EP3262202B1 - Anlage für die serienfertigung pressgehärteter und korrosionsgeschützter blechformteile, mit einer kühleinrichtung zur zwischenkühlung der platinen - Google Patents

Anlage für die serienfertigung pressgehärteter und korrosionsgeschützter blechformteile, mit einer kühleinrichtung zur zwischenkühlung der platinen Download PDF

Info

Publication number
EP3262202B1
EP3262202B1 EP16702923.0A EP16702923A EP3262202B1 EP 3262202 B1 EP3262202 B1 EP 3262202B1 EP 16702923 A EP16702923 A EP 16702923A EP 3262202 B1 EP3262202 B1 EP 3262202B1
Authority
EP
European Patent Office
Prior art keywords
blanks
cooling
press
air
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16702923.0A
Other languages
English (en)
French (fr)
Other versions
EP3262202A2 (de
Inventor
Markus Pfestorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP3262202A2 publication Critical patent/EP3262202A2/de
Application granted granted Critical
Publication of EP3262202B1 publication Critical patent/EP3262202B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a localised treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0494Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a localised treatment

Definitions

  • the invention relates to a plant for the series production of press-hardened and corrosion-protected sheet metal parts by direct press-hardening of zinc-coated sheet steel blanks, with a furnace, a press-hardening tool and a cooling device for intermediate cooling of the sheet steel blanks heated in the furnace.
  • Press-hardened sheet metal parts are manufactured by rapidly cooling a steel sheet material that has previously been heated to austenitizing temperature (or higher) and simultaneously shaping it in a press-hardening tool. Quenching hardening in the press-hardening tool achieves strengths of up to 1650 MPa and more. Such high-strength sheet metal parts are used, for example, as body or chassis components in vehicle construction. Various processes for producing press-hardened sheet metal parts are known from the state of the art.
  • press-hardened sheet metal parts can be provided with a metallic corrosion protection coating, which is in particular a zinc or zinc alloy coating.
  • a metallic corrosion protection coating which is in particular a zinc or zinc alloy coating.
  • methods for producing press-hardened and corrosion-protected sheet metal parts are known in which the starting sheet material already has a zinc or zinc alloy coating (hereinafter referred to collectively as zinc coating).
  • zinc coating for this purpose, for example, reference is made to the EN 10 2009 016 852 A1 the applicant.
  • the invention is intended to demonstrate a possibility of how the intermediate cooling of the heated blanks can be improved in the series production of press-hardened and corrosion-protected sheet metal parts using zinc- or zinc alloy-coated steel sheets.
  • a first possible embodiment of the system is characterized in that the cooling device has two air knives arranged opposite one another, with which an air curtain can be generated for the active intermediate cooling of the boards.
  • the two air knives are located opposite one another.
  • this cooling device has at least two air knives which are arranged opposite one another, in particular in a stationary manner, and with which an air curtain can be generated, wherein this air curtain enables active intermediate cooling of the heated boards moved between these air knives.
  • the two air knives are arranged on opposite sides of a spacing gap and in particular in a stationary manner, wherein the heated boards can be moved through this spacing gap and can be actively intermediate cooled by the air curtain generated with the aid of the air knives.
  • Active intermediate cooling is understood to mean a targeted cooling or a defined cooling down of the heated blanks by applying cooling air (or possibly steam).
  • This intermediate cooling which is carried out by the cooling device, is intended to quickly and specifically cool down the blanks that were previously heated in the furnace to the austenitizing temperature (or higher), for example cooling from over 900 °C to approx. 750 °C or even only to approx. 700 °C and cooling rates of at least 10 Klsec, preferably at least 20 K/sec and in particular at least 30 Klsec can be achieved.
  • An air knife is a specially designed air nozzle or group of air nozzles with which a linear, narrow air flow can be generated, which is, for example, only between 0.5 mm and 1.0 mm thick.
  • the knife-like air flow generated can be referred to as an air curtain.
  • Air knives are known from the state of the art and are used in press shops, for example, to blow off sheets and coils.
  • the air knives of the cooling device can be designed to produce an air curtain containing liquid drops and/or ice particles.
  • the liquid drops are, for example, water drops that are mixed into the air curtain, e.g. as water vapor or spray mist.
  • the ice particles can be, for example, dry ice particles or snowflakes that are mixed into the air curtain.
  • the mixed liquid drops or ice particles improve the cooling and enable, for example, higher cooling speeds and/or shorter cycle times.
  • the cooling effect can be influenced by changing the dosage.
  • the air knives of the cooling device are arranged in a blank discharge area of the furnace, wherein it is particularly provided that a lower air knife is arranged between transport rollers or transport rollers (of a roller conveyor or
  • the cooling device for the intermediate cooling can thus be arranged in a way that is virtually space-neutral in the system.
  • the discharge movement of the blanks can also be used for the passage between the air knives, so that the intermediate cooling can take place in a time-neutral way.
  • the second possible embodiment of the system according to the invention is characterized in that the cooling device has an air nozzle arrangement with which an air cushion can be generated which can support the boards and also enable active intermediate cooling (as defined above) of the same.
  • the cooling device can also have lateral guide elements for the boards.
  • an air nozzle arrangement is understood to mean a plurality of air nozzles (i.e. at least two air nozzles) which are designed and arranged in such a way that the generation of an air cushion is possible.
  • the air nozzles are arranged in a fixed position.
  • the air nozzles allow air to be applied from both sides, namely from below and above, so that the boards, which are preferably moved relative to the air nozzle arrangement, can be actively cooled from both sides at the same time.
  • the air nozzle arrangement can be designed to generate an air cushion containing liquid drops and/or ice particles.
  • the air nozzle arrangement can also be arranged in the outlet area of the furnace.
  • Both the air nozzle arrangement of the second embodiment and the air knives of the first embodiment can be designed in such a way that they can be switched on and off and/or the cooling power or cooling effect that can be achieved can be changed.
  • the air nozzle arrangement or the air knives are only switched on when a previously heated board is to be cooled.
  • the air nozzle arrangement or the air knives can be switched off, for example to reduce the energy requirement (switching on and off in the production cycle time rhythm).
