiert oder zumindest weniger gestreut von dem Reflektor 10 reflektiert wird. Die aufgeprägte Phasenfunktion kann eine Krümmung des Reflektors 10, etwa konvex oder konkav, nachbilden. Die Vielzahl von Reflektorstrukturen ist dabei basierend auf der Phasenfunktion so auf einander abgestimmt, dass die elektromagnetische Welle 16 örtlich über die flächige Verteilung und Ausgestaltung der Reflektorstrukturen 14 unterschiedlich (Richtung, Polarisation, etc.) reflektiert wird, so dass die Phasenfunktion der elektromagnetischen Welle 16 aufgeprägt wird. Ferner kann durch die Phasenfunktion ein Strahlformung (Beam Conture bzw. Contured Beam) erhalten werden.A phase function impressed by the reflector structures 14 on the electromagnetic wave 16 can be designed such that the electromagnetic wave 16 is focused as a result of the reflection and is collimated or at least reflected by the reflector 10 in a less scattered manner. The impressed phase function can simulate a curvature of the reflector 10, for example convex or concave. The multitude of reflector structures are matched to one another based on the phase function in such a way that the electromagnetic wave 16 is reflected locally differently (direction, polarization, etc.) over the areal distribution and configuration of the reflector structures 14, so that the phase function of the electromagnetic wave 16 is impressed. Furthermore, the phase function can be used to obtain beam shaping (beam contour or contoured beam).

Fig. 2 zeigt eine schematische Seitenschnittansicht eines Reflektors 20. Der Reflektor 20 umfasst das Substrat 12, wobei das Substrat 12 eine Platine umfasst bzw. als mehrlagige Platine ausgeführt ist. Das Substrat 12 umfasst eine erste Lage 22a, eine zweite Lage 22b und eine dritte Lage 22c, die zusammengefasst Teile eines Stapels bilden, wobei zwischen der ersten Lage 22a und der zweiten Lage 22b eine erste zumindest teilweise elektrisch leitfähige Schicht 24a und zwischen der zweiten Lage 22b und der dritten Lage 22c eine zweite zumindest teilweise elektrisch leitfähige Schicht 24b angeordnet ist. Die Schichten 22a, 22b und/oder 22c können beispielsweise ein Epoxy-Material, ein Halbleitermaterial und/oder ein Glasfasermaterial, wie etwa FR-4, Kapton oder dergleichen umfassen, die miteinander verklebt sein können. Zur besseren Verständlichkeit, jedoch ohne einschränkende Wirkung, wird der Stapel des Substrats 12 so beschrieben, dass die Vielzahl von Reflektorstrukturen 14 an einem oberen Ende des Substrats 12 und die elektronische Schaltung umfassend elektronische Teilschaltungen 18a-c an einem unteren Ende des Stapels angeordnet sind. Es ist offensichtlich, dass je nach Orientierung des Reflektors 20 im Raum die Bezeichnung "oben" bzw. "unten" durch eine beliebige andere Bezeichnung ersetzt werden kann. Alternativ kann ein mehrlagiges Substrat auch lediglich eine Lage und eine leitfähige Schicht umfassen. Fig. 2 shows a schematic side sectional view of a reflector 20. The reflector 20 comprises the substrate 12, the substrate 12 comprising a circuit board or being embodied as a multi-layer circuit board. The substrate 12 comprises a first layer 22a, a second layer 22b and a third layer 22c, which together form parts of a stack, with a first at least partially electrically conductive layer 24a between the first layer 22a and the second layer 22b and between the second layer 22b and the third layer 22c, a second at least partially electrically conductive layer 24b is arranged. The layers 22a, 22b and / or 22c can for example comprise an epoxy material, a semiconductor material and / or a glass fiber material such as FR-4, Kapton or the like, which can be glued together. For better understanding, but without a limiting effect, the stack of the substrate 12 is described in such a way that the plurality of reflector structures 14 at an upper end of the substrate 12 and the electronic circuit comprising electronic subcircuits 18a-c are arranged at a lower end of the stack. It is obvious that, depending on the orientation of the reflector 20 in space, the designation “top” or “bottom” can be replaced by any other designation. Alternatively, a multi-layer substrate can also comprise only one layer and one conductive layer.

Die leitfähigen Schichten 24a und 24b können beispielsweise metallische Materialien umfassen und als Massefläche genutzt bzw. kontaktiert werden. Darüber hinaus ermöglichen die leitfähigen Schichten 24a und/oder 24b eine (ggf. vollständige) Reflexion der elektromagnetischen Welle 16. Dies kann sich auf Anteile der elektromagnetischen Welle 16 beziehen, die von den Reflektorstrukturen 14 nicht reflektiert werden und in das Substrat 12 eindringen. Eine Anordnung der elektronischen Schaltung bzw. der Teilschaltungen 18a, 18b und/oder 18c an einer Seite der leitfähigen Schichten 24a und/oder 24b, die der einfallenden elektromagnetischen Welle 16 abgewandt ist, ermöglicht eine Abschirmung der elektronischen Teilschaltungen 18a-c vor der elektromagnetischen Welle. Dies bietet im Betrieb insbesondere Vorteile bezüglich einer geringen elektromagnetischem Einkopplung der elektromagnetischen Welle 16 in Schaltungsstrukturen, was zu einer Beeinträchtigung der Funktionalität der elektronischen Schaltung führen würde. Die Abschirmung ermöglicht somit eine erhöhte elektromagnetische Verträglichkeit (EMV) des Reflektors 20. Ferner ermöglicht die Anordnung der elektronischen Teilschaltungen 18a-c an einer anderen Seite als die Vielzahl von Reflektorstrukturen 14 eine erhöhte Flächenausnutzung der Oberseite des Stapels durch die Reflektorstrukturen 14, da kein Platz für die elektronische Schaltung benötigt wird.The conductive layers 24a and 24b can, for example, comprise metallic materials and can be used or contacted as a ground plane. In addition, the conductive layers 24a and / or 24b enable (possibly complete) reflection of the electromagnetic wave 16. This can relate to portions of the electromagnetic wave 16 that are not reflected by the reflector structures 14 and penetrate into the substrate 12. Arranging the electronic circuit or subcircuits 18a, 18b and / or 18c on a side of the conductive layers 24a and / or 24b facing away from the incident electromagnetic wave 16 enables the electronic subcircuits 18a-c to be shielded from the electromagnetic wave . During operation, this offers advantages in particular with regard to a low electromagnetic coupling of the electromagnetic wave 16 into circuit structures, which would lead to an impairment of the functionality of the electronic circuit. The shielding thus enables an increased electromagnetic compatibility (EMC) of the reflector 20. Furthermore, the arrangement of the electronic subcircuits 18a-c on a different side than the plurality of reflector structures 14 enables the reflector structures 14 to use more space on the top of the stack, since there is no space is required for the electronic circuit.

Zumindest eine Reflektorstruktur 14 ist in einer zu der Oberseite des Substrats 12 verschiedenen Substratebene angeordnet, beispielsweise als eine an oder in der metallischen Schicht 24a angeordneten Struktur. Bspw. kann die metallische Schicht 24a strukturiert sein. Dies ermöglicht eine höhere (Flächen-)Dichte der Reflektorstrukturen 14 bezogen auf die elektromagnetische Welle 16, so dass ein mit einer Phasenfunktion beaufschlagter reflektierter Anteil der elektromagnetischen Welle 16 erhöht ist. Dies ermöglicht im Betrieb, dass ein geringerer Anteil der elektromagnetischen Welle 16 in die elektrisch leitfähige Schicht einkoppelt. Alternativ oder zusätzlich kann ein höherer oder der gesamte Anteil der elektromagnetischen Welle 16 mit einer Phasenfunktion beaufschlagt werden. Die Phasenfunktion der reflektierten elektromagnetischen Welle kann, verglichen mit der eintreffenden elektromagnetischen Welle 16, ein höheres Maß an Linearität aufweisen, was zu einer erhöhten Toleranzrobustheit führt.At least one reflector structure 14 is arranged in a substrate plane different from the top side of the substrate 12, for example as a structure arranged on or in the metallic layer 24a. For example, the metallic layer 24a can be structured. This enables a higher (surface) density of the reflector structures 14 in relation to the electromagnetic wave 16, so that a reflected portion of the electromagnetic wave 16 to which a phase function is applied is increased. During operation, this enables a smaller proportion of the electromagnetic wave 16 to be coupled into the electrically conductive layer. Alternatively or additionally, a higher or the entire portion of the electromagnetic wave 16 can be acted upon with a phase function. The phase function of the reflected electromagnetic wave can, compared with the incoming electromagnetic wave 16, have a higher degree of linearity, which leads to an increased tolerance robustness.

Alternativ ist ebenfalls vorstellbar, dass eine oder mehrere elektronische Teilschaltungen 18a-c der elektromagnetischen Welle 16 zugewandt an der ersten Lage 22a angeordnet sind. Alternativ oder zusätzlich können eine oder mehrere elektronische Teilschaltungen 18a-c in dem Substrat 12 angeordnet sein, etwa an der zweiten Lage 22b oder der ersten oder zweiten elektrisch leitfähigen Schicht 24a oder 24b.Alternatively, it is also conceivable that one or more electronic subcircuits 18a-c are arranged facing the electromagnetic wave 16 on the first layer 22a. Alternatively or additionally, one or more electronic subcircuits 18a-c can be arranged in the substrate 12, for example on the second layer 22b or the first or second electrically conductive layer 24a or 24b.

Unter der Massefläche 24a befindet sich eine weitere Schicht (zweite Lage 22b), die eine elektrische Funktion aufweisen oder rein der Stabilität der Leiterplatte dienen kann. Darunter befindet sich eine weitere Massefläche 24b, die beispielsweise galvanisch getrennt von der oberen Massefläche 24a die Massefläche für die Substratlagen auf der Unterseite der Leiterplatte für die aktive Elektronik (elektronische Teilschaltungen 18a-c) bilden kann. Unter einer weiteren Schicht (dritte Lage 22c) für die Elektronik befinden sich auf der Unterseite derselben die elektronischen Bauelemente für die Ansteuerung einer (nicht gezeigten) Speiseantenne. Alternativ kann das Substrat 12 auch lediglich eine Lage, zwei Lagen oder mehr als drei Lagen umfassen. Vereinfacht ausgedrückt kann die zweite Lage 22b nicht angeordnet sein oder in Form mehrerer Lagen ausgeführt sein.Another layer (second layer 22b) is located under the ground plane 24a, which has an electrical function or can serve purely for the stability of the printed circuit board. Underneath is a further ground surface 24b, which, for example, galvanically separated from the upper ground surface 24a, can form the ground surface for the substrate layers on the underside of the circuit board for the active electronics (electronic subcircuits 18a-c). The electronic components for controlling a feed antenna (not shown) are located on the underside of a further layer (third layer 22c) for the electronics. Alternatively, the substrate 12 can also comprise only one layer, two layers or more than three layers. In simple terms, the second layer 22b can not be arranged or can be in the form of several layers.

Die Reflektorstrukturen 14 können auch in einer der Lagen 22a, 22b oder 22c integriert (embedded) ausgeführt sein, etwa als leitfähige "Inseln" einer Leiterplatine. Ist die zweite Lage 22b beispielsweise nicht angeordnet, so kann lediglich eine der metallischen Schichten 24a oder 24b zwischen den Lagen 22a und 22c angeordnet sein.The reflector structures 14 can also be embodied integrated (embedded) in one of the layers 22a, 22b or 22c, for example as conductive "islands" of a printed circuit board. If the second layer 22b is not arranged, for example, only one of the metallic layers 24a or 24b can be arranged between the layers 22a and 22c.

Ferner können die Reflektorstrukturen 14 voneinander verschiedene Polarisationsrichtungen (Vorzugsrichtungen) aufweisen. Unterschiedliche Polarisationsrichtungen können in unterschiedlichen Substratebenen angeordnet sein. Die Substratebenen können parallel zu einer Substratoberfläche (der elektromagnetischen Welle 16 zugewandten oder abgewandten Seite des Substrats 12) angeordnet sein.Furthermore, the reflector structures 14 can have different polarization directions (preferred directions) from one another. Different directions of polarization can be arranged in different substrate planes. The substrate planes can be arranged parallel to a substrate surface (the side of the substrate 12 facing or facing away from the electromagnetic wave 16).

