EP3261913B1 - Fairing, elongate faired element and towing assembly - Google Patents

Fairing, elongate faired element and towing assembly Download PDF

Info

Publication number
EP3261913B1
EP3261913B1 EP16707698.3A EP16707698A EP3261913B1 EP 3261913 B1 EP3261913 B1 EP 3261913B1 EP 16707698 A EP16707698 A EP 16707698A EP 3261913 B1 EP3261913 B1 EP 3261913B1
Authority
EP
European Patent Office
Prior art keywords
fairing
hull
cable
axis
pulley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16707698.3A
Other languages
German (de)
French (fr)
Other versions
EP3261913A1 (en
Inventor
François Warnan
Michaël JOURDAN
Olivier Jezequel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3261913A1 publication Critical patent/EP3261913A1/en
Application granted granted Critical
Publication of EP3261913B1 publication Critical patent/EP3261913B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/56Towing or pushing equipment
    • B63B21/66Equipment specially adapted for towing underwater objects or vessels, e.g. fairings for tow-cables
    • B63B21/663Fairings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/36Guiding, or otherwise ensuring winding in an orderly manner, of ropes, cables, or chains

Definitions

  • the present invention relates to faired tractor cables used on a ship to tow a submersible body dropped at sea and the handling of these cables. It relates more particularly to the towing cables faired by means of scales or sections hinged together. It also applies to any type of elongated streamlined element intended to be at least partially submerged.
  • the document JP S61 113093 U constitutes an example of the prior art disclosing an elongated fairing element.
  • the context of the invention is that of a naval vessel or ship intended to tow a submersible object such as a variable immersion sonar integrated in a towed body.
  • the submersible body in the non-operational phase, the submersible body is stored on board the ship and the cable is wound around the reel of a winch making it possible to wind and unwind the cable, that is to say to deploy and to recover the cable.
  • the submersible body in the operational phase, the submersible body is immersed behind the ship and towed by the latter using the cable, the end of which is connected to the submersible body.
  • the cable is wound / unwound by the winch through a cable guiding device which allows the cable to be guided.
  • the towing cable is streamlined, which reduces its hydrodynamic drag as well as the vibrations generated by the hydrodynamic flow around the cable.
  • the cable is coated with a segmented fairing composed of rigid hulls having shapes intended to reduce the hydrodynamic drag of the cable.
  • the role of the sheath formed by the hulls is to reduce the wake turbulence produced by the movement of the cable in the water, when it is immersed in the water and towed by the ship.
  • the rigidity of the hulls is necessary for large immersions going hand in hand with high towing speeds of at least 20 knots.
  • Flexible fairings are only useful for economically profiling chains or cables of buoys subjected to sea currents or at worst towed at speeds of 6 to 8 knots.
  • the segmentation of the fairing into hulls is necessary so that the cable can pass through guide elements of the pulley type, and so as to be able to withstand a lateral movement of the cable in the event of a change of course of the ship and so as to be able to be wound on the reel of a winch.
  • the hulls are mounted mobile in rotation around the longitudinal axis of the cable. It is indeed necessary that the hulls can rotate freely around the cable in order to be correctly oriented with respect to the flow of water.
  • Each hull is however linked to its two neighbors axially and in rotation about the cable so as to be able to pivot relative to them about an axis parallel to the x axis by a small maximum angle of the order of a few degrees.
  • This inter-hull link allows in particular the fairing assembly to be able to pass smoothly through all of the guide elements. Consequently, the rotation of a hull causes a rotation of its neighbors and gradually that of all of the hulls.
  • any change in orientation of one of the hulls gradually affects all the hulls careening the cable.
  • the guide device is conventionally configured to orient and guide the hulls which pass through it so that they have a predefined orientation relative to the winch reel, all the hulls adopt the same cable as the cable is raised. orientation relative to the reel, orientation which makes it possible to wind the cable while keeping the scales parallel to each other in turn.
  • An object of the present invention is to limit the risks of damage to the fairing of a towed cable.
  • the Applicant has first of all, within the framework of the present invention, identified and studied the cause of this problem of grinding of the hulls by observation of the faired cable in operational situation and by modeling of the faired cable in operational situation and different forces acting on it, in particular hydrodynamic and aerodynamic flows as well as gravity.
  • the streamlined cable is towed by the ship and has a submerged end.
  • the tow point is a point on a pulley that is at a certain height above the water.
  • towing point of a cable or of a fairing is meant the position of the fulcrum of the cable on a device on board the ship, which is closest to the submerged end of the cable or of the fairing respectively.
  • the cable moves away from the transom to disappear underwater a little further than vertical from the towing point.
  • the length of the faired cable in an aerial situation is increased compared to the simple towing height above the water because the cable is inclined relative to the vertical.
  • the last hull which is still in engagement with the ship that is to say the hull which is at the point of towing, often in abutment on the pulley or in abutment on a guidance device on board the ship , is oriented correctly in the direction of the flow although it is well above in the air (Leading edge facing the flow and trailing edge trailing.
  • the first hull in the water (it is ie the hull just submerged) is supposed to take a correct orientation in the flow coming from the speed of the ship (Leading edge facing the flow and trailing edge trailing) .But between these two remarkable hulls, the column fairing may bend since it is in the air just subject to vibrations, insignificant air flow and gravity.
  • the vertical direction in the terrestrial frame of reference is represented by the z axis and the orientation of the section of certain hulls is shown in the zones A, B and C delimited by dotted lines.
  • the last hull 3 in engagement with the ship is oriented vertically (trailing edge up) as shown in zone A.
  • the hulls which are in the air between the pulley P and the surface of the 's water are lying under the effect of gravity.
  • the trailing edge of the hulls is oriented downwards (between the pulley P and the surface S of the water, the hulls have turned around the cable).
  • the hulls which are in the water are straightened under the action of the water flow acting according to the arrow FO as that is represented in zone C (trailing and leading edge located approximately at the same depth).
  • the Applicant has found that the submerged twist can be considered to be “hooked” on the cable.
  • the position of the submerged torsion is fixed relative to the cable along the axis of the cable.
  • its aerial counterpart the aerial twist
  • the aerial twist remains located in the same place between the towing point R and the surface of the water S. It is not fixed relative to the cable along the cable axis but fixed by relative to the surface S of the water or to the towing point.
  • the figure 1C represents a situation in which the cable was unwound compared to the situation of the figure 1B (see arrow).
  • the distance L2 which represents the distance between the part of the fairing concerned by the submerged torsion and the point of entry of the fairing into the water is greater than the distance L1 which represents this same distance in the situation of the figure 1B .
  • the complete turn of the fairing around the cable will be carried out over an increasingly shorter distance.
  • Observations at sea have shown that the fairing column can make a full turn around the cable over a length of less than 50 cm.
  • the hydrodynamic flow exerts a very high torque on the poorly oriented hulls which can go as far as the deterioration of the fairing or even the complete rupture of the hulls.
  • the invention proposes a fairing configured so as to limit the risks of the appearance of a double twist in order to limit the risks of damage to the cable fairing.
  • the invention relates to an elongated streamlined element intended to be at least partially submerged.
  • the elongated fairing element comprises an elongate element and a fairing comprising a plurality of fairing sections, each fairing section comprising a plurality of hulls, the hulls comprising a channel receiving the elongated object and being profiled so as to reduce the hydrodynamic drag of the elongated object at least partially submerged, said hulls being pivotally mounted on the elongated element around the longitudinal axis of the channel, said hulls being linked together along the axis of the channel and being hinged together, the sections of fairing being free to rotate around the channel with respect to each other.
  • the hulls of the same fairing section are linked together by means of a plurality of individual coupling devices, each individual coupling device making it possible to connect one of the hulls of said section to another hull of said section adjacent to said hull .
  • the fairing sections have respective heights along the axis of the channel, defined as a function of the angular stiffness k of the respective fairing sections, and as a function of the length of rope LC of said hulls of said respective sections so as to prevent the formation of a complete twist on said respective sections.
  • At least one fairing section has a height along the axis of the channel, defined as a function of the angular stiffness k of said fairing section and as a function of the length of rope LC of said hulls of said section, so as to prevent the formation a complete aerial torsion on said fairing section when the fairing section is subjected to a torsional torque less than or equal to a predetermined torque.
  • At least one section has a height, along the axis of the channel, defined as a function of the angular stiffness k of said fairing section and as a function of the length of rope LC of said hulls of said section so that the section is suitable for undergo a complete torsion and so as to prevent the formation of a complete aerial torsion on said fairing section when the fairing section is subjected to a torsional torque less than or equal to a predetermined torque.
  • the fairing sections have respective heights less than a maximum height hmax such that: hmax ⁇ ⁇ ⁇ k F LC 2 where F is a constant between 250 and 500.
  • At least one section among said sections comprises at least one end hull, adjacent to a single other hull belonging to said section, being a bevelled hull so that it has a bearing edge comprising a first bearing edge beveled with respect to the leading edge, the first bearing edge being arranged so that the distance between the leading edge and the first bearing edge, taken perpendicular to the leading edge, decreases continuously, along of an axis parallel to the leading edge, from a first end of the first support edge to a second end of the first support edge further from the other hull than the first end, along the parallel axis at the leading edge.
  • Each bevelled hull is for example an end hull.
  • the fairing sections have respective heights along the axis of the channel, defined as a function of the angular stiffness k of the respective fairing sections, and as a function of the length of rope LC of said hulls of said respective sections so as to prevent the formation of a complete twist on said respective sections.
  • the bearing edge is the trailing edge.
  • At least a first portion of the first bearing edge has a thickness less than a thickness of the hull in any longitudinal plane parallel to the leading edge and perpendicular to lateral faces of the hull crossing the first portion of the first edge d 'support, the lateral faces extending in respective planes perpendicular to the leading edge.
  • the end hull is dimensioned so as to be more resistant to a pressure force applied according to a perpendicular direction, at the leading edge and connecting the leading edge to the trailing edge, than the other hulls of the section.
  • the end hull comprises two parts joined or connected along the first bearing edge, the end hull being configured so as to be maintained in a deployed configuration when it is subjected to the hydrodynamic flow of water. , the two parts being arranged, relative to one another around the first bearing edge, so that the end hull has a trailing edge parallel to the leading edge and a constant section along the leading edge and configured to allow relative pivoting between the two parts around the first bearing edge when a relative pivoting torque between the two parts applied around an axis formed by the first bearing edge exceeds a predetermined threshold so that the end hull changes from the deployed configuration to a configuration folded around the support edge.
  • the hulls are rigid.
  • the subject of the invention is also an elongated faired element intended to be at least partially submerged, comprising an elongated element faired by means of the fairing according to the invention, the elongated element being received in the channel, said hulls being pivotally mounted on the elongated element around the longitudinal axis of the channel and being immobilized in translation relative to the elongated element along the axis of the elongated element.
  • the subject of the invention is also a towing assembly comprising an elongated fairing element according to the invention, and a towing and handling device intended to tow the elongated fairing element while the latter is partially submerged, the towing device comprising a winch for winding and unwinding the elongated faired element through a guide device for guiding the elongated element.
  • the guide device is configured so as to make it possible to modify the orientation of a fairing of the fairing relative to the guiding device by rotation of the hull around the axis of the elongated element under the effect of the traction of the elongated element relative to the guide device when the hull has an orientation in which it is in abutment on the guide device and in which the line of action developed by the elongated element on the pulley extends substantially along the axis extending from the axis of the elongated element to the trailing edge.
  • the guide device comprises a first groove, the bottom of which is formed by the bottom of the groove of a pulley, the first groove being delimited by a first surface having a concave profile in a radial plane of the pulley, the width of the first groove and the curvature of the profile of the first curved surface in the radial plane being determined so as to allow the hull to tilt, by rotation of the hull around the axis of the elongated element x under the effect of the traction of the elongated element relative to the guide device along its longitudinal axis, from an inverted position in which the hull is oriented trailing edge towards the bottom of the first groove, to an acceptable position in which it is oriented leading edge towards the bottom of the first groove.
  • the hulls comprise a hull comprising a receiving the elongated element and comprising a leading edge a tail having a tapered shape extending from the nose and comprising a trailing edge, the first curved surface forming a first concave curve in the radial plane of the pulley, the first concave curve being defined in a radial plane of the pulley so that, when the hull extends leading edge perpendicular to the radial plane, whatever the position of a hull in the first groove, when the nose of the hull is in abutment on the first concave curve and the elongated element exerts on the hull, in the radial plane, an effort of placing the nose of the hull against the pulley, said effort of cladding Fp comprising a component CP perpendicular to the axis of the pulley and a lateral component CL the trailing edge of the hull is not in contact with the first concave curve or is in contact with with a part
  • the invention relates to an elongated fairing element comprising an elongated object coated with a fairing.
  • the elongated object is for example a flexible object such as a cable or a rigid object such as a drilling column at sea, intended to be at least partially submerged.
  • the elongated element is conventionally intended to be towed by a floating vessel.
  • the fairing is intended to reduce the forces generated by the current on this elongated element when it is immersed in water and towed in water by a naval vessel.
  • the invention also relates to a towing assembly as shown in the figure 2 , comprising an elongated element 1 faired by means of a fairing according to the invention.
  • a towing assembly as shown in the figure 2 , comprising an elongated element 1 faired by means of a fairing according to the invention.
  • the invention will be described in the case where the elongated element is a cable but it applies to other types of flexible elongated elements.
  • the cable 1 tows a towed body 101, comprising for example one or more sonar antennas.
  • the towed body 101 is mechanically secured to the cable 1 in an appropriate manner.
  • the towed body 101 is launched and taken out of the water by means of a winch 5 disposed on a deck 103 of the ship 100.
  • the guide device 4 is advantageously mounted on a support structure 7 intended to be fixed to the vessel, which can be tilting or fixed.
  • the guide device makes it possible to guide the cable 1, that is to say to limit the lateral movement of the cable relative to the winch, in a direction parallel to the axis of rotation of the winch reel. It is also advantageously configured to modify the direction of the cable between its end intended to be immersed 6 and the winch 5 in a plane substantially perpendicular to the axis of the winch while allowing to secure the radius of curvature of the cable so that it does not go below a certain threshold in this plane.
  • the guiding device is a pulley 4.
  • the guiding device can furthermore comprise inter alia a fairlead making it possible to secure the radius of the cable, and / or a slicing device making it possible to store the cable correctly on the reel and / or at less a deflector forming a surface making it possible to modify the orientation of a hull relative to the deflector by rotation of the hull around the axis of the cable under the effect of the traction of the cable during its winding / unwinding.
  • the latter can be achieved by a pulley.
  • FIG 3 there is shown schematically a portion of cable 1 coated with a fairing 11 according to the invention.
  • This fairing 11 comprises a plurality of fairing sections 12a, 12b.
  • Each fairing section 12a, 12b comprises a plurality of hulls 13, 13a.
  • two fairing sections 12a and 12b have been shown, each comprising 5 fairing hulls, but in practice, the fairing may include many more fairing sections comprising much more hulls.
  • the hulls are advantageously rigid.
  • rigid hulls is meant, in the present patent application, that the hulls are configured so as not to be substantially deformed under the effect of the hydrodynamic flow when they are immersed and towed in the direction of the leading edge. In other words, the hulls retain substantially the same shape when subjected to the hydrodynamic flow.
  • the hulls may possibly deform under the effect of forces greater than those developed by the hydrodynamic flow. They are for example made of hard plastic material such as, for example, polyethylene terephthalate (PET) or polyoxymethylene (POM).
  • PET polyethylene terephthalate
  • POM polyoxymethylene
  • Each hull 13, 13a has a hydrodynamic profile, of the type shown in the figure 4a , in a plane AA perpendicular to the axis x of the cable (or axis of channel 16). In other words, each hull 13, 13a is profiled so as to reduce the hydrodynamic drag of the cable 1 when the cable 1 is towed.
  • the hulls 13a are hulls having the same characteristics as the hulls 13 but which can differ from the hulls 13 by the characteristics which are explained below due to their position in the sections 12a, 12b.
  • Each hull 13 comprises a wide nose 14 intended to receive the cable 1 and a tail 15 having a tapered shape extending from the nose 14.
  • the nose 14 houses a channel 16 with an axis perpendicular to the plane of the sheet, intended for receiving the cable 1.
  • the nose 14 comprises the leading edge BA and the tail 15 comprises the trailing edge BF which are the end points of the hull 13 in the cutting plane.
  • the hull 13 more particularly has in this plane a wing-shaped profile.
  • the hull profile allows a less turbulent flow of water around the cable.
  • the hydrodynamic profile for example has a teardrop shape or a NACA profile, that is to say a profile defined by the NACA which is an acronym of the Anglo-Saxon expression "National Advisory Committee for Aeronautics”.
  • FIG 4b there is shown a view of the hull according to arrow B, which is the same view as on the figure 3 .
  • the hull has an elongated shape from the leading edge BA to the trailing edge BF.
  • Side view the hull 13 has a substantially rectangular shape delimited by the trailing edge BF and the leading edge BA parallel to the axis xc of the channel 16 and connected by two lateral faces 17, 18.
  • the lateral faces 17, 18 extend substantially perpendicular to the trailing edge BA.
  • the lateral faces are arranged at the respective ends of the channel 16.
  • the length of rope LC of hull 13 which is the maximum length of the line segment called rope CO connecting the trailing edge BF and the leading edge BA of hull 13 in a direction perpendicular to the axis of the xc channel.
  • the rope is the line segment connecting the extreme points of a section of the hull.
  • the maximum thickness E of the hull is the maximum distance separating the first longitudinal face 22 from the second longitudinal face 23 in a direction perpendicular to the cord CO in the section plane of the hull.
  • the distance between the trailing edge and the leading edge is constant along the axis of the channel xc parallel to the leading edge BA. The length of the rope is this distance.
  • the longitudinal faces 22 and 23 extend parallel to the leading edge BA.
  • the hulls 13 are intended to be mounted on the cable 1 so as to be able to pivot around the longitudinal axis of the cable 1, that is to say around the longitudinal axis of the channel 16.
  • the hulls 13 belonging to the same fairing section 12a or 12b are linked together by means of a coupling device 20 allowing the relative rotation of said hulls 13 relative to each other around the cable 1.
  • the coupling device 20 links the hulls to each other both axially, that is to say along the towing cable but also in rotation about the cable 1.
  • the coupling device 20 allows the relative rotation of the hulls with respect to the others around the axis of the cable, that is to say of the channel 16. This travel is authorized either freely or with a stop. The rotation of a hull around the cable does not then cause the adjacent hull to rotate.
  • the travel can be obtained in a constrained manner with a more or less strong return to the aligned position (no relative rotation of the hulls relative to each other around the cable).
  • the rotation of a hull around the cable causes the adjacent hulls of the same section to rotate around the cable.
  • the play between the adjacent hulls is substantially zero, so that any relative rotation between the hulls involves the elastic deformation of the coupling device. This allows the hulls of the same section to adopt an orientation relative to the cable allowing it to oppose the weakest resistance to the current caused by the movement of the cable in water.
  • the coupling device allows this relative rotation with a maximum amplitude, that is to say a maximum angular movement.
  • the rotation of a hull causes a rotation of the neighboring hulls and gradually that of all the hulls of the same section 12a or 12b. All the hulls of the same section adopt, as the cable rises, the same orientation relative to the drum, which makes it possible to wind the cable while keeping the scales parallel to each other in turn.
  • the coupling device 20 allows the relative rotation of the hulls with respect to each other so as to allow the cable to be wound around a winch, the lateral movement of the cable due for example to changes in course of the ship .
  • the coupling device allows these relative rotational movements of the hulls with respect to each other with maximum respective angular deflections.
  • the coupling device 20 shown in the figure 3 comprises a plurality of individual coupling devices 19, comprising for example a splint, each making it possible to connect a hull to a hull adjacent to said hull, that is to say to couple the hulls of the same section two together.
  • each individual coupling device makes it possible to connect a hull to another hull adjacent to said hull only.
  • the adjacent hulls form pairs of hulls.
  • the hulls of the respective hull pairs of the same fairing section are connected by means of separate individual coupling devices.
  • the coupling device thus makes it possible to individually connect each hull of a fairing section to each of its adjacent hulls.
  • the individual coupling devices are configured so as to deform elastically during the relative rotation of the hulls around the cable. This is a twist of the individual coupling devices.
  • each fairing section 12a, 12b comprises an immobilizing device 21 cooperating with a hull 13a of said section 12a, 12b and intended to cooperate with the cable 1 so as to immobilize the hull 13a in translation along the axis of the cable.
  • the hull 13a is the hull farthest from the end intended to be immersed 6 situated in the direction of the arrow f (called the head hull).
  • the hulls being linked together, the blocking produced by the immobilization device on a hull 13a has repercussions on the other hulls of the same section.
  • the installation of a hull immobilizer is not necessary, which limits the costs and the assembly time as well as the weight of the faired cable.
  • the section comprises several immobilization devices each cooperating with a hull of the section.
  • the immobilization device comprises for example a ring 21 fixed to the cable by crimping and cooperating with the hull 13a in order to immobilize it in translation relative to the cable along the x axis of the cable 1.
  • the fairing sections 12a and 12b are free to rotate, relative to one another, around the axis of the channel 16, that is to say around the axis of the cable 1 when they are mounted on the cable 1.
  • the hulls 13, belonging to two distinct fairing sections 12a and 12b are free to rotate with respect to each other, around the axis of the channel, that is to say say around the cable 1.
  • Each section 12a, 12b is relatively flexible in rotation around the cable even if a certain torsional stiffness is observed. This flexibility only increases with the length deployed.
  • the fairing can be installed along the cable.
  • the fairing extends over the entire length of the cable.
  • the fairing extends along the cable over a length less than the length of the cable.
  • the fairing is intended to fair an elongated element. It is also intended to be towed by means of a towing device as described in the present patent application.
  • the heights h, of the respective fairing sections are less than a maximum height hmax.
  • at least one of the sections has a height less than this maximum height hmax.
  • the maximum height hmax is chosen so as to be sufficiently low to prevent the formation of a complete aerial torsion on the section, for example of a complete torsion on the section.
  • the disturbed section can make a full turn on itself and realigns itself in the flow, since it is decoupled from its neighbors this section no longer disturbs them and there is no longer any aerial twist or submerged twist.
  • This configuration makes it possible to prevent old complete submerged twists from entering the guide device and therefore limits the risks of damage to the fairing. Furthermore, this configuration makes it possible to avoid having to set up a monitoring procedure, by the crew, or a monitoring device aimed at detecting submerged torsions as well as a mechanical or manual procedure aimed at absorbing a double torsion detected or aimed at helping an immersed retentive torsion coming out of the water to enter the guide device without causing damage.
  • the height of at least one section, and preferably of each section is defined so as to prevent the formation of a complete aerial twist of said fairing section when the fairing, or the elongated element faired by means of the fairing. , is towed under predetermined nominal towing conditions of the fairing, the fairing section being partially submerged.
  • the aerial torsion is the torsion undergone by the aerial part, that is to say not immersed, of the fairing section.
  • the nominal towing conditions are defined by a nominal sea state, a nominal speed at which the cable is intended to be towed, i.e. the nominal speed of the ship, and the height at which is intended to be the towing point of the fairing above sea level.
  • the nominal sea state, the nominal speed and the height of the towing point may be predetermined or may be included in predetermined respective nominal intervals.
  • the fairing section is subjected to a torsional torque which is less than or equal to a predetermined maximum torque.
  • This maximum torque is defined by the nominal conditions.
  • the predetermined maximum torque can be obtained by calculation or empirically by measuring the torque exerted by the fairing section under nominal conditions.
  • the maximum height of the fairing section is defined so as to avoid the formation of a complete aerial torsion on the partially submerged fairing section when the fairing section is subjected to a torsional torque less than or equal to the predetermined maximum torque.
  • the height of the fairing is empirically defined by varying the length of the fairing section under the most demanding nominal towing conditions, generating the maximum torque so as to obtain a height such that it avoids aerial torsion. complete of the fairing section. It can also be determined by simulation by modeling the behavior of the fairing section under the most restrictive nominal conditions and by varying the height of the section until the desired effect is obtained.
  • the height of at least one section, and preferably of each section is chosen so that the section is able to undergo a complete twist.
  • the height of the section is therefore large enough to allow this twisting.
  • this height is also chosen, as above, so as to prevent the formation of a complete aerial torsion on said fairing section when the fairing, or the elongated element faired by means of the fairing, is towed under towing conditions.
  • predetermined nominal fairings, the fairing section being partially submerged.
  • the height of the section is low enough so that, when the fairing (or the cable is faired) is towed, partially submerged and is subjected to a maximum torque, it cannot be subjected to aerial torsion.
  • it can undergo a complete torsion if it is subjected to a torque greater than the maximum torque.
  • the height of the section is defined as a function of the angular stiffness in torsion k of said fairing section, as a function of the length of rope LC of said hulls of said section and as a function of nominal towing conditions.
  • a fairing section T undergoing a twist by an angle ⁇ around the x axis of a cable (or of channel 16) is subjected to a torque C applied around the x axis of the cable 1.
  • the maximum height hmax depends on the torsional stiffness of the fairing sections.
  • the torsional disturbances caused by the stresses of the sea and the towing conditions are proportional to the surface of the hulls of the section (therefore to the length of the rope) and to the arm lever (therefore the length of the fairing rope).
  • the maximum height hmax is therefore given by the following formula: hmax ⁇ ⁇ ⁇ k F LC 2
  • F is a constant calculated according to a configuration which has been identified as being the most constraining and which takes account of the ebb and flow of the wake and LC is the length of the hull cord of the fairing section.
  • the constant F is between 250 and 500. F depends on the maximum speed at which one wishes to tow the cable. If one wishes to tow the cable at a speed of 20 knots, F is fixed at 400. F is lower if the maximum speed decreases.
  • the fairing according to the invention has advantages even in the case where it is not sought to wind the cable around a winch.
  • the fact that the fairing according to the invention minimizes the risks of the formation of double twists makes it possible to limit the risks of deterioration of the fairing linked to the aging of the submerged twists without them entering a guide device.
  • the fairing according to the invention therefore limits the needs in terms of cable maintenance.
  • the device for guiding the towing assembly is configured so as to make it possible to modify the orientation of a fairing of the fairing relative to the device for guiding by rotation of the hull around the axis of the cable, under the effect of the traction of the cable relative to the guide device (along the cable axis), when the hull has an orientation in which it is in abutment on the guide device and in which the line of force action exerted by the cable on the guide device extends substantially in the direction extending from the axis of the cable to the trailing edge of the hull.
  • the guide device is configured to turn a hull from an inverted position in which it is oriented tail down, to an acceptable position in which it faces tail up.
  • the upward and downward orientations are defined with respect to a vertical axis linked to the winch.
  • the guide device comprises a guide or a set of guides allowing the orientation or tilting of the hull to be changed.
  • This guide or guide assembly can for example comprise a pulley and / or a deflector or any other device making it possible to modify the orientation of the hulls around the axis of the cable.
  • a nonlimiting example of this type is described in the French patent application published under the number FR2923452 .
  • These devices are conventionally arranged upstream or downstream of the pulley seen from the winch. They are conventionally concave, that is to say of the grooved type, so as to define a housing intended to receive the hull to ensure its tilting.
  • These guides may be able to follow the cable in the event of lateral movement of the cable parallel to the axis of the pulley (or of the winch), by being for example pivotally mounted about a substantially vertical axis.
  • the devices allowing the fairing to be turned over are ineffective when installed downstream of the pulley, seen from the free end of the cable because the position of the cable has at this point at least two degrees of freedom: longitudinal and lateral and current rectifier devices are not able to correctly follow the cable in these two directions or they are complex devices.