  • a sleep mode or the like is also conceivable.
  • the switching on and Switching off and/or changing the cooling performance can be accomplished, for example, using a control device.
  • the system according to the invention can have devices for measuring the temperature of the blanks in order to be able to record or measure the insertion temperature of the intermediately cooled blanks on the press hardening tool, for example.
  • the system according to the invention has at least one thermal imaging camera or the like (e.g. an infrared or thermography camera), arranged in particular in the area of the cooling device, and/or at least one and in particular several thermal line scanners or the like (e.g. line pyrometers) arranged in the area of the cooling device, with which the cooling and in particular the cooling progress (cooling curve over time) can be recorded during the intermediate cooling of the blanks.
  • the system according to the invention preferably comprises a control device for controlling the air nozzle arrangement or the air knives.
  • This control device is designed in particular to be able to regulate the intermediate cooling of the boards in a control loop using the thermal imaging camera or the thermal line scanners.
  • Such a control can be carried out, for example, in such a way that the cooling progress is recorded for each board to be intermediately cooled and, if necessary, the cooling capacity of the air nozzle arrangement or the air knives is changed in order to achieve a desired or required cooling and/or cooling speed.
  • Both versions of the system enable the series production of press-hardened and corrosion-protected sheet metal parts by direct press hardening of zinc-coated blanks (this refers to steel sheet blanks pre-coated with a zinc or zinc alloy coating).
  • Direct press hardening means that a heated blank is formed into a sheet metal part directly in the press hardening tool without pre-forming and at the same time hardened or increased in strength by rapid cooling. (see also the corresponding explanations in the EN 10 2011 053 939 A1 ).
  • the effort and associated costs in particular tool costs due to the multiple tools required) are significantly lower with direct press hardening.
  • the intermediate cooling made possible in the system according to the invention eliminates or at least reduces the risk of cracking that otherwise exists with direct press hardening of zinc-coated blanks.
  • the invention is also suitable for retrofitting existing systems.
  • Fig.1 shows a system 100 not according to the invention for producing press-hardened sheet metal parts 210 in series.
  • the system 100 comprises a furnace 110 and a press-hardening tool 130, which is installed in a press 140.
  • the system 100 can also comprise a robot or the like, with which the blanks 200 heated in the furnace 110 can be automatically picked up in the outlet area 115 of the furnace 110 and placed in the press-hardening tool 130.
  • the furnace 110 is, for example, a continuous furnace, although other suitable furnace designs are also known from the prior art.
  • the arrow DR indicates the direction of passage of the blanks 200.
  • the blanks 200 have a zinc coating applied in particular on both sides, as explained above, so that the press-hardened sheet metal parts 210 produced are protected against corrosion.
  • the blanks 200 can expressly also be tailor-made blanks, so-called tailored blanks (e.g. rolled tailored blanks or welded tailored blanks).
  • the system 100 further comprises a cooling device 120 arranged in the outlet area 115 of the furnace 110, with which the zinc-coated blanks 200 heated to austenitizing temperature in the furnace 110 can be intermediately cooled before they are placed in the press hardening tool 130 and formed or hot-formed there into corrosion-protected sheet metal parts 200.
  • the direct forming of the flat blanks 210 with accompanying press hardening is also referred to as direct press hardening.
  • the press-hardened sheet metal parts 210 produced can be completely or only partially or partially press hardened. The intermediate cooling and the effects achieved thereby are explained in detail above.
  • the cooling device 120 comprises an upper air knife 121 and a lower air knife 122 arranged between the transport rollers or cylinders 116.
  • the two air knives 121/122 are arranged in a fixed position. With these opposing air knives 121/122, an air curtain L can be generated for the active intermediate cooling of the boards 200 moving between these air knives 121/122. Liquid drops and/or ice particles can be mixed into the air streams generated by the air knives 121/122.
  • the air knives 121/122 can also be arranged offset from one another in the horizontal direction. Furthermore, a plurality of upper and/or lower air knives can be provided.
  • the blanks 200 coming out of the furnace 110 are virtually blown off as they pass through the cooling device 120 and are thereby cooled down, for example, from over 900 °C to 700 °C. Blowing off can also have the advantage of removing any adhering contaminants. Blowing off can also take place from oblique directions. By switching the air knives 121/122 on and off and/or by changing the cooling power they provide, only certain areas of the blanks can be cooled. Intermediate cooling or intermediate cooling of the boards 200 that creates different temperature ranges is possible.
  • the system 100 also has two thermal line scanners 141 and 142, which are arranged at a distance from one another in the direction of travel DR between the transport rollers or cylinders 116 in the discharge area 115. With the help of these stationary scanners 141/142, the cooling progress of the boards 200 moving past can be recorded in real time.
  • the scanners 141/142 are connected to an evaluation and control device 150.
  • the control device 150 is also designed to control and in particular regulate the air knives 121/122. If necessary, the speed of the boards 200 passing through can also be changed with the help of the control device 150.
  • component-specific documentation can be carried out.
  • the cooling device 120 comprises an air nozzle arrangement 125 with upper and lower air nozzles arranged in a fixed position in the outlet area 115 of the furnace 110. No transport rollers or cylinders 116 are provided in this section (ie the relevant conveyor section in the outlet area 115 is free of transport rollers or cylinders).
  • the air nozzle arrangement 125 can be used to create an air cushion or air pad K on which the blanks 200 coming out of the furnace 110 are moved more or less contactlessly through the cooling device 120 and are cooled down by air being applied on both sides.
  • the boards 200 are supported (fully or at least partially) by the air cushion K, if necessary with the use of guide elements, and are thereby conveyed through the cooling device 120 in a virtually contactless or floating manner, so that any surface impairments can be avoided due to the lack of roller or cylinder contact.
  • At least one thermal imaging camera 145 or the like is provided that looks into the cooling device 120.
  • the camera 145 can be a line scan camera.
  • the previous explanations for the first execution option apply analogously according to Fig.1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