Das Substrat kann beispielsweise eine Flüssigkristall (Liquid Crystal - LC)-Substratschicht umfassen, die so angeordnet ist, dass sich die Reflektorstrukturen zwischen einer (virtuellen) Quelle der elektromagnetischen Welle und der LC-Substratschicht befinden. Mittels der LC-Substratschicht kann eine Phasenbelegung des Haupt- bzw. Subreflektors auf Leiterplattenbasis nachjustierend realisiert werden, das bedeutet Reflexionseigenschaften können basierend auf einer Ansteuerung der Flüssigkristall-Elemente beeinflusst werden.The substrate can, for example, comprise a liquid crystal (LC) substrate layer which is arranged such that the reflector structures are located between a (virtual) source of the electromagnetic wave and the LC substrate layer. By means of the LC substrate layer, a phase allocation of the main or subreflector on the basis of a printed circuit board can be realized in a readjusting manner, that is to say reflection properties can be influenced based on an activation of the liquid crystal elements.

In anderen Worten zeigt Fig. 2 einen möglichen Lagenaufbau einer HauptreflektorLeiterplatte. Die oberste Schicht (d.h. über der ersten Lage 22a) bilden die reflektierenden Elemente (Reflektorstrukturen 14), die eine Phasenfunktion der einfallenden Strahlung 16 aufprägen können und die sich auf einem Substrat (erste Lage 22a) befinden. Unter diesem Substrat befindet sich eine metallische Schicht 24a, die beispielsweise als Massefläche dient und die Reflexion aller einfallenden Strahlen sicherstellt.In other words shows Fig. 2 a possible layer structure of a main reflector circuit board. The top layer (ie above the first layer 22a) is formed by the reflective elements (reflector structures 14) which can impress a phase function of the incident radiation 16 and which are located on a substrate (first layer 22a). Under this substrate there is a metallic layer 24a, which serves, for example, as a ground plane and ensures the reflection of all incident rays.

Der Reflektor 20 kann anstatt zweier galvanisch getrennter Masseflächen 24a und 24b für reflektierende Elemente und Elektronik auch lediglich eine gemeinsame Massefläche im Lagenaufbau und mithin für die reflektierenden Elemente 14 und die Elektronik 18a-c ohne weitere Zwischenlage für die Stabilität der Leiterplatte aufweisen.Instead of two galvanically separated ground surfaces 24a and 24b for reflective elements and electronics, reflector 20 can also have only one common ground surface in the layer structure and therefore for reflective elements 14 and electronics 18a-c without any additional intermediate layer for the stability of the circuit board.

Die (oberen) Substratlagen des Hauptreflektors für die reflektierenden Elemente (Substratlagen 22a) können sowohl einlagig als auch mehrlagig ausgeführt sein, wobei bei mehrlagiger Ausführung weitere reflektierende Elemente zwischen den metallischen Lagen angeordnet werden können. Ferner können Klebelagen, die diese Lagen physikalisch verbinden (Multi-Layer Reflectarray) angeordnet sein. Ein Vorteil, ggf. der Hauptvorteil, der mehrlagigen Ausführung liegt in der größeren realisierbaren Bandbreite des Hauptreflektors. Gleiches gilt auch für die Lagen des Subreflektors, sollte dieser als Leiterplattenversion ausgeführt sein.The (upper) substrate layers of the main reflector for the reflective elements (substrate layers 22a) can be made both single-layer and multi-layer, with further reflective elements being able to be arranged between the metallic layers in the multi-layer embodiment. Furthermore, adhesive layers that physically connect these layers (multi-layer reflect array) can be arranged. One advantage, possibly the main advantage, of the multilayer design is the greater realizable bandwidth of the main reflector. The same applies to the layers of the sub-reflector, if it is designed as a printed circuit board version.

Die unteren Substratlagen (22c) des Hauptreflektors für die Elektronik können sowohl einlagig als auch mehrlagig ausgeführt sein, wobei bei mehreren Lagen wiederum metallische Lagen mit Leiterbahnen und Klebelagen, die die verschiedenen Substratlagen verbinden, angeordnet sein können.The lower substrate layers (22c) of the main reflector for the electronics can be single-layered or multi-layered, with multiple layers in turn being able to have metallic layers with conductor tracks and adhesive layers that connect the different substrate layers.

Einzelne Substratlagen der Hauptreflektorleiterplatte oder der Subreflektorleiterplatte können geklebt oder mechanisch bzw. mit anderen Mitteln fixiert/zusammengehalten werden.Individual substrate layers of the main reflector circuit board or the subreflector circuit board can be glued or fixed / held together mechanically or by other means.

Die Fig. 3a-d zeigen jeweils schematische Aufsichten auf mögliche Ausführungsformen der Reflektorstrukturen.The Figures 3a-d each show schematic plan views of possible embodiments of the reflector structures.

Fig. 3a zeigt eine schematische Aufsicht auf eine Reflektorstruktur 14-1, die als Rechteck mit einer ersten Seitenabmessung a und einer zweiten Seitenabmessung b ausgeführt ist. Fig. 3a shows a schematic plan view of a reflector structure 14-1, which is designed as a rectangle with a first side dimension a and a second side dimension b.

Die Seitenabmessungen a und b können einen voneinander verschiedenen oder gleichen Wert (Quadrat) aufweisen.The side dimensions a and b can have a different or equal value (square).

Fig. 3b zeigt eine schematische Aufsicht auf eine Reflektorstruktur 14-2, die als Ellipse ausgeführt ist. Ein Verhältnis von Haupt- und Nebenachse ist beliebig. Figure 3b shows a schematic plan view of a reflector structure 14-2, which is designed as an ellipse. A ratio of major and minor axes is arbitrary.

Fig. 3c zeigt eine schematische Aufsicht auf eine Reflektorstruktur 14-3, die als Kombination zweier Dipolstrukturen 26a und 26b ausgeführt ist. Die Dipolstrukturen 26a und 26b sind senkrecht zueinander angeordnet, was eine von einander hoch isolierte bzw. entkoppelte Reflexion einfallender elektromagnetischer Wellen mit unterschiedlichen Polarisationsrichtungen ermöglicht. Eine senkrechte Anordnung der Dipolstrukturen 26a und 26b ermöglicht beispielsweise eine Reflexion zueinander senkrecht stehender Polarisationsrichtungen, etwa horizontal und vertikal, wobei sich diese Orientierungen jeweils oder gemeinsam beliebig im Raum drehen oder anders bezeichnen lassen. Alternativ können die Dipolstrukturen 26a und 26b auch einen von 90° verschiedenen Winkel aufweisen und/oder Polarisationsrichtungen reflektieren, die den gleichen oder einen anderen Winkel aufweisen. Figure 3c shows a schematic plan view of a reflector structure 14-3, which is designed as a combination of two dipole structures 26a and 26b. The dipole structures 26a and 26b are arranged perpendicular to one another, which enables a reflection of incident electromagnetic waves with different polarization directions that is highly isolated or decoupled from one another. A perpendicular arrangement of the dipole structures 26a and 26b enables, for example, a reflection of mutually perpendicular polarization directions, for example horizontally and vertically, these orientations each or together being able to rotate freely in space or be referred to differently. Alternatively, the dipole structures 26a and 26b can also have an angle different from 90 ° and / or reflect directions of polarization which have the same or a different angle.

Die Dipole 26a und 26b weisen jeweils einen erhöhten Reflexionsgrad auf, wenn die elektromagnetische Welle mit einer Polarisation, die mit der Anordnung des jeweiligen Dipols 26a oder 26b übereinstimmt, empfangen wird und eine demgegenüber reduzierten Reflexionsgrad, wenn die elektromagnetische Welle mit einer anderen, insbesondere mit einer senkrecht hierzu angeordneten Polarisationsrichtung empfangen wird. Wird die elektromagnetische Welle beispielsweise mit einer ersten Polarisation empfangen, so weist die Dipolstruktur 26a beispielsweise einen hohen (ersten) Reflexionsgrad auf. Wird die elektromagnetische Welle mit einer zweiten Polarisation, die von der ersten Polarisation verschieden, beispielsweise senkrecht hierzu, ist, empfangen, so weist die Dipolstruktur 26a einen niedrigeren (zweiten) Reflexionsgrad auf. Die erste Polarisation kann bezüglich des Dipols 26a als Vorzugsrichtung bezeichnet werden. Der Dipol 26b weist beispielsweise bei der zweiten Polarisation einen hohen (dritten) Reflexionsgrad und, wenn die elektromagnetische Welle die erste Polarisation aufweist, einen niedrigen (vierten) Reflexionsgrad, mit dem die elektromagnetische Welle reflektiert wird, auf.The dipoles 26a and 26b each have an increased degree of reflection when the electromagnetic wave is received with a polarization that corresponds to the arrangement of the respective dipole 26a or 26b and, in contrast, a reduced degree of reflection when the electromagnetic wave with another, in particular with a polarization direction arranged perpendicular thereto is received. If the electromagnetic wave is received with a first polarization, for example, the dipole structure 26a has a high (first) degree of reflection, for example. If the electromagnetic wave is received with a second polarization that is different from the first polarization, for example perpendicular thereto, then the dipole structure 26a has a lower (second) reflectance. The first polarization can be referred to as the preferred direction with respect to the dipole 26a. The dipole 26b has, for example, a high (third) reflectance in the second polarization and, if the electromagnetic wave has the first polarization, a low (fourth) reflectance with which the electromagnetic wave is reflected.

Der erste und der dritte Reflexionsgrad sind größer als der zweite und der vierte Reflexionsgrad. Der erste und der dritte oder der zweite und der vierte Reflexionsgrad können auch gleich sein. Vereinfacht ausgedrückt kann der Dipol 26a ausgebildet sein, um die erste Polarisation zu reflektieren und der Dipol 26b ausgebildet sein, um die zweite Polarisation zu reflektieren. Die Dipolstrukturen 26a und 26b können ferner ausgebildet sein, um von einander verschiedene Phasenfunktionen auf eine reflektierte elektromagnetische Welle aufzuprägen.The first and third reflectivities are greater than the second and fourth reflectivities. The first and the third or the second and the fourth reflectance can also be the same. In simple terms, the dipole 26a can be designed to the to reflect the first polarization and the dipole 26b to reflect the second polarization. The dipole structures 26a and 26b can also be designed in order to impress mutually different phase functions on a reflected electromagnetic wave.

Mehrere unterschiedliche Polarisationen können erhalten werden, indem eine Vielzahl von Antennenstrukturen oder -elementen mit der elektronischen Schaltung verbunden werden, wobei eine erste Teilmenge der Antennenstrukturen oder -elemente ausgebildet ist, um eine elektromagnetische Welle mit einer ersten Polarisation zu erzeugen und eine zweite Teilmenge der Antennenstrukturen oder -elemente ausgebildet ist, um eine elektromagnetische Welle mit einer zweiten Polarisation zu erzeugen. Zusätzlich können weitere Antennenstrukturen oder -elemente angeordnet sein, die ausgebildet sind, um eine elektromagnetische Welle mit zumindest einer weiteren Polarisation zu erzeugen.Several different polarizations can be obtained by connecting a plurality of antenna structures or elements to the electronic circuit, a first subset of the antenna structures or elements being designed to generate an electromagnetic wave with a first polarization and a second subset of the antenna structures or elements is designed to generate an electromagnetic wave with a second polarization. In addition, further antenna structures or elements can be arranged which are designed to generate an electromagnetic wave with at least one further polarization.

Fig. 3d zeigt eine schematische Aufsicht einer Reflektorstruktur 14-4, die drei jeweils mit einem Winkel zueinander angeordnete Dipolstrukturen 26a, 26b und 26c umfasst, was eine Reflexion von drei entsprechenden Polarisationen ermöglicht. Die Dipolstrukturen 26a-c können einen beliebigen Winkel zueinander aufweisen und beispielsweise an Polarisationen von zu übertragenden elektromagnetischen Wellen angepasst sein. Alternativ können auch mehr als drei Dipolstrukturen oder lediglich eine Dipolstruktur angeordnet sein. Fig. 3d shows a schematic top view of a reflector structure 14-4, which comprises three dipole structures 26a, 26b and 26c each arranged at an angle to one another, which enables reflection of three corresponding polarizations. The dipole structures 26a-c can have any desired angle to one another and, for example, be adapted to polarizations of electromagnetic waves to be transmitted. Alternatively, more than three dipole structures or only one dipole structure can be arranged.