  • the xp axis of the pulley is perpendicular to the plane of the sheet.
  • the hulls 13 of a first group of hulls 12a are oriented trailing edge BF towards the outside of the groove and leading edge towards the groove.
  • the remarkable hull 13a is the hull at the head of the section 12b, that is to say the hull 13a of the section 12b which is furthest from the end of the cable intended to be submerged 6.
  • the hull 13a is present at the pulley P trailing edge BF towards the groove of the pulley and leading edge BA towards the outside of the groove.
  • This remarkable hull 13a belongs to a second group of hulls 12b.
  • the section of the pulley of the prior art in the plane M passing through the lateral edge 18 connecting the trailing edge BF and the leading edge BA of the hull of head is as visible on the figure 6a .
  • the figure 6b a section of the pulley P of the prior art in another plane comprising the lateral edge 18 of the head hull 13a situated to the right of the plane M on the figure 5 because the cable 1 has been hoisted, that is to say pulled along the arrow shown in the figure 5 enter here figure 5 and the figure 6b , advancing the remarkable hull 13a in the throat.
  • the groove of the pulley has a V-shaped section with an opening of between 20 ° and 50 °.
  • the bottom of the V has a shape substantially complementary to the leading edge so that when a hull enters the pulley leading edge upwards, the following hulls linked to this hull will also take this orientation during winding of the cable.
  • a head hull 13a arrives at the trailing edge towards the groove 105 as is the case on the figure 6a , the groove is too narrow for the hull to turn upward trailing edge under the effect of the traction of the cable relative to the groove of the pulley along its axis. The tension of the cable forces the head hull 13a to descend towards the bottom of the groove.
  • the invention aims to entrust a function of turning the hulls around the axis of the cable to the pulley itself.
  • the invention consists in providing a towing assembly comprising a cable guide device disposed downstream of the winch seen from the end of the cable intended to be submerged, the guide device comprising a first groove the bottom of which is formed by the bottom of the groove of a pulley, the first groove being configured so as to allow a hull of the fairing to be tilted, by rotation of the hull around the axis of the cable x under the effect of the tension of the cable, from an inverted position in which the hull is oriented trailing edge (or tail) towards the bottom of the first groove, to an acceptable position in which it is oriented leading edge (or nose) towards the bottom of the first groove, that is to say the trailing edge towards the outside of the groove.
  • the dimensions and shape of the profile of the first groove are determined according to the radius R of the pulley of the maximum length CAR, taken parallel to the rope separating the trailing edge BF of the fairings of the fairing, of the x axis of the elongated element 1, of the length of rope LC des hulls and the maximum thickness E of the hulls so as to allow the hull to be tilted from the returned position to the acceptable position.
  • the axis of the pulley is the axis around which the pulley pivots relative to the winch, that is to say relative to the fixed part of the winch.
  • the axis of the pulley is substantially horizontal, that is to say intended to extend parallel to the surface of the water in a calm sea state when the towing device is fixed to a naval vessel or ship.
  • the bottom 26 of the groove of the pulley forms a circle of radius R, the center of which is on the axis of the pulley.
  • a radial plane of a pulley is a plane which is formed by a radius r of the pulley and the axis xp of the pulley around which the pulley pivots.
  • the radius r has a length R.
  • the first groove 24 is delimited by a first surface whose section in the radial plane BB is the first concave curve 25 (U-shaped curve shown in bold on the figure 7 ).
  • the first concave curve 25 comprises a bottom 26 of the first groove 24. The bottom is the point of the first groove 24 which is closest to the axis xp of the pulley.
  • the reference curve 28 in V is the section, in the radial plane BB, of a second curved surface delimiting a second reference groove 29 or second virtual groove.
  • the bottom of the second groove, that is to say the bottom of the reference curve 28 is the bottom 26.
  • the bottom V is the point of intersection of the two legs 31, 32 of the V.
  • the width of the v is at least equal to lid. Turning is then easier.
  • the material forming the outer part of the tail of the hull is the material forming the hull when it is made of a single material.
  • the first curve 25 is merged with the second curve 28 at the end points 33, 34 of the second curve 28.
  • the end points 33, 34 of the second curve are the points of the second curve which are spaced apart by the width Iv according to a straight parallel to the axis of the pulley xp. They delimit the first groove and the second groove along an axis parallel to the axis of the pulley and along an axis parallel to the radius of the pulley passing through the bottom 26.
  • the first curve 25 is, at all points between each of the points extremes 33, 34 and the bottom 26, combined with the second curve or closer to the axis of the pulley xp than the second curve according to the radius of the pulley in the cutting plane BB.
  • the first concave curve 25 delimiting the first groove 24 may have the profile visible on the figure 7 or else be, between the end points, at any point other than the bottom and the end points 33, 34, under the curve 28 and at least at a distance from the axis equal to the distance separating the bottom of the pulley axis pulley (Radius R of the pulley).
  • the first concave curve is located at all points, in the space delimited by curve 28, the line d1 parallel to the axis passing through the bottom 26 and the lines d3 and d4 parallel to the radius R of the passing pulley by points 33 and 34.
  • the first concave curve 25 is the curve delimiting the first groove 24 intended to receive the faired cable in a radial plane (see figure 7 ).
  • the first concave curve is defined in a radial plane BB of the pulley so that, when the hull extends leading edge BA perpendicular to the radial plane BB, whatever the position of a hull in the first groove 24, when the nose 14 of the hull 13 is in abutment on the first concave curve and the cable 1 exerts on the hull 13, in the radial plane, an effort of plating the nose of the hull against the pulley , said plating force Fp comprising a component CP perpendicular to the axis of the pulley and a lateral component CL (that is to say parallel to the axis of the pulley) the trailing edge BF of the hull 13 n is not in contact with the
  • the first concave curve 25, and therefore the profile of the first groove, is obtained by a person skilled in the art by simulations from this definition.
  • a first curve forming a curved line having at all points a radius of curvature at least equal to half the length of the hull cord LC makes it possible to ensure the sliding of the hull in case of lateral thrust of the cable.
  • a curved line is a line without a sharp or protruding angle (in the mathematical sense of the term).
  • the radius RA of this circle is approximately equal at 55% of the length of the hull LC cord, which is greater than the value of 50% retained above.
  • the dimensions and the shape of the first groove profile are determined, so as to make it possible to tilt a reference hull having a maximum length CAR, taken parallel to the rope separating the trailing edge BF of the hulls of the fairing, a length of LC chord of the hulls and a maximum thickness E and possibly as a function of the coefficient of friction Cf between the reference hull and the pulley.
  • These dimensions and profile are advantageously defined so as to ensure the tilting of the hull from an inverted position to an acceptable position without deforming this reference hull.
  • the width of the first groove Igb is equal to the width of the V Iv.
  • the first groove extends beyond the end points. It can include the groove of the pulley only or include the groove of the pulley and be delimited on either side of the pulley by deflectors or vertical flanges (i.e. perpendicular to the axis of the pulley) or substantially vertical.
  • the first groove may also be the groove of the pulley which comprises, beyond the V or above the V of the vertical walls (that is to say perpendicular to the axis of the pulley) or substantially vertical. The walls and flanges as defined make it possible to prevent the cable from leaving the first groove in the event of lateral movement.
  • the first groove is the groove 24 of the pulley.
  • the first groove comprises the groove of the pulley.
  • the bottom of the first groove is the bottom of the pulley groove.
  • the first groove extends beyond the groove of the pulley. It is for example delimited at least on one side of the pulley with respect to a plane perpendicular to the axis of the pulley, by a deflector or a flange.
  • the deflector or flange can be fixed relative to the pulley or movable in rotation relative to the pulley around the axis of the pulley.
  • the first groove comprises lateral edges making it possible to limit the lateral clearance of the cable. The lateral edges may extend completely within the part situated between the two extreme points or else partially and also extend partially beyond these points.
  • the pulley and more precisely the groove of the pulley, has a constant profile. In other words, it is the same according to all the radial planes of the pulley.
  • the first curve 25 and the second curve 28 are symmetrical with respect to a plane perpendicular to the axis xp of the pulley and comprising a radius of the pulley passing through the bottom 26. This plane is then the median plane of the groove.
  • FIG 7 there is shown a partial section of a pulley 40 according to a second embodiment, in the plane M, which is a plane formed by a lateral face 18 of the head hull 13a of the segment 12b coming into contact with the pulley.
  • the side face includes the point of the hull that first comes into contact with the pulley.
  • the pulley has an open V-shaped profile for turning.
  • the pulley 40 comprises a groove 44 in V.
  • the remarkable hull 13a is supported on a first tab of the V 45 leading edge towards the bottom 46 of the groove 44.
  • the opening of the groove ⁇ g is such that the angle formed between the line of force action (represented by the arrow represented in the hull) and the second leg 47 ⁇ f is greater than 90 °.
  • the tail is given an escape route which allows it to turn around according to the arrows shown on the figure 8a to adopt the position represented on the figure 8c passing through the position shown on the figure 8b following the movement indicated by the arrows by pivoting around the axis of the cable under the action of the cable tension (exerted along the line of force action) when the cable is pulled along the groove.
  • the direction of the force action line is substantially parallel to the first leg 45.
  • the opening of the V ⁇ g in the plane M which is at least equal to twice the limit angle ⁇ i is substantially equal to ⁇ f. Consequently, the opening of V ⁇ g is greater than 90 °.
  • the profile of the groove of the pulley in the plane BB is the projection, on a plane forming an angle ⁇ with the plane M, of the profile of the groove in the plane M.
  • the opening ⁇ v of the V formed by the second curve 28 in the plane BB is at least equal to a threshold angle ⁇ s.
  • the first curve 25 delimiting the first groove 24 has at least from the first extremal point 33 to the second extreme point 34 a concave shape.
  • the curve can have at least from the first extremal point 33 to the second extreme point 34 a V shape or have several sharp or projecting angles AS as shown in the Figures 9a and 9b .
  • the curve substantially forms a broken line.
  • the curves have a sharp or projecting angle at the bottom 26 and are symmetrical with respect to the plane perpendicular to the axis of the pulley and comprising a radius of the pulley.
  • These profiles are more efficient in ensuring the reversal of the hulls than the V-shaped profile.
  • These profiles are advantageously, but not necessarily symmetrical with respect to a plane perpendicular to the axis of the pulley passing through the bottom 26.
  • the first curve has salient angles and has a tangent substantially parallel to the axis of the pulley xp at the bottom. The bottom is then the point of the curve located on the median plane of the throat.
  • the first curve 25 is, between the extreme points 33, 34, a curved line.
  • it is a concave curve devoid of a sharp or salient angle (in the mathematical sense of the term).
  • the curve never includes more than one tangent at the same point. Its derivative is substantially continuous.
  • the first groove (or first curve) When the first groove (or first curve) has a V-shaped section (first V curve), it must have a width at least equal to lid so that the inversion is guaranteed.
  • the first groove (or first curve) When the first groove (or first curve) has a section such that the first curve is U-shaped, then it can have a width less than up to 0.7 ⁇ lid because it does not have d sharp angles in which the bottom of the hull may get caught. In this case, the opening of the V can also be less than the threshold angle. In other words, the V must have a width at least equal to 0.7 ⁇ lid. On the other hand, turning over can be more difficult than when the V has a width at least equal to lid. Below this threshold, it is not certain that the reversal will take place.
  • the first groove is at the bottom of the bathtub.
  • the groove at the bottom of the bath has the advantage of ensuring a certain and fluid reorientation of the hull and makes it possible to orient the hull in a position substantially lying in the bottom of the throat.
  • the central area can be one of two curves.
  • the lower curve is the preferred embodiment of the invention.
  • the central zone of the first curve is formed by a pulley having a groove whose width is the width of the central zone.
  • the first curve comprises upper parts extending substantially perpendicularly above the extreme points of the V so as to prevent the cable from leaving the first groove during a vertical movement of the cable.
  • These flanges are integral with the pulley or belong to the pulley or are fixed relative to the axis of the pulley.
  • the first curves between the upper curve and the lower curve have the advantage of verifying the angular condition making it possible to prevent the hull from preventing lateral movement of the cable.
  • This profile facilitates and simplifies the tilting of a hull because the flattened central portion of the groove of the pulley implies a significant distance between the axis of the reaction of the groove of the pulley on the hull (axis going from the edge trailing towards the center of the circle portion formed by the central portion) and the axis of rotation of the hull (extending along the trailing edge axis - towards the axis of the channel xc or axis of the cable x) due to the large distance between the axis of the cable and the center of the circle portion formed by the central portion.
  • This profile also allows the cable and its fairing which are placed substantially flat to come to rest safely on the sides of the pulley when the cable is biased laterally (that is to say parallel to the axis pulley) in the event of a turn of the vessel, for example. If the cable and the leading edge of the fairing are positioned on the correct side, they remain there. If they are on the wrong side, the profile of the pulley allows an almost smooth reversal which allows the cable (where the forces sit) to come to rest against the side of the pulley. This slip is present but less fluid in the other pulley configurations.
  • the pulley according to the invention and more generally the guide device according to the invention, makes it possible to ensure the straightening of a hull coming to bear on the pulley with a trailing edge orientation towards the bottom of the groove pulley and leading edge vertical to the trailing edge.
  • the hull carries with it the hulls to which it is linked to rotate about the cable, that is to say the hulls of the same section.
  • the pulley according to the invention also makes it possible to straighten the hulls of a cable organized in a single section in which the hulls are all linked together to rotate about the cable in the event of a break in an inter-hull connection, for example under the 'effect of a double twist which ensures a passage of the faired cable in the pulley without deformation of the hulls. It also makes it possible to straighten the head hull of a fairing comprising a single section extending over a length less than the length of the cable from the end intended to be submerged. It also makes it possible to straighten the hulls of a faired cable comprising hulls which are all free to rotate about the cable relative to each other.
  • the guide device according to the invention is effective and simple because it does not require the installation of a cable follower device (that is to say able to follow the cable when it moves laterally and vertically relative to pulley).
  • the pulley according to the invention does not ensure a reversal of the hull until a situation in which the trailing edge is located vertically leading edge.
  • the hull is returned to a position in which it is substantially flat (trailing edge slightly raised upwards). It must therefore pivot about 1 ⁇ 4 turn against 1 ⁇ 2 turn (if it were to adopt the trailing edge position above and vertically from the leading edge) which facilitates the operation of straightening the hull by the pulley .
  • the guide device comprises, between the winch and the pulley, a straightening device making it possible to orient the hulls which come out of the pulley in the direction of the winch around the axis of the cable so that they have a predetermined orientation. relative to the winch drum, for example leading edge down and trailing edge vertical to the leading edge.
  • the hulls of the sections have a constant section, that is to say fixed, along the leading edge.
  • section is meant the profile of the hull in a transverse plane, that is to say a plane extending perpendicular to the leading edge BA, that is to say to the axis of the channel xc.
  • constant section is meant a section having substantially the same shape and the same dimensions in all the transverse planes, whatever their positions along the leading edge between the lateral faces 17, 18.
  • the trailing edge BF is substantially parallel to the leading edge BA over the entire width I of the hull.
  • the width I of the hull is the distance between the two lateral faces 17, 18 along an axis parallel to the leading edge BA.
  • the trailing edge BF constitutes a bearing edge parallel to the leading edge BA.
  • At least one hull 130 of the fairing is a bevelled hull.
  • a bevelled hull is a hull which comprises a bearing edge BAPa comprising a first bearing edge in bevel Bza relative to the leading edge BAa, the bevel being produced so that the distance between the leading edge BAa and the first bevel bearing edge Bza, taken along an axis perpendicular to the leading edge BAa and to the axis xc of the channel 16 varies linearly along the axis xc.
  • first bevel bearing edge Bza is meant a first bearing edge Bza which extends longitudinally substantially along a straight line which is at an angle or inclined relative to the leading edge BAa.
  • the first bearing edge Bza extending longitudinally in a first plane containing a plane or parallel to the plane defined by the leading edge BAa and the chord CO of the hull. In other words, the first bearing edge Bza is biased relative to the leading edge BAa in this first plane.
  • the support edge BAPa extends longitudinally between two ends E1 and E2.
  • the support edge BAPa is arranged so that the distance between the support edge BAPa and the leading edge BAa decreases continuously from a first end E1 of the first support edge Bza to a first lateral face 180 of the hull closer to the second end of the first support edge Bza than to the first end of the first support edge, along an axis parallel to the leading edge BA.
  • this lateral face 180 is the lateral face of the hull 130a furthest from the free end 6 of the cable (visible on the figure 2 ) in the opposite direction of the arrow.
  • the other lateral face 170 is the lateral face of the hull 130a closest to the free end 6 of the cable. This characteristic makes it easier to turn over the hull 130 when it comes to bear on the pulley by its trailing edge, during the winding of the cable, that is to say during the pulling of the cable relative to the pulley axis xp according to arrow f.
  • the position P ' has been shown on the pulley 4 of the figure 7 , from the point where the hull 130a comes into contact with the pulley 4 due to the pulling of the cable relative to the axis of the pulley xp in the direction of the arrow.
  • This point is located at a distance B '(represented on the figure 12b ) of cable 1 perpendicular to the axis of cable x.
  • This point is located at a distance dB from the cable 1 perpendicular to the axis of the cable x.
  • the distance dB ' is less than the distance B, therefore, the inversion of the hull is facilitated and therefore the inversion of the hulls of the section is also facilitated.
  • This is valid in the case of the pulley of the invention but also in the case of any guide device, in particular of the type making it possible to modify the orientation of the hull relative to the guide device by rotation of the hull about the axis of the cable.
  • the beveled support edge makes it possible to facilitate the reorientation of a hull in any guiding device making it possible to modify the orientation of the hull relative to the guiding device by rotation of the hull around the axis of the cable (or channel) when the hull comes to bear on a bearing surface of the guide device by the bearing edge.
  • the beveled support edge facilitates in particular the reorientation of the hull by any guide device comprising a surface opposing the traction of the faired cable during the winding or during the unwinding of the cable.
  • the invention works, for example, with guiding devices making it possible to follow the cable in the event of lateral and / or vertical movement of the cable.
  • the presence of a bevelled hull makes it possible to limit the risks of deterioration of the fairing, in particular in the presence of a double twist by facilitating the tilting of a hull at its entry into a guide device, which limits the risk that the fairing gets stuck in the guide device.
  • This embodiment also has an advantage in the case of a pulley having a constant profile, and more particularly of a pulley according to the invention.
  • the contact point P ' is located in a plane M' located at a distance D 'smaller than the distance D at which the plane M is located (including the point P), relative to the axis of the pulley, parallel to the axis of the cable x. Consequently, the groove of the pulley is less deep in the plane M 'than in the plane M.
  • the profile of the groove in the plane M (or M') is the projection of the profile of the groove in a plane radial passing through the plane P (or respectively P ') on the plane M (or respectively M') forming an angle ⁇ (or respectively ⁇ 'less than ⁇ ) with the radial plane at the point considered.
  • the fact that the groove is less deep according to the plane M 'than according to the plane M implies that the pulley is flatter according to the plane M than according to the plane M' at least at the bottom level (that is to say say at the level of the central portion of the curve delimiting the throat).
  • the central portion of the pulley at the bottom of the bathtub is flatter in the plane M 'than in the plane M, in other words, the radius of the contact surface at point P is more important in the plane M 'than in the plane M, which facilitates the tilting of the hull under the effect of the traction of the cable relative to the axis of the pulley.
  • the bevelled hull comprising the bevel is the hull 130a at the head of the section, that is to say the hull farthest from the end of the cable intended to be immersed.
  • the head hull 130a is a hull which is adjacent to a single other hull 130b belonging to the same section 120.
  • the first bearing edge Bza of the head hull 130a is arranged so that the distance between the leading edge BAa and the first bevel bearing edge Bza decreases continuously, along an axis parallel to the leading edge BAa, from a first end E1 of the first support edge Bza to a second end E2 of the first edge d 'support Bza further from the other hull 130b than the first end E1, along the axis parallel to the leading edge BAa.
  • the bevelled hull is the bottom hull of the section, that is to say the hull closest to the end of the cable intended to be submerged. This makes it easier to tilt the hull during the unwinding of the cable (when the hull comes to rest on the pulley on the other side of the pulley relative to the axis of the pulley) and to facilitate the tilting of all section because the hull (by propagation of the rotational movement over the entire section).
  • the tail hull is a hull which is adjacent to only one other hull belonging to the same section.
  • the first support edge is configured so that the distance between the leading edge BAa and the first beveled support edge decreases, along the leading edge BAa, from a first end of the first support edge opposite the other hull to a second end of the first bearing edge further from the other hull than the first end, along the axis parallel to BAa.
  • the other end of the first support edge is closer to a lateral face than the first end of the support edge.
  • each section comprises at least one end hull (head or tail) comprising a beveled edge.
  • the other hulls are not beveled hulls. They do not include a first beveled support edge.
  • the bearing edge is the trailing edge and is substantially parallel to the leading edge over its entire length.
  • a fairing comprising a single section as defined above may comprise a hull with a beveled support edge. This section extends for example over a length less than the length of the cable from the end intended to be submerged.
  • the hull at the head of the section is advantageously a hull comprising a beveled bearing edge arranged as for the head hull previously described.
  • the section extends over the entire length of the cable.
  • all the hulls could be beveled hulls. This would facilitate the tilting of each hull in the event of an inter-hull connection break downstream of the hull seen from the pulley, when the hulls are initially linked. In the case where the hulls are free to rotate with respect to each other, this makes it easier to tilt each hull on arrival on a guide device. More generally, the bevelled hull avoids having to link the hulls to each other and therefore makes it possible to limit the costs of the fairing and the time for assembling the fairing.
  • the bevel is made so that the distance between the leading edge BA and the first bevel bearing edge decreases, along the axis xc , from the end of the first support edge closest to the end of the cable intended to be immersed to the end of the support edge opposite the end of the cable intended to be immersed and vice versa if wishes facilitates tilting during the unwinding of the cable.
  • the bearing edge BAPa is the trailing edge BF. It comprises the first bevel bearing edge Bza and a second bearing edge Bla which extends parallel to the x axis and is located at a fixed distance from the leading edge along the x axis.
  • the first bevel bearing edge is connected to the lateral face 180 and to the second bearing edge Bla, in the direction of the leading edge, by connecting rounds or chamfers.
  • the maximum length of rope LC is the distance between this second bearing edge Bla and the leading edge.
  • the bearing edge does not have a second bearing edge Bla extending parallel to the axis x.
  • the bevel extends substantially over the entire width of the hull and is advantageously, but not necessarily, connected to the lateral faces by connection fillets or chamfers.
  • the hull comprises a first thick portion 130a1 visible on the figure 12c and a second thin portion 130a2 having a second thickness e2 less than the first thickness e1 of the thick part.
  • the second thickness e2 is substantially equal to the thickness of the end of the tail 15 opposite the end of the tail connected to the nose 14 of the hull.
  • the first edge comprises a first portion Bza1 extending in the first thick portion 130a1 of the hull and a second portion Bza2 extending in the thin part.
  • the first portion of the first bearing edge Bza1 is connected to the longitudinal faces 122, 123 by respective chamfers 132, 133 respectively.
  • the hull comprises chamfers connecting the first portion of the first bearing edge Bza1 to the respective longitudinal faces 122, 123. This makes it possible to thin the trailing edge in the thick part of the hull and therefore to limit the risks that the hull will get stuck on the guide device.
  • the chamfers extend over the entire length of the first bearing edge.
  • the first portion of the leading edge Bza1 is connected to the lateral faces by respective bulged surfaces.
  • swollen surfaces is meant convex curved surfaces.
  • This embodiment also makes it possible to limit the thickness of the bearing edge.
  • the curved surfaces extend over the entire length of the first bearing edge. Chamfers and curved surfaces are two non-limiting technical solutions which make it possible to obtain the characteristic that at least a first portion of the first bearing edge Bza1 has a thickness e1 less than the thickness of the hull in any longitudinal plane parallel to the edge of attack and perpendicular to the lateral faces of the hull crossing the first portion of the first bearing edge Bza1.
  • the thickness of the hull in a cutting plane is the distance separating the first longitudinal face 122 from the second longitudinal face 123 in a direction perpendicular to the cord CO in the cutting plane of the hull.
  • the first portion Bza1 has the same thickness as the second bearing edge Bla which extends parallel to the axis x and is located at a fixed distance from the leading edge along the axis x.
  • the support edge BAPb connects the two lateral faces 270, 280.
  • the hull 230 is formed of two parts 231, 232 joined together along the first bevel support edge Bzb.
  • the hull is configured to be kept in a deployed configuration (visible on the figure 13 ), when subjected to the hydrodynamic flow of water, in which the two parts 231, 232 are arranged, one with respect to the other around the first bearing edge, so that the hull has a trailing edge parallel to the leading edge and a constant section along the leading edge. In other words, the length of the rope is constant.
  • the hull is kept in the deployed position as long as the relative pivoting torque between the two parts around an axis formed by the first bearing edge Bzb is less than or equal to a predetermined threshold.
  • the longitudinal direction of the first support edge is the direction of the axis formed by the support edge.
  • the threshold is greater than the torque that can be exerted by the hydrodynamic flow of water on the hull when the hull is immersed and possibly towed along the trailing edge axis, leading edge.
  • the hull is also configured to allow relative pivoting between the two parts 231, 232 around the first bearing edge Bzb (see arrow), when a relative pivoting torque between the two parts 231, 232, applied around the the axis formed by the first support edge Bzb exceeds the threshold so that the end hull changes from the deployed configuration to a configuration folded around the support edge.
  • the axis formed by the first support edge is an axis contained in the first support edge and parallel to the longitudinal axis of the first support edge.
  • the hull does not have a constant section and the trailing edge is not parallel to the leading edge over its entire length.
  • the hull In the folded position, the hull is folded along the first bearing edge Bzb. In the deployed position, the hull is unfolded.
  • This embodiment makes it possible to limit or avoid the performance reductions in terms of reduction of the hydrodynamic drag of the hull while facilitating the progression of the hull in the pulley and its reversal.
  • the first part 231 extends on one side of the first support edge delimited by the first support edge Bzb, the second support edge (if there is one) Blb, the leading edge BA, one face lateral 280 and the portion of the other lateral face 270 extending between the leading edge BA and the first bearing edge Bzb.
  • the second part 232 is delimited by the first bearing edge Bzb, the part of the first lateral face 270 extending from Bzb to the trailing edge BF and the part of the trailing edge BF situated between Bzb and the first face lateral 270.
  • the first part 231 is for example made of rigid material and the second part 232 is made of flexible or flexible material which does not deform substantially when the relative pivoting torque between the two parts around the first bearing edge is less than or equal at the threshold and which bends when the torque exceeds the threshold, in particular when the point of intersection between the trailing edge and the first lateral face 270 comes into abutment against a guide device.
  • the second part can, for example, be made of polyurethane.
  • the first part can be made of polyurethane with a rigidity greater than that of the second part or in POM or PET.
  • the two parts have a rigidity such that they do not deform under the effect of a torque greater than the threshold but are linked by a pivot link around the first bearing edge and the hull comprises a stabilization device configured to maintain the two parts in the relative deployed position when the relative pivoting torque is less than or equal to the threshold and so as to allow the rotation between the two parts so that they pass in the relative folded position around the first bearing edge when the torque exceeds the threshold.
  • the coupling device is for example a device comprising a fuse or a compression spring.
  • At least one bevelled hull or each bevelled hull is dimensioned so as to be more resistant to a pressure force, applied in a direction perpendicular to the leading edge connecting the leading edge to the trailing edge, than the other hulls of the section considered (which are not bevelled).
  • This characteristic makes it possible to limit the risks of deformation and breakage of the hulls when they engage in the guide device, turn around and pass through this guide device.
  • this hull is for example made of a harder material than the other hulls and / or it includes ribs ensuring this additional reinforcement.
  • the fairing comprises at least one reinforced bevelled end hull and cooperating with the immobilization device. This makes it possible to reduce the costs and possibly the weight of the fairing because only the beveled hull or hulls differ (s) from the others, all the others being identical.
  • the invention also relates to an assembly comprising a vessel, the towing assembly being carried on board the vessel.
  • the ship is intended to move at nominal speed through a nominal sea state.
  • the towing assembly is installed on the vessel so that the towing point is located at a nominal height.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

