EP3262382A1 - Appareil de mesure - Google Patents

Appareil de mesure

Info

Publication number
EP3262382A1
EP3262382A1 EP15707332.1A EP15707332A EP3262382A1 EP 3262382 A1 EP3262382 A1 EP 3262382A1 EP 15707332 A EP15707332 A EP 15707332A EP 3262382 A1 EP3262382 A1 EP 3262382A1
Authority
EP
European Patent Office
Prior art keywords
data
measuring device
memory
processor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15707332.1A
Other languages
German (de)
English (en)
Inventor
Martin Mellert
Herbert Auber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vega Grieshaber KG
Original Assignee
Vega Grieshaber KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vega Grieshaber KG filed Critical Vega Grieshaber KG
Publication of EP3262382A1 publication Critical patent/EP3262382A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32149Display working condition data, real measured data and tolerance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37522Determine validity of measured signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37581Measuring errors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • each measurement has measured value deviations, ie measurement errors. Particularly in the area of process monitoring, it is of critical importance to accurately determine and adequately take into account the occurring measured value deviations .
  • Prob ⁇ lematic is that a number of different factors must be taken into account for a precise calculation of the measurement errors, which makes the calculation of the Messwertab ⁇ deviations by the user consuming.
  • the factors used in this calculation partly change with the respective current environmental and basic conditions, for example an operating temperature or operating time of the measuring device. So it is not enough, once for that
  • the object of the invention is to provide a measuring device, are avoided with the based on error estimation worst-case estimates of measurement errors and from them resulting losses in process efficiency of Prozes ⁇ sen, in particular manufacturing processes Kings ⁇ nen, especially for a the user comfort stei ⁇ -enhancing manner.
  • This object is achieved by a measuring device with the Merkma ⁇ len of claim 1.
  • the inventive measuring device has at least one sensor, at least one processor, at least one memory and min ⁇ least an output interface.
  • an output ⁇ interface within the meaning of this invention are both interfaces for indirect or direct output to a user of the system, such as an operating tool, a control computer, an analog or digital display, or a display, to understand as well as data interfaces for electronic signal communication with which a read-out by an electronic control system or a computer-optionally ⁇ geenfines- control system is made possible.
  • the processor and the memory can first access the processor to the memory, secondly, the sensor readings write directly to memory, and / or transmit to the processor, and thirdly, a data set from the memory and / or by the processor to the output ⁇ interface are forwarded.
  • a signal communication can take place by connection via electrical conductors or printed conductors.
  • the invention is characterized in that at least in a region of the memory device-specific data and / or rise to application ⁇ specific data of a calculation of the measured value deviation, on the basis of the device-specific data and / or application-specific data and the measured measurement data are stored, that the processor on Implementation set is and that the calculated measured value deviation can be output via the output interface, in particular readable, readable or retrievable.
  • the measured data include ei ⁇ nen pressure and / or temperature and / or an operating time since these parameters are re ⁇ levant one hand, for many processes and on the other typical variables which influence the aktuel- len value of the measurement error is , represent. Be ⁇ Sonders well, the invention is therefore suitable for measuring instruments, the pressure transmitters are ⁇ , can be used.
  • the device-specific data stored in the memory data for accuracy class and / or data to individually determined for the instrumentommetoef ⁇ coefficients and / or data for the construction of the sensor system umfas ⁇ sen.'S
  • the device-specific apparatus A ⁇ influences on the measurement error in the calculation can be determined the same as precisely as possible.
  • these data are subject to further environmental conditions, it is preferable to allow the loading ⁇ consideration of this dependence either by depositing the appropriate data tables or equivalent analytical ⁇ shear descriptions, eg in the form of correction coefficients or functions that reflect the dependencies authentic i ⁇ cher ,
  • the application-specific data comprises data from a device adjustment and / or a linearisation and / or Informa ⁇ tions for use.
  • A possible friendliness can be provided to take account of influences on the measurement ⁇ deviation which results from the respective actual use situation.
  • the processor is also used to simulate measured data and to calculate the measured value deviation using the Si mulated data is set up as measured measurement data for calculating the measured value deviation.
  • the maximum measured value deviation determined during the simulation can be output via the output interface, this can be used as part of asset management to monitor the operating conditions.
  • the user can determine by analyzing the simulated measured value deviations and the contributions of different possible in this incoming single error optimization potential. In combination with asset management, individual errors can then be monitored and limit values can be set for these individual errors.
  • 1 shows a measuring device 100 with a sensor 111, which is designed as a temperature sensor, a sensor 112, which is designed as a pressure sensor and a sensor 113 for detecting the operating time of the measuring device 100.
  • the measuring device 100 may be in particular a pressure transducer.
  • the sensors 111,112,113 are provided via signal lines 170d, 170e, 170f, which may be performed, for example, as a cable or conductors from ⁇ , in signal communication with a pro- cessor 120, and can be measured him about measurement data übermit ⁇ stuffs.
  • the processor 120 is in turn via the signal line 170b with a memory 130 in signal communication, which in particular allows the storage of measured measurement data, but in an alternative, not shown ⁇ execution form are also possible directly via signal lines from the sensors 111,112,113 to the memory could.
  • the processor via the signal line 170c with egg ⁇ ner output interface 140 may be implemented as a plug contact for a circuit-based data output, or as a wireless interface for wireless data output, in Sig ⁇ nalkommunikation is so that the processor 120 is transmitted or of This computed data can be forwarded to the output interface 140 for retrieval or read from outside the meter 100.
  • the memory 130 and the interface 140 are provided on the signal line 170a in signal communication MITEI ⁇ Nander.
  • Device-specific data 150 and application-specific data 160 are stored in different memory areas of the memory 130.
  • the processor 120 is thereby in the illustrated embodiment for performing a calculation of the measured value deviation on the basis of the device-specific
  • a program comprising a routine for calculating the measured value deviation from this data.
  • the processor 120 it would also be sufficient, for example, for the processor 120 to process such a program, which is stored elsewhere.
  • the measurement error of the measuring device 100 during insertion of the pressure measuring sensor which is also referred to as a total deviation or Ge ⁇ consumption as the sum of error Ftotai Grundgenauig ⁇ ness Fperf and long term stability F sta b.
  • the basic accuracy F by f is in this case of thermal AEN alteration of zero signal and output span FT and the Messab ⁇ deviation FKI together and according to the laws of Gauss's see error propagation by the square root of the sum of the Quadarate the individual error components given.
  • the thermal change FT can be determined from device-specific data. This requires a temperature-dependent basic temperature error F TB by a factor FMZ, which depends on the konkre ⁇ th configuration of the measuring cell, and a wide ⁇ ren additional factor FTD, the respective turndown crumblspie- gelt, be multiplied.
  • the output interface 140 is a digital signal output, which takes place via HART, Profibus PA or Foundation Fieldbus, the basic accuracy F per f can be calculated with these values alone.
  • Output interface 140 in particular in a 4 ... 20mA output is also the thermal change of gear Stromaus ⁇ F a to be considered, which also belongs to the device-specific data ⁇ .
  • the turn-down (FTD) results from the quotient of the adjustment to the measuring range. If only part of the measuring range is taken advantage of by an adjustment, the error increases in relation to the adjusted range with the factor FTD.
  • the volume is usually calculated from the measured height (proportional to the pressure) with the aid of the container geometry. It may result from low sub ⁇ differences of height major differences in volume. Accordingly, an error in height increases to the same extent on the volume.
  • the application is a setting of the meter. The error of the measured value also depends on the measured value at be voted ⁇ applications, so he changed ⁇ rich over the Messbe. This must also be taken into account in the calculation.
  • the individual steps in the error calculation can be schematically shown as flow depicting ⁇ len to the manner shown in Figure 2.
  • a first step 10 using the measured data pressure 1, temperature 2 and operating time 3 and the device-specific data 150 measured by the sensors 111, 112, 113, first the maximum errors that are due to the sensors 111, 112, 113 are calculated , This includes, in addition to the statistical measurement errors, linearity errors, temperature errors and long-term drift effects.
  • this result is taking into account the ⁇ application-specific data 160 to the calculation of the maximum error by user settings, insbesonde- re balance, application effects and it linearization effects ⁇ supplemented.
  • a third step 30 the supplemented result is then supplemented by any errors in the measured value output in order to determine the final measured value deviation.
  • these errors under the example, the temperature error of a current stage of the output interface 140 falls to the device-specific errors ⁇ , therefore, recourse is 150 fen in this step to that particular date of the device-specific data.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