Alternativ können die Reflektorstrukturen auch eine beliebige andere Form, wie etwa eine Polygonform, eine Kreisform, eine Freiform oder eine Kombination von Formen und/oder Dipolstrukturen aufweisen.Alternatively, the reflector structures can also have any other shape, such as a polygon shape, a circular shape, a free shape or a combination of shapes and / or dipole structures.

In anderen Worten können die reflektierenden Elemente bei Ausführung des Haupt- bzw. Subreflektors als Reflectarray eine beliebige Geometrie aufweisen. Ferner kann eine beliebige Methode genutzt werden, um die gewollte Phasenänderung auf der Apertur des Reflektors zu implementieren, etwa eine variable Größe der Elemente, angebrachte Leitungsstücke und/oder eine Drehung der Elemente zueinander.In other words, when the main or subreflector is designed as a reflect array, the reflective elements can have any geometry. Furthermore, any method can be used to implement the desired phase change on the aperture of the reflector, for example a variable size of the elements, attached line pieces and / or a rotation of the elements with respect to one another.

Fig. 4 zeigt eine schematische Ansicht eines Reflektors 40, der gegenüber dem Reflektor 10 derart erweitert ist, dass an einer den Reflektorstrukturen 14 abgewandten Seite des Substrats 12 ein Gehäuseteil 28 angeordnet ist. Das Gehäuseteil 28 kann beispielsweise als Abdeckung der elektronischen Schaltung genutzt werden, die dem Gehäuseteil 28 zugewandt an dem Substrat 12 angeordnet ist. Das Gehäuseteil 28 kann nicht leitende (beispielsweise umfassend Kunststoffmaterialien oder Harzmaterialien) oder leitfähige Materialien (beispielsweise Metalle) umfassen. Vereinfacht ausgedrückt kann es sich bei dem Gehäuseteil 28 um eine metallische Abdeckung handeln. Fig. 4 shows a schematic view of a reflector 40, which is widened in relation to the reflector 10 such that a housing part 28 is arranged on a side of the substrate 12 facing away from the reflector structures 14. The housing part 28 can be used, for example, as a cover for the electronic circuit which the housing part 28 facing on the substrate 12 is arranged. The housing part 28 may comprise non-conductive (e.g., comprising plastic materials or resin materials) or conductive materials (e.g., metals). In simple terms, the housing part 28 can be a metallic cover.

An der den Reflektorstrukturen 14 zugewandten Seite des Substrats 12 ist eine Radomstruktur 32 angeordnet. Das Substrat 12 ist lediglich der besseren Veranschaulichung wegen bezüglich des Gehäuseteils 28 und der Radomstruktur 32 versetzt angeordnet dargestellt, d. h., das Substrat 12, das Gehäuseteil 28 und die Radomstruktur 32 können auch so angeordnet werden, dass das Substrat 12 von dem Gehäuseteil 28 und der Radomstruktur 32 umschlossen (gehaust) wird. Die Hausung kann wasserdicht und/oder chemisch beständig sein.A radome structure 32 is arranged on the side of the substrate 12 facing the reflector structures 14. The substrate 12 is shown arranged offset with respect to the housing part 28 and the radome structure 32 only for the sake of better illustration; That is, the substrate 12, the housing part 28 and the radome structure 32 can also be arranged in such a way that the substrate 12 is enclosed (housed) by the housing part 28 and the radome structure 32. The housing can be waterproof and / or chemically resistant.

Die Radomstruktur 32 umfasst zumindest bereichsweise eine elektrisch leitfähige Struktur 34. Die elektrisch leitfähige Struktur 34 ist ausgebildet, um die elektromagnetische Welle zu reflektieren und ist bezüglich der Vielzahl von Reflektorstrukturen 14 so angeordnet, dass die von der elektrisch leitfähigen Struktur 34 reflektierte elektromagnetische Welle in Richtung der Vielzahl von Reflektorstrukturen 14 gelenkt wird und von diesen erneut reflektiert wird. Ist beispielsweise zwischen dem Gehäuseteil 28 und der Radomstruktur 32 (etwa an oder in dem Substrat 12) eine Antenne angeordnet, so kann diese Antenne ausgebildet sein, um die elektromagnetische Welle in Richtung der elektrisch leitfähigen Struktur 34 auszusenden, so dass die elektrisch leitfähige Struktur 34 die elektromagnetische Welle in Richtung der Reflektorstrukturen 14 reflektiert. Die elektrisch leitfähige Struktur 34 kann die Funktion eines Subreflektors bereitstellen. Der Subreflektor kann als Teil eines Doppelreflektorsystems angeordnet werden, in welchem der Reflektor 10 bzw. 20 als Hauptreflektor angeordnet ist. Die Reflektorstrukturen 14 können die elektromagnetische Welle dann mit der Phasenfunktion versehen und (durch die Radomstruktur 32 hindurch) aussenden. Alternativ oder zusätzlich kann die Radomstruktur 34 auch eine weitere Vielzahl von Reflektorstrukturen umfassen.The radome structure 32 comprises at least regionally an electrically conductive structure 34. The electrically conductive structure 34 is designed to reflect the electromagnetic wave and is arranged with respect to the plurality of reflector structures 14 so that the electromagnetic wave reflected by the electrically conductive structure 34 in the direction the plurality of reflector structures 14 is directed and is reflected again by these. If, for example, an antenna is arranged between the housing part 28 and the radome structure 32 (for example on or in the substrate 12), this antenna can be designed to emit the electromagnetic wave in the direction of the electrically conductive structure 34, so that the electrically conductive structure 34 the electromagnetic wave is reflected in the direction of the reflector structures 14. The electrically conductive structure 34 can provide the function of a subreflector. The sub-reflector can be arranged as part of a double reflector system in which the reflector 10 or 20 is arranged as the main reflector. The reflector structures 14 can then provide the electromagnetic wave with the phase function and transmit it (through the radome structure 32). As an alternative or in addition, the radome structure 34 can also comprise a further multiplicity of reflector structures.

In anderen Worten kann eine Radomlage über den reflektierenden Elementen/der Elektronik der Hauptreflektorleiterplatte angeordnet werden, um die Elemente zu verdecken und vor Korrosion und äußeren Einflüssen zu schützen oder zumindest den Einfluss zu reduzieren. Diese Radomlage kann zusätzlich die Reflexionseigenschaften der reflektierenden Elemente ändern bzw. zur thermischen Wärmeableitung für die Elektronik dienen.In other words, a radome layer can be arranged over the reflective elements / the electronics of the main reflector circuit board in order to cover the elements and to protect them from corrosion and external influences or at least to reduce the influence. This radome position can also change the reflective properties of the reflective elements or serve for thermal heat dissipation for the electronics.

Fig. 5 zeigt eine schematische Seitenschnittansicht eines Reflektors 50, bei dem das Substrat 12 verglichen mit dem Reflektor 20 Durchkontaktierungen (sogenannte Vias) 36a und 36b umfasst, so dass elektrische Signale von der elektronischen Schaltung 18 durch das Substrat 12 hindurch an die der elektronischen Schaltung 18 gegenüberliegende Seite des Substrats 12 geleitet werden können. An dem Substrat 12 ist eine Antenne 38 angeordnet, die ausgebildet ist, um ein Funksignal, beispielsweise in Form der elektromagnetischen Welle 16, auszusenden. Die Antenne 38 ist bspw. mittels Bonddrähten 41a und 41b mit den Durchkontaktierungen 36a bzw. 36b und mithin mit der elektronischen Schaltung 18 verbunden. Die elektronische Schaltung 18 ist ausgebildet, um die Antenne 38 anzusteuern, so dass Parameter der elektromagnetischen Welle 16, wie etwa eine Signalform, eine Sendedauer, eine Signalamplitude und/oder eine Sendefrequenz von der Ansteuerung der elektronischen Schaltung 18 beeinflusst sind. Die (nicht gezeigten) Reflektorstrukturen sind an der gleichen Seite des Substrats 12 angeordnet wie die Antenne 38. Fig. 5 shows a schematic side sectional view of a reflector 50, in which the substrate 12, compared to the reflector 20, comprises through-contacts (so-called vias) 36a and 36b, so that electrical signals from the electronic circuit 18 through the substrate 12 to the side opposite the electronic circuit 18 of the substrate 12 can be conducted. An antenna 38 is arranged on the substrate 12 and is designed to transmit a radio signal, for example in the form of the electromagnetic wave 16. The antenna 38 is connected, for example, by means of bonding wires 41a and 41b to the plated-through holes 36a and 36b and consequently to the electronic circuit 18. The electronic circuit 18 is designed to control the antenna 38 so that parameters of the electromagnetic wave 16, such as a signal shape, a transmission duration, a signal amplitude and / or a transmission frequency, are influenced by the activation of the electronic circuit 18. The reflector structures (not shown) are arranged on the same side of the substrate 12 as the antenna 38.

Alternativ oder zusätzlich können auch Reflektorstrukturen in dem Substrat 12 angeordnet sein. Alternativ kann die elektronische Schaltung 18 auch an der gleichen Seite wie die Antenne 38 an dem Substrat 12 angeordnet sein und/oder in Form von Teilschaltungen ausgeführt sein. Eine Anordnung der Antenne 38 an dem Substrat 12 ermöglicht eine hoch integrierte Verschaltung von elektronischer Schaltung 18 und Antenne 38, was zu geringen Leistungsverlusten und mithin einem effizienten Betrieb führen kann. Der Reflektor 50 ist mithin auch als Antennenvorrichtung beschreibbar, die die elektronische Schaltung 18, das Substrat 12 und die Antenne 38 umfasst.Alternatively or additionally, reflector structures can also be arranged in the substrate 12. Alternatively, the electronic circuit 18 can also be arranged on the same side as the antenna 38 on the substrate 12 and / or in the form of partial circuits. Arranging the antenna 38 on the substrate 12 enables a highly integrated interconnection of the electronic circuit 18 and antenna 38, which can lead to low power losses and consequently efficient operation. The reflector 50 can therefore also be described as an antenna device which comprises the electronic circuit 18, the substrate 12 and the antenna 38.

Bei der Antenne 38 kann es sich um eine beliebige Antenne handeln. Beispielsweise kann es sich um eine On-Chip Speiseantenne, um eine Patch-Antenne, eine PIFA-Antenne, um eine Hohlleiterantenne, um eine Silizium-basierte Antenne oder eine beliebige andere Antenne handeln.The antenna 38 can be any antenna. For example, it can be an on-chip feed antenna, a patch antenna, a PIFA antenna, a waveguide antenna, a silicon-based antenna or any other antenna.

Wird beispielsweise die im Zusammenhang mit Fig. 4 beschriebene Radomstruktur umfassend die elektrisch leitfähige Struktur mit der Antennenvorrichtung 50 kombiniert, so kann eine Antennenform umfassend ein Doppelreflektorsystem erhalten werden. Diese Antennenform kann beispielsweise als Cassegrain-Antenne oder als Gregorian-Antenne ausgeführt werden, so dass eine integrierte Cassegrain-Antenne oder eine integrierte Gregorian-Antenne erhalten werden kann.For example, if the Fig. 4 described radome structure comprising the electrically conductive structure combined with the antenna device 50, an antenna shape comprising a double reflector system can be obtained. This antenna shape can be designed, for example, as a Cassegrain antenna or as a Gregorian antenna, so that an integrated Cassegrain antenna or an integrated Gregorian antenna can be obtained.

In anderen Worten zeigt Fig. 5 ein Beispiel für die Verbindung der elektronischen Bauelemente der unteren Lagen mit der On-Chip Speiseantenne auf der Oberseite der Hauptreflektorleiterplatte. In diesem Beispiel wird die Verbindung der Elektronik zu einer SMD-On-Chip Antenne mittels Durchkontaktierungen (Vias) und optionalen Bonddrähten realisiert. Beispielsweise kann der Subreflektor 42 Teil einer Radomstruktur sein.In other words shows Fig. 5 an example of the connection of the electronic components of the lower layers with the on-chip feed antenna on the top of the main reflector circuit board. In this example, the electronics are connected to an SMD on-chip antenna by means of plated-through holes (vias) and optional bonding wires. For example, the sub-reflector 42 can be part of a radome structure.