La présente invention concerne les câbles tracteurs carénés utilisés sur un navire pour tracter un corps submersible largué en mer et la manutention de ces câbles. Elle concerne plus particulièrement les câbles tracteurs carénés au moyen d'écailles ou de tronçons articulés entre eux. Elle s'applique également à tout type d'élément allongé caréné destiné à être au moins partiellement immergé.The present invention relates to faired tractor cables used on a ship to tow a submersible body dropped at sea and the handling of these cables. It relates more particularly to the towing cables faired by means of scales or sections hinged together. It also applies to any type of elongated streamlined element intended to be at least partially submerged.

Le document JP S61 113093 U constitue un exemple de l'art antérieur divulguant un élément caréné allongé.The document JP S61 113093 U constitutes an example of the prior art disclosing an elongated fairing element.

Le contexte de l'invention est celui d'un bâtiment naval ou navire destiné à tracter un objet submersible tel qu'un sonar à immersion variable intégré dans un corps remorqué. Dans un tel contexte, en phase non opérationnelle le corps submersible est stocké à bord du navire et le câble est enroulé autour du touret d'un treuil permettant d'enrouler et de dérouler le câble, c'est-à-dire de déployer et de récupérer le câble. Inversement en phase opérationnelle, le corps submersible est immergé derrière le navire et tracté par ce dernier au moyen du câble dont l'extrémité reliée au corps submersible est immergée. Le câble est enroulé/déroulé par le treuil au travers d'un dispositif de guidage du câble qui permet de guider le câble.The context of the invention is that of a naval vessel or ship intended to tow a submersible object such as a variable immersion sonar integrated in a towed body. In such a context, in the non-operational phase, the submersible body is stored on board the ship and the cable is wound around the reel of a winch making it possible to wind and unwind the cable, that is to say to deploy and to recover the cable. Conversely in the operational phase, the submersible body is immersed behind the ship and towed by the latter using the cable, the end of which is connected to the submersible body. The cable is wound / unwound by the winch through a cable guiding device which allows the cable to be guided.

Pour obtenir une forte immersion à des vitesses de remorquage importantes, le câble de remorquage est caréné ce qui permet de réduire sa traînée hydrodynamique ainsi que les vibrations engendrées par l'écoulement hydrodynamique autour du câble. Le câble est revêtu d'un carénage segmenté composé de carènes rigides présentant des formes destinées à réduire la traînée hydrodynamique du câble. Le rôle de la gaine constituée par les carènes consiste à réduire les turbulences de sillage produites par le mouvement du câble dans l'eau, lorsque celui-ci est plongé dans l'eau et tracté par le navire. La rigidité des carènes est nécessaire pour de grandes immersions allant de pair avec de grandes vitesses de remorquage d'au moins 20 nœuds. Les carénages souples sont intéressants uniquement pour profiler économiquement des chaînes ou des câbles de bouées soumis à des courants marins ou au pire tractés à des vitesses de 6 à 8 nœuds. Dans le cas de l'utilisation d'éléments de carénage rigides, la segmentation du carénage en carènes est nécessaire pour que le câble puisse passer au travers des éléments de guidage du type poulie, et de façon à pouvoir supporter un débattement latéral du câble en cas de changement de cap du navire et de façon à pouvoir être enroulé sur le touret d'un treuil.To obtain strong immersion at high towing speeds, the towing cable is streamlined, which reduces its hydrodynamic drag as well as the vibrations generated by the hydrodynamic flow around the cable. The cable is coated with a segmented fairing composed of rigid hulls having shapes intended to reduce the hydrodynamic drag of the cable. The role of the sheath formed by the hulls is to reduce the wake turbulence produced by the movement of the cable in the water, when it is immersed in the water and towed by the ship. The rigidity of the hulls is necessary for large immersions going hand in hand with high towing speeds of at least 20 knots. Flexible fairings are only useful for economically profiling chains or cables of buoys subjected to sea currents or at worst towed at speeds of 6 to 8 knots. In the case of the use of rigid fairing elements, the segmentation of the fairing into hulls is necessary so that the cable can pass through guide elements of the pulley type, and so as to be able to withstand a lateral movement of the cable in the event of a change of course of the ship and so as to be able to be wound on the reel of a winch.