  • Die Erfindung betrifft gemäß Oberbegriff des Patentanspruchs 1 eine Anlage für die Serienfertigung pressgehärteter und korrosionsgeschützter Blechformteile durch direktes Presshärten zinkbeschichteter Stahlblechplatinen, mit einem Ofen, einem Presshärtewerkzeug und einer Kühleinrichtung zur Zwischenkühlung der im Ofen erwärmten Stahlblechplatinen.
  • Pressgehärtete Blechformteile werden durch rasches Abkühlen eines zuvor auf Austenitisierungstemperatur (oder höher) erwärmten Stahlblechmaterials und gleichzeitiger Formgebung in einem Presshärtewerkzeug hergestellt. Durch die Abschreckhärtung im Presshärtewerkzeug werden Festigkeiten von bis zu 1650 MPa und mehr erreicht. Solche hochfesten Blechformteile werden bspw. als Karosserie- oder Fahrwerkbauteile im Fahrzeugbau eingesetzt. Aus dem Stand der Technik sind verschiedene Verfahrensweisen zur Herstellung pressgehärteter Blechformteile bekannt.
  • Ferner können solche pressgehärteten Blechformteile mit einer metallischen Korrosionsschutzbeschichtung versehen werden, wobei es sich insbesondere um eine Zink- oder Zinklegierungsbeschichtung handelt. Aus dem Stand der Technik sind Verfahrensweisen zur Herstellung pressgehärteter und korrosionsgeschützter Blechformteile bekannt, bei denen das Ausgangsblechmaterial bereits eine Zink- oder Zinklegierungsbeschichtung (im folgenden zusammenfassend nur als Zinkbeschichtung bezeichnet) aufweist. Hierzu wird bspw. auf die DE 10 2009 016 852 A1 der Anmelderin hingewiesen.
  • Beim Presshärten zinkvorbeschichteter Blechmaterialien kann es zu Mikrorissen in der Zinkbeschichtung kommen, die durch die Zinkbeschichtung hindurch bis in das Stahlblechmaterial hineinreichen können. Diesbezüglich wird auf die entsprechenden Erläuterungen in der DE 10 2011 053 939 A1 hingewiesen.
  • In der DE 10 2011 053 939 A1 wird ein Verfahren zum Herstellen eines gehärteten Stahlbauteils mit einer Beschichtung aus Zink oder einer Zinklegierung vorgeschlagen, bei dem die vorbeschichtete Platine (ohne Vorformen) erhitzt und in einem Presshärtewerkzeug umgeformt bzw. warmumgeformt und pressgehärtet wird (so genanntes direktes Presshärten), wobei die Platine oder Teile der Platine nach dem Erhitzen und vor dem Umformen und Presshärten mittels einer Kühleinrichtung rasch zwischengekühlt werden (Zwischenkühlschritt). Durch Einstellung als Umwandlungsverzögerer wirkender Legierungselemente kann trotz dieser Zwischenkühlung eine Abschreckhärtung (im Presshärtewerkzeug) noch sicher erreicht werden. Mit dieser Verfahrensweise gelingt es, beim Presshärten von zink- oder zinklegierungsbeschichteten Stahlblechen einerseits eine Abschreckhärtung herbeizuführen und andererseits Rissbildung zu vermeiden oder zu vermindern.
  • Zum Stand der Technik wird ferner auf die US 2014/0352388 A1 hingewiesen, die einen Presshärteprozess beschreibt, bei dem das Stahlblechmaterial nach dem Erwärmen und Austenitisieren während des Transfers zur Presse bzw. zum Werkzeug vorgekühlt wird, um dadurch den Kühlaufwand im Werkzeug zu verringern. Eine Beschichtung, insbesondere Zinkbeschichtung, ist nicht beschrieben.
  • Ausgehend von dem in der DE 10 2011 053 939 A1 beschriebenen Stand der Technik soll die Erfindung eine Möglichkeit aufzeigen, wie bei der Serienfertigung pressgehärteter und korrosionsgeschützter Blechformteile unter Verwendung von zink- oder zinklegierungsbeschichteten Stahlblechen das Zwischenkühlen der erwärmten Platinen verbessert werden kann.
  • Dies gelingt mit der erfindungsgemäßen Anlage des Patentanspruchs 1. Bevorzugte Weiterbildungen und Ausgestaltungen ergeben sich aus den abhängigen Patentansprüchen und aus den nachfolgenden Erläuterungen. Die Weiterbildungen, Ausgestaltungen und Merkmale sind ausdrücklich auch miteinander kombinierbar.
  • Die erfindungsgemäße Anlage bzw. Vorrichtung umfasst:
    • einen Ofen bzw. eine Ofeneinrichtung (d. h. wenigstens ein Ofen bzw. wenigstens eine Ofeneinrichtung), in dem bzw. in der die Stahlblechplatinen (im Folgenden auch nur als Platinen bezeichnet) auf Austenitisierungstemperatur (oder höher) erwärmt bzw. aufgeheizt werden können;
    • ein Presshärtewerkzeug (d. h. wenigstens ein Presshärtewerkzeug), welches typischerweise in einer Presse eingebaut ist, in dem die erwärmten Platinen direkt umgeformt bzw. warmumgeformt und pressgehärtet werden können;
    • eine Kühl- bzw. Zwischenkühleinrichtung (d. h. wenigstens eine Kühleinrichtung), mit der die im Ofen erwärmten bzw. aufgeheizten Platinen vor dem Einlegen in das Presshärtewerkzeug vollständig oder zumindest bereichsweise bzw. abschnittsweise zwischengekühlt werden können, wobei die Kühleinrichtung eine Luftdüsenanordnung mit einer Vielzahl von Luftdüsen aufweist, mit der ein Luftkissen erzeugbar ist, welches die Platinen tragen kann und dabei auch eine aktive Zwischenkühlung der Platinen ermöglicht, wobei die Luftdüsen der Luftdüsenanordnunq ortsfest anqeordnet sind und eine beidseitige Luftbeaufschlaqunq von unten und oben ermöglichen, sodass die Platinen gleichzeitig von beiden Seiten aktiv gekühlt werden können; und