Fig. 6 zeigt ein schematisches Blockschaltbild einer Antennenvorrichtung 60 umfassend das Substrat 12, an dem die Vielzahl von Reflektorstrukturen 14 angeordnet ist. Die Antenne 38 ist an dem Substrat 12 an der gleichen Seite wie die Vielzahl von Reflektorstrukturen 14 angeordnet und ausgebildet, um die elektromagnetische Welle 16 zu erzeugen und auszusenden. Die elektromagnetische Welle 16 kann (räumlich) breit, d. h., mit einem großen Öffnungswinkel abgestrahlt werden. Das bedeutet, dass die elektromagnetische Welle 16 eine geringe Richtwirkung aufweisen kann. Bezüglich des Substrats 12 ist eine weitere Reflektorstruktur, nachfolgend bezeichnet als Subreflektor 42 angeordnet. Der Subreflektor 42 kann beispielsweise eine konkav oder konvex geformte leitfähige Schicht sein. Alternativ kann der Subreflektor 42 auch planar ausgebildet sein, etwa umfassend ein Substrat und/oder eine Schaltplatine mit Reflektorstrukturen, die ausgebildet sind, um eine Phasenfunktion auf die empfangene und reflektierte elektromagnetische Welle 16 aufzuprägen. Vereinfacht ausgedrückt ist der Subreflektor 42 angeordnet und ausgebildet, um die von der Antenne 38 empfangene elektromagnetische Strahlung zu streuen und zumindest teilweise in Richtung der Reflektorstrukturen 14 zu reflektieren. Die Reflektorstrukturen 14 sind ausgebildet, um die von dem Subreflektor 42 reflektierte elektromagnetische Welle 16 erneut zu reflektieren und, um die Phasenfunktion der elektromagnetischen Welle 16 derart anzupassen, dass die elektromagnetische Welle 16 gegenüber der Charakteristik der Antenne 38 eine Strahlbündelung erfährt. So kann die elektromagnetische Welle 16 beispielsweise annähernd oder vollständig kollimiert ausgesendet werden, so dass eine Anwendung der Antennenvorrichtung 60 als Richtfunkantenne ermöglicht ist. Fig. 6 shows a schematic block diagram of an antenna device 60 comprising the substrate 12 on which the plurality of reflector structures 14 are arranged. The antenna 38 is arranged on the substrate 12 on the same side as the plurality of reflector structures 14 and is designed to generate and emit the electromagnetic wave 16. The electromagnetic wave 16 can be emitted (spatially) broadly, ie with a large opening angle. This means that the electromagnetic wave 16 can have a low directivity. With respect to the substrate 12, a further reflector structure, hereinafter referred to as subreflector 42, is arranged. The sub-reflector 42 can be, for example, a concave or convex shaped conductive layer. Alternatively, the subreflector 42 can also be planar, for example comprising a substrate and / or a circuit board with reflector structures which are designed to impress a phase function on the received and reflected electromagnetic wave 16. In simple terms, the sub-reflector 42 is arranged and designed to scatter the electromagnetic radiation received by the antenna 38 and to reflect it at least partially in the direction of the reflector structures 14. The reflector structures 14 are designed to reflect the electromagnetic wave 16 reflected by the subreflector 42 again and to adapt the phase function of the electromagnetic wave 16 in such a way that the electromagnetic wave 16 is bundled with respect to the characteristics of the antenna 38. For example, the electromagnetic wave 16 can be emitted approximately or completely collimated, so that the antenna device 60 can be used as a directional radio antenna.

Fig. 7 zeigt ein schematisches Blockschaltbild einer Antennenvorrichtung 70, bei der eine Vielzahl von Reflektorstrukturen 14-3 an dem Substrat 12 angeordnet ist. Die elektronische Schaltung umfasst die Teilschaltungen 18a und 18b, die an der gleichen Seite des Substrats 12 wie die Reflektorstrukturen 14-3 und die Antenne 38 angeordnet sind. Die elektronischen Teilschaltungen 18a und 18b sind beispielsweise mittels sogenannter Microstrip Lines (MSL) 43a bzw. 43b mit der Antenne 38 verbunden. Der Subreflektor 42 ist bezüglich des Substrats 12 bzw. bezüglich der Antenne 38 und/oder der Reflektorstrukturen 14-3 um einen Winkel α verkippbar. Der Subreflektor ist konvex geformt oder ist ausgebildet, um eine konvexe Phasenfunktion auf die elektromagnetische Welle aufzuprägen. Der Winkel α kann beispielsweise kleiner 90°, kleiner 60° oder kleiner 30° sein. Mit dem Subreflektor 42 kann auch die elektromagnetische Welle bzgl. der aufgeprägten Phasenfunktion im Raum verkippt werden, so dass insgesamt eine Abstrahlcharakteristik, mit der die elektromagnetische Welle von den Reflektorstrukturen 14-3 reflektiert wird, verändert wird. Fig. 7 FIG. 4 shows a schematic block diagram of an antenna device 70 in which a multiplicity of reflector structures 14 - 3 are arranged on the substrate 12. The electronic circuit comprises the subcircuits 18a and 18b, which are arranged on the same side of the substrate 12 as the reflector structures 14 - 3 and the antenna 38. The electronic subcircuits 18a and 18b are connected to the antenna 38 by means of so-called microstrip lines (MSL) 43a and 43b, respectively. The sub-reflector 42 is with respect to the substrate 12 or with respect to the antenna 38 and / or the reflector structures 14-3 tiltable by an angle α. The subreflector is convexly shaped or is designed to impress a convex phase function on the electromagnetic wave. The angle α can be, for example, less than 90 °, less than 60 ° or less than 30 °. With the subreflector 42, the electromagnetic wave can also be tilted in space with respect to the impressed phase function, so that overall a radiation characteristic with which the electromagnetic wave is reflected by the reflector structures 14-3 is changed.

Beispielsweise kann die elektromagnetische Welle in eine mit dem Winkel α veränderliche Raumrichtung reflektiert werden. Der Subreflektor 42 ist ferner entlang einer axialen Richtung 44 beweglich. Somit ist ein Abstand zwischen dem Subreflektor 42 und dem Substrat 12 bzw. der Antenne 38 entlang der axialen Richtung 44 veränderlich. Die axiale Richtung 44 verläuft bspw. parallel zu einer Oberflächennormalen 46 des Substrats 12. Ein verringerter Abstand zwischen der Antenne 38 und dem Subreflektor 42 kann, je nach Streucharakteristik des Subreflektors 42, zu einer Verengung oder Erweiterung einer Strahlenkeule der elektromagnetischen Welle führen. D. h., ein Fokus der elektromagnetischen Welle, die von den Reflektorstrukturen 14-3 abgestrahlt wird, ist mit dem Abstand bzw. der Bewegung entlang der axialen Richtung 44 veränderlich. Dies ermöglicht eine Justage oder Korrektur der Richtwirkung der Antennenstruktur 70, beispielsweise aufgrund von veränderlichen Umwelteinflüssen, wie etwa einer Erwärmung und/oder veränderlichen Materialien zwischen der Antennenvorrichtung 70 und einer weiteren Antennenvorrichtung, mit der die Antennenvorrichtung 70 kommuniziert.For example, the electromagnetic wave can be reflected in a spatial direction that changes with the angle α. The sub-reflector 42 is also movable along an axial direction 44. A distance between the subreflector 42 and the substrate 12 or the antenna 38 can thus be varied along the axial direction 44. The axial direction 44 runs, for example, parallel to a surface normal 46 of the substrate 12. A reduced distance between the antenna 38 and the subreflector 42 can, depending on the scattering characteristics of the subreflector 42, lead to a narrowing or widening of a radiation lobe of the electromagnetic wave. That is to say, a focus of the electromagnetic wave that is emitted by the reflector structures 14 - 3 is variable with the distance or the movement along the axial direction 44. This enables the directivity of the antenna structure 70 to be adjusted or corrected, for example due to changing environmental influences such as heating and / or changing materials between the antenna device 70 and a further antenna device with which the antenna device 70 communicates.

Alternativ oder zusätzlich kann der Subreflektor 42 auch entlang einer lateralen Richtung 48, die senkrecht zu der Oberflächennormalen 46 angeordnet ist, beweglich sein. Alternativ kann der Subreflektor 42 auch starr oder lediglich um den Winkel α verkippbar oder entlang der Richtung 44 bewegbar angeordnet sein.Alternatively or in addition, the subreflector 42 can also be movable along a lateral direction 48 which is arranged perpendicular to the surface normal 46. Alternatively, the subreflector 42 can also be arranged rigidly or only tiltable by the angle α or movable along the direction 44.

Eine Lage der Dipole der Reflektorstrukturen 14-3 kann an eine Polarisation oder an mehrere Polarisationen, mit der die elektromagnetische Welle von der Antennenvorrichtung 70 ausgesendet wird, angepasst sein. Alternativ oder zusätzlich können auch andere Reflektorstrukturen angeordnet sein. Die Antenne 38 ist ausgebildet, um eine in Richtung der Antennenvorrichtung gesendete und von der Antennenvorrichtung 70 empfangene elektromagnetische Welle an die (nicht gezeigte) elektrische Schaltung oder eine weitere elektrische Schaltung zu leiten, die beispielsweise an einer der Antenne 38 abgewandten Seite des Substrats 12 angeordnet ist.A position of the dipoles of the reflector structures 14-3 can be adapted to one polarization or to a plurality of polarizations with which the electromagnetic wave is emitted by the antenna device 70. Alternatively or in addition, other reflector structures can also be arranged. The antenna 38 is designed to guide an electromagnetic wave transmitted in the direction of the antenna device and received by the antenna device 70 to the electrical circuit (not shown) or another electrical circuit which is arranged, for example, on a side of the substrate 12 facing away from the antenna 38 is.

Alternativ kann das Substrat 12 bzw. der (Haupt-)Reflektor auch mehrere Antennen 38 aufweisen, die gleich oder voneinander verschieden ausgebildet sein können. Bezüglich der Mehrzahl von Antennen kann eine Mehrzahl von Subreflektoren 42 angeordnet sein. Beispielsweise kann jeder Subreflektor einer der angeordneten Antennen zugeordnet sein. Dies ermöglicht den Aufbau einer Multi-Antennenvorrichtung.As an alternative, the substrate 12 or the (main) reflector can also have a plurality of antennas 38, which can be constructed identically or differently from one another. With respect to the plurality of antennas, a plurality of sub-reflectors 42 may be arranged. For example, each sub-reflector can be assigned to one of the antennas arranged. This enables a multi-antenna device to be constructed.

Fig. 8 zeigt ein schematisches Blockschaltbild einer Antennenvorrichtung 80, die eine Antenne 38' umfasst. Die Antenne 38' ist als Hornantenne ausgeführt. Bezüglich der Antenne 38' ist ein Subreflektor 42' angeordnet, der ausgebildet ist, um mittels der Phasenfunktion eine konkave Form nachzubilden. Der Subreflektor 42' kann bspw. als konkaves metallisches Element ausgeführt sein. Alternativ kann der Subreflektor 42' auch als (ebene) Platine ausgeführt sein, die ausgebildet ist, um mittels geeigneter Anordnung von Reflektorstrukturen eine entsprechende Phasenfunktion aufzuprägen. Fig. 8 FIG. 11 shows a schematic block diagram of an antenna device 80 which comprises an antenna 38 ′. The antenna 38 'is designed as a horn antenna. A subreflector 42 'is arranged with respect to the antenna 38' and is designed to simulate a concave shape by means of the phase function. The subreflector 42 'can, for example, be designed as a concave metallic element. Alternatively, the subreflector 42 'can also be designed as a (flat) board which is designed to impress a corresponding phase function by means of a suitable arrangement of reflector structures.