En état de fonctionnement normal, les carènes sont montées mobiles en rotation autour de l'axe longitudinal du câble. Il est en effet nécessaire que les carènes puissent tourner librement autour du câble afin d'être correctement orientées par rapport au flux de l'eau. Chaque carène est cependant liée à ses deux voisines axialement et en rotation autour du câble de façon à pouvoir pivoter par rapport à elles autour d'un axe parallèle à l'axe x d'un angle maximal faible de l'ordre de quelques degrés. Ce lien inter carènes permet en particulier à l'ensemble de carénage de pouvoir passer avec fluidité dans tous les éléments de guidage. Par suite, la rotation d'une carène entraîne une rotation de ses voisines et de proche en proche celle de l'ensemble des carènes. Dès lors, aussi bien lorsque le câble est déployé dans l'eau que lorsqu'il est enroulé autour du touret, tout changement d'orientation d'une des carènes, affecte de proche en proche l'ensemble des carènes carénant le câble. Ainsi lorsque le câble est déployé en mer les carènes s'orientent naturellement dans le sens du courant engendré par le mouvement du bâtiment. De la même façon, le dispositif de guidage est classiquement configuré pour orienter et guider les carènes qui le traversent de façon qu'elles présentent une orientation prédéfinie par rapport au touret du treuil, toutes les carènes adoptent au fil de la remontée du câble une même orientation relativement au touret, orientation qui permet d'enrouler le câble en maintenant les écailles parallèles les unes aux autres de tour à tour.In normal operating condition, the hulls are mounted mobile in rotation around the longitudinal axis of the cable. It is indeed necessary that the hulls can rotate freely around the cable in order to be correctly oriented with respect to the flow of water. Each hull is however linked to its two neighbors axially and in rotation about the cable so as to be able to pivot relative to them about an axis parallel to the x axis by a small maximum angle of the order of a few degrees. This inter-hull link allows in particular the fairing assembly to be able to pass smoothly through all of the guide elements. Consequently, the rotation of a hull causes a rotation of its neighbors and gradually that of all of the hulls. Consequently, both when the cable is deployed in water and when it is wound around the reel, any change in orientation of one of the hulls, gradually affects all the hulls careening the cable. When the cable is deployed at sea, the hulls naturally orient in the direction of the current generated by the movement of the vessel. Similarly, the guide device is conventionally configured to orient and guide the hulls which pass through it so that they have a predefined orientation relative to the winch reel, all the hulls adopt the same cable as the cable is raised. orientation relative to the reel, orientation which makes it possible to wind the cable while keeping the scales parallel to each other in turn.

Or, la demanderesse a constaté que, lorsque l'on vient enrouler le câble caréné autour du touret d'un treuil afin de récupérer le corps remorqué, il arrive occasionnellement que le carénage soit fortement détérioré voir broyé au moment de son passage dans les dispositifs de guidage, ce qui peut rendre indisponible tout le système sonar. Il peut même arriver que ceci détériore le dispositif de guidage. À titre d'exemple, certains systèmes de sonars à immersion variable installés sur certains navires et opérés de manière normale par des équipages militaires rencontrent des problèmes de broyage de carènes environ une fois par an et parfois bien plus souvent. Ce broyage peut avoir des conséquences limitées mais peut aussi dégénérer, bloquer le treuil ou l'endommager et conduire ainsi à l'indisponibilité de tout le système de remorquage et par conséquent du sonar.However, the Applicant has found that, when the shrouded cable is wound around the reel of a winch in order to recover the towed body, it occasionally happens that the shroud is badly deteriorated or even crushed when it passes through the devices. guidance, which can make the entire sonar system unavailable. It may even happen that this deteriorates the guide device. For example, some variable immersion sonar systems installed on certain ships and operated in the normal way by military crews encounter problems with hull grinding about once a year and sometimes much more often. This grinding can have limited consequences but can also degenerate, block the winch or damage it and thus lead to the unavailability of the entire towing system and, consequently, of the sonar.

Un but de la présente invention est de limiter les risques de détérioration du carénage d'un câble remorqué.An object of the present invention is to limit the risks of damage to the fairing of a towed cable.

A cet effet, la demanderesse a tout d'abord, dans le cadre de la présente invention, identifié et étudié la cause de ce problème de broyage des carènes par observation du câble caréné en situation opérationnelle et par modélisation du câble caréné en situation opérationnelle et des différentes forces agissant sur lui, notamment les flux hydrodynamiques et aérodynamiques ainsi que la gravité.To this end, the Applicant has first of all, within the framework of the present invention, identified and studied the cause of this problem of grinding of the hulls by observation of the faired cable in operational situation and by modeling of the faired cable in operational situation and different forces acting on it, in particular hydrodynamic and aerodynamic flows as well as gravity.

Pendant la phase opérationnelle, le câble caréné est remorqué par le navire et présente une extrémité immergée. Très souvent, le point de remorquage est un point d'une poulie qui se trouve à une certaine hauteur au-dessus de l'eau. Par point de remorquage d'un câble ou d'un carénage, on entend la position du point d'appui du câble sur un dispositif embarqué à bord du navire, qui est le plus proche de l'extrémité immergée du câble ou respectivement du carénage. Lorsque le navire avance, sous l'action de la traînée, le câble s'éloigne du tableau arrière pour disparaître sous l'eau un peu plus loin qu'à la verticale du point de remorquage. La longueur de câble caréné en situation aérienne se trouve augmentée par rapport à la simple hauteur de remorquage au-dessus de l'eau car le câble se trouve incliné par rapport à la verticale. On observe que la dernière carène qui est encore en prise avec le navire, c'est-à-dire la carène qui est au point de remorquage, souvent en appui sur la poulie ou en appui sur un dispositif de guidage embarqué à bord du navire, se trouve orientée correctement dans le sens du flux bien qu'elle soit bien au-dessus dans l'air (Bord d'attaque face au flux et bord de fuite à la traîne. La première carène dans l'eau (c'est-à-dire la carène juste immergée) est supposée prendre une orientation correcte dans le flux provenant de la vitesse du navire (Bord d'attaque face au flux et bord de fuite à la traîne). Mais entre ces deux carènes remarquables, la colonne de carénage peut se tordre puisqu'elle est, dans l'air, juste soumise à des vibrations, un flux d'air insignifiant et la gravité. Sous l'effet des sollicitations de la mer, des conditions de remorquage et des vagues, des situations de torsion de cette colonne aérienne sont régulièrement observées. La première cause de torsion est causée par la gravité dès que le câble s'est écarté de la verticale, ce qui lui arrive nécessairement dès que la vitesse de remorquage est suffisante. Sous l'effet de la gravité, la colonne de carénage entre le point de remorquage et la mer va se tordre d'un côté (dans l'air) puis va se redresser (dans l'eau). C'est la situation nominale de la colonne de carénage. Cette torsion est fonction de la raideur intrinsèque de la colonne de carénage mais également de la longueur aérienne. Une situation dans laquelle la partie aérienne du carénage 2 est un peu tordue, c'est-à-dire en torsion autour de l'axe du câble est représentée sur la figure 1A. Sur la figure 1A, la direction verticale dans le référentiel terrestre est représentée par l'axe z et on a représenté l'orientation de la section de certaines carènes dans les zones A, B et C délimitées par des traits pointillés. Dans la situation représentée sur la figure 1A, la dernière carène 3 se trouvant en prise avec le navire est orientée verticalement (bord de fuite vers le haut) comme cela est représentée dans la zone A. Les carènes qui se trouvent dans l'air entre la poulie P et la surface de l'eau S sont couchées sous l'effet de la gravité. Autrement dit, comme visible dans la zone B, le bord de fuite des carènes est orienté vers le bas (entre la poulie P et la surface S de l'eau, les carènes ont tourné autour du câble). En revanche, les carènes qui se trouvent dans l'eau sont redressées sous l'action du flux de l'eau agissant selon la flèche FO comme cela est représenté dans la zone C (bord de fuite et d'attaque situés environ à la même profondeur).During the operational phase, the streamlined cable is towed by the ship and has a submerged end. Very often, the tow point is a point on a pulley that is at a certain height above the water. By towing point of a cable or of a fairing, is meant the position of the fulcrum of the cable on a device on board the ship, which is closest to the submerged end of the cable or of the fairing respectively. . When the ship is moving, under the action of drag, the cable moves away from the transom to disappear underwater a little further than vertical from the towing point. The length of the faired cable in an aerial situation is increased compared to the simple towing height above the water because the cable is inclined relative to the vertical. It is observed that the last hull which is still in engagement with the ship, that is to say the hull which is at the point of towing, often in abutment on the pulley or in abutment on a guidance device on board the ship , is oriented correctly in the direction of the flow although it is well above in the air (Leading edge facing the flow and trailing edge trailing. The first hull in the water (it is ie the hull just submerged) is supposed to take a correct orientation in the flow coming from the speed of the ship (Leading edge facing the flow and trailing edge trailing) .But between these two remarkable hulls, the column fairing may bend since it is in the air just subject to vibrations, insignificant air flow and gravity. Under the effect of the stresses of the sea, towing conditions and waves, situations of torsion of this aerial column are regularly observed. The first cau getting twisted is caused by gravity as soon as the cable has moved away from the vertical, which necessarily happens to it as soon as the towing speed is sufficient. Under the effect of gravity, the fairing column between the towing point and the sea will twist to one side (in the air) and then will straighten (in the water). This is the nominal situation of the fairing column. This twist is a function of the intrinsic stiffness of the fairing column but also of the air length. A situation in which the aerial part of the fairing 2 is slightly twisted, that is to say in torsion around the axis of the cable is shown on the figure 1A . On the figure 1A , the vertical direction in the terrestrial frame of reference is represented by the z axis and the orientation of the section of certain hulls is shown in the zones A, B and C delimited by dotted lines. In the situation represented on the figure 1A , the last hull 3 in engagement with the ship is oriented vertically (trailing edge up) as shown in zone A. The hulls which are in the air between the pulley P and the surface of the 's water are lying under the effect of gravity. In other words, as visible in zone B, the trailing edge of the hulls is oriented downwards (between the pulley P and the surface S of the water, the hulls have turned around the cable). On the other hand, the hulls which are in the water are straightened under the action of the water flow acting according to the arrow FO as that is represented in zone C (trailing and leading edge located approximately at the same depth).

Il arrive de temps en temps que, suivant les conditions de mer, des paquets d'eau ou des vagues déferlantes s'abattent plus ou moins vers le tableau arrière du navire en créant alors dans la partie aérienne du câble un flux momentanément inverse de celui qui règne plus bas et qui correspond à la vitesse d'avancement du navire. Ces masses d'eau sont parfaitement capables de tordre encore d'avantage la colonne de carénage et de la placer en opposition à la position attendue dans le flux normal de remorquage. Dans ce cas, le carénage est vrillé et effectue, dans sa partie aérienne, un demi-tour autour du câble. Cela signifie que deux carènes de la partie aérienne de la colonne de carénage, présentent des bords de fuite formant entre eux un angle de 180 degrés autour du câble. La partie du carénage située entre ces deux carènes est vrillée ou en torsion. À partir de cette situation, il peut arriver que ces parties de carénages qui sont donc à l'envers par rapport au flux moyen donné par la vitesse du navire, se trouvent alors soudain baignées de nouveau par ce flux moyen (à cause des mouvement du navire, de celui des vaques etc.) la partie de carénage à l'envers est donc sollicitée pour revenir dans le bon sens (lié au flux moyen normal). Elle peut alors :

  • annuler son demi-tour et revenir à sa position initiale en décrivant la rotation inverse de celle qui l'avait amenée à l'envers. Elle se trouve alors correctement orientée.
  • ou ajouter au demi-tour existant un autre demi-tour qui la ramène à la bonne orientation dans le flux mais ce qui a pour conséquence de vriller de 1 tour (ou 360°) la partie aérienne du carénage au-dessus d'elle et de vriller de la même manière une portion en-dessous d'elle de un tour (ou 360° mais cette fois dans l'autre sens). La partie qui était initialement à l'envers est revenue à la bonne orientation dans le flux moyen lié à la vitesse du navire mais il s'est donc produit deux vrillages d'un tour l'un au-dessus dans l'air et l'autre en dessous dans l'eau. On parle de torsion complète du carénage (pouvant être traduite par twist en terminologie anglo-saxonne). Cette torsion complète est une situation stable de la colonne de carénage ou du carénage 2. Elle est représentée sur la figure 1B. Cette situation peut se décrire de la manière suivante : entre le point de remorquage R et la surface de l'eau S, la colonne de carénage effectue un tour complet dans le sens de la flèche F1 autour du câble. La colonne de carénage 2 traverse la surface S et reste correctement orientée sur une certaine longueur L de l'ordre de quelques mètres ou moins parfois. Puis la colonne de carénage 2 effectue un tour complet dans l'eau, en sens inverse, représenté par la flèche F2 pour revenir à la bonne orientation dans le flux. Autrement dit, le carénage subit une double torsion complète autour du câble. La double torsion comprend une torsion complète aérienne, situé au-dessus de la surface de l'eau et un une torsion complète immergée, située en dessous de la surface de l'eau. Toute la partie du carénage située en dessous de cette double torsion complète n'est plus du tout affectée par ce qui se passe au-dessus d'elle (ses carènes sont correctement orientées dans le flux).
It happens from time to time that, depending on the sea conditions, packets of water or breaking waves more or less fall towards the transom of the ship while creating in the aerial part of the cable a flow momentarily opposite to that which reigns lower and which corresponds to the forward speed of the ship. These bodies of water are perfectly capable of further twisting the fairing column and placing it in opposition to the expected position in the normal towing flow. In this case, the fairing is twisted and makes, in its aerial part, a half-turn around the cable. This means that two hulls on the aerial part of the fairing column have trailing edges forming an angle of 180 degrees around the cable. The part of the fairing situated between these two hulls is twisted or twisted. From this situation, it can happen that these parts of fairings which are therefore upside down compared to the average flow given by the speed of the ship, are then found suddenly bathed again by this average flow (because of the movement of the ship, that of the vases etc.) the fairing part upside down is therefore requested to return in the right direction (linked to the normal average flow). She can then:
  • cancel its U-turn and return to its initial position by describing the reverse rotation from that which had brought it backwards. It is then correctly oriented.
  • or add to the existing half-turn another half-turn which brings it back to the correct orientation in the flow but which has the consequence of twisting the aerial part of the fairing above it by 1 turn (or 360 °) and to twist in the same way a portion below it by one turn (or 360 ° but this time in the other direction). The part which was initially upside down returned to the correct orientation in the average flow related to the speed of the ship but there therefore occurred two twists of a turn one above in the air and l other below in the water. We speak of complete twisting of the fairing (which can be translated by twist in English terminology). This complete twist is a stable situation of the fairing column or the fairing 2. It is represented on the figure 1B . This situation can be described as follows: between the towing point R and the surface of the water S, the fairing column makes a full revolution in the direction of arrow F1 around the cable. The fairing column 2 crosses the surface S and remains correctly oriented over a certain length L of the order of a few meters or less sometimes. Then the fairing column 2 makes a full turn in the water, in the opposite direction, represented by the arrow F2 to return to the correct orientation in the flow. In other words, the fairing undergoes a complete double twist around the cable. The double twist includes a full aerial twist, located above the water surface and a full submerged twist, located below the water surface. The entire part of the fairing located below this complete double twist is no longer affected at all by what happens above it (its hulls are correctly oriented in the flow).

La configuration dans laquelle le carénage subit une double torsion est stable mais fortement dégradée et elle risque fortement d'apporter par la suite de grosses perturbations sur l'ensemble du système.The configuration in which the fairing undergoes a double twist is stable but greatly degraded and it is highly likely to subsequently bring about large disturbances on the whole system.

La demanderesse a découvert que lorsqu'un carénage subit une double torsion complète, sous certaines conditions, le carénage va être fortement détérioré dans l'eau et cette partie détériorée va causer de gros dommages au câble caréné voire même à l'ensemble du système caréné lors de l'enroulement du câble et plus précisément lors de son passage dans le dispositif de guidage du câble.The Applicant has discovered that when a fairing undergoes a full double twist, under certain conditions, the fairing will be greatly deteriorated in water and this deteriorated part will cause great damage to the faired cable or even to the whole faired system. during the winding of the cable and more precisely during its passage through the cable guide device.

En analysant la double torsion complète, la demanderesse a constaté que la torsion immergée peut être considéré comme « accrochée » sur le câble. Autrement dit, la position de la torsion immergée est fixe par rapport au câble le long de l'axe du câble. En revanche, sa contrepartie aérienne, la torsion aérienne, reste située au même endroit entre le point de remorquage R et la surface de l'eau S. Elle n'est pas fixe par rapport au câble selon l'axe du câble mais fixe par rapport à la surface S de l'eau ou au point de remorquage. Lorsque le câble est hissé ou descendu, les carènes subissant la torsion immergée suivent le mouvement du câble qui est hissé ou descendu alors que la torsion aérienne reste fixe par rapport à la surface de l'eau. Il s'en suit qu'un déroulement du câble fait plonger la torsion immergée à une profondeur plus importante alors que la torsion aérienne reste à la même place par rapport à la surface de l'eau (les 2 torsions s'éloignent alors l'une de l'autre). La figure 1C représente une situation dans laquelle le câble a été déroulé par rapport à la situation de la figure 1B (voir flèche). La distance L2 qui représente la distance entre la partie du carénage concernée par la torsion immergée et le point d'entrée du carénage dans l'eau est supérieure à la distance L1 qui représente cette même distance dans la situation de la figure 1B. A l'inverse un hissage du câble, par rapport à la situation de la figure 1B, selon la flèche représentée sur la figure 1D, fait remonter la torsion immergée alors que la torsion aérienne reste toujours à la même place par rapport à la surface de l'eau (les deux torsions se rapprochent alors l'une de l'autre).By analyzing the complete double twist, the Applicant has found that the submerged twist can be considered to be “hooked” on the cable. In other words, the position of the submerged torsion is fixed relative to the cable along the axis of the cable. On the other hand, its aerial counterpart, the aerial twist, remains located in the same place between the towing point R and the surface of the water S. It is not fixed relative to the cable along the cable axis but fixed by relative to the surface S of the water or to the towing point. When the cable is hoisted or lowered, the hulls undergoing the submerged torsion follow the movement of the cable which is hoisted or lowered while the aerial torsion remains fixed relative to the surface of the water. It follows that an unwinding of the cable plunges the submerged torsion to a greater depth while the aerial torsion remains in the same place relative to the surface of the water (the 2 twists then move away the one another). The figure 1C represents a situation in which the cable was unwound compared to the situation of the figure 1B (see arrow). The distance L2 which represents the distance between the part of the fairing concerned by the submerged torsion and the point of entry of the fairing into the water is greater than the distance L1 which represents this same distance in the situation of the figure 1B . Conversely a hoisting of the cable, compared to the situation of the figure 1B , according to the arrow shown on the figure 1D , brings up the submerged torsion while the aerial torsion always remains in the same place relative to the surface of the water (the two torsions then approach each other).

Il faut alors regarder ce qui se passe pour une torsion d'un tour immergée et remorquée ainsi. Cette torsion qui se déploie sur une faible hauteur oblige les carénages à naviguer à l'envers ou en travers du flux. L'action du flux sur ces carènes est alors très importante (proportionnelle à la surface, l'angle, la densité de l'eau et le carré de la vitesse) cette action se traduit par de puissants couples de torsion qui tendent à forcer les carènes à s'aligner dans le flux mais elles se heurtent à la raideur du tour de vrillage qui augmente alors. Il se passe alors qu'un équilibre se produit et que la torsion d'un tour se trouve terriblement réduite en hauteur et le carénage subit de violents efforts qui vont resserrer la torsion immergée sous l'effet de la vitesse de remorquage. Autrement dit, le tour complet du carénage autour du câble va s'effectuer sur une distance de plus en plus courte. Des observations en mer ont montré que la colonne de carénage pouvait effectuer un tour complet autour du câble sur une longueur de moins de 50 cm. Pendant le remorquage, le flux hydrodynamique exerce un couple très important sur les carènes mal orientées qui peut aller jusqu'à la détérioration du carénage voire jusqu'à la rupture complète des carènes.You then have to look at what happens for a twist of a submerged and towed lap as well. This twist which is deployed over a low height forces the fairings to navigate upside down or across the flow. The action of the flux on these hulls is then very important (proportional to the surface, the angle, the density of the water and the square of the speed) this action results in powerful torques which tend to force the hulls at line up in the flow but they come up against the stiffness of the twist turn which then increases. It happens then that a balance occurs and that the torsion of a turn is terribly reduced in height and the fairing undergoes violent forces which will tighten the submerged torsion under the effect of the towing speed. In other words, the complete turn of the fairing around the cable will be carried out over an increasingly shorter distance. Observations at sea have shown that the fairing column can make a full turn around the cable over a length of less than 50 cm. During towing, the hydrodynamic flow exerts a very high torque on the poorly oriented hulls which can go as far as the deterioration of the fairing or even the complete rupture of the hulls.

Lors de la remontée d'une torsion immergée, le carénage a été longuement et très fortement contraint, il a gardé la mémoire de sa déformation (c'est à dire de son vrillage) et la torsion immergée sort de l'eau encore très resserrée lors du hissage et ne disparait pas lors du hissage. On parle de torsion rémanente. Selon la durée d'exposition du carénage à cette torsion immergée et remorquée la torsion immergée va pouvoir devenir permanente ou assez longue à se résorber la rendant pendant un temps assez long totalement inapte à s'engager dans le dispositif de guidage du câble bien que la continuité du carénage ne soit pas rompue. Côté torsion aérienne il n'y a aucun dommage, il y a bien une torsion appliquée mais à aucun moment elle ne peut endommager le câble.During the ascent of an immersed torsion, the fairing was long and very strongly constrained, it kept the memory of its deformation (that is to say of its twist) and the immersed torsion comes out of the water still very tight during hoisting and does not disappear during hoisting. We speak of residual torsion. Depending on the duration of exposure of the fairing to this submerged and towed twist, the submerged torsion will be able to become permanent or long enough to be absorbed, making it for a fairly long time totally incapable of engaging in the cable guide device although the continuity of the fairing is not broken. On the aerial torsion side there is no damage, there is indeed an applied torsion but at no time can it damage the cable.