L'invention concerne un appareil de mesure (100) qui comprend au moins un capteur (111, 112, 113), au moins un processeur (120), au moins une mémoire (130) et au moins une interface de sortie (140), au moins d'une part le processeur (120) et la mémoire (130), d'autre part le capteur (111, 112, 113) et la mémoire (130) ou le capteur (111, 112, 113) et le processeur (120) et en troisième lieu au moins l'interface de sortie (140) et la mémoire (130) ou l'interface de sortie (140) et le processeur (120) étant en communication de signal entre eux, appareil de mesure dans lequel des données (150) spécifiques à l'appareil et/ou des données (160) spécifiques à l'application sont stockées au moins dans une zone de la mémoire (130), le processeur (120) étant adapté pour effectuer un calcul d'écart de valeur de mesure (4) sur la base de les données (150) spécifiques à l'appareil, des données (160) spécifiques à l'application et des données de mesure (1, 2, 3) mesurées par le capteur (111, 112, 113) et l'écart de valeur de mesure (4) calculé étant délivré par le biais de l'interface de sortie (140).
EP15707332.1A 2015-02-26 2015-02-26 Appareil de mesure Withdrawn EP3262382A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2015/054012 WO2016134766A1 (fr) 2015-02-26 2015-02-26 Appareil de mesure