Die Antennenvorrichtung 80 kann beispielsweise als Gregorian-Antenne einsetzbar sein. Die Ausformung des Subreflektors 42 oder 42' kann dabei unabhängig von einer Ausführung der Antenne 38 und 38' gewählt werden. So kann die Antennenvorrichtung 80 beispielsweise auch die Antenne 38 und/oder den Subreflektor 42 umfassen.The antenna device 80 can be used, for example, as a Gregorian antenna. The shape of the sub-reflector 42 or 42 'can be selected independently of an embodiment of the antenna 38 and 38'. For example, the antenna device 80 can also include the antenna 38 and / or the subreflector 42.

Fig. 9 zeigt ein schematisches Blockschaltbild einer Antennenvorrichtung 90, bei der ein Substrat 12' (Hauptreflektor) eine unebene Form aufweist. Diese wird beispielsweise durch eine jeweils schräg zueinander angeordnete Anordnung mehrerer (ggf. ebener) Teilsubstrate 12a-e erhalten. Dies kann auch als Sektorparaboloid bzw. als ein Multi-Faceted Reflectarray (mehrere Oberflächen aufweisender Reflektor) bezeichnet werden. Mittels der zueinander geneigten Teilsubstrate 12a-e kann eine konkave oder konvexe bzw. stückweise stetige Form (bspw. eine parabolische Form) des Substrats 12' und somit des Hauptreflektors erhalten werden. Vereinfacht ausgedrückt kann der Hauptreflektor und/oder das Substrat 12' mehrteilig ausgeführt sein, wobei die Teile parallel zueinander oder einen Winkel aufweisend angeordnet sein können. Die Antenne 38 ist beispielsweise aus einer Mittenposition verschoben angeordnet (sog. Offset-Speisung). Alternativ kann die Antenne 38 auch in einem geometrischen oder flächenmäßigen Schwerpunkt angeordnet sein. Die Antennenvorrichtung 90 kann auch als 1D-Multi-Faceted Reflectarray Konfiguration beschrieben werden. Fig. 9 shows a schematic block diagram of an antenna device 90, in which a substrate 12 '(main reflector) has an uneven shape. This is obtained, for example, by an arrangement of a plurality of (possibly planar) partial substrates 12a-e arranged at an angle to one another. This can also be referred to as a sector paraboloid or as a multi-faceted reflect array (reflector having multiple surfaces). By means of the partial substrates 12a-e which are inclined to one another, a concave or convex or piece-wise continuous shape (for example a parabolic shape) of the substrate 12 'and thus of the main reflector can be obtained. To put it simply, the main reflector and / or the substrate 12 'can be configured in several parts, wherein the parts can be arranged parallel to one another or at an angle. The antenna 38 is arranged shifted from a central position, for example (so-called offset feed). Alternatively, the antenna 38 can also be arranged in a geometric or area-based center of gravity. The antenna device 90 can also be described as a 1D multi-faceted reflect array configuration.

In anderen Worten kann der Hauptreflektor auf Leiterplattenbasis mit der Elektronik zur Ansteuerung der Speiseantenne(n) als Sektorparaboloid (Multi-Faceted Reflectarray) und/oder in einer physikalisch gewölbten Form (konforme Antenne) mit einer oder mehreren Leiterplatten ausgeführt sein, um die gewollte Phasenfunktion zu realisieren. Auf mindestens einer dieser Leiterplatten, (d.h. Sektoren, Facetten bzw. Paneele 12a-e) ist die Elektronik zur Ansteuerung der Speiseantenne(n) angeordnet. Ein Subreflektor auf Leiterplattenbasis kann beispielsweise aus mehreren Leiterplatten in Sektorform ausgeführt sein. Vorteilhaft an einer Sektorform ist, dass, verglichen mit einer ebenen Ausführung, eine höhere Bandbreite der Antenne realisiert werden kann und eine höhere Phasenreserve der Reflektorstruktur erhalten werden kann.In other words, the main reflector based on printed circuit boards with the electronics for controlling the feed antenna (s) can be designed as a sector paraboloid (multi-faceted reflect array) and / or in a physically curved shape (conformal antenna) with one or more printed circuit boards to achieve the desired phase function to realize. The electronics for controlling the feed antenna (s) are arranged on at least one of these circuit boards (i.e. sectors, facets or panels 12a-e). A subreflector based on printed circuit boards can, for example, be constructed from a plurality of printed circuit boards in sector form. The advantage of a sector shape is that, compared with a flat design, a higher bandwidth of the antenna can be realized and a higher phase reserve of the reflector structure can be obtained.

Fig. 10 zeigt eine schematische Aufsicht auf das Substrat 12, an dem eine Vielzahl von Reflektorstrukturen 14-1 und Teilschaltungen 18-d angeordnet sind. Alternativ oder zusätzlich können auch weitere und/oder davon verschiedene Reflektorstrukturen angeordnet sein. Fig. 10 shows a schematic plan view of the substrate 12, on which a plurality of reflector structures 14-1 and subcircuits 18-d are arranged. Alternatively or additionally, further and / or different reflector structures can also be arranged.

Fig. 11 zeigt eine schematische Seitenansicht des Reflektors 10 zur Verdeutlichung der Funktion der aufgeprägten Phasenfunktion, wobei die Erläuterungen auf einen Subreflektor übertragbar sind. Die von den Reflektorstrukturen 14 der elektromagnetischen Welle 16 aufgeprägte Phasenfunktion ermöglicht eine Implementierung einer virtuellen Bauform des Reflektors 10. Durch die gestrichelte konkave Linie ist die implementierte virtuelle parabolische Form des Reflektors dargestellt. So kann der Reflektor 10 beispielsweise ein ebenes Substrat 12 mit den daran angeordneten Reflektorstrukturen 14 aufweisen. Mittels der Phasenfunktion kann die elektromagnetische Welle 16 jedoch so reflektiert werden, als würde sie von einem konkaven (oder alternativ konvexen) oder parabolischen Reflektor reflektiert. Fig. 11 shows a schematic side view of the reflector 10 to illustrate the function of the impressed phase function, wherein the explanations can be transferred to a subreflector. The phase function impressed by the reflector structures 14 on the electromagnetic wave 16 enables implementation of a virtual structural shape of the reflector 10. The implemented virtual parabolic shape of the reflector is shown by the dashed concave line. For example, the reflector 10 can have a planar substrate 12 with the reflector structures 14 arranged thereon. By means of the phase function, however, the electromagnetic wave 16 can be reflected as if it were reflected by a concave (or alternatively convex) or parabolic reflector.

Fig. 12 zeigt eine schematische Seitenansicht einer Antennenvorrichtung 120, die als gefaltete Reflectarray-Antenne ausgeführt ist. Die Antennenvorrichtung 120 umfasst beispielsweise die Hornantenne 38' oder alternativ eine beliebige andere Antennenform. Bezüglich der Antenne 38' ist ein Subreflektor in Form eines polarisierenden Gitters oder eines Schlitz-Arrays 44 angeordnet. Das polarisierende Gitter oder das Schlitz-Array 44 ist ausgebildet, um die elektromagnetische Welle 16 zu polarisieren und zu reflektieren, wenn diese eine erste Polarisierung aufweist. Die Reflektorstrukturen 14 sind ausgebildet, um eine Polarisation der elektromagnetischen Welle zu drehen und, um die elektromagnetische Welle 16 zu fokussieren. So kann beispielsweise das Schlitz-Array 44 ausgebildet sein, um die elektromagnetische Welle 16 großteils oder vollständig passieren zu lassen, wenn diese die gedrehte (zweite) Polarisierung aufweist. Fig. 12 shows a schematic side view of an antenna device 120, which is designed as a folded reflect array antenna. The antenna device 120 comprises, for example, the horn antenna 38 'or, alternatively, any other antenna shape. A subreflector in the form of a polarizing grating or a slot array 44 is arranged with respect to the antenna 38 ′. The polarizing grating or slit array 44 is designed to polarize and reflect the electromagnetic wave 16 when it has a first polarization. The reflector structures 14 are designed to rotate a polarization of the electromagnetic wave and to focus the electromagnetic wave 16. Thus, for example, the slot array 44 can be formed be in order to let the electromagnetic wave 16 pass largely or completely when it has the rotated (second) polarization.

Der Subreflektor kann als physikalisch gewölbte Variante konvex (etwa für eine Cassegrain-Antenne), konkav (etwa für eine Gregorian-Antenne) oder ebenfalls als Leiterplatte (Reflectarray) ausgeführt sein. Als Reflektorsystem kann ebenfalls eine gefaltete Antenne (Folded Reflectarray) angeordnet werden.The subreflector can be designed as a physically curved variant convex (for example for a Cassegrain antenna), concave (for example for a Gregorian antenna) or also as a printed circuit board (reflect array). A folded antenna (folded reflect array) can also be arranged as a reflector system.

Eine fokussierende bzw. Contured-Beam Funktion des Hauptreflektors auf Leiterplattenbasis als Reflectarray ist in einem derartigen Fall weiterhin gegeben. Als Subreflektor kann beispielsweise ein polarisationsselektives Gitter in einer ähnlichen oder gleichen Größe wie der Hauptreflektor über diesem angebracht werden. Die Speiseantenne kann sich weiterhin in einer Position unterhalb des Subreflektorgitters befinden. Die einfallenden Strahlen der Speiseantenne werden von diesem Gitter polarisationsabhängig reflektiert, wobei bei der Reflexion die Polarisation teilweise gedreht werden kann. Bei der Reflexion am Hauptreflektor-Reflectarray wird dann die Polarisation der einfallenden Strahlung wieder teilweise gedreht und gleichzeitig fokussiert bzw. in gewollter Weise geformt. Die Strahlen können nun den Subreflektor ohne Reflexion passieren. Diese gefaltete Form der Antenne kann dadurch ebenfalls sehr kompakt gebaut werden, allerdings durch die Polarisationsselektivität des Subreflektors nur mit einer Polarisation und bestimmten reflektierenden Elementen auf dem Hauptreflektor, die die Polarisation der einfallenden Strahlen bei der ausgeführten Reflexion drehen, realisiert werden.A focussing or contoured beam function of the main reflector based on printed circuit boards as a reflect array is still given in such a case. As a sub-reflector, for example, a polarization-selective grating of a size similar to or the same as that of the main reflector can be attached above it. The feed antenna can also be located in a position below the subreflector grid. The incident beams from the feed antenna are reflected by this grid in a polarization-dependent manner, whereby the polarization can be partially rotated during the reflection. During the reflection on the main reflector reflect array, the polarization of the incident radiation is then partially rotated again and at the same time focused or formed in a deliberate manner. The rays can now pass the subreflector without reflection. This folded shape of the antenna can also be made very compact, however, due to the polarization selectivity of the subreflector, it can only be implemented with one polarization and certain reflective elements on the main reflector that rotate the polarization of the incident rays when the reflection is carried out.

Fig. 13 zeigt eine schematische Ansicht einer Antennenvorrichtung 130, die die Hornantenne 38' und den Reflektor 10 umfasst. Mittels des Reflektors 10 wird eine Reflektoreigenschaft analog einem parabolischen Hauptreflektor erhalten. Bezüglich des Reflektors 10 ist der Subreflektor 42 angeordnet, der die mit einem Öffnungswinkel von 2 ϑf ausgestrahlte elektromagnetische Welle 16 reflektiert und in Richtung des Reflektors 10 zurückwirft. Bezüglich des Reflektors 10 wirkt dies wie eine virtuelle Antenne (Virtual Feed) 38v, die die elektromagnetische Welle 16 mit dem Öffnungswinkel 2 ϑvf aussendet. Vereinfacht ausgedrückt implementiert dies eine Funktion einer Cassegrain-Antenne. Fig. 13 FIG. 11 shows a schematic view of an antenna device 130 comprising the horn antenna 38 ′ and the reflector 10. By means of the reflector 10, a reflector property analogous to a parabolic main reflector is obtained. With respect to the reflector 10, the subreflector 42 is arranged, which reflects the electromagnetic wave 16 emitted with an opening angle of 2 ϑ f and throws it back in the direction of the reflector 10. With regard to the reflector 10, this acts like a virtual antenna (virtual feed) 38 v , which emits the electromagnetic wave 16 with the opening angle 2 ϑ vf . In simple terms, this implements a function of a Cassegrain antenna.