Lorsque la torsion immergée encore très resserrée se présente alors au dispositif de guidage, par exemple la poulie, les carènes affectées par cette torsion immergée ne peuvent pas se placer correctement dans le dispositif de guidage, notamment dans la poulie, elles se coincent dans le dispositif de guidage. C'est alors toute la colonne de carénage qui pénètre après dans le dispositif de guidage qui se trouve méthodiquement détruite si l'on poursuit le hissage car de proche en proche, chaque carène suit l'orientation de celle qui la précède. Cette situation peut même entraîner la rupture du dispositif de guidage.When the still very tight submerged torsion then presents itself to the guide device, for example the pulley, the hulls affected by this submerged torsion cannot be placed correctly in the guide device, in particular in the pulley, they get stuck in the device guide. It is then the entire fairing column which then enters the guide device which is methodically destroyed if the hoisting is continued because, step by step, each hull follows the orientation of that which precedes it. This situation may even cause the guide device to break.

L'invention propose un carénage configuré de manière à limiter les risques d'apparition d'une double torsion afin de limiter les risques de d'endommagement du carénage du câble.The invention proposes a fairing configured so as to limit the risks of the appearance of a double twist in order to limit the risks of damage to the cable fairing.

A cet effet, l'invention a pour objet un élément allongé caréné destiné à être au moins partiellement immergé. L'élément allongé caréné comprend un élément allongé et un carénage comprenant une pluralité de tronçons de carénage, chaque tronçon de carénage comprenant une pluralité de carènes, les carènes comprenant un canal recevant l'objet allongé et étant profilées de manière à réduire la trainée hydrodynamique de l'objet allongé au moins partiellement immergé, lesdites carènes étant montées pivotantes sur l'élément allongé autour de l'axe longitudinal du canal, lesdites carènes étant liées entre elles selon l'axe du canal et étant articulées entre elles, les tronçons de carénage étant libres en rotation autour du canal les uns par rapport aux autres. Les carènes d'un même tronçon de carénage sont liées entre elles au moyen d'une pluralité de dispositifs d'accouplement individuels, chaque dispositif d'accouplement individuel permettant de relier une des carènes dudit tronçon à une autre carène dudit tronçon adjacente à ladite carène.To this end, the invention relates to an elongated streamlined element intended to be at least partially submerged. The elongated fairing element comprises an elongate element and a fairing comprising a plurality of fairing sections, each fairing section comprising a plurality of hulls, the hulls comprising a channel receiving the elongated object and being profiled so as to reduce the hydrodynamic drag of the elongated object at least partially submerged, said hulls being pivotally mounted on the elongated element around the longitudinal axis of the channel, said hulls being linked together along the axis of the channel and being hinged together, the sections of fairing being free to rotate around the channel with respect to each other. The hulls of the same fairing section are linked together by means of a plurality of individual coupling devices, each individual coupling device making it possible to connect one of the hulls of said section to another hull of said section adjacent to said hull .

Avantageusement, les tronçons de carénage présentent des hauteurs respectives selon l'axe du canal, définies en fonction des raideurs angulaires k des tronçons de carénage respectifs, et en fonction de la longueur de corde LC desdites carènes desdits tronçons respectifs de manière à empêcher la formation d'une torsion complète sur lesdits tronçons respectifs.Advantageously, the fairing sections have respective heights along the axis of the channel, defined as a function of the angular stiffness k of the respective fairing sections, and as a function of the length of rope LC of said hulls of said respective sections so as to prevent the formation of a complete twist on said respective sections.

Avantageusement, au moins un tronçon de carénage présente une hauteur selon l'axe du canal, définie en fonction de la raideur angulaire k dudit tronçon de carénage et en fonction de la longueur de corde LC desdites carènes dudit tronçon, de sorte à empêcher la formation d'une torsion aérienne complète sur ledit tronçon de carénage lorsque le tronçon de carénage est soumis à un couple de torsion inférieur ou égal à un couple de torsion prédéterminé.Advantageously, at least one fairing section has a height along the axis of the channel, defined as a function of the angular stiffness k of said fairing section and as a function of the length of rope LC of said hulls of said section, so as to prevent the formation a complete aerial torsion on said fairing section when the fairing section is subjected to a torsional torque less than or equal to a predetermined torque.

Avantageusement, au moins un tronçon présente une hauteur, selon l'axe du canal, définie en fonction de la raideur angulaire k dudit tronçon de carénage et en fonction de la longueur de corde LC desdites carènes dudit tronçon de façon que le tronçon soit apte à subir une torsion complète et de sorte à empêcher la formation d'une torsion aérienne complète sur ledit tronçon de carénage lorsque le tronçon de carénage est soumis à un couple de torsion inférieur ou égal à un couple de torsion prédéterminé.Advantageously, at least one section has a height, along the axis of the channel, defined as a function of the angular stiffness k of said fairing section and as a function of the length of rope LC of said hulls of said section so that the section is suitable for undergo a complete torsion and so as to prevent the formation of a complete aerial torsion on said fairing section when the fairing section is subjected to a torsional torque less than or equal to a predetermined torque.

Avantageusement, les tronçons de carénage présentent des hauteurs respectives inférieures à une hauteur maximale hmax telle que : hmax π k F LC 2

Figure imgb0001
où F est une constante comprise entre 250 et 500.Advantageously, the fairing sections have respective heights less than a maximum height hmax such that: hmax π k F LC 2
Figure imgb0001
where F is a constant between 250 and 500.

Avantageusement, au moins un tronçon parmi lesdits tronçons comprend au moins une carène d'extrémité, adjacente à une seule autre carène appartenant audit tronçon, étant une carène biseautée de sorte qu'elle présente un bord d'appui comprenant un premier bord d'appui en biseau par rapport au bord d'attaque, le premier bord d'appui étant agencé de façon que la distance entre le bord d'attaque et le premier bord d'appui, prise perpendiculairement au bord d'attaque, diminue continûment, le long d'un axe parallèle au bord d'attaque, depuis une première extrémité du premier bord d'appui jusqu'à une deuxième extrémité du premier bord d'appui plus éloignée de l'autre carène que la première extrémité, selon l' axe parallèle au bord d'attaque. Chaque carène biseautée est par exemple une carène d'extrémité.Advantageously, at least one section among said sections comprises at least one end hull, adjacent to a single other hull belonging to said section, being a bevelled hull so that it has a bearing edge comprising a first bearing edge beveled with respect to the leading edge, the first bearing edge being arranged so that the distance between the leading edge and the first bearing edge, taken perpendicular to the leading edge, decreases continuously, along of an axis parallel to the leading edge, from a first end of the first support edge to a second end of the first support edge further from the other hull than the first end, along the parallel axis at the leading edge. Each bevelled hull is for example an end hull.

Avantageusement, les tronçons de carénage présentent des hauteurs respectives selon l'axe du canal, définies en fonction des raideurs angulaires k des tronçons de carénage respectifs, et en fonction de la longueur de corde LC desdites carènes desdits tronçons respectifs de manière à empêcher la formation d'une torsion complète sur lesdits tronçons respectifs.Advantageously, the fairing sections have respective heights along the axis of the channel, defined as a function of the angular stiffness k of the respective fairing sections, and as a function of the length of rope LC of said hulls of said respective sections so as to prevent the formation of a complete twist on said respective sections.

Avantageusement, le bord d'appui est le bord de fuite.Advantageously, the bearing edge is the trailing edge.

Avantageusement, au moins une première portion du premier bord d'appui présente une épaisseur inférieure à une épaisseur de la carène dans tout plan longitudinal parallèle au bord d'attaque et perpendiculaire à des faces latérales de la carène croisant la première portion du premier bord d'appui, les faces latérales s'étendant dans des plans respectifs perpendiculaires au bord d'attaque.Advantageously, at least a first portion of the first bearing edge has a thickness less than a thickness of the hull in any longitudinal plane parallel to the leading edge and perpendicular to lateral faces of the hull crossing the first portion of the first edge d 'support, the lateral faces extending in respective planes perpendicular to the leading edge.

Avantageusement, la carène d'extrémité est dimensionnée de manière à être plus résistante à un effort de pression appliqué selon une direction perpendiculaire, au bord d'attaque et reliant le bord d'attaque au bord de fuite, que les autres carènes du tronçon.Advantageously, the end hull is dimensioned so as to be more resistant to a pressure force applied according to a perpendicular direction, at the leading edge and connecting the leading edge to the trailing edge, than the other hulls of the section.

Avantageusement, la carène d'extrémité comprend deux parties accolées ou reliées le long du premier bord d'appui, la carène d'extrémité étant configurée de manière à être maintenue dans une configuration déployée lorsqu'elle est soumise au flux hydrodynamique de l'eau, les deux parties étant disposées, l'une par rapport à l'autre autour du premier bord d'appui, de façon que la carène d'extrémité présente un bord de fuite parallèle au bord d'attaque et une section constante le long du bord d'attaque et configurée de manière à autoriser le pivotement relatif entre les deux parties autour du premier bord d'appui lorsqu'un couple de pivotement relatif entre les deux parties appliqué autour d'un axe formé par le premier bord d'appui excède un seuil prédéterminé de façon que la carène d'extrémité passe de la configuration déployée à une configuration repliée autour du bord d'appui.Advantageously, the end hull comprises two parts joined or connected along the first bearing edge, the end hull being configured so as to be maintained in a deployed configuration when it is subjected to the hydrodynamic flow of water. , the two parts being arranged, relative to one another around the first bearing edge, so that the end hull has a trailing edge parallel to the leading edge and a constant section along the leading edge and configured to allow relative pivoting between the two parts around the first bearing edge when a relative pivoting torque between the two parts applied around an axis formed by the first bearing edge exceeds a predetermined threshold so that the end hull changes from the deployed configuration to a configuration folded around the support edge.

Avantageusement, les carènes sont rigides.Advantageously, the hulls are rigid.

L'invention a également pour objet un élément allongé caréné destiné à être au moins partiellement immergé, comprenant un élément allongé caréné au moyen du carénage selon l'invention, l'élément allongé étant reçu dans le canal, lesdites carènes étant montées pivotantes sur l'élément allongé autour de l'axe longitudinal du canal et étant immobilisées en translation par rapport à l'élément allongé selon l'axe de l'élément allongé.The subject of the invention is also an elongated faired element intended to be at least partially submerged, comprising an elongated element faired by means of the fairing according to the invention, the elongated element being received in the channel, said hulls being pivotally mounted on the elongated element around the longitudinal axis of the channel and being immobilized in translation relative to the elongated element along the axis of the elongated element.

L'invention a également pour objet un ensemble de remorquage comprenant un élément allongé caréné selon l'invention, et un dispositif de remorquage et de manutention destiné à tracter l'élément allongé caréné alors que ce dernier est partiellement immergé, le dispositif de remorquage comprenant un treuil permettant d'enrouler et de dérouler l'élément allongé caréné au travers d'un dispositif de guidage permettant de guider l'élément allongé.The subject of the invention is also a towing assembly comprising an elongated fairing element according to the invention, and a towing and handling device intended to tow the elongated fairing element while the latter is partially submerged, the towing device comprising a winch for winding and unwinding the elongated faired element through a guide device for guiding the elongated element.

Avantageusement, le dispositif de guidage est configuré de manière à permettre de modifier l'orientation d'une carène du carénage par rapport au dispositif de guidage par rotation de la carène autour de l'axe de l'élément allongé sous l'effet de la traction de l'élément allongé par rapport au dispositif de guidage lorsque la carène présente une orientation dans laquelle elle est en appui sur le dispositif de guidage et dans laquelle la ligne d'action développée par l'élément allongé sur la poulie s'étend sensiblement selon l'axe s'étendant depuis l'axe de l'élément allongé jusqu'au bord de fuite.Advantageously, the guide device is configured so as to make it possible to modify the orientation of a fairing of the fairing relative to the guiding device by rotation of the hull around the axis of the elongated element under the effect of the traction of the elongated element relative to the guide device when the hull has an orientation in which it is in abutment on the guide device and in which the line of action developed by the elongated element on the pulley extends substantially along the axis extending from the axis of the elongated element to the trailing edge.

Avantageusement, le dispositif de guidage comprend une première gorge dont le fond est formé par le fond de la gorge d'une poulie, la première gorge étant délimitée par une première surface présentant un profil concave dans un plan radial de la poulie, la largeur de la première gorge et la courbure du profil de la première surface courbe dans le plan radial étant déterminées de manière à permettre de faire basculer la carène, par rotation de la carène autour de l'axe de l'élément allongé x sous l'effet de la traction de l'élément allongé par rapport au dispositif de guidage selon son axe longitudinal, depuis une position retournée dans laquelle la carène est orientée bord de fuite vers le fond de la première gorge, jusqu'à une position acceptable dans laquelle elle est orientée bord d'attaque vers le fond de la première gorge.Advantageously, the guide device comprises a first groove, the bottom of which is formed by the bottom of the groove of a pulley, the first groove being delimited by a first surface having a concave profile in a radial plane of the pulley, the width of the first groove and the curvature of the profile of the first curved surface in the radial plane being determined so as to allow the hull to tilt, by rotation of the hull around the axis of the elongated element x under the effect of the traction of the elongated element relative to the guide device along its longitudinal axis, from an inverted position in which the hull is oriented trailing edge towards the bottom of the first groove, to an acceptable position in which it is oriented leading edge towards the bottom of the first groove.

Avantageusement, les carènes comprennent une carène comprenant un recevant l'élément allongé et comprenant un bord d'attaque une queue présentant une forme fuselée s'étendant à partir du nez et comprenant un bord de fuite, la première surface courbe formant une première courbe concave dans le plan radial de la poulie, la première courbe concave étant définie dans un plan radial de la poulie de façon que, lorsque la carène s'étend bord d'attaque perpendiculaire au plan radial, quelle que soit la position d'une carène dans la première gorge, lorsque le nez de la carène est en appui sur la première courbe concave et que l'élément allongé exerce sur la carène, dans le plan radial, un effort de placage du nez de la carène contre la poulie, ledit effort de placage Fp comprenant une composante CP perpendiculaire à l'axe de la poulie et une composante latérale CL le bord de fuite de la carène n'est pas en contact avec la première courbe concave ou est en contact avec une partie de la première courbe concave formant, avec une droite dp du plan radial perpendiculaire à l'axe xa s'étendant depuis l'axe de l'élément allongé x jusqu'au bord de fuite de la carène, un angle y au moins égal à un angle de glissement αt. L'angle de glissement est donné par la formule suivante : α t = Arctan Cf

Figure imgb0002
Où Cf est le coefficient de frottement entre le matériau formant la partie extérieure de la queue de la carène et le matériau formant la surface délimitant la gorge de la poulie.Advantageously, the hulls comprise a hull comprising a receiving the elongated element and comprising a leading edge a tail having a tapered shape extending from the nose and comprising a trailing edge, the first curved surface forming a first concave curve in the radial plane of the pulley, the first concave curve being defined in a radial plane of the pulley so that, when the hull extends leading edge perpendicular to the radial plane, whatever the position of a hull in the first groove, when the nose of the hull is in abutment on the first concave curve and the elongated element exerts on the hull, in the radial plane, an effort of placing the nose of the hull against the pulley, said effort of cladding Fp comprising a component CP perpendicular to the axis of the pulley and a lateral component CL the trailing edge of the hull is not in contact with the first concave curve or is in contact with with a part of the first concave curve forming, with a straight line dp of the radial plane perpendicular to the axis xa extending from the axis of the elongated element x to the trailing edge of the hull, an angle y at less equal to a slip angle αt. The sliding angle is given by the following formula: α t = Arctan Cf
Figure imgb0002
Where Cf is the coefficient of friction between the material forming the external part of the tail of the hull and the material forming the surface delimiting the groove of the pulley.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit, faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels :

  • la figure 1A déjà décrite représente un câble caréné, au moyen de carènes rigides liées axialement entre elles, remorqué partiellement immergé depuis sa partie immergée jusqu'à une poulie de guidage dans une situation dans laquelle le câble ne subit pas de double torsion, la Figure 1B représente le câble de la figure 1A dans le même état d'immersion (c'est-à-dire d'enroulement et de déroulement) que sur la figure 1A mais subissant une double torsion ; la figure 1C représente le câble de la figure 1A présentant la double torsion de la figure 1B dans une configuration dans laquelle le câble a été déroulé par rapport à la figure 1B ; la figure 1D représente le câble de la figure 1A présentant la double torsion de la figure 1B dans une configuration dans laquelle le câble a été hissé par rapport à la figure 1B,
  • la figure 2 représente schématiquement un navire remorquant un objet remorqué au moyen d'un câble caréné,
  • la figure 3 représente schématiquement une portion de câble caréné selon l'invention au moyen d'un carénage selon l'invention,
  • la figure 4a représente une section d'une carène du carénage selon l'invention selon le plan de coupe AA représenté sur la figure 2, la figure 4b représente schématiquement une vue de côté de la carène de la figure 4a vue selon la flèche b,
  • la figure 5 représente schématiquement un tronçon de câble caréné selon l'invention pénétrant dans une poulie de guidage du câble,
  • sur les figures 6a à 6b, on a représenté des coupes d'une poulie selon l'art antérieur, selon la face latérale de la carène pénétrant bord de fuite vers le fond de la gorge, au moment où elle vient en appui sur la poulie (figure 6a) puis après lorsque le câble a été tiré vers la droite sur la figure 5 (figure 6b) c'est-à-dire que le câble a été hissé et que sa tension a écrasé la carène),
  • sur la figure 7, on a représenté une coupe partielle selon un plan radial BB (voir figure 5) d'un exemple de poulie selon un premier mode de réalisation de l'invention ainsi qu'une courbe de référence,
  • sur la figure 8a on a représenté schématiquement une section d'une poulie, selon un deuxième mode de réalisation de l'invention, dans un plan formé par une face latérale de la première carène entrant en contact avec la poulie (équivalent du plan M sur la figure 5) comprenant le point de contact avec la poulie , les figures 8b et 8c représentent des sections de la poulie selon des plans successivement occupés par la même face latérale de la carène lorsqu'on enroule le câble,
  • sur les figures 19a et 9b on a représenté des sections, selon des plans radiaux, de deux exemples de poulies selon un troisième mode de réalisation,
  • sur la figure 10 on a représenté schématiquement, dans un plan BB, des courbes inférieures et supérieures d'une première courbe en fond de baignoire,
  • sur les figures 11a à 11c on a représenté, dans des plans successifs parallèles au plan M des sections de la poulie ainsi que les orientations successivement adoptées par la face latérale de la carène de référence lorsque l'on enroule le câble, la carène arrivant retournée sur la poulie de la figure 7,
  • sur les figures 12a à 12c on a représenté schématiquement en vue de côté une carène selon un premier mode de réalisation de l'invention et une tronçon de carénage comprenant une carène selon l'invention pénétrant dans une poulie, en perspective (12a) en vue de côté à l'entrée dans la poule (figure 12b), en vue en coupe selon le plan M visible sur la figure 12a, en vue en coupe selon le plan Q visible sur la figure 12d,
  • sur la figure 13, on a représenté schématiquement un exemple de carène selon un deuxième mode de réalisation de l'invention,
  • sur la figure 14, on a représenté, dans un plan radial de la poulie une portion d'une première courbe concave respectant une caractéristique avantageuse de l'invention,
  • sur la figure 15, on a représenté, un cercle construit par rapport à une carène et vérifiant la caractéristique avantageuse de l'invention.
Other characteristics and advantages of the invention will appear on reading the detailed description which follows, given by way of nonlimiting example and with reference to the appended drawings in which:
  • the figure 1A already described represents a faired cable, by means of rigid hulls axially linked together, towed partially submerged from its submerged part to a guide pulley in a situation in which the cable does not undergo double twisting, the Figure 1B represents the cable from the figure 1A in the same state of immersion (i.e. winding and unwinding) as on the figure 1A but undergoing a double twist; the figure 1C represents the cable from the figure 1A presenting the double twist of the figure 1B in a configuration in which the cable was unwound relative to the figure 1B ; the figure 1D represents the cable from the figure 1A presenting the double twist of the figure 1B in a configuration in which the cable has been hoisted relative to the figure 1B ,
  • the figure 2 schematically represents a ship towing an object towed by means of a faired cable,
  • the figure 3 schematically represents a portion of faired cable according to the invention by means of a fairing according to the invention,
  • the figure 4a represents a section of a fairing of the fairing according to the invention according to the section plane AA represented on the figure 2 , the figure 4b schematically represents a side view of the hull of the figure 4a view according to arrow b,
  • the figure 5 schematically represents a section of faired cable according to the invention penetrating a cable guide pulley,
  • on the Figures 6a to 6b , there has been shown sections of a pulley according to the prior art, along the lateral face of the hull penetrating the trailing edge towards the bottom of the groove, when it comes to bear on the pulley ( figure 6a ) then after when the cable has been pulled to the right on the figure 5 (( figure 6b ) i.e. the cable has been hoisted and its tension has crushed the hull),
  • on the figure 7 , a partial section is shown along a radial plane BB (see figure 5 ) an example of a pulley according to a first embodiment of the invention as well as a reference curve,
  • on the figure 8a there is shown schematically a section of a pulley, according to a second embodiment of the invention, in a plane formed by a lateral face of the first hull coming into contact with the pulley (equivalent to the plane M on the figure 5 ) including the point of contact with the pulley, Figures 8b and 8c represent sections of the pulley according to planes successively occupied by the same lateral face of the hull when the cable is wound,
  • in Figures 19a and 9b there are shown sections, in radial planes, of two examples of pulleys according to a third embodiment,
  • on the figure 10 schematically shown, in a plane BB, lower and upper curves of a first curve at the bottom of the bath,
  • on the Figures 11a to 11c there is shown, in successive planes parallel to the plane M of the sections of the pulley as well as the orientations successively adopted by the lateral face of the reference hull when the cable is wound, the hull arriving returned to the pulley of the figure 7 ,
  • on the Figures 12a to 12c there is shown schematically in side view a hull according to a first embodiment of the invention and a fairing section comprising a hull according to the invention penetrating into a pulley, in perspective (12a) in side view at the entrance in the hen ( figure 12b ), in sectional view along the plane M visible on the figure 12a , in section view along the plane Q visible on the figure 12d ,
  • on the figure 13 , there is shown schematically an example of a hull according to a second embodiment of the invention,
  • on the figure 14 , there is shown, in a radial plane of the pulley, a portion of a first concave curve respecting an advantageous characteristic of the invention,
  • on the figure 15 , there is shown a circle constructed with respect to a hull and verifying the advantageous characteristic of the invention.