    • gegebenenfalls (wenigstens) einen Roboter oder dergleichen für das automatisierte Verbringen bzw. Transportieren der Platinen.
  • Eine nicht erfindungsgemäße erste Ausführungsmöglichkeit der Anlage ist dadurch gekennzeichnet, dass die Kühleinrichtung zwei einander gegenüberliegend angeordnete Luftmesser aufweist, mit denen ein Luftvorhang zur aktiven Zwischenkühlung der Platinen erzeugbar ist. Die beiden Luftmesser liegen sich, einander gegenüber. Bevorzugt ist vorgesehen, dass diese Kühleinrichtung wenigstens zwei Luftmesser aufweist, die, insbesondere ortsfest, sich einander gegenüberliegend angeordnet sind und mit denen ein Luftvorhang erzeugbar ist, wobei dieser Luftvorhang eine aktive Zwischenkühlung der zwischen diesen Luftmessern hindurchbewegten erwärmten Platinen ermöglicht. Bevorzugt sind die beiden Luftmesser auf gegenüberliegenden Seiten eines Beabstandungsspalts angeordnet und insbesondere ortsfest angeordnet, wobei die erwärmten Platinen durch diesen Beabstandungsspalt hindurchbewegt und dabei durch den mithilfe der Luftmesser erzeugten Luftvorhang aktiv zwischengekühlt werden können. Besonders bevorzugt handelt es sich um wenigstens ein oberes und wenigstens ein unteres Luftmesser.
  • Unter einer aktiven Zwischenkühlung wird eine gezielte Abkühlung bzw. ein definiertes Herunterkühlen der erwärmten Platinen durch Beaufschlagung mit kühlender Luft (oder gegebenenfalls auch Dampf) verstanden. Mit dieser, durch die Kühleinrichtung bewerkstelligten Zwischenkühlung sollen die zuvor im Ofen auf Austenitisierungstemperatur (oder höher) erwärmten bzw. erhitzten Platinen rasch und gezielt heruntergekühlt werden, wobei bspw. eine Abkühlung von über 900 °C auf ca. 750 °C oder sogar nur auf ca. 700 °C stattfindet und Abkühlgeschwindigkeiten von mindestens 10 Klsec, bevorzugt mindestens 20 K/sec und insbesondere mindestens 30 Klsec erreicht werden können.
  • Unter einem Luftmesser wird eine speziell gestaltete Luftdüse oder Gruppe von Luftdüsen verstanden, mit der ein linienförmiger schmaler Luftstrom, der bspw. nur zwischen 0,5 mm und 1,0 mm dünn ist, erzeugbar ist. Der erzeugte messerartige Luftstrom kann als Luftvorhang bezeichnet werden. Vereinfachend kann davon ausgegangen werden, dass die beiden gegenüberliegenden Luftmesser einen Luftvorhang erzeugen, der aus unterschiedlichen Luftströmen besteht. Luftmesser sind aus dem Stand der Technik bekannt und werden in Presswerken bspw. zum Abblasen von Blechen und Coils verwendet.
  • Die Luftmesser der Kühleinrichtung können zur Erzeugung eines Flüssigkeitstropfen und/oder Eispartikel enthaltenden Luftvorhangs ausgebildet sein. Bei den Flüssigkeitstropfen handelt es sich z. B. um Wassertropfen, die, bspw. als Wasserdampf oder Sprühnebel, dem Luftvorhang beigemischt werden. Bei den Eispartikeln kann es sich bspw. um Trockeneispartikel oder Schneeflocken handeln, die dem Luftvorhang beigemischt werden. Die beigemischten Flüssigkeitstropfen oder Eispartikel bewirken eine Verbesserung der Abkühlung und ermöglichen bspw. höhere Abkühlgeschwindigkeiten und/oder kürzere Taktzeiten. Ferner kann durch Verändern der Dosierung die Abkühlwirkung beeinflusst werden.
  • Bevorzugt sind die Luftmesser der Kühleinrichtung in einem Platinen-Auslaufbereich des Ofens angeordnet, wobei insbesondere vorgesehen ist, dass ein unteres Luftmesser zwischen Transportrollen bzw. Transportwalzen (einer Rollenbahn oder dergleichen) angeordnet ist. Die Kühleinrichtung für das Zwischenkühlen kann somit quasi platzneutral in der Anlage angeordnet werden. Außerdem kann die Auslaufbewegung der Platinen für das Hindurchbewegen zwischen den Luftmessern mitgenutzt werden, so dass die Zwischenkühlung zeitneutral erfolgen kann.
  • Die erfindungsgemäße zweite Ausführungsmöglichkeit der Anlage ist dadurch gekennzeichnet, dass die Kühleinrichtung eine Luftdüsenanordnung aufweist, mit der ein Luftkissen erzeugbar ist, welches die Platinen tragen und dabei auch eine aktive Zwischenkühlung (gemäß obenstehender Definition) selbiger ermöglichen kann. Die Kühleinrichtung kann ferner seitliche Führungselemente für die Platinen aufweisen.
  • Unter einer Luftdüsenanordnung wird erfindungsgemäß eine Vielzahl von Luftdüsen (d. h. wenigstens zwei Luftdüsen) verstanden, die derart ausgestaltet und angeordnet sind, dass damit die Erzeugung eines Luftkissens möglich ist. Die Luftdüsen sind erfindungsgemäß ortsfest angeordnet.
  • Mit den Luftdüsen wird eine beidseitige Luftbeaufschlagung ermöglicht, nämlich von unten und oben, so dass die vorzugsweise relativ zur Luftdüsenanordnung bewegten Platinen gleichzeitig von beiden Seiten aktiv gekühlt werden können. Analog zur ersten Ausführungsmöglichkeit der Anlage kann die Luftdüsenanordnung zur Erzeugung eines Flüssigkeitstropfen und/oder Eispartikel enthaltenden Luftkissens ausgebildet sein. Ebenso kann die Luftdüsenanordnung im Auslaufbereich des Ofens angeordnet sein.