Vereinfacht ausgedrückt können einige der vorangehend beschriebenen Ausführungsbeispiele als Doppelreflektorsystem, beispielsweise als Cassegrain-Antenne, Gregorian-Antenne oder gefaltete Antenne ausgeführt werden. Eine Speiseantenne kann sich mittig auf einem Hauptreflektor angeordnet befinden und ausgebildet sein, um den Subreflektor zu bestrahlen (beleuchten), welcher wiederum ausgebildet ist, um die Ausleuchtung des Hauptreflektors vorzunehmen. Der Subreflektor kann die Funktion der Speiseantenne virtuell über den Hauptreflektor spiegeln. Der virtuelle Spiegelpunkt kann durch die konvexe oder konkave (Gregorian-Antenne) Form des Subreflektors im Gegensatz zu einer Spiegelung an einer planaren metallischen Fläche verschoben werden. Somit kann die gesamte Antennenvorrichtung sehr kompakt gebaut werden. Der Hauptreflektor kann parabolisch ausgeführt sein oder ausgebildet sein, um eine entsprechende Phasenfunktion implementieren, d.h. er führt zu einer Kollimation der einfallenden Strahlung und damit zu einer Richtwirkung. Die Antenne kann daher eine hohe Richtwirkung mit einer sehr kompakten Bauweise vereinen.In simple terms, some of the exemplary embodiments described above can be designed as a double reflector system, for example as a Cassegrain antenna, Gregorian antenna or folded antenna. A feed antenna can be arranged centrally on a main reflector and be designed around the subreflector to irradiate (illuminate), which in turn is designed to illuminate the main reflector. The sub-reflector can virtually mirror the function of the feed antenna via the main reflector. The virtual mirror point can be shifted by the convex or concave (Gregorian antenna) shape of the subreflector in contrast to a reflection on a planar metallic surface. Thus, the entire antenna device can be made very compact. The main reflector can be designed or designed to be parabolic in order to implement a corresponding phase function, ie it leads to a collimation of the incident radiation and thus to a directional effect. The antenna can therefore combine high directivity with a very compact design.

Die Ausführungsbeispiele beziehen sich auf einen Hauptreflektor, der ausgeführt als Leiterplatte (PCB), auf dessen Unter- oder Oberseite (oder einer anderen Seite) sich zusätzlich die Elektronik zur Speisung der Speiseantenne befindet. Auf einer Seite (beispielsweise Oberseite) sind die Elemente des Reflectarrays sowie eine Speiseantenne angeordnet. Die Ansteuerung dieser Speiseantenne kann durch Elektronik erfolgen, die sich auf der gleichen oder einer anderen Seite oder auf beiden Seiten der Leiterplatte befindet.The exemplary embodiments relate to a main reflector, which is designed as a printed circuit board (PCB), on the lower or upper side (or another side) of which the electronics for feeding the feed antenna are additionally located. The elements of the reflect array and a feed antenna are arranged on one side (for example the top). This feed antenna can be controlled by electronics that are located on the same or a different side or on both sides of the circuit board.

In Ausführungsbeispielen kann sich die elektronische Schaltung (aktive Elektronik) auf der gleichen Seite des Substrats (Hauptreflektor) befinden wie die Reflektorstrukturen und ausgebildet sein, um von dort aus die Speiseantenne anzusteuern. Dies kann beispielsweise mittels Leiterbahnen, Microstrip-Konfigurationen, Bonddrahtverbindungen oder dergleichen erfolgen.In exemplary embodiments, the electronic circuit (active electronics) can be located on the same side of the substrate (main reflector) as the reflector structures and can be designed to control the feed antenna from there. This can be done, for example, by means of conductor tracks, microstrip configurations, bond wire connections or the like.

Die Speiseantenne kann eine beliebige Antenne sein und eine schmale oder eine breite Abstrahlcharakteristik aufweisen. Die Speiseantenne kann beispielsweise als On-Chip Antenne, Hornantenne, offener Hohlleiter oder Phased-Array-Antenne ausgeführt sein. Die Speiseantenne kann auch mehrere verteilte Antennenelemente umfassen, die einzeln oder in Gruppen zur Abstrahlung angeregt werden können. Weitere Beispiele für Speiseantennen sind beispielsweise substratintegrierte Wellenleiter, ggf. mit Horn, (planare) Modenwandler mit aufgesetztem Horn, gepackte Antennen (Packaged Antennas), gedruckte planare Antennen, wie etwa eine Patch-Antenne, PIFA-Antennen oder dergleichen.The feed antenna can be any antenna and have a narrow or a wide radiation characteristic. The feed antenna can be designed, for example, as an on-chip antenna, horn antenna, open waveguide or phased array antenna. The feed antenna can also comprise several distributed antenna elements which can be excited to emit radiation individually or in groups. Further examples of feed antennas are, for example, substrate-integrated waveguides, possibly with horn, (planar) mode converters with attached horn, packaged antennas, printed planar antennas such as a patch antenna, PIFA antennas or the like.

Die Speiseantenne kann eine oder mehrere einzelne Speiseantennen mit der gleichen oder unterschiedlichen Polarisationen umfassen. In Kombination mit bestimmten reflektierenden Elementen auf Haupt- bzw. Subreflektorebenen kann somit auch polarisationsabhängig eine Multiplex-, Demultiplex- oder Duplex-Übertragung elektromagnetischer Wellen (Funksignale) realisiert werden. Beispielsweise können gekreuzte Dipole als reflektierende Elemente angeordnet werden. Die einzelnen Dipolarme können die Phase der einfallenden Strahlen mit Polarisation in einer Längsrichtung selektiv reflektieren. Als gekreuzte Dipole können die Streuelemente (Reflektorstrukturen) damit verschiedene, beispielsweise orthogonale lineare Polarisationen, selektiv mit hoher Isolation reflektieren und somit unterschiedliche Phasenbelegungen an die unterschiedlichen, beispielsweise orthogonalpolarisierten Strahlen aufprägen. Dies ermöglicht beispielsweise eine räumliche Trennung, d.h. zwei Fokuspunkte, der beiden linear orthogonal polarisierten Speiseantennen. D.h., es sind zwei Speiseantennen angeordnet.The feed antenna can comprise one or more individual feed antennas with the same or different polarizations. In combination with certain reflective elements on the main or subreflector levels, it can also be polarization-dependent a multiplex, demultiplex or duplex transmission of electromagnetic waves (radio signals) can be realized. For example, crossed dipoles can be arranged as reflective elements. The individual dipolar arms can selectively reflect the phase of the incident rays with polarization in a longitudinal direction. As crossed dipoles, the scattering elements (reflector structures) can therefore reflect different, for example orthogonal linear polarizations, selectively with high isolation and thus impress different phase assignments on the different, for example orthogonally polarized beams. This enables, for example, a spatial separation, ie two focal points, of the two linearly orthogonally polarized feed antennas. That is, two feed antennas are arranged.

In Ausführungsbeispielen kann die Speiseantenne an einer (bspw. vertikalen) Position, d.h. senkrecht zur Apertur des Hauptreflektors angeordnet sein, die sich auf der Ebene des Hauptreflektors (etwa in Form einer Patch-Antenne), höher (etwa in Form einer Hornantenne), jedoch auch tiefer (etwa in einer der Lagen des Substrats integriert) befindet.In exemplary embodiments, the feed antenna can be arranged at a (e.g. vertical) position, ie perpendicular to the aperture of the main reflector, which is on the plane of the main reflector (e.g. in the form of a patch antenna), but higher (e.g. in the form of a horn antenna) also located deeper (e.g. integrated in one of the layers of the substrate).

Ausführungsbeispiele umfassen zwei oder mehrere Speiseantennen, die ausgebildet sind, um jeweils eine elektromagnetische Welle mit voneinander verschiedenen Frequenzen abzustrahlen (sogenanntes Multi-Band Reflectarray). Alternativ oder zusätzlich können die Speiseantennen im Zeitmultiplex-Verfahren angesteuert werden.Embodiments include two or more feed antennas which are designed to each emit an electromagnetic wave at frequencies different from one another (so-called multi-band reflect array). Alternatively or in addition, the feed antennas can be controlled using the time division multiplex method.

Eine horizontale (laterale) Position der Speiseantenne (in der Aperturebene des Hauptreflektors) kann sich zentral oder an einer anderen Position (sogenannte Offset-Speisung) befinden. Ferner kann die axiale oder laterale Position des Subreflektors variabel sein. Der Subreflektor kann alternativ oder zusätzlich auch um einen beliebigen Winkel α (z. B. kleiner als 90°) gekippt werden.A horizontal (lateral) position of the feed antenna (in the aperture plane of the main reflector) can be located centrally or at another position (so-called offset feed). Furthermore, the axial or lateral position of the sub-reflector can be variable. As an alternative or in addition, the subreflector can also be tilted by any desired angle α (e.g. less than 90 °).

Eine (ggf. wesentliche) Funktion des Doppelreflektorsystems ist bspw. die Strahlbündelung, also eine hohe Richtwirkung der Antenne. Die Antenne kann somit bei Richtfunk und/oder Punkt-zu-Punkt-Verbindungen (Direktverbindungen) eingesetzt werden. Die Möglichkeit einer konturförmigen Abstrahlung (Contured-Beam) mittels geeigneter Phasenbelegung des Hauptreflektor-Reflectarrays ist ebenfalls möglich. Eine Hauptanwendung hierbei ist beispielsweise der Satellitenfunk. Ebenso kann die Phasenbelegung (Phasenfunktion) so implementiert sein, dass Multi-Beam, Tilted-Beam oder eine beliebige andere realisierbare Form der Abstrahlung der Gesamtantenne erreicht wird.One (possibly essential) function of the double reflector system is, for example, beam bundling, that is, a high level of directivity of the antenna. The antenna can thus be used for directional radio and / or point-to-point connections (direct connections). The possibility of a contoured radiation (Contured Beam) by means of suitable phase assignment of the main reflector reflect array is also possible. A main application here is, for example, satellite radio. The phase assignment (phase function) can also be implemented in such a way that multi-beam, tilted beam or any other feasible form of radiation from the overall antenna is achieved.

In Ausführungsbeispielen sind der Haupt- bzw. Subreflektor mechanisch relativ zueinander bewegbar, um beispielsweise eine Strahlsteuerung bzw. Schwenkung auszuführen.In exemplary embodiments, the main or subreflector can be moved mechanically relative to one another in order to carry out beam control or pivoting, for example.

Vorangehend beschriebene Ausführungsbeispiele beschreiben Realisierungen eines Hauptreflektors, der die Elektronik und die Strahlungsreflexion mit bestimmter Phasenbelegung der Strahlung eines Subreflektors, etwa in einem Cassegrain-Antennensystem oder in einer Faltantenne auf einer Leiterplatte, vereint. Ein Vorteil hierbei ist die Kompaktheit des Antennensystems und die Integrierbarkeit der Elektronik zusammen mit den Reflektoreigenschaften der Antenne auf einer Leiterplatte.The above-described exemplary embodiments describe realizations of a main reflector that combines the electronics and the radiation reflection with specific phase assignment of the radiation from a subreflector, for example in a Cassegrain antenna system or in a folding antenna on a printed circuit board. One advantage here is the compactness of the antenna system and the ability to integrate the electronics together with the reflector properties of the antenna on a printed circuit board.