D'une figure à l'autre, les mêmes éléments sont repérés par les mêmes références.From one figure to another, the same elements are identified by the same references.

L'invention se rapporte à un élément allongé caréné comprenant un objet allongé revêtu d'un carénage. L'objet allongé est par exemple un objet souple comme un câble ou un objet rigide comme une colonne de forage en mer, destiné à être au moins partiellement immergé. L'élément allongé est classiquement destiné à être remorqué par un bâtiment flottant. Le carénage est destiné à réduire les forces engendrées par le courant sur cet élément allongé lorsqu'il est immergé dans de l'eau et tracté dans l'eau par un bâtiment naval.The invention relates to an elongated fairing element comprising an elongated object coated with a fairing. The elongated object is for example a flexible object such as a cable or a rigid object such as a drilling column at sea, intended to be at least partially submerged. The elongated element is conventionally intended to be towed by a floating vessel. The fairing is intended to reduce the forces generated by the current on this elongated element when it is immersed in water and towed in water by a naval vessel.

L'invention a également pour objet un ensemble de remorquage tel que représenté sur la figure 2, comprenant un élément allongé 1 caréné au moyen d'un carénage selon l'invention. Dans la suite du texte, l'invention sera décrite dans le cas où l'élément allongé est un câble mais elle s'applique à d'autres types d'éléments allongés souples.The invention also relates to a towing assembly as shown in the figure 2 , comprising an elongated element 1 faired by means of a fairing according to the invention. In the following text, the invention will be described in the case where the elongated element is a cable but it applies to other types of flexible elongated elements.

Le câble 1 tracte un corps remorqué 101, comprenant par exemple une ou plusieurs antennes sonar. Le corps remorqué 101 est mécaniquement arrimé au câble 1 de manière appropriée. La mise à l'eau et la sortie de l'eau du corps remorqué 101 est réalisée au moyen d'un treuil 5 disposé sur un pont 103 du navire 100.The cable 1 tows a towed body 101, comprising for example one or more sonar antennas. The towed body 101 is mechanically secured to the cable 1 in an appropriate manner. The towed body 101 is launched and taken out of the water by means of a winch 5 disposed on a deck 103 of the ship 100.

L'ensemble de remorquage selon l'invention comprend également un dispositif de remorquage et de manutention du câble caréné comprenant :

  • Un treuil 5 permettant d'enrouler et de dérouler le câble 1 caréné,
  • un dispositif de guidage 4 permettant de guider le câble 1, le dispositif de guidage est disposé en aval du treuil vu de l'extrémité destinée à être immergée 6, du câble 1. Autrement dit, le câble 1 est enroulé autour du treuil 5 (ou déroulé au moyen du treuil) au travers du dispositif de guidage 4.
The towing assembly according to the invention also comprises a device for towing and handling the faired cable comprising:
  • A winch 5 for winding and unwinding the faired cable 1,
  • a guide device 4 for guiding the cable 1, the guide device is disposed downstream of the winch seen from the end intended to be submerged 6, of the cable 1. In other words, the cable 1 is wound around the winch 5 ( or unwound by means of the winch) through the guide device 4.

Le dispositif de guidage 4 est avantageusement monté sur une structure porteuse 7 destinée à être fixée au navire pouvant être basculante ou fixe.The guide device 4 is advantageously mounted on a support structure 7 intended to be fixed to the vessel, which can be tilting or fixed.

Le dispositif de guidage permet de guider le câble 1, c'est-à-dire de limiter le débattement latéral du câble par rapport au treuil, selon une direction parallèle à l'axe de rotation du touret du treuil. Il est en outre avantageusement configuré pour modifier la direction du câble entre son extrémité destinée à être immergée 6 et le treuil 5 dans un plan sensiblement perpendiculaire à l'axe du treuil tout en permettant de sécuriser le rayon de courbure du câble afin qu'il ne descende pas en-dessous d'un certain seuil dans ce plan.The guide device makes it possible to guide the cable 1, that is to say to limit the lateral movement of the cable relative to the winch, in a direction parallel to the axis of rotation of the winch reel. It is also advantageously configured to modify the direction of the cable between its end intended to be immersed 6 and the winch 5 in a plane substantially perpendicular to the axis of the winch while allowing to secure the radius of curvature of the cable so that it does not go below a certain threshold in this plane.

Dans l'exemple non limitatif représenté sur la figure 3, le dispositif de guidage est une poulie 4. Le dispositif de guidage peut en outre comprendre entre autres un chaumard permettant de sécuriser le rayon du câble, et/ou un dispositif de trancannage permettant de ranger le câble correctement sur le touret et/ou au moins un déflecteur formant une surface permettant de modifier l'orientation d'une carène par rapport au déflecteur par rotation de la carène autour de l'axe du câble sous l'effet de la traction du câble lors de son enroulement/ déroulement. Cette dernière peut être réalisée par une poulie.In the nonlimiting example represented on the figure 3 , the guiding device is a pulley 4. The guiding device can furthermore comprise inter alia a fairlead making it possible to secure the radius of the cable, and / or a slicing device making it possible to store the cable correctly on the reel and / or at less a deflector forming a surface making it possible to modify the orientation of a hull relative to the deflector by rotation of the hull around the axis of the cable under the effect of the traction of the cable during its winding / unwinding. The latter can be achieved by a pulley.

Sur la figure 3, on a représenté schématiquement une portion de câble 1 revêtue d'un carénage 11 selon l'invention. Ce carénage 11 comprend une pluralité de tronçons de carénage 12a, 12b. Chaque tronçon de carénage 12a, 12b comprend une pluralité carènes 13, 13a. Sur la figure 3, on a représenté deux tronçons de carénage 12a et 12b comprenant chacun 5 carènes de carénage mais en pratique, le carénage peut comprendre beaucoup plus de tronçons de carénage comprenant beaucoup plus de carènes.On the figure 3 , there is shown schematically a portion of cable 1 coated with a fairing 11 according to the invention. This fairing 11 comprises a plurality of fairing sections 12a, 12b. Each fairing section 12a, 12b comprises a plurality of hulls 13, 13a. On the figure 3 , two fairing sections 12a and 12b have been shown, each comprising 5 fairing hulls, but in practice, the fairing may include many more fairing sections comprising much more hulls.

Les carènes sont avantageusement rigides. Par carènes rigides, on entend, dans la présente demande de brevet, que les carènes sont configurées de manière à ne sensiblement pas se déformer sous l'effet du flux hydrodynamique lorsqu'elles sont immergées et tractées selon la direction du bord d'attaque. Autrement dit, les carènes conservent sensiblement la même forme lorsqu'elles sont soumises au flux hydrodynamique. Les carènes peuvent éventuellement se déformer sous l'effet d'efforts supérieurs à ceux développés par le flux hydrodynamique. Elles sont par exemple réalisées en matériau plastique dur comme par exemple le Polytéréphtalate d'éthylène (PET) ou le polyoxyméthylène (POM).The hulls are advantageously rigid. By rigid hulls is meant, in the present patent application, that the hulls are configured so as not to be substantially deformed under the effect of the hydrodynamic flow when they are immersed and towed in the direction of the leading edge. In other words, the hulls retain substantially the same shape when subjected to the hydrodynamic flow. The hulls may possibly deform under the effect of forces greater than those developed by the hydrodynamic flow. They are for example made of hard plastic material such as, for example, polyethylene terephthalate (PET) or polyoxymethylene (POM).

Chaque carène 13, 13a présente un profil hydrodynamique, du type de celui représenté sur la figure 4a, dans un plan AA perpendiculaire à l'axe x du câble (ou axe du canal 16). Autrement dit, chaque carène 13, 13a est profilée de manière à réduire la trainée hydrodynamique du câble 1 lorsque le câble 1 est tracté. Les carènes 13a sont des carènes présentant les mêmes caractéristiques que les carènes 13 mais pouvant différer des carènes 13 par les caractéristiques qui sont explicitées par la suite du fait de leur position dans les tronçons 12a, 12b. Chaque carène 13 comprend un nez 14 large destiné à recevoir le câble 1 et une queue 15 présentant une forme fuselée s'étendant à partir du nez 14. Le nez 14 loge un canal 16 d'axe perpendiculaire au plan de la feuille, destiné à recevoir le câble 1. Le nez 14 comprend le bord d'attaque BA et la queue 15 comprend bord de fuite BF qui sont les points extrêmes de la carène 13 dans le plan de coupe. La carène 13 présente plus particulièrement dans ce plan un profil en forme d'aile. Le profil de la carène permet un écoulement moins turbulent de l'eau autour du câble. Le profil hydrodynamique présente par exemple une forme de goutte d'eau ou un profil NACA c'est-à-dire un profil défini par le NACA qui est un acronyme de l'expression anglo-saxonne « National Advisory Committee for Aeronautics ».Each hull 13, 13a has a hydrodynamic profile, of the type shown in the figure 4a , in a plane AA perpendicular to the axis x of the cable (or axis of channel 16). In other words, each hull 13, 13a is profiled so as to reduce the hydrodynamic drag of the cable 1 when the cable 1 is towed. The hulls 13a are hulls having the same characteristics as the hulls 13 but which can differ from the hulls 13 by the characteristics which are explained below due to their position in the sections 12a, 12b. Each hull 13 comprises a wide nose 14 intended to receive the cable 1 and a tail 15 having a tapered shape extending from the nose 14. The nose 14 houses a channel 16 with an axis perpendicular to the plane of the sheet, intended for receiving the cable 1. The nose 14 comprises the leading edge BA and the tail 15 comprises the trailing edge BF which are the end points of the hull 13 in the cutting plane. The hull 13 more particularly has in this plane a wing-shaped profile. The hull profile allows a less turbulent flow of water around the cable. The hydrodynamic profile for example has a teardrop shape or a NACA profile, that is to say a profile defined by the NACA which is an acronym of the Anglo-Saxon expression "National Advisory Committee for Aeronautics".

Sur la figure 4b, on a représenté une vue de la carène selon la flèche B, qui est la même vue que sur la figure 3. La carène présente une forme allongée depuis le bord d'attaque BA jusqu'au bord de fuite BF. Vue de côté, la carène 13 présente une forme sensiblement rectangulaire délimitée par le bord de fuite BF et le bord d'attaque BA parallèles à l'axe xc du canal 16 et reliés par deux faces latérales 17, 18. Les faces latérales 17, 18 s'étendent sensiblement perpendiculairement au bord de fuite BA. Les faces latérales sont agencées aux extrémités respectives du canal 16.On the figure 4b , there is shown a view of the hull according to arrow B, which is the same view as on the figure 3 . The hull has an elongated shape from the leading edge BA to the trailing edge BF. Side view, the hull 13 has a substantially rectangular shape delimited by the trailing edge BF and the leading edge BA parallel to the axis xc of the channel 16 and connected by two lateral faces 17, 18. The lateral faces 17, 18 extend substantially perpendicular to the trailing edge BA. The lateral faces are arranged at the respective ends of the channel 16.

Sur la figure 4a, on a référencé la longueur de corde LC de la carène 13 qui est la longueur maximale du segment de droite appelée corde CO reliant le bord de fuite BF et le bord d'attaque BA de la carène 13 selon une direction perpendiculaire à l'axe du canal xc. Autrement dit, la corde est le segment de droite reliant les points extrêmes d'une section de la carène. L'épaisseur maximale E de la carène est la distance maximale séparant la première face longitudinale 22 de la deuxième face longitudinale 23 selon une direction perpendiculaire à la corde CO dans le plan de coupe de la carène. Sur le mode de réalisation de la figure 4b, la distance séparant le bord de fuite et le bord d'attaque est constante le long de l'axe du canal xc parallèle au bord d'attaque BA. La longueur de corde est cette distance. Les faces longitudinales 22 et 23 s'étendent parallèlement au bord d'attaque BA.On the figure 4a , reference has been made to the length of rope LC of hull 13 which is the maximum length of the line segment called rope CO connecting the trailing edge BF and the leading edge BA of hull 13 in a direction perpendicular to the axis of the xc channel. In other words, the rope is the line segment connecting the extreme points of a section of the hull. The maximum thickness E of the hull is the maximum distance separating the first longitudinal face 22 from the second longitudinal face 23 in a direction perpendicular to the cord CO in the section plane of the hull. On the embodiment of the figure 4b , the distance between the trailing edge and the leading edge is constant along the axis of the channel xc parallel to the leading edge BA. The length of the rope is this distance. The longitudinal faces 22 and 23 extend parallel to the leading edge BA.

Les carènes 13 sont destinées à être montées sur le câble 1 de manière à pouvoir pivoter autour de l'axe longitudinal du câble 1, c'est-à-dire autour de l'axe longitudinal du canal 16.The hulls 13 are intended to be mounted on the cable 1 so as to be able to pivot around the longitudinal axis of the cable 1, that is to say around the longitudinal axis of the channel 16.

Les carènes 13 appartenant à un même tronçon de carénage 12a ou 12b sont liées entre elles au moyen d'un dispositif d'accouplement 20 permettant la rotation relative desdites carènes 13 les unes par rapport aux autres autour du câble 1. Le dispositif d'accouplement 20 lie les carènes entre elles à la fois axialement, c'est-à-dire le long du câble de remorquage mas aussi en rotation autour du câble 1. Le dispositif d'accouplement 20 permet la rotation relative des carènes les unes par rapport aux autres autour de l'axe du câble, c'est-à-dire du canal 16. Ce débattement est autorisé soit de manière libre, soit avec une butée. La rotation d'une carène autour du câble n'entraine alors pas la carène adjacente en rotation. Le débattement peut être obtenu de manière contrainte avec un rappel plus ou moins fort vers la position alignée (pas de rotation relative des carènes les unes par rapport aux autres autour du câble). Dans ce dernier cas, la rotation d'une carène autour du câble entraine en rotation les carènes adjacentes du même tronçon autour du câble. Avantageusement, le jeu entre les carènes adjacentes est sensiblement nul, de sorte que toute rotation relative entre les carènes implique la déformation élastique du dispositif d'accouplement. Cela permet aux carènes d'un même tronçon d'adopter une orientation par rapport au câble lui permettant d'opposer la plus faible résistance au courant provoqué par le déplacement du câble dans l'eau. Le dispositif d'accouplement permet cette rotation relative avec une amplitude maximale, c'est-à-dire un débattement angulaire maximum. De la sorte, la rotation d'une carène entraîne une rotation des carènes voisines et de proche en proche celle de l'ensemble des carènes du même tronçon 12a ou 12b. Toutes les carènes d'un même tronçon adoptent au fil de la remontée du câble une même orientation relativement au tambour ce qui permet d'enrouler le câble en maintenant les écailles parallèles les unes aux autres de tour à tour.The hulls 13 belonging to the same fairing section 12a or 12b are linked together by means of a coupling device 20 allowing the relative rotation of said hulls 13 relative to each other around the cable 1. The coupling device 20 links the hulls to each other both axially, that is to say along the towing cable but also in rotation about the cable 1. The coupling device 20 allows the relative rotation of the hulls with respect to the others around the axis of the cable, that is to say of the channel 16. This travel is authorized either freely or with a stop. The rotation of a hull around the cable does not then cause the adjacent hull to rotate. The travel can be obtained in a constrained manner with a more or less strong return to the aligned position (no relative rotation of the hulls relative to each other around the cable). In the latter case, the rotation of a hull around the cable causes the adjacent hulls of the same section to rotate around the cable. Advantageously, the play between the adjacent hulls is substantially zero, so that any relative rotation between the hulls involves the elastic deformation of the coupling device. This allows the hulls of the same section to adopt an orientation relative to the cable allowing it to oppose the weakest resistance to the current caused by the movement of the cable in water. The coupling device allows this relative rotation with a maximum amplitude, that is to say a maximum angular movement. In this way, the rotation of a hull causes a rotation of the neighboring hulls and gradually that of all the hulls of the same section 12a or 12b. All the hulls of the same section adopt, as the cable rises, the same orientation relative to the drum, which makes it possible to wind the cable while keeping the scales parallel to each other in turn.

Avantageusement, le dispositif d'accouplement 20 permet la rotation relative des carènes les unes par rapport aux autres de façon à permettre l'enroulement du câble autour d'un treuil, le débattement latéral du câble dû par exemple à des changements de cap du navire. Le dispositif d'accouplement autorise ces mouvements de rotation relatifs des carènes les unes par rapport aux autres avec des débattements angulaires respectifs maximums.Advantageously, the coupling device 20 allows the relative rotation of the hulls with respect to each other so as to allow the cable to be wound around a winch, the lateral movement of the cable due for example to changes in course of the ship . The coupling device allows these relative rotational movements of the hulls with respect to each other with maximum respective angular deflections.

Le dispositif d'accouplement 20 représenté sur la figure 3, comprend une pluralité de dispositifs d'accouplement individuels 19, comprenant par exemple une éclisse, permettant chacun de relier une carène à une carène adjacente à ladite carène, c'est-à-dire d'accoupler les carènes d'un même tronçon deux à deux. Autrement dit, chaque dispositif d'accouplement individuel permet de relier une carène à une autre carène adjacente à ladite carène uniquement. Les carènes adjacentes forment des couples de carènes. Les carènes des couples de carènes respectifs d'un même tronçon de carénage sont reliées au moyen de dispositifs d'accouplement individuels distincts. Le dispositif d'accouplement permet ainsi de relier individuellement chaque carène d'un tronçon de carénage à chacune de ses carènes adjacentes. Avantageusement, les dispositifs d'accouplement individuels sont configurés de sorte à se déformer élastiquement lors de la rotation relative des carènes autour du câble. Il s'agit d'une torsion des dispositifs d'accouplement individuels.The coupling device 20 shown in the figure 3 , comprises a plurality of individual coupling devices 19, comprising for example a splint, each making it possible to connect a hull to a hull adjacent to said hull, that is to say to couple the hulls of the same section two together. In other words, each individual coupling device makes it possible to connect a hull to another hull adjacent to said hull only. The adjacent hulls form pairs of hulls. The hulls of the respective hull pairs of the same fairing section are connected by means of separate individual coupling devices. The coupling device thus makes it possible to individually connect each hull of a fairing section to each of its adjacent hulls. Advantageously, the individual coupling devices are configured so as to deform elastically during the relative rotation of the hulls around the cable. This is a twist of the individual coupling devices.