  • Sowohl die Luftdüsenanordnung der zweiten Ausführungsmöglichkeit als auch die Luftmesser der ersten Ausführungsmöglichkeit kann/können derart ausgebildet sein, dass diese ein- und ausschaltbar und/oder in der erbringbaren Kühlleistung bzw. Kühlwirkung veränderbar ist/sind. Bevorzugt wird die Luftdüsenanordnung bzw. werden die Luftmesser nur dann eingeschaltet, wenn eine zuvor erwärmte Platine zwischengekühlt werden soll. In den Taktzeitpausen kann die Luftdüsenanordnung bzw. können die Luftmesser ausgeschaltet werden, um bspw. den Energiebedarf zu senken (Ein- und Ausschalten im Fertigungstaktzeitrhythmus). Anstelle des Ausschaltens ist auch ein Schlummermodus oder dergleichen denkbar. Das Ein- und Ausschalten und/oder das Verändern der Kühlleistung kann bspw. mithilfe einer Steuereinrichtung bewerkstelligt werden.
  • Die erfindungsgemäße Anlage kann Einrichtungen zur Temperaturmessung der Platinen aufweisen, um bspw. am Presshärtewerkzeug die Einlegetemperatur der zwischengekühlten Platinen erfassen bzw. messen zu können. Bevorzugt ist vorgesehen, dass die erfindungsgemäße Anlage wenigstens eine, insbesondere im Bereich der Kühleinrichtung angeordnete, Wärmebildkamera oder dergleichen (bspw. eine Infrarot- oder Thermographiekamera) und/oder wenigstens einen und insbesondere mehrere im Bereich der Kühleinrichtung angeordnete thermische Linienscanner oder dergleichen (bspw. Zeilenpyrometer) aufweist, mit der bzw. mit denen die Abkühlung und insbesondere der Abkühlungsfortschritt (Abkühlungsverlauf über der Zeit) beim Zwischenkühlen der Platinen erfasst werden kann bzw. erfassbar ist.
  • Bevorzugt umfasst die erfindungsgemäße Anlage eine Steuereinrichtung zur Steuerung der Luftdüsenanordnung oder der Luftmesser. Diese Steuereinrichtung ist insbesondere dazu ausgebildet, mithilfe der Wärmebildkamera oder den thermischen Linienscannern die Zwischenkühlung der Platinen in einem Regelkreis regeln zu können. Eine solche Regelung kann bspw. derart erfolgen, dass bei jeder zwischenzukühlenden Platine der Abkühlungsfortschritt erfasst und gegebenenfalls die Kühlleistung der Luftdüsenanordnung oder der Luftmesser verändert wird, um eine gewünschte bzw. erforderliche Abkühlung und/oder Abkühlgeschwindigkeit zu erreichen.
  • Beide Ausführungsmöglichkeiten der Anlage ermöglichen die Serienfertigung pressgehärteter und korrosionsgeschützter Blechformteile durch direktes Presshärten zinkbeschichteter Platinen (hiermit sind mit einer Zink- oder Zinklegierungsbeschichtung vorbeschichtete Stahlblechplatinen gemeint). Unter einem direkten Presshärten wird verstanden, dass eine erwärmte Platine ohne Vorformen direkt im Presshärtewerkzeug zu einem Blechformteil umgeformt und gleichzeitig durch rasches Abkühlen eine Härtung bzw. Festigkeitserhöhung herbeigeführt wird (siehe hierzu auch entsprechende Erläuterungen in der DE 10 2011 053 939 A1 ). Im Vergleich zum indirekten Presshärten, das ein Vorformen des Blechmaterials vorsieht, sind beim direkten Presshärten der Aufwand und die damit verbundenen Kosten (insbesondere Werkzeugkosten aufgrund mehrerer erforderlicher Werkzeuge) deutlich geringer. Durch die in der erfindungsgemäßen Anlage ermöglichte Zwischenkühlung wird die sonst beim direkten Presshärten zinkbeschichteter Platinen vorhandene Rissgefahr beseitigt oder zumindest verringert. Die Erfindung eignet sich auch für die Nachrüstung bestehender Anlagen.
  • Die Erfindung wird nachfolgend anhand der Figuren näher erläutert.
  • Fig. 1
    zeigt schematisch eine nicht erfindungsgemäße erste Ausführungsmöglichkeit der Anlage für die Serienfertigung pressgehärteter und korrosionsgeschützter Blechformteile.
    Fig. 2
    zeigt schematisch eine erfindungsgemäße zweite Ausführungsmöglichkeit der Anlage für die Serienfertigung pressgehärteter und korrosionsgeschützter Blechformteile.
  • Fig. 1 zeigt eine nicht erfindungsgemäße Anlage 100 zum Herstellen pressgehärteter Blechformteile 210 in Serie. Die Anlage 100 umfasst einen Ofen 110 und ein Presshärtewerkzeug 130, welches in einer Presse 140 eingebaut ist. Die Anlage 100 kann ferner einen Roboter oder dergleichen umfassen, mit dem automatisiert die im Ofen 110 erwärmten Platinen 200 im Auslaufbereich 115 des Ofens 110 aufgenommen und in das Presshärtewerkzeug 130 eingelegt werden können. Bei dem Ofen 110 handelt es sich beispielhaft um einen Durchlaufofen, wobei aus dem Stand der Technik auch andere geeignete Ofenbauarten bekannt sind. Der Pfeil DR gibt die Durchlaufrichtung der Platinen 200 an. Die Platinen 200 weisen eine insbesondere beidseitig aufgebrachte Zinkbeschichtung auf, wie obenstehend erläutert, so dass die hergestellten pressgehärteten Blechformteile 210 korrosionsgeschützt sind. Bei den Platinen 200 kann es sich ausdrücklich auch um maßgeschneiderte Platinen, so genannte Tailored Blanks (bspw. Rolled Tailored Blanks oder Welded Tailored Blanks), handeln.