Anwendungsbeispiele können beispielsweise in Richtfunkverbindungen (Punkt-zu-Punkt), dem Satellitenfunk und/oder in Radaranwendungen eingesetzt werden. Ferner können Antennenvorrichtungen gemäß vorangehend beschriebenen Ausführungsbeispielen überall eingesetzt werden, wo eine hochintegrierte Antenne mit hoher Richtwirkung bzw. konturförmiger Abstrahlung benötigt wird. Als ein typisches Anwendungsbeispiel kann eine Cassegrain-Reflectarray-Antenne mit Haupt- und Subspiegel (Reflektor) als Leiterplattenausführung gesehen werden. Der Subreflektor als Leiterplatte kann in ein strahlungsdurchlässiges Radomgehäuse eingebettet sein, während die Hauptreflektorleiterplatte auf ein metallisches Gehäuse aufgesetzt ist, dessen Funktion der Schutz der Elektronik sowie ihre Abschirmung (im Sinne der EMV) und/oder die Wärmeableitung der elektronischen Komponenten umfasst. Die beiden Gehäusekomponenten können mechanisch (ggf. wasserfest und/oder chemikalienresistent) zusammengefügt werden und die Hauptreflektorleiterplatte mit einer aufgebrachten On-Chip Speiseantenne einschließen. Die Anschlüsse nach außen, d.h. zur Kontaktierung der Antennenvorrichtung, können beispielsweise in Form eines Datenanschlusses und als Anschluss für die Energieversorgung ausgeführt werden.Application examples can be used, for example, in directional radio links (point-to-point), satellite radio and / or in radar applications. Furthermore, antenna devices according to the exemplary embodiments described above can be used wherever a highly integrated antenna with a high level of directivity or contoured radiation is required. A Cassegrain reflect array antenna with main and sub mirror (reflector) as a printed circuit board design can be seen as a typical application example. The subreflector as a circuit board can be embedded in a radome housing that is permeable to radiation, while the main reflector circuit board is placed on a metallic housing, whose function includes protecting the electronics and shielding them (in terms of EMC) and / or dissipating heat from the electronic components. The two housing components can be joined together mechanically (possibly waterproof and / or chemical-resistant) and enclose the main reflector circuit board with an on-chip feed antenna. The connections to the outside, i.e. for contacting the antenna device, can be implemented, for example, in the form of a data connection and as a connection for the power supply.

Obwohl die Antenne und/oder die Antennenvorrichtung vorangehend so beschrieben wurden, dass diese ausgebildet sind, um die elektromagnetische Welle 16 zu erzeugen und auszusenden, können Ausführungsbeispiele auch dazu genutzt werden, um die elektromagnetische Welle 16 alternativ oder zusätzlich zu empfangen, so dass diese mit der elektronischen Schaltung oder einer weiteren elektronischen Schaltung auswertbar ist.Although the antenna and / or the antenna device have been described above in such a way that they are designed to generate and transmit the electromagnetic wave 16, exemplary embodiments can also be used to receive the electromagnetic wave 16 alternatively or in addition, so that it can be transmitted with the electronic circuit or another electronic circuit can be evaluated.

Obwohl manche Aspekte im Zusammenhang mit einer Vorrichtung beschrieben wurden, versteht es sich, dass diese Aspekte auch eine Beschreibung des entsprechenden Verfahrens darstellen, sodass ein Block oder ein Bauelement einer Vorrichtung auch als ein entsprechender Verfahrensschritt oder als ein Merkmal eines Verfahrensschrittes zu verstehen ist. Analog dazu stellen Aspekte, die im Zusammenhang mit einem oder als ein Verfahrensschritt beschrieben wurden, auch eine Beschreibung eines entsprechenden Blocks oder Details oder Merkmals einer entsprechenden Vorrichtung dar.Although some aspects have been described in connection with a device, it goes without saying that these aspects also represent a description of the corresponding method, so that a block or a component of a device is also to be understood as a corresponding method step or as a feature of a method step. Analogously, aspects that have been described in connection with or as a method step also represent a description of a corresponding block or details or features of a corresponding device.

Die oben beschriebenen Ausführungsbeispiele stellen lediglich eine Veranschaulichung der Prinzipien der vorliegenden Erfindung dar. Es versteht sich, dass Modifikationen und Variationen der hierin beschriebenen Anordnungen und Einzelheiten anderen Fachleuten einleuchten werden. Deshalb ist beabsichtigt, dass die Erfindung lediglich durch den Schutzumfang der nachstehenden Patentansprüche und nicht durch die spezifischen Einzelheiten, die anhand der Beschreibung und der Erläuterung der Ausführungsbeispiele hierin präsentiert wurden, beschränkt sei.The above-described embodiments are merely illustrative of the principles of the present invention. It is to be understood that modifications and variations of the arrangements and details described herein will suggest others skilled in the art become evident. It is therefore intended that the invention be limited only by the scope of protection of the following patent claims and not by the specific details presented herein with reference to the description and explanation of the exemplary embodiments.

Die Forschungsarbeiten, die zu diesen Ergebnissen geführt haben, wurden von der Europäischen Union gefördert.The research that led to these results was funded by the European Union.

Claims (12)

  1. Antenna device (50; 60; 70; 80; 90; 120; 130) comprising:
    a reflector (10; 20; 40; 50), comprising
    a substrate (12);
    a plurality of reflector structures (14; 14-1-4) arranged on or in the substrate (12) and configured to reflect an incident electromagnetic wave (16); and
    an electronic antenna control circuit (18; 18a-d) arranged on or in the substrate (12);
    the antenna device further comprising:
    an antenna (38; 38') arranged on the substrate (12); and
    a subreflector (42; 42') configured to reflect the electromagnetic wave (16) emitted by the antenna (38; 38') at least partly in the direction of the plurality of reflector structures (14; 14-1-4), such that the electromagnetic wave (16) reflected by the subreflector (42; 42') is directed in the direction of the plurality of reflector structures (14; 14-1-4) and reflected again by the same;
    wherein the antenna (38; 38') is connected to the electronic antenna control circuit (18; 18a-d) and configured to generate the electromagnetic wave (16) based on a control of the electronic antenna control circuit (18; 18a-d) and to emit the same in a direction of the subreflector (42; 42'); and
    wherein the plurality of reflector structures (14; 14-1-4) are arranged in at least two differing substrate planes (22a, 22b) that are arranged parallel to a substrate surface that is arranged facing a direction in which the electromagnetic wave (16) is reflected.
  2. Antenna device according to claim 1, wherein the plurality of reflector structures (14; 14-1-4) are configured to reflect the incident electromagnetic wave (16) such that the reflected electromagnetic wave (16) experiences beam focusing by the reflection at the plurality of reflector structures (14; 14-1-4).
  3. Antenna device according to claim 1 or 2, wherein the substrate (12) includes a printed circuit board, wherein the printed circuit board includes a stack with at least a first layer (22a), a second layer (24a) and a third layer (22b), wherein the second (24a) layer is arranged between the first (22a) and the third (22b) layer, wherein the plurality of reflector structures (14; 14-1-4) are arranged at least partly at, on or in the first layer (22a), and wherein the second layer (24a) is at least partly electrically conductive.
  4. Antenna device according to claim 3, wherein the second layer (22b) is formed as an electric ground plane.
  5. Antenna device according to one of the preceding claims, wherein at least one partial circuit (18a-d) of the electronic antenna control circuit (18; 18a-d) is arranged on a side of the substrate that is facing away from an incident electromagnetic wave (16) impinging on the plurality of reflector structures (14; 14-1-4).
  6. Antenna device according to one of the preceding claims, further including a radom structure (32) arranged with respect to the plurality of reflector structures (14; 14-1-4) and configured to at least partly reduce a mechanical or chemical influence of an environment of the plurality of reflector structures (14; 14-1-4) on the plurality of reflector structures (14; 14-1-4), wherein the radom structure (32) includes, at least in areas, an electrically conductive structure (34) or a further plurality of reflector structures that are configured to reflect the electromagnetic wave (16), wherein the electrically conductive structure (34) or the further plurality of reflector structures are arranged with respect to the plurality of reflector structures (14; 14-1-4) such that the electromagnetic wave (16) reflected by the electrically conductive structure (34) is directed in the direction of the plurality of reflector structures (14; 14-1-4) and reflected again by the same.
  7. Antenna device according to one of the preceding claims, wherein the reflector includes a radom structure (32) that is arranged with respect to the plurality of reflector structures (14; 14-1-4) and configured to at least partly reduce a mechanical or chemical influence of an environment of the plurality of reflector structures (14; 14-1-4) on the plurality of reflector structures (14; 14-1-4).
  8. Antenna device according to claim 6 or 7, wherein the radom structure (32) includes the subreflector (42; 42').
  9. Antenna device according to one of claims 6 to 8, wherein the substrate (12) includes a printed circuit board, wherein the printed circuit board includes a stack with at least a first layer (22a), a second layer (24a) and a third layer (22b) and wherein the radom structure (33) is formed as radom layer on the substrate (12).
  10. Antenna device according to one of the preceding claims, wherein an axial relative position of the subreflector (42; 42') with respect to the reflector (10; 20; 40; 50) is variable along an axial direction (44) parallel to a surface normal (46) of the substrate (12).
  11. Antenna device according to one of the preceding claims, wherein a lateral relative position of the subreflector (42; 42') is variable with respect to the reflector (10; 20; 40; 50) along a lateral direction (48) perpendicular to a surface normal (46) of the substrate (12) or wherein an inclination (α) of the subreflector (42; 42') is variable with respect to a surface of the substrate (12) of the reflector (10; 20; 40; 50).
  12. Antenna device according to one of the preceding claims, wherein the antenna (38, 38') comprises a plurality of antenna elements, wherein a first subset of the antenna elements is configured to generate the electromagnetic wave (16) with a first polarization direction and wherein a second subset of the antenna elements is configured to generate the electromagnetic wave (16) with a second polarization direction;
    wherein a first subset (26a) of the plurality of reflector structures (14; 14-1-4) is configured to reflect the electromagnetic wave (16) with a first degree of reflection when the electromagnetic wave (16) comprises the first polarization direction and to reflect the same with a second degree of reflection when the electromagnetic wave (16) comprises the second polarization,
    wherein a second subset (26b) of the plurality of reflector structures (14; 14-1-4) is configured to reflect the electromagnetic wave (16) with a third degree of reflection when the electromagnetic wave (16) comprises the second polarization direction and to reflect the same with a fourth degree of reflection when the electromagnetic wave (16) comprises the first polarization;
    wherein the first degree of reflection and the third degree of reflection have a greater value than the second degree of reflection and the fourth degree of reflection.
EP16705555.7A 2015-02-24 2016-02-22 Reflector with an electronic circuit and antenna device comprising a reflector Active EP3262713B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15156378.0A EP3062392A1 (en) 2015-02-24 2015-02-24 Reflector with an electronic circuit and antenna device comprising a reflector
PCT/EP2016/053674 WO2016135099A1 (en) 2015-02-24 2016-02-22 Reflector with an electronic circuit and antenna apparatus with a reflector

Publications (2)

Publication Number Publication Date
EP3262713A1 EP3262713A1 (en) 2018-01-03
EP3262713B1 true EP3262713B1 (en) 2021-01-13

Family

ID=52595107

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15156378.0A Withdrawn EP3062392A1 (en) 2015-02-24 2015-02-24 Reflector with an electronic circuit and antenna device comprising a reflector
EP16705555.7A Active EP3262713B1 (en) 2015-02-24 2016-02-22 Reflector with an electronic circuit and antenna device comprising a reflector

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15156378.0A Withdrawn EP3062392A1 (en) 2015-02-24 2015-02-24 Reflector with an electronic circuit and antenna device comprising a reflector

Country Status (7)

Country Link
US (1) US10978809B2 (en)
EP (2) EP3062392A1 (en)
JP (2) JP2018510559A (en)
KR (1) KR101952168B1 (en)
CN (1) CN107548527B (en)
CA (1) CA2976830C (en)
WO (1) WO2016135099A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10490903B2 (en) * 2016-10-18 2019-11-26 Huawei Technologies Co., Ltd. Liquid-crystal reconfigurable metasurface reflector antenna
CN109302851B (en) * 2016-11-30 2020-12-04 华为技术有限公司 Reflective array antenna and communication equipment
US10367259B2 (en) * 2017-01-12 2019-07-30 Arris Enterprises Llc Antenna with enhanced azimuth gain
FR3085234B1 (en) 2018-08-27 2022-02-11 Greenerwave ANTENNA FOR TRANSMITTING AND/OR RECEIVING AN ELECTROMAGNETIC WAVE, AND SYSTEM COMPRISING THIS ANTENNA
EP3874560A1 (en) * 2018-10-31 2021-09-08 Nokia Technologies Oy Apparatus for reflecting electromagnetic waves and method of operating such apparatus
MX2021009299A (en) * 2019-01-31 2022-01-24 Seoul Viosys Co Ltd Light-emitting diode.
CN210224277U (en) * 2019-08-29 2020-03-31 深圳Tcl新技术有限公司 Directional high-gain antenna and remote control equipment
WO2021090286A1 (en) * 2019-11-08 2021-05-14 Vayyar Imaging Ltd. Systems and methods for providing wide beam radar arrays
CN111048895B (en) * 2019-12-24 2021-06-08 华南理工大学 Package substrate distributed antenna
US20220416422A1 (en) * 2020-01-08 2022-12-29 Metawave Corporation Reflectarray antenna with two-dimensional beam scanning
JP6995260B2 (en) * 2020-01-21 2022-02-04 三菱電機株式会社 Reflector antenna device and communication device
RU2759918C1 (en) * 2021-02-12 2021-11-18 Акционерное общество «Обнинское научно-производственное предприятие «Технология» им. А.Г.Ромашина» Design of fixed polarizing mirror of two-reflector antenna system
CN114649686B (en) * 2022-05-16 2022-08-02 电子科技大学 High-gain folding type planar reflective array antenna with filtering characteristic
CN115347379B (en) * 2022-10-19 2023-01-31 银河航天(西安)科技有限公司 Antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006122040A2 (en) * 2005-05-05 2006-11-16 Automotive Systems Laboratory, Inc. Antenna
US20130241770A1 (en) * 2011-09-14 2013-09-19 Thales Reconfigurable Radiating Phase-Shifting Cell Based on Complementary Slot and Microstrip Resonances