Lorsqu'il y a torsion d'un tronçon de carénage, il y a déformation du tronçon de carénage. Cette déformation est obtenue par déformation élastique du dispositif d'accouplement 20 et/ou des carènes de sorte que le tronçon de carénage s'oppose à la torsion du fait de sa raideur en torsion. Autrement dit, le carénage exerce un couple de rappel en sens inverse de celui du couple de torsion appliqué sur le carénage pour engendrer la torsion. Ces déformations élastiques sont des torsions. Dans le cas où le carénage comprend les dispositifs d'accouplement individuels 19, les dispositifs d'accouplement individuels 19 se déforment élastiquement lors de la torsion du carénage. Classiquement, les carènes présentent une raideur telle qu'elles se déforment également élastiquement lors de la torsion du carénage. Ces déformations élastiques sont des torsions.When there is torsion of a fairing section, there is deformation of the fairing section. This deformation is obtained by elastic deformation of the coupling device 20 and / or of the hulls so that the fairing section opposes torsion because of its torsional stiffness. In other words, the fairing exerts a return torque in the opposite direction to that of the torque applied to the fairing to generate the torsion. These elastic deformations are twists. In the case where the fairing comprises the individual coupling devices 19, the individual coupling devices 19 deform elastically when the fairing is twisted. Conventionally, the hulls have a stiffness such that they also deform elastically when the fairing is twisted. These elastic deformations are twists.

Avantageusement, les carènes 13 sont immobilisées en translation par rapport au câble 1 selon l'axe du câble x. Cela permet d'éviter que les carènes 13 ne se tassent ou ne se distancient le long du câble 1 ce qui pourrait avoir pour conséquence des problèmes de blocage du carénage 11 lors de l'enroulement du câble caréné autour du touret du treuil 5 ou même au passage du dispositif de guidage 4. A cet effet, chaque tronçon de carénage 12a, 12b comprend un dispositif d'immobilisation 21 coopérant avec une carène 13a dudit tronçon 12a, 12b et destiné à coopérer avec le câble 1 de façon à immobiliser la carène 13a en translation le long de l'axe du câble. Sur la réalisation de la figure 3, la carène 13a est la carène la plus éloignée de l'extrémité destinée à être immergée 6 située dans la direction de la flèche f (appelée carène de tête). Les carènes étant liées entre elles, le blocage réalisé par le dispositif d'immobilisation sur une carène 13a se répercute sur les autres carènes du même tronçon. L'installation d'un dispositif d'immobilisation par carène n'est pas nécessaire ce qui permet de limiter les coûts et le temps de montage ainsi que le poids du câble caréné. En variante, le tronçon comprend plusieurs dispositifs d'immobilisation coopérant chacun avec une carène du tronçon. Le dispositif d'immobilisation comprend par exemple une bague 21 fixée au câble par sertissage et coopérant avec la carène 13a afin de l'immobiliser en translation par rapport au câble selon l'axe x du câble 1.Advantageously, the hulls 13 are immobilized in translation relative to cable 1 along the axis of cable x. This makes it possible to prevent the hulls 13 from compacting or distancing along the cable 1, which could result in problems of blocking the fairing 11 during the winding of the faired cable around the winch reel 5 or even in the passage of the guide device 4. For this purpose, each fairing section 12a, 12b comprises an immobilizing device 21 cooperating with a hull 13a of said section 12a, 12b and intended to cooperate with the cable 1 so as to immobilize the hull 13a in translation along the axis of the cable. On the realization of the figure 3 , the hull 13a is the hull farthest from the end intended to be immersed 6 situated in the direction of the arrow f (called the head hull). The hulls being linked together, the blocking produced by the immobilization device on a hull 13a has repercussions on the other hulls of the same section. The installation of a hull immobilizer is not necessary, which limits the costs and the assembly time as well as the weight of the faired cable. As a variant, the section comprises several immobilization devices each cooperating with a hull of the section. The immobilization device comprises for example a ring 21 fixed to the cable by crimping and cooperating with the hull 13a in order to immobilize it in translation relative to the cable along the x axis of the cable 1.

Selon l'invention, les tronçons de carénage 12a et 12b sont libres en rotation, les uns par rapport aux autres, autour de l'axe du canal 16, c'est-à-dire autour de l'axe du câble 1 lorsqu'ils sont montés sur le câble 1. Autrement dit, les carènes 13, appartenant à deux tronçons de carénage distincts 12a et 12b sont libres en rotation les unes par rapport aux autres, autour de l'axe du canal, c'est-à-dire autour du câble 1. Chaque tronçon 12a, 12b est relativement souple en rotation autour du câble même si on observe une certaine raideur en torsion. Cette souplesse ne fait que s'amplifier avec la longueur déployée. Pour cette raison, le fait de découper le carénage en tronçon de carénages libres en rotation les uns par rapport aux autres permet de limiter les risques de formation des doubles torsions, et donc de limiter les risques de détérioration du carénage, puisque les torsions des tronçons de carénage ne se transmettent pas d'un tronçon à l'autre. Le carénage peut être installé tout au long du câble. Autrement dit, le carénage s'étend sur toute la longueur du câble. En variante, le carénage s'étend le long du câble sur une longueur inférieure à la longueur du câble.According to the invention, the fairing sections 12a and 12b are free to rotate, relative to one another, around the axis of the channel 16, that is to say around the axis of the cable 1 when they are mounted on the cable 1. In other words, the hulls 13, belonging to two distinct fairing sections 12a and 12b are free to rotate with respect to each other, around the axis of the channel, that is to say say around the cable 1. Each section 12a, 12b is relatively flexible in rotation around the cable even if a certain torsional stiffness is observed. This flexibility only increases with the length deployed. For this reason, the fact of cutting the fairing into sections of free fairings in rotation relative to each other makes it possible to limit the risks of formation of double twists, and therefore to limit the risks of deterioration of the fairing, since the twists of the sections fairings are not transmitted from one section to another. The fairing can be installed along the cable. In other words, the fairing extends over the entire length of the cable. Alternatively, the fairing extends along the cable over a length less than the length of the cable.

Le carénage est destiné à caréner un élément allongé. Il est également destiné à être remorqué au moyen d'un dispositif de remorquage tel que décrit dans la présente demande de brevet.The fairing is intended to fair an elongated element. It is also intended to be towed by means of a towing device as described in the present patent application.

Les hauteurs h, des tronçons de carénage respectifs, c'est-à-dire leurs longueurs selon l'axe x du câble, sont inférieures à une hauteur maximale hmax. En variante, au moins un des tronçons présente une hauteur inférieure à cette hauteur maximale hmax. Sur la figure 3 les deux tronçons présentent la même longueur mais ce n'est pas une obligation. La hauteur maximale hmax est choisie de manière à être suffisamment faible pour empêcher la formation d'une torsion aérienne complète sur le tronçon, par exemple d'une torsion complète sur le tronçon. Le tronçon perturbé peut faire un tour complet sur lui-même et se réaligne dans le flux, puisqu'il est découplé de ses voisins ce tronçon ne les perturbe plus et il n'y a plus ni torsion aérienne, ni torsion immergée. Cette configuration permet d'éviter que des torsions immergées complètes anciennes ne pénètrent dans le dispositif de guidage et limite donc les risques de détérioration du carénage. Par ailleurs, cette configuration permet d'éviter d'avoir à mettre en place une procédure de surveillance, par l'équipage, ou un dispositif de surveillance visant à détecter des torsions immergées ainsi qu'une procédure mécanique ou manuelle visant à résorber une double torsion détectée ou visant à aider une torsion rémanente immergée sortant de l'eau à pénétrer dans le dispositif de guidage sans occasionner de dommages.The heights h, of the respective fairing sections, that is to say their lengths along the axis x of the cable, are less than a maximum height hmax. As a variant, at least one of the sections has a height less than this maximum height hmax. On the figure 3 the two sections have the same length but this is not an obligation. The maximum height hmax is chosen so as to be sufficiently low to prevent the formation of a complete aerial torsion on the section, for example of a complete torsion on the section. The disturbed section can make a full turn on itself and realigns itself in the flow, since it is decoupled from its neighbors this section no longer disturbs them and there is no longer any aerial twist or submerged twist. This configuration makes it possible to prevent old complete submerged twists from entering the guide device and therefore limits the risks of damage to the fairing. Furthermore, this configuration makes it possible to avoid having to set up a monitoring procedure, by the crew, or a monitoring device aimed at detecting submerged torsions as well as a mechanical or manual procedure aimed at absorbing a double torsion detected or aimed at helping an immersed retentive torsion coming out of the water to enter the guide device without causing damage.

Avantageusement, la hauteur d'au moins un tronçon, et de préférence de chaque tronçon, est définie de sorte à empêcher la formation d'une torsion aérienne complète dudit tronçon de carénage lorsque le carénage, ou l'élément allongé caréné au moyen du carénage, est remorqué dans des conditions de remorquage nominales prédéterminées du carénage, le tronçon de carénage étant partiellement immergé. La torsion arienne est la torsion subie par la partie aérienne, c'est à dire non immergée, du tronçon de carénage.Advantageously, the height of at least one section, and preferably of each section, is defined so as to prevent the formation of a complete aerial twist of said fairing section when the fairing, or the elongated element faired by means of the fairing. , is towed under predetermined nominal towing conditions of the fairing, the fairing section being partially submerged. The aerial torsion is the torsion undergone by the aerial part, that is to say not immersed, of the fairing section.

Les conditions de remorquage nominales sont définies par un état de mer nominal, une vitesse nominale à laquelle le câble est destiné à être remorqué, c'est-à-dire la vitesse nominale du navire, et la hauteur à laquelle est destiné être le point de remorquage du carénage par rapport au niveau de la mer. L'état de mer nominal, la vitesse nominale et la hauteur du point de remorquage peuvent être prédéterminés ou compris dans des intervalles nominaux respectifs prédéterminés. Lorsque le carénage est remorqué de façon que le tronçon de carénage soit partiellement immergé dans les conditions nominales, le tronçon de carénage est soumis à un couple de torsion qui est inférieur ou égal à un couple de torsion maximal prédéterminé Ce couple de torsion maximal est défini par les conditions nominales. Le couple maximal prédéterminé peut être obtenu par calcul ou de façon empirique par mesure du couple de torsion exercé par le tronçon de carénage dans les conditions nominales.The nominal towing conditions are defined by a nominal sea state, a nominal speed at which the cable is intended to be towed, i.e. the nominal speed of the ship, and the height at which is intended to be the towing point of the fairing above sea level. The nominal sea state, the nominal speed and the height of the towing point may be predetermined or may be included in predetermined respective nominal intervals. When the fairing is towed so that the fairing section is partially submerged under the nominal conditions, the fairing section is subjected to a torsional torque which is less than or equal to a predetermined maximum torque. This maximum torque is defined by the nominal conditions. The predetermined maximum torque can be obtained by calculation or empirically by measuring the torque exerted by the fairing section under nominal conditions.

La hauteur maximale du tronçon de carénage est définie de façon à éviter la formation d'une torsion aérienne complète sur le tronçon de carénage partiellement immergé lorsque le tronçon de carénage est soumis à un couple de torsion inférieur ou égal au couple maximal prédéterminé.The maximum height of the fairing section is defined so as to avoid the formation of a complete aerial torsion on the partially submerged fairing section when the fairing section is subjected to a torsional torque less than or equal to the predetermined maximum torque.

La hauteur du carénage est définie de façon empirique en faisant varier la longueur du tronçon de carénage dans les conditions nominales de remorquage les plus contraignantes engendrant le couple de torsion maximal de façon à obtenir une hauteur telle qu'elle permet d'éviter une torsion aérienne complète du tronçon de carénage. Elle peut aussi être déterminée par simulation en modélisant le comportement du tronçon de carénage dans les conditions nominales les plus contraignantes et en faisant varier la hauteur du tronçon jusqu'à obtenir l'effet souhaité.The height of the fairing is empirically defined by varying the length of the fairing section under the most demanding nominal towing conditions, generating the maximum torque so as to obtain a height such that it avoids aerial torsion. complete of the fairing section. It can also be determined by simulation by modeling the behavior of the fairing section under the most restrictive nominal conditions and by varying the height of the section until the desired effect is obtained.

Par conséquent, lorsque le tronçon de carénage est remorqué dans les conditions nominales et partiellement immergé, la partie aérienne du carénage est soumis un couple de torsion dû aux vagues. Si ce couple est inférieur ou égal au couple de torsion maximal, il va subir une torsion mais les efforts appliqués au niveau du dispositif de guidage et dans la partie immergée sont équilibrés de telle sorte que le carénage va effectuer un tour complet sur lui-même autour de l'élément allongé (ou autour du canal) avant que sa partie aérienne ne subisse une torsion compète. Par conséquent, l'apparition d'une torsion aérienne complète et donc, l'apparition d'une double torsion est évitée.Consequently, when the fairing section is towed under nominal conditions and partially submerged, the aerial part of the fairing is subjected to a torsional torque due to the waves. If this torque is less than or equal to the maximum torsional torque, it will undergo a torsion but the forces applied at the level of the guide device and in the submerged part are balanced so that the fairing will make a full revolution on itself around the elongated element (or around the channel) before its aerial part undergoes a complete twist. Consequently, the appearance of a complete aerial twist and therefore, the appearance of a double twist is avoided.

Dans un mode de réalisation préférentiel, la hauteur d'au moins un tronçon, et de préférence de chaque tronçon, est choisie de façon que le tronçon soit apte à subir une torsion complète. La hauteur du tronçon est donc suffisamment importante pour permettre cette torsion. Toutefois, cette hauteur est également choisie, comme précédemment, de sorte à empêcher la formation d'une torsion aérienne complète sur ledit tronçon de carénage lorsque le carénage, ou l'élément allongé caréné au moyen du carénage, est remorqué dans des conditions de remorquage nominales prédéterminées du carénage, le tronçon de carénage étant partiellement immergé. Autrement dit, la hauteur du tronçon est suffisamment faible pour que, lorsque le carénage (ou le câble est caréné) est remorqué, partiellement immergé et est soumis à un couple de torsion maximal, il ne peut pas subir de torsion aérienne. En revanche, il peut subir une torsion complète s'il est soumis à un couple de torsion supérieur au couple de torsion maximal.In a preferred embodiment, the height of at least one section, and preferably of each section, is chosen so that the section is able to undergo a complete twist. The height of the section is therefore large enough to allow this twisting. However, this height is also chosen, as above, so as to prevent the formation of a complete aerial torsion on said fairing section when the fairing, or the elongated element faired by means of the fairing, is towed under towing conditions. predetermined nominal fairings, the fairing section being partially submerged. In other words, the height of the section is low enough so that, when the fairing (or the cable is faired) is towed, partially submerged and is subjected to a maximum torque, it cannot be subjected to aerial torsion. On the other hand, it can undergo a complete torsion if it is subjected to a torque greater than the maximum torque.

La hauteur du tronçon est définie en fonction de la raideur angulaire en torsion k dudit tronçon de carénage, en fonction de la longueur de corde LC desdites carènes dudit tronçon et en fonction des conditions de remorquage nominales.The height of the section is defined as a function of the angular stiffness in torsion k of said fairing section, as a function of the length of rope LC of said hulls of said section and as a function of nominal towing conditions.

Un tronçon de carénage T subissant une torsion d'un angle θ autour de l'axe x d'un câble (ou du canal 16) est soumis à un couple C appliqué autour de l'axe x du câble 1. Le couple C permettant d'obtenir cet angle de torsion est donné par la formule suivante : C = h

Figure imgb0003
Où k est la raideur angulaire en torsion du tronçon de carénage autour de l'axe du câble (ou du canal) exprimée en Nm2/radians, h est la hauteur du tronçon de carénage, c'est-à-dire la longueur du tronçon de carénage selon l'axe du câble ou l'axe longitudinal du bord d'attaque.A fairing section T undergoing a twist by an angle θ around the x axis of a cable (or of channel 16) is subjected to a torque C applied around the x axis of the cable 1. The torque C allowing to get this twist angle is given by the following formula: VS = h
Figure imgb0003
Where k is the angular stiffness in torsion of the fairing section around the cable (or channel) axis expressed in Nm 2 / radians, h is the height of the fairing section, i.e. the length of the fairing section along the cable axis or the longitudinal axis of the leading edge.

La hauteur maximale hmax dépend de la raideur en torsion des tronçons de carénage. Plus les tronçons de carénage présentent une raideur importante autour de l'axe du câble et plus ils peuvent présenter une hauteur importante. Plus la longueur de corde du carénage est importante et plus le tronçon de carénage sera perturbé par les sollicitations de la mer et les conditions de remorquage et plus la hauteur maximale des tronçons de carénage est faible. Les perturbations en torsion engendrées par les sollicitations de la mer et les conditions de remorquage sont proportionnelles à la surface des carènes du tronçon (donc à la longueur de corde) et au bras de levier (donc à la longueur de corde du carénage). La hauteur maximale hmax est donc donnée par la formule suivante : hmax π k F LC 2

Figure imgb0004
Où F est une constante calculée suivant une configuration qui a été identifiée comme étant la plus contraignante et qui tient compte du flux et du reflux du sillage et LC est la longueur de la corde des carènes du tronçon de carénage.The maximum height hmax depends on the torsional stiffness of the fairing sections. The greater the fairing sections have a stiffness around the axis of the cable, the more they can have a significant height. The greater the length of the fairing cord, the more the fairing section will be disturbed by the stresses of the sea and the towing conditions and the lower the maximum height of the fairing sections. The torsional disturbances caused by the stresses of the sea and the towing conditions are proportional to the surface of the hulls of the section (therefore to the length of the rope) and to the arm lever (therefore the length of the fairing rope). The maximum height hmax is therefore given by the following formula: hmax π k F LC 2
Figure imgb0004
Where F is a constant calculated according to a configuration which has been identified as being the most constraining and which takes account of the ebb and flow of the wake and LC is the length of the hull cord of the fairing section.

La constante F est comprise entre 250 et 500. F dépend de la vitesse maximale à laquelle on souhaite tracter le câble. Si on souhaite tracter le câble à une vitesse de 20 nœuds, F est fixée à 400. F est plus faible si la vitesse maximale diminue.The constant F is between 250 and 500. F depends on the maximum speed at which one wishes to tow the cable. If one wishes to tow the cable at a speed of 20 knots, F is fixed at 400. F is lower if the maximum speed decreases.

Typiquement, pour des carénages présentant une raideur angulaire en torsion k de l'ordre de 4 à 5 Nm2/rad, et une longueur de corde LC de 0,125m, la hauteur maximale et de l'ordre de 2m si on fixe la constante à 400.Typically, for fairings having an angular stiffness in torsion k of the order of 4 to 5 Nm 2 / rad, and a length of LC cord of 0.125m, the maximum height and of the order of 2m if the constant is fixed at 400.

Le carénage selon l'invention présente des avantages même dans le cas où on ne cherche pas à enrouler le câble autour d'un treuil. En effet, le fait que le carénage selon l'invention minimise les risques de formation de doubles torsions permet de limiter les risques de détérioration du carénage liés au vieillissement des torsions immergées sans qu'elles ne pénètrent dans un dispositif de guidage. Le carénage selon l'invention limite donc les besoins en termes de maintenance du câble.The fairing according to the invention has advantages even in the case where it is not sought to wind the cable around a winch. In fact, the fact that the fairing according to the invention minimizes the risks of the formation of double twists makes it possible to limit the risks of deterioration of the fairing linked to the aging of the submerged twists without them entering a guide device. The fairing according to the invention therefore limits the needs in terms of cable maintenance.