  • Die Anlage 100 umfasst ferner eine im Auslaufbereich 115 des Ofens 110 angeordnete Kühleinrichtung 120, mit der die im Ofen 110 auf Austenitisierungstemperatur erwärmten zinkbeschichteten Platinen 200 zwischengekühlt werden können, bevor diese in das Presshärtewerkzeug 130 eingelegt und dort zu korrosionsgeschützten Blechformteilen 200 umgeformt bzw. warmumgeformt werden. Das direkte Umformen der ebenen Platinen 210 mit einer einhergehenden Presshärtung wird auch als direktes Presshärten bezeichnet. Die hergestellten pressgehärteten Blechformteile 210 können vollständig oder auch nur teilweise bzw. partiell pressgehärtet sein. Das Zwischenkühlen und die dadurch erzielten Effekte sind obenstehend ausführlich erläutert.
  • Bei der in Fig. 1 gezeigten ersten Ausführungsmöglichkeit umfasst die Kühleinrichtung 120 ein oberes Luftmesser 121 und ein zwischen den Transportrollen bzw. -walzen 116 angeordnetes unteres Luftmesser 122. Die beiden Luftmesser 121/122 sind ortsfest angeordnet. Mit diesen sich gegenüberliegenden Luftmessern 121/122 ist ein Luftvorhang L zur aktiven Zwischenkühlung der zwischen diesen Luftmessern 121/122 hindurchbewegten Platinen 200 erzeugbar. Den von den Luftmessern 121/122 erzeugten Luftströmen können Flüssigkeitstropfen und/oder Eispartikel beigemischt sein. Die Luftmesser 121/122 können in horizontaler Richtung auch zueinander versetzt angeordnet sein. Ferner kann eine Mehrzahl oberer und/oder unterer Luftmesser vorgesehen sein.
  • Mithilfe der den Luftvorhang L bildenden linienförmigen schmalen Luftströme werden die aus dem Ofen 110 kommenden Platinen 200 beim Durchlaufen der Kühleinrichtung 120 quasi abgeblasen und hierbei bspw. von über 900 °C auf 700 °C heruntergekühlt. Das Abblasen kann zudem den Vorteil haben, dass evtl. anhaftende Verunreinigungen entfernt werden. Das Abblasen kann auch aus schrägen Richtungen erfolgen. Durch Ein- und Ausschalten der Luftmesser 121/122 und/oder durch Verändern der von diesen erbrachten Kühlleistung ist eine nur bereichsweise erfolgende Zwischenkühlung oder eine unterschiedliche Temperaturbereiche erzeugende Zwischenkühlung der Platinen 200 möglich.
  • Die Anlage 100 weist ferner zwei thermische Linien- bzw. Zeilenscanner 141 und 142 auf, die in Durchlaufrichtung DR zueinander beabstandet zwischen den Transportrollen bzw. -walzen 116 im Auslaufbereich 115 angeordnet sind. Mithilfe dieser ortsfest angeordneten Scanner 141/142 kann der Abkühlungsfortschritt an den vorbeibewegten Platinen 200 in Echtzeit erfasst werden. Die Scanner 141/142 sind mit einer Auswerte- und Steuereinrichtung 150 verbunden. Die Steuereinrichtung 150 ist auch für eine Steuerung und insbesondere Regelung der Luftmesser 121/122 ausgebildet. Gegebenenfalls kann mithilfe der Steuereinrichtung 150 auch die Durchlaufgeschwindigkeit der Platinen 200 verändert werden. Zudem kann eine bauteilindividuelle Dokumentation erfolgen.
  • Bei der in Fig. 2 gezeigten erfindungsgemäßen zweiten Ausführungsmöglichkeit der Anlage 100 umfasst die Kühleinrichtung 120 eine im Auslaufbereich 115 des Ofens 110 ortsfest angeordnete Luftdüsenanordnung 125 mit oberen und unteren Luftdüsen. In diesem Abschnitt sind keine Transportrollen bzw. -walzen 116 vorgesehen (d. h. der betreffende Förderabschnitt im Auslaufbereich 115 ist transportrollen- bzw. transportwalzenfrei). Mit der Luftdüsenanordnung 125 ist ein Luftkissen bzw. Luftpolster K erzeugbar, auf dem die aus dem Ofen 110 kommenden Platinen 200 mehr oder weniger berührungslos durch die Kühleinrichtung 120 hindurchbewegt und dabei durch beidseitige Luftbeaufschlagung heruntergekühlt werden. Die Platinen 200 werden, gegebenenfalls unter Einsatz von Führungselementen, von dem Luftkissen K getragen (ganz oder zumindest teilweise), und dadurch quasi berührungslos bzw. schwebend durch die Kühleinrichtung 120 hindurchbefördert, so dass aufgrund des fehlenden Rollen- bzw. Walzenkontakts etwaige Oberflächenbeeinträchtigungen vermieden werden können.
  • Zur Überwachung des Abkühlungsfortschritts ist wenigstens eine in die Abkühleinrichtung 120 blickende Wärmebildkamera 145 oder dergleichen vorgesehen. Die Kamera 145 kann als Zeilenkamera (Line Scan Camera) ausgebildet sein. Im Übrigen gelten analog die vorausgehenden Erläuterungen zur ersten Ausführungsmöglichkeit gemäß Fig. 1.
  • Bezugszeichenliste
  • 100
    Anlage
    110
    Ofen
    115
    Auslaufbereich
    116
    Transportrollen, Transportwalzen
    120
    Kühleinrichtung
    121
    Luftmesser
    122
    Luftmesser
    125
    Luftdüsenanordnung
    130
    Presshärtewerkzeug
    131
    Werkzeugoberteil
    132
    Werkzeugunterteil
    133
    Werkzeugkühlung
    140
    Presse
    141
    thermischer Linienscanner
    142
    thermischer Linienscanner
    145
    Wärmebildkamera
    150
    Steuereinrichtung
    200
    Platine
    210
    pressgehärtetes Blechformteil
    DR
    Durchlaufrichtung
    K
    Luftkissen
    L
    Luftvorhang