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3254342A (en) * 1963-07-09 1966-05-31 Bell Telephone Labor Inc Antenna system wherein beamwidth variation is achieved by changing shape of intermediate reflector
US3877032A (en) * 1971-10-20 1975-04-08 Harris Intertype Corp Reflector antenna with improved scanning
US4142190A (en) * 1977-09-29 1979-02-27 The United States Of America As Represented By The Secretary Of The Army Microstrip feed with reduced aperture blockage
JPS5744302A (en) * 1980-08-28 1982-03-12 Mitsubishi Electric Corp Antenna device
US4684952A (en) * 1982-09-24 1987-08-04 Ball Corporation Microstrip reflectarray for satellite communication and radar cross-section enhancement or reduction
US5451969A (en) * 1993-03-22 1995-09-19 Raytheon Company Dual polarized dual band antenna
US6281852B1 (en) * 1995-03-27 2001-08-28 Sal Amarillas Integrated antenna for satellite and terrestrial broadcast reception
US6081234A (en) * 1997-07-11 2000-06-27 California Institute Of Technology Beam scanning reflectarray antenna with circular polarization
US6020853A (en) * 1998-10-28 2000-02-01 Raytheon Company Microstrip phase shifting reflect array antenna
US6150991A (en) * 1998-11-12 2000-11-21 Raytheon Company Electronically scanned cassegrain antenna with full aperture secondary/radome
US7042420B2 (en) * 1999-11-18 2006-05-09 Automotive Systems Laboratory, Inc. Multi-beam antenna
SE516840C3 (en) * 1999-12-21 2002-06-26 Ericsson Telefon Ab L M An apparatus for antenna, antenna and method for producing an antenna reflector
FR2806214B1 (en) * 2000-03-10 2003-08-01 Agence Spatiale Europeenne REFLECTOR ANTENNA COMPRISING A PLURALITY OF PANELS
US6597327B2 (en) * 2000-09-15 2003-07-22 Sarnoff Corporation Reconfigurable adaptive wideband antenna
US6384787B1 (en) * 2001-02-21 2002-05-07 The Boeing Company Flat reflectarray antenna
US6774851B1 (en) * 2001-09-28 2004-08-10 Her Majesty In Right Of Canada, As Represented By The Minister Of Industry Antenna with variable phase shift
WO2003038948A1 (en) * 2001-10-26 2003-05-08 Unitech, Llc. Coating applied antenna and method of making same
US6642889B1 (en) * 2002-05-03 2003-11-04 Raytheon Company Asymmetric-element reflect array antenna
US7034751B2 (en) * 2002-05-20 2006-04-25 Raytheon Company Reflective and transmissive mode monolithic millimeter wave array system and in-line amplifier using same
US6744411B1 (en) 2002-12-23 2004-06-01 The Boeing Company Electronically scanned antenna system, an electrically scanned antenna and an associated method of forming the same
US6909404B2 (en) * 2003-03-11 2005-06-21 Harris Corporation Taper control of reflectors and sub-reflectors using fluidic dielectrics
US6930653B2 (en) * 2003-05-15 2005-08-16 Harris Corporation Reflector and sub-reflector adjustment using fluidic dielectrics
DE10344535A1 (en) * 2003-09-25 2005-04-28 Adc Automotive Dist Control reflector antenna
JP2007012637A (en) * 2003-09-29 2007-01-18 Nikon Corp Optical material, optical member, optical system, aligner, and exposure method
US7098859B2 (en) * 2003-10-30 2006-08-29 Mitsubishi Denki Kabushiki Kaisha Antenna unit
EP1745526A4 (en) * 2004-03-11 2008-03-19 Intellian Technologies Inc Satellite tracking antenna system and method therefor
KR100599610B1 (en) * 2004-03-11 2006-07-13 (주)인텔리안테크놀로지스 A satellite tracking antenna system and method using rotation period revision of subreflector
CN101032055B (en) * 2004-09-07 2011-12-14 日本电信电话株式会社 Antenna device, array antenna device using the antenna device, module, module array, and package module
US7224314B2 (en) * 2004-11-24 2007-05-29 Agilent Technologies, Inc. Device for reflecting electromagnetic radiation
TWI241741B (en) * 2004-12-30 2005-10-11 Tatung Co Ltd Microstrip reflect array antenna adopting a plurality of u-slot patches
JP2006203602A (en) * 2005-01-21 2006-08-03 Toto Ltd Antenna unit and method of manufacturing antenna board
US7342299B2 (en) * 2005-09-21 2008-03-11 International Business Machines Corporation Apparatus and methods for packaging antennas with integrated circuit chips for millimeter wave applications
US7423601B2 (en) * 2005-10-20 2008-09-09 Raytheon Company Reflect array antennas having monolithic sub-arrays with improved DC bias current paths
US7466281B2 (en) 2006-05-24 2008-12-16 Wavebender, Inc. Integrated waveguide antenna and array
TW200807809A (en) * 2006-07-28 2008-02-01 Tatung Co Ltd Microstrip reflection array antenna
US8217847B2 (en) * 2007-09-26 2012-07-10 Raytheon Company Low loss, variable phase reflect array
US7791552B1 (en) * 2007-10-12 2010-09-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Cellular reflectarray antenna and method of making same
US7782255B2 (en) * 2007-10-23 2010-08-24 The Boeing Company System and methods for radar and communications applications
JP2009236659A (en) 2008-03-27 2009-10-15 Toto Ltd Radio-wave sensor
US7834803B2 (en) * 2008-09-03 2010-11-16 Lockheed Martin Corporation Electronically steered, dual-polarized, dual-plane, monopulse antenna feed
KR101084225B1 (en) * 2008-10-09 2011-11-17 한국전자통신연구원 Cassegrain antenna for high gain
RU2380802C1 (en) * 2008-11-17 2010-01-27 Джи-хо Ан Compact multibeam mirror antenna
US8035564B2 (en) * 2008-12-01 2011-10-11 Cirocomm Technology Corp. Surface mounted planar antenna apparatus
US8334815B2 (en) * 2009-07-20 2012-12-18 Kvh Industries, Inc. Multi-feed antenna system for satellite communications
ES2384836B1 (en) * 2009-09-01 2013-05-20 Fundacio Privada Centre Tecnologic De Telecomunicacions De Catalunya REFLECTARRAY TYPE ANTENNA SYSTEM.
US8830127B2 (en) * 2010-11-18 2014-09-09 Casio Computer Co., Ltd Patch antenna and method of mounting the same
JP5609772B2 (en) 2011-05-26 2014-10-22 株式会社デンソー Wide angle directional antenna
CN102299418B (en) * 2011-06-15 2013-09-18 集美大学 Multilayer broadband microstrip antenna
CN102509894A (en) * 2011-10-11 2012-06-20 李亚丁 Small circularly polarized high gain antenna with reduced sidelobe
US9450308B1 (en) * 2011-10-21 2016-09-20 Viasat, Inc. Antenna subsystem and method for single channel monopulse tracking
US9747480B2 (en) * 2011-12-05 2017-08-29 Adasa Inc. RFID and robots for multichannel shopping
CN102856662B (en) * 2012-07-31 2015-11-25 深圳光启高等理工研究院 Metamaterial composite substrate and preparation method, satellite antenna and satellite receiving system
US9270013B2 (en) * 2012-10-25 2016-02-23 Cambium Networks, Ltd Reflector arrangement for attachment to a wireless communications terminal
CN104332717B (en) * 2014-11-27 2017-09-15 陈念 Reflector
US9831561B2 (en) * 2015-04-24 2017-11-28 Electronics And Telecommunications Research Institute Reflective antenna apparatus and design method thereof
US10103434B2 (en) * 2015-09-15 2018-10-16 Intel Corporation Millimeter-wave high-gain steerable reflect array-feeding array antenna in a wireless local area networks
DE102015225578A1 (en) * 2015-12-17 2017-06-22 Robert Bosch Gmbh Apparatus for receiving microwave radiation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006122040A2 (en) * 2005-05-05 2006-11-16 Automotive Systems Laboratory, Inc. Antenna
US20130241770A1 (en) * 2011-09-14 2013-09-19 Thales Reconfigurable Radiating Phase-Shifting Cell Based on Complementary Slot and Microstrip Resonances

Also Published As

Publication number Publication date
EP3262713A1 (en) 2018-01-03
US10978809B2 (en) 2021-04-13
KR20170117595A (en) 2017-10-23
WO2016135099A1 (en) 2016-09-01
CA2976830C (en) 2020-12-01
JP6920374B2 (en) 2021-08-18
JP2018510559A (en) 2018-04-12
JP2019208241A (en) 2019-12-05
CN107548527A (en) 2018-01-05
CA2976830A1 (en) 2016-09-01
KR101952168B1 (en) 2019-02-26
EP3062392A1 (en) 2016-08-31
US20170373401A1 (en) 2017-12-28
CN107548527B (en) 2021-10-15

Similar Documents

Publication Publication Date Title
EP3262713B1 (en) Reflector with an electronic circuit and antenna device comprising a reflector
EP2575210B1 (en) Variable height radiating aperture
EP3346493B1 (en) Wafer level package with integrated antennas and shielding means
EP3025392B1 (en) Polarization dependent electromagnetic bandgap antenna and related methods
DE102019205150A1 (en) ELECTRONIC DEVICE FOR ARRANGING ANTENNAS ON A DIELECTRIC LAYER
EP1783516B1 (en) Microwave alignment apparatus
US20070001918A1 (en) Antenna
WO2008061107A2 (en) Antenna
US9054414B2 (en) Antenna system for low-earth-orbit satellites
KR20060041826A (en) Circular polarised array antenna
CN101663796A (en) A dual polarized antenna with null-fill
US10886604B2 (en) Interleaved array of antennas operable at multiple frequencies
EP3346549B1 (en) Electronic module with integrated antenna and method of making same
EP2494655B1 (en) Antenna arrangement for signal transmission
DE102010003457A1 (en) Leaky wave antenna
EP1886383A2 (en) Antenna
Nguyen et al. Wideband unit-cell for linearly polarized X-band transmitarray applications
Luo et al. Proof of concept of a low-cost beam-steering hybrid reflectarray that mixes microstrip and lens elements using passive demonstrators
Carrasco et al. Switchable-beam reflectarray with aperiodic-gathered elements based on PIN diodes
Sangmahamad et al. Radiation Beam Steering Using a Binary-Coded Reflective Metasurface
Carrasco et al. Switchable-beam reflectarray antenna with gathered elements using different lattices
JP2022189533A (en) Radio wave scattering device and radio wave scattering member
Suzuki et al. Design of a 60 GHz band 3-D phased array antenna module using 3-D SiP structure

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170803

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200228

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200729

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VISENTIN, TRISTAN

Inventor name: WEILER, RICHARD JUERGEN

Inventor name: KEUSGEN, WILHELM

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012186

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1355242

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210413

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210413

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012186

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

26N No opposition filed

Effective date: 20211014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210222

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1355242

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230217

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230221

Year of fee payment: 8

Ref country code: DE

Payment date: 20230216

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210113

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160222