Publications (1)

Publication Number Publication Date
EP3262382A1 true EP3262382A1 (fr) 2018-01-03

Family

ID=52596968

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15707332.1A Withdrawn EP3262382A1 (fr) 2015-02-26 2015-02-26 Appareil de mesure

Country Status (2)

Country Link
EP (1) EP3262382A1 (fr)
WO (1) WO2016134766A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016123699A1 (de) 2016-12-07 2018-06-07 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zur Bestimmung einer Messunsicherheit eines Messwerts eines Feldgeräts
DE102021130597A1 (de) 2021-11-23 2023-05-25 Vega Grieshaber Kg Autarker Füllstandsensor mit Schwimmer, Verfahren zum Messen eines Füllstandes und Anordnung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3746729B2 (ja) * 2002-04-17 2006-02-15 東京瓦斯株式会社 機器の劣化を検出する方法
US9188993B2 (en) * 2012-11-02 2015-11-17 Johnson Controls Technology Company Systems and methods for sensing dew point in a building space
DE102012112516A1 (de) * 2012-12-18 2014-06-18 Endress + Hauser Flowtec Ag Verfahren zur Verifizierung der Zuverlässigkeit von ermittelten Messdaten einer Ultraschall-Durchflussmessung nach der Laufzeitdifferenz-Methode und Ultraschalldurchflussmessgerät

Also Published As

Publication number Publication date
WO2016134766A1 (fr) 2016-09-01

Similar Documents

Publication Publication Date Title
DE102013105863A1 (de) Anordnung und Verfahren zum parallelen Kalibrieren von mindestens zwei Sensoren
EP3087439B1 (fr) Transducteur de mesure doté d'une fonction de surveillance
EP2246984A9 (fr) Commutation de diagnostic destinée au contrôle d'une commutation de conversion analogique-numérique
EP1662346B1 (fr) Procédé de paramétrisation sécurisée d'un dispositif de terrain de la technique d'automatisation
DE19533505A1 (de) Verfahren zum Kompensieren des durch eine äußere Einflußgröße verursachten Fehlverhaltes von Meßeinrichtungen
DE3544095C2 (fr)
DE102017115663A1 (de) Verfahren zum Betreiben einer Messstelle und Messstelle
WO2016134766A1 (fr) Appareil de mesure
EP3559761A1 (fr) Circuit électronique conçu pour un appareil de terrain de technique d'automation
DE102010062657B4 (de) Bereitstellung von Kalibrierungsdaten zu Messeinrichtungen
EP3377861A1 (fr) Procédé d'étalonnage in-situ d'une ligne de transmission de mesure analogique et dispositif correspondant
EP1966727B1 (fr) Procede de determination d'une valeur de sortie d'un capteur de la technique d'automatisation
EP2947426A1 (fr) Procédé de fonctionnement d'un point de mesure
DE102016123699A1 (de) Verfahren zur Bestimmung einer Messunsicherheit eines Messwerts eines Feldgeräts
DE102016124145A1 (de) Verfahren zum Bedienen eines Feldgeräts der Automatisierungstechnik
WO2016087149A1 (fr) Procédé d'écrasement d'une mémoire non volatile d'un appareil de terrain
WO2012119829A1 (fr) Dispositif de mesure à compensation d'un mode de réponse retardé
DE10203555A1 (de) Feldgerät
EP0650040A2 (fr) Appareil à destination électronique de pressions et les différences de pressions dans un medium fluide
DE10163564A1 (de) Feldgerät
DE102008036380A1 (de) Verfahren zum sicheren Betreiben eines Feldgerätes
DE102011107442B4 (de) Gaszähler zum Bestimmen einer temperaturkorrigierten Gasmenge
WO2006051057A1 (fr) Dispositif et procede de compensation pour capteurs de valeur de mesure
WO2018046300A1 (fr) Procédé et système de vérification d'un composant électrique ou électronique
DE102006013827A1 (de) Verfahren zur benutzerspezifischen Anpassung eines Feldgerätes der Automatisierungstechnik

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180417