Claims (7)

  1. Anlage (100) für die Serienfertigung pressgehärteter und korrosionsgeschützter Blechformteile (210) durch direktes Presshärten zinkbeschichteter Stahlblechplatinen (200), umfassend:
    - einen Ofen (110), in dem die Platinen (200) auf Austenitisierungstemperatur erwärmt werden können;
    - ein Presshärtewerkzeug (130), in dem die erwärmten Platinen (200) direkt umgeformt und pressgehärtet werden können; und
    - eine Kühleinrichtung (120), mit der die im Ofen (110) erwärmten Platinen (200) vor dem Einlegen in das Presshärtewerkzeug (130) zwischengekühlt werden können;
    dadurch gekennzeichnet, dass
    die Kühleinrichtung (120) eine Luftdüsenanordnung (125) mit einer Vielzahl von Luftdüsen aufweist, mit der ein Luftkissen (K) erzeugbar ist, welches die Platinen (200) tragen kann und dabei auch eine aktive Zwischenkühlung der Platinen (200) ermöglicht, wobei die Luftdüsen der Luftdüsenanordnung (125) ortsfest angeordnet sind und eine beidseitige Luftbeaufschlagung von unten und oben ermöglichen, sodass die Platinen (200) gleichzeitig von beiden Seiten aktiv gekühlt werden können.
  2. Anlage (100) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Kühleinrichtung (120) seitliche Führungselemente für die Platinen (200) aufweist.
  3. Anlage (100) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Luftdüsenanordnung (125) in einem Auslaufbereich (115) des Ofens (110) angeordnet ist.
  4. Anlage (100) nach einem der vorausgehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Luftdüsenanordnung (125) ein- und ausschaltbar und/oder in der Kühlleistung veränderbar ist.
  5. Anlage (100) nach einem der vorausgehenden Ansprüche,
    gekennzeichnet durch
    wenigstens eine im Bereich der Kühleinrichtung (120) angeordnete Wärmebildkamera (145) und/oder mehrere im Bereich der Kühleinrichtung (120) angeordnete thermische Linienscanner (141, 142), mit der bzw. mit denen die Abkühlung oder der Abkühlungsfortschritt beim Zwischenkühlen erfassbar ist.
  6. Anlage (100) nach einem der vorausgehenden Ansprüche,
    gekennzeichnet durch
    eine Steuereinrichtung (150) zur Steuerung der Luftdüsenanordnung (125).
  7. Anlage (100) nach Anspruch 5 und 6,
    dadurch gekennzeichnet, dass
    die Steuereinrichtung (150) dazu ausgebildet ist, mithilfe der Wärmebildkamera (145) oder den thermischen Linienscannern (141, 142) die Zwischenkühlung der Platinen (200) regeln zu können.
EP16702923.0A 2015-02-26 2016-02-03 Anlage für die serienfertigung pressgehärteter und korrosionsgeschützter blechformteile, mit einer kühleinrichtung zur zwischenkühlung der platinen Active EP3262202B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015203406.2A DE102015203406A1 (de) 2015-02-26 2015-02-26 Anlage für die Serienfertigung pressgehärteter und korrosionsgeschützter Blechformteile, mit einer Kühleinrichtung zur Zwischenkühlung der Platinen
PCT/EP2016/052265 WO2016134934A2 (de) 2015-02-26 2016-02-03 Anlage für die serienfertigung pressgehärteter und korrosionsgeschützter blechformteile, mit einer kühleinrichtung zur zwischenkühlung der platinen