Avantageusement, le dispositif de guidage de l'ensemble de remorquage selon l'invention est configuré de manière à permettre de modifier l'orientation d'une carène du carénage par rapport au dispositif de guidage par rotation de la carène autour de l'axe du câble, sous l'effet de la traction du câble par rapport au dispositif de guidage (selon l'axe du câble), lorsque la carène présente une orientation dans laquelle elle est en appui sur le dispositif de guidage et dans laquelle la ligne d'action de force exercée par le câble sur le dispositif de guidage s'étend sensiblement selon la direction s'étendant depuis l'axe du câble jusqu'au bord de fuite de la carène.Advantageously, the device for guiding the towing assembly according to the invention is configured so as to make it possible to modify the orientation of a fairing of the fairing relative to the device for guiding by rotation of the hull around the axis of the cable, under the effect of the traction of the cable relative to the guide device (along the cable axis), when the hull has an orientation in which it is in abutment on the guide device and in which the line of force action exerted by the cable on the guide device extends substantially in the direction extending from the axis of the cable to the trailing edge of the hull.

Avantageusement, le dispositif de guidage est configuré pour retourner une carène depuis une position retournée dans laquelle elle est orientée queue vers le bas, jusqu'à une position acceptable dans laquelle elle est orientée queue vers le haut. Les orientations vers le haut et vers le bas sont définies par rapport à un axe vertical lié au treuil.Advantageously, the guide device is configured to turn a hull from an inverted position in which it is oriented tail down, to an acceptable position in which it faces tail up. The upward and downward orientations are defined with respect to a vertical axis linked to the winch.

Ces configurations permettent de faciliter l'enroulement du câble caréné sur le treuil. En effet, lorsque l'on vient enrouler le câble autour du touret du treuil, la première carène de chaque tronçon à sortir de l'eau remonte vers le dispositif de guidage et, n'étant pas liée aux carènes du tronçon précédent, elle va se retourner bord de fuite vers le bas sous l'effet de la gravité entrainant avec elle les carènes suivantes du même tronçon de carénage. Si le dispositif de guidage ne permet pas un tel retournement, les carènes vont arriver mal orientées sur le touret du treuil (on préfère enrouler les carènes bord de fuite vers le haut pour éviter les détériorations du carénage car le bord d'attaque est plus résistant).These configurations make it easier to wind the shrouded cable on the winch. When the cable is wound around the winch reel, the first hull of each section to come out of the water goes up towards the guide device and, not being linked to the hulls of the previous section, it will turn down the trailing edge under the effect of gravity, bringing with it the following hulls of the same fairing section. If the guide device does not allow such a reversal, the hulls will arrive badly oriented on the winch reel (we prefer to wind the hulls trailing edge upwards to avoid damage to the fairing because the leading edge is more resistant ).

A cet effet, le dispositif de guidage comprend un guide ou un ensemble de guides permettant le changement d'orientation ou basculement de la carène. Ce guide ou ensemble de guide peut par exemple comprendre une poulie et/ou un déflecteur ou tout autre dispositif permettant de modifier l'orientation des carènes autour de l'axe du câble. Un exemple non limitatif de ce type est décrit dans la demande de brevet Française publiée sous le numéro FR2923452 . Ces dispositifs sont classiquement disposés en amont ou en aval de la poulie vue du treuil. Ils sont classiquement concaves, c'est-à-dire du type à gorge, de façon à définir un logement destiné recevoir la carène pour assurer son basculement. Ces guides peuvent être aptes à suivre le câble en cas de débattement latéral du câble parallèlement à l'axe de la poulie (ou du treuil), en étant par exemple montés pivotants autour d'un axe sensiblement vertical.To this end, the guide device comprises a guide or a set of guides allowing the orientation or tilting of the hull to be changed. This guide or guide assembly can for example comprise a pulley and / or a deflector or any other device making it possible to modify the orientation of the hulls around the axis of the cable. A nonlimiting example of this type is described in the French patent application published under the number FR2923452 . These devices are conventionally arranged upstream or downstream of the pulley seen from the winch. They are conventionally concave, that is to say of the grooved type, so as to define a housing intended to receive the hull to ensure its tilting. These guides may be able to follow the cable in the event of lateral movement of the cable parallel to the axis of the pulley (or of the winch), by being for example pivotally mounted about a substantially vertical axis.

Jusqu'à présent toutes les poulies de remorquage sont configurées de manière à faire passer les carènes nez vers le fond de la gorge et queue vers l'extérieur de la gorge. Cette disposition est logique puisque le câble de remorquage, siège des efforts, se trouve nécessairement logé dans le nez des carènes, c'est-à-dire à proximité du bord d'attaque. Toutes les poulies de remorquage présentent alors une gorge étroite en V. Cette disposition est rendue nécessaire à cause des liens entre toutes les carènes. En sortant de la mer et en arrivant à la poulie de remorquage, les carènes qui, pendant leur trajet aérien, ont tendance à s'orienter bord de fuite vers le bas (à l'envers donc) se trouvent ainsi redressées de proche en proche grâce aux liens inter-carènes. Lorsqu'une carène est bien positionnée dans la gorge de la poulie, lors du hissage (mais aussi du dévidage) toutes les suivantes vont peu à peu se redresser et passer au mieux la poulie.Up to now, all the towing pulleys have been configured so as to pass the hulls nose towards the bottom of the groove and tail towards the outside of the groove. This arrangement is logical since the towing cable, seat of the efforts, is necessarily housed in the nose of the hulls, that is to say near the leading edge. All towing pulleys then have a narrow V-shaped groove. This arrangement is made necessary because of the links between all of the hulls. Leaving the sea and arriving at the towing pulley, the hulls which, during their aerial journey, tend to orient themselves on the trailing edge downwards (upside down therefore) are thus straightened step by step thanks to the links inter-hulls. When a hull is well positioned in the groove of the pulley, during hoisting (but also unwinding) all the following will gradually straighten and pass the pulley as well as possible.

Par ailleurs, les dispositifs permettant le retournement du carénage (ou redresseurs) sont peu performants lorsqu'ils sont installés en aval de la poulie, vue de l'extrémité libre du câble car la position du câble possède à cet endroit au moins deux degrés de liberté : longitudinal et latéral et les dispositifs redresseurs actuels ne sont pas capables de suivre correctement le câble selon ces deux directions ou bien il s'agit de dispositifs complexes.Furthermore, the devices allowing the fairing to be turned over (or rectifiers) are ineffective when installed downstream of the pulley, seen from the free end of the cable because the position of the cable has at this point at least two degrees of freedom: longitudinal and lateral and current rectifier devices are not able to correctly follow the cable in these two directions or they are complex devices.

Dans le cas d'une poulie à gorge étroite en V, si le dispositif de guidage est dépourvu de dispositif de retournement en aval de la poulie vue de l'extrémité libre du câble ou si ce dispositif n'est pas performant des carènes entrant queue vers le bas dans la poulie vont pouvoir se coincer dans la gorge et, si elles ne sont pas dimensionnées pour résister à l'effort exercé par le câble dans cette orientation, elles vont se déformer et entrainer la déformation des carènes suivantes. Cette situation est représentée sur les figures 5 et 6a à 6b. Sur la figure 5, on a représenté une portion d'un câble 1 caréné pénétrant dans une poulie P à gorge 50. Sur cette figure, on enroule le câble 1 qui pénètre alors dans la poulie en suivant le sens de la flèche. Sur cette figure, l'axe xp de la poulie est perpendiculaire au plan de la feuille. Les carènes 13 d'un premier groupe de carènes 12a sont orientées bord de fuite BF vers l'extérieur de la gorge et bord d'attaque vers la gorge. La carène remarquable 13a est la carène de tête du tronçon 12b, c'est-à-dire la carène 13a du tronçon 12b qui est la plus éloignée de l'extrémité du câble destinée à être immergée 6. La carène 13a se présente à la poulie P bord de fuite BF vers la gorge de la poulie et bord d'attaque BA vers l'extérieur de la gorge. Cette carène remarquable 13a appartient à un deuxième groupe de carènes 12b.In the case of a pulley with a narrow V-groove, if the guide device does not have a turning device downstream of the pulley seen from the free end of the cable or if this device does not perform hulls entering the tail down in the pulley will be able to get stuck in the groove and, if they are not dimensioned to withstand the force exerted by the cable in this orientation, they will deform and cause the following hulls to deform. This situation is represented on the figures 5 and 6a to 6b . On the figure 5 , there is shown a portion of a faired cable 1 penetrating a pulley P with groove 50. In this figure, the cable 1 is wound which then enters the pulley in the direction of the arrow. In this figure, the xp axis of the pulley is perpendicular to the plane of the sheet. The hulls 13 of a first group of hulls 12a are oriented trailing edge BF towards the outside of the groove and leading edge towards the groove. The remarkable hull 13a is the hull at the head of the section 12b, that is to say the hull 13a of the section 12b which is furthest from the end of the cable intended to be submerged 6. The hull 13a is present at the pulley P trailing edge BF towards the groove of the pulley and leading edge BA towards the outside of the groove. This remarkable hull 13a belongs to a second group of hulls 12b.

Si la poulie P est une poulie de l'art antérieur, la section de la poulie de l'art antérieur dans le plan M passant par le bord latéral 18 reliant le bord de fuite BF et le bord d'attaque BA de la carène de tête est telle que visible sur la figure 6a. La figure 6b une section de la poulie P de l'art antérieur dans un autre plan comprenant le bord latéral 18 de la carène de tête 13a situé à droite du plan M sur la figure 5 car le câble 1 a été, hissé, c'est à dire tiré selon la flèche représentée sur la figure 5 entre la figure 5 et la figure 6b, faisant avancer la carène remarquable 13a dans la gorge. La gorge de la poulie présente une section en V présentant une ouverture comprise entre 20° et 50°. Le fond du V présente une forme sensiblement complémentaire du bord d'attaque de façon que lorsqu'une carène pénètre dans la poulie bord d'attaque vers le haut, les carènes suivantes liées à cette carène vont aussi prendre cette orientation lors de l'enroulement du câble. En revanche, si une carène de tête 13a arrive bord de fuite vers la gorge 105 comme c'est le cas sur la figure 6a, la gorge est trop étroite pour que la carène se retourne bord de fuite vers le haut sous l'effet de la traction du câble par rapport à la gorge de la poulie le long de son axe. La tension du câble oblige la carène de tête 13a à descendre vers le fond de la gorge. En effet, lors de la traction du câble le long de son axe dans la poulie, il développe une force, sur la carène, orientée selon la ligne d'action de force indiquée par la flèche sur la figure 6a. Or, si la carène n'est pas dimensionnée pour résister à cette contrainte, elle se déforme et se casse (ou se détériore) comme représenté sur la figure 6b.If the pulley P is a pulley of the prior art, the section of the pulley of the prior art in the plane M passing through the lateral edge 18 connecting the trailing edge BF and the leading edge BA of the hull of head is as visible on the figure 6a . The figure 6b a section of the pulley P of the prior art in another plane comprising the lateral edge 18 of the head hull 13a situated to the right of the plane M on the figure 5 because the cable 1 has been hoisted, that is to say pulled along the arrow shown in the figure 5 enter here figure 5 and the figure 6b , advancing the remarkable hull 13a in the throat. The groove of the pulley has a V-shaped section with an opening of between 20 ° and 50 °. The bottom of the V has a shape substantially complementary to the leading edge so that when a hull enters the pulley leading edge upwards, the following hulls linked to this hull will also take this orientation during winding of the cable. On the other hand, if a head hull 13a arrives at the trailing edge towards the groove 105 as is the case on the figure 6a , the groove is too narrow for the hull to turn upward trailing edge under the effect of the traction of the cable relative to the groove of the pulley along its axis. The tension of the cable forces the head hull 13a to descend towards the bottom of the groove. Indeed, when pulling the cable along its axis in the pulley, it develops a force, on the hull, oriented according to the force action line indicated by the arrow on the figure 6a . However, if the hull is not dimensioned to resist this constraint, it deforms and breaks (or deteriorates) as shown in the figure 6b .

Afin de pallier ces inconvénients, l'invention vise à confier une fonction de retournement des carènes autour de l'axe du câble à la poulie elle-même.In order to overcome these drawbacks, the invention aims to entrust a function of turning the hulls around the axis of the cable to the pulley itself.

A cet effet, l'invention consiste à prévoir un ensemble de remorquage comprenant un dispositif de guidage du câble disposé en aval du treuil vu de l'extrémité du câble destinée à être immergée, le dispositif de guidage comprenant une première gorge dont le fond est formé par le fond de la gorge d'une poulie, la première gorge étant configurée de manière à permettre de faire basculer une carène du carénage, par rotation de la carène autour de l'axe du câble x sous l'effet de la tension du câble, depuis une position retournée dans laquelle la carène est orientée bord de fuite (ou queue) vers le fond de la première gorge, jusqu'à une position acceptable dans laquelle elle est orientée bord d'attaque (ou nez) vers le fond de la première gorge, c'est-à-dire bord de fuite vers l'extérieur de la gorge. Les dimensions et la forme du profil de la première gorge, notamment, la largeur de la première gorge et la courbure du profil de la première surface courbe (qui sera définie ultérieurement) dans le plan radial sont déterminées en fonction du rayon R de la poulie de la longueur maximale CAR, prise parallèlement à la corde séparant le bord de fuite BF des carènes du carénage, de l'axe x de l'élément allongé 1, de la longueur de corde LC des carènes et de l'épaisseur maximale E des carènes de façon à permettre de faire basculer la carène de la position retournée à la position acceptable.To this end, the invention consists in providing a towing assembly comprising a cable guide device disposed downstream of the winch seen from the end of the cable intended to be submerged, the guide device comprising a first groove the bottom of which is formed by the bottom of the groove of a pulley, the first groove being configured so as to allow a hull of the fairing to be tilted, by rotation of the hull around the axis of the cable x under the effect of the tension of the cable, from an inverted position in which the hull is oriented trailing edge (or tail) towards the bottom of the first groove, to an acceptable position in which it is oriented leading edge (or nose) towards the bottom of the first groove, that is to say the trailing edge towards the outside of the groove. The dimensions and shape of the profile of the first groove, in particular, the width of the first groove and the curvature of the profile of the first curved surface (which will be defined later) in the radial plane are determined according to the radius R of the pulley of the maximum length CAR, taken parallel to the rope separating the trailing edge BF of the fairings of the fairing, of the x axis of the elongated element 1, of the length of rope LC des hulls and the maximum thickness E of the hulls so as to allow the hull to be tilted from the returned position to the acceptable position.

Lorsque le bord de fuite (ou queue) est orienté vers le fond de la première gorge, cela signifie que le bord de fuite (ou l'extrémité fine de la queue) est situé à une distance plus faible que le bord d'attaque (ou que le nez) de l'axe de la poulie xp. L'axe de la poulie est l'axe autour duquel pivote la poulie par rapport au treuil, c'est-à-dire par rapport à la partie fixe du treuil. Avantageusement, l'axe de la poulie est sensiblement horizontal, c'est-à-dire destiné à s'étendre parallèlement à la surface de l'eau par état de mer calme lorsque le dispositif de remorquage est fixé sur un bâtiment naval ou navire. Le fond 26 de la gorge de la poulie forme un cercle de rayon R dont le centre se trouve sur l'axe de la poulie.When the trailing edge (or tail) is oriented towards the bottom of the first groove, this means that the trailing edge (or the thin end of the tail) is located at a shorter distance than the leading edge ( or that the nose) of the axis of the pulley xp. The axis of the pulley is the axis around which the pulley pivots relative to the winch, that is to say relative to the fixed part of the winch. Advantageously, the axis of the pulley is substantially horizontal, that is to say intended to extend parallel to the surface of the water in a calm sea state when the towing device is fixed to a naval vessel or ship. . The bottom 26 of the groove of the pulley forms a circle of radius R, the center of which is on the axis of the pulley.

Sur la figure 7, on a représenté une section de la poulie P de la figure 5, dans le plan radial BB de la poulie P, dans le cas où la poulie P est une poulie selon un mode de réalisation préféré de l'invention. Un plan radial d'une poulie est un plan qui est formé par un rayon r de la poulie et l'axe xp de la poulie autour duquel la poulie pivote. Le rayon r présente une longueur R.On the figure 7 , a section of the pulley P of the figure 5 , in the radial plane BB of the pulley P, in the case where the pulley P is a pulley according to a preferred embodiment of the invention. A radial plane of a pulley is a plane which is formed by a radius r of the pulley and the axis xp of the pulley around which the pulley pivots. The radius r has a length R.

La première gorge 24 est délimitée par une première surface dont la section dans le plan radial BB est la première courbe concave 25 (courbe en U représentée en gras sur la figure 7). La première courbe concave 25 comprend un fond 26 de la première gorge 24. Le fond est le point de la première gorge 24 qui est le plus proche de l'axe xp de la poulie.The first groove 24 is delimited by a first surface whose section in the radial plane BB is the first concave curve 25 (U-shaped curve shown in bold on the figure 7 ). The first concave curve 25 comprises a bottom 26 of the first groove 24. The bottom is the point of the first groove 24 which is closest to the axis xp of the pulley.

Sur la figure 7, on a également représenté une courbe de référence 28 en V. La courbe de référence 28 en V est la section, dans le plan radial BB, d'une deuxième surface courbe délimitant une deuxième gorge de référence 29 ou deuxième gorge virtuelle. Le fond de la deuxième gorge, c'est-à-dire le fond de la courbe de référence 28 est le fond 26. Le fond V est le point d'intersection des deux pattes 31, 32 du V.On the figure 7 , a reference curve 28 in V has also been shown. The reference curve 28 in V is the section, in the radial plane BB, of a second curved surface delimiting a second reference groove 29 or second virtual groove. The bottom of the second groove, that is to say the bottom of the reference curve 28 is the bottom 26. The bottom V is the point of intersection of the two legs 31, 32 of the V.

Selon l'invention, l'ouverture du V αv est au moins égale au double d'un angle seuil αs et la largeur du V Iv, prise selon une droite d parallèle à l'axe de la poulie, est au moins égale à une largeur seuil Is donnée par : ls = 0,7 lid

Figure imgb0005
lid = 2 LC + E sin αs
Figure imgb0006
αs = αi R R CAR
Figure imgb0007
lid est une largeur idéale du V,
où αi est un angle limite supérieur à 45° et inférieur à 90°, où R est le rayon de la poulie et où CAR (représentée sur la figure 4a) est la longueur maximale, séparant le bord de fuite BF des carènes du carénage de l'axe du câble, prise parallèlement à la corde CO des carènes, où LC est la longueur de corde des carènes et E est l'épaisseur maximale des carènes.According to the invention, the opening of the V αv is at least equal to twice a threshold angle αs and the width of the V Iv, taken along a straight line d parallel to the axis of the pulley, is at least equal to one threshold width Is given by: ls = 0.7 lid
Figure imgb0005
Or lid = 2 LC + E sin αs
Figure imgb0006
αs = αi R R - BECAUSE
Figure imgb0007
lid is an ideal width of the V,
where αi is a limit angle greater than 45 ° and less than 90 °, where R is the radius of the pulley and where CAR (represented on the figure 4a ) is the maximum length, separating the trailing edge BF of the hulls of the fairing of the cable axis, taken parallel to the CO cord of the hulls, where LC is the length of the hull cord and E is the maximum thickness of the hulls .

Dans un mode préféré de l'invention, la largeur du v est au moins égale à lid. Le retournement se fait alors plus facilement.In a preferred embodiment of the invention, the width of the v is at least equal to lid. Turning is then easier.

Avantageusement, l'angle limite αi est donné par la formule suivante : αi = π / 4 + 1 2 Arctan Cf

Figure imgb0008
où Cf est le coefficient de frottement entre le matériau formant la partie extérieure de la queue de la carène et le matériau formant la surface délimitant la gorge de la poulie. Le matériau formant la partie extérieure de la queue de la carène est le matériau formant la carène lorsqu'elle est réalisée dans un unique matériau.Advantageously, the limit angle αi is given by the following formula: αi = π / 4 + 1 2 Arctan Cf
Figure imgb0008
where Cf is the coefficient of friction between the material forming the external part of the tail of the hull and the material forming the surface delimiting the groove of the pulley. The material forming the outer part of the tail of the hull is the material forming the hull when it is made of a single material.

Sur la réalisation de la figure 7, la première courbe 25 est confondue avec la deuxième courbe 28 aux points extrêmes 33, 34 de la deuxième courbe 28. Les points extrêmes 33, 34 de la deuxième courbe sont les points de la deuxième courbe qui sont espacés de la largeur Iv selon une droite parallèle à l'axe de la poulie xp. Ils délimitent la première gorge et la deuxième gorge selon un axe parallèle à l'axe de la poulie et selon un axe parallèle au rayon de la poulie passant par le fond 26. La première courbe 25 est, en tout point compris entre chacun des points extrêmes 33, 34 et le fond 26, confondue avec la deuxième courbe ou plus proche de l'axe de la poulie