Publications (2)

Publication Number Publication Date
EP3262202A2 EP3262202A2 (de) 2018-01-03
EP3262202B1 true EP3262202B1 (de) 2024-05-01

Family

ID=55300500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16702923.0A Active EP3262202B1 (de) 2015-02-26 2016-02-03 Anlage für die serienfertigung pressgehärteter und korrosionsgeschützter blechformteile, mit einer kühleinrichtung zur zwischenkühlung der platinen

Country Status (3)

Country Link
EP (1) EP3262202B1 (de)
DE (1) DE102015203406A1 (de)
WO (1) WO2016134934A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018109579A1 (de) 2018-04-20 2019-10-24 Schwartz Gmbh Temperiervorrichtung zur partiellen Kühlung eines Bauteils
DE102021110702A1 (de) 2021-04-27 2022-10-27 Voestalpine Metal Forming Gmbh Verfahren und Vorrichtung zum Herstellen gehärteter Stahlbauteile mit unterschiedlich duktilen Bereichen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008039264A1 (de) * 2008-08-22 2010-03-04 Schuler Cartec Gmbh & Co. Kg Verfahren zum Formhärten mit Zwischenkühlung
DE102012210693A1 (de) * 2012-06-25 2014-04-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Herstellen eines bereichsweise unterschiedlich gehärteten Blechformteils
DE102011053939B4 (de) * 2011-09-26 2015-10-29 Voestalpine Stahl Gmbh Verfahren zum Erzeugen gehärteter Bauteile
WO2016050465A1 (de) * 2014-10-02 2016-04-07 Voestalpine Stahl Gmbh Verfahren zum zwischenkühlen von stahlblech

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612677B1 (de) * 1993-02-23 1995-01-04 HERMANN SCHLEICHER GmbH & Co. Maschinenfabrik Fördersystem für metallische Platinen und Bänder
JP4825882B2 (ja) * 2009-02-03 2011-11-30 トヨタ自動車株式会社 高強度焼き入れ成形体及びその製造方法
DE102009016852A1 (de) 2009-04-08 2010-10-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung wärmebehandelter Blechformteile aus einem Stahlblechmaterial mit einer Korrosionsschutzbeschichtung und derartiges Blechformteil
GB201116668D0 (en) * 2011-09-27 2011-11-09 Imp Innovations Ltd A method of forming parts from sheet steel
DE102013100682B3 (de) * 2013-01-23 2014-06-05 Voestalpine Metal Forming Gmbh Verfahren zum Erzeugen gehärteter Bauteile und ein Strukturbauteil, welches nach dem Verfahren hergestellt ist
DE102013002625B4 (de) * 2013-02-15 2015-03-05 Audi Ag Greifervorrichtung für den Transport erwärmter Blechplatinen, sowie Verfahren zum Herstellen von warmumgeformten und/oder pressgehärteten Blechformteilen
DE102014114740B3 (de) * 2014-10-10 2015-07-23 Schuler Pressen Gmbh Verfahren zum Herstellen gehärteter Stahlbauteile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008039264A1 (de) * 2008-08-22 2010-03-04 Schuler Cartec Gmbh & Co. Kg Verfahren zum Formhärten mit Zwischenkühlung
DE102011053939B4 (de) * 2011-09-26 2015-10-29 Voestalpine Stahl Gmbh Verfahren zum Erzeugen gehärteter Bauteile
DE102012210693A1 (de) * 2012-06-25 2014-04-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Herstellen eines bereichsweise unterschiedlich gehärteten Blechformteils
WO2016050465A1 (de) * 2014-10-02 2016-04-07 Voestalpine Stahl Gmbh Verfahren zum zwischenkühlen von stahlblech

Also Published As

Publication number Publication date
DE102015203406A1 (de) 2016-09-01
WO2016134934A2 (de) 2016-09-01
WO2016134934A3 (de) 2016-10-20
EP3262202A2 (de) 2018-01-03

Similar Documents

Publication Publication Date Title
EP2497840B2 (de) Ofensystem zum partiellen Erwärmen von Stahlblechteilen
EP2233593B1 (de) Verfahren und Warmumformanlage zur Herstellung von pressgehärteten Formbauteilen aus Stahlblech
EP3303642B1 (de) Verfahren zum kontaktlosen kühlen von stahlblechen und vorrichtung hierfür
EP2324938B1 (de) Verfahren und Warmumformanlage zur Herstellung eines gehärteten, warm umgeformten Werkstücks
EP2182081B1 (de) Verfahren zur thermischen Behandlung eines beschichteten Stahlblechkörpers
EP2182082B1 (de) Verfahren und Vorrichtung zur Temperierung eines Stahlblechkörpers
EP3408417B1 (de) Wärmebehandlungsverfahren
EP2896466A1 (de) Verfahren und Vorrichtung zur Herstellung eines Metallbauteils
EP3420111B1 (de) Verfahren zur gezielten bauteilzonenindividuellen wärmebehandlung
EP3350352B1 (de) Durchlaufkühlvorrichtung und verfahren zum abkühlen eines metallbandes
EP2905346A1 (de) Wärmebehandlungsvorrichtung
DE102017109613B3 (de) Warmformlinie mit Temperierstation sowie Verfahren zum Betreiben
EP3262202B1 (de) Anlage für die serienfertigung pressgehärteter und korrosionsgeschützter blechformteile, mit einer kühleinrichtung zur zwischenkühlung der platinen
DE102015113056B4 (de) Verfahren zum kontaktlosen Kühlen von Stahlblechen und Vorrichtung hierfür
EP3530760A1 (de) Verfahren zum herstellen eines warmumgeformten und gehärteten stahlblechbauteils
WO2017129602A1 (de) Wärmebehandlungsverfahren und wärmebehandlungsvorrichtung
WO2011082934A1 (de) Verfahren und vorrichtung zum erwärmen und partiellem kühlen von werstücken in einem durchlaufofen
EP3414350A1 (de) Wärmebehandlungsverfahren und wärmebehandlungsvorrichtung
EP3159419B1 (de) Verfahren zum erzeugen rollgeformter teilgehärteter profile
DE19757485A1 (de) Vorrichtung zum kontrollierten Abkühlen von warmgewalzten Profilen, insbesondere Trägern, direkt aus der Walzhitze
EP3554974B1 (de) Vorrichtung zum transportieren mindestens eines aufgeheizten bauteils
DE102014215676B4 (de) Verfahren zur Herstellung eines Bauteils, insbesondere einer Profilschiene
DE102014204639A1 (de) Verfahren zur Herstellung wenigstens eines formgehärteten Werkstücks sowie Fertigungseinrichtung zur Herstellung wenigstens eines formgehärteten Werkstücks

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170731

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191209

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20240108

INTG Intention to grant announced

Effective date: 20240118

INTG Intention to grant announced

Effective date: 20240118

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016016499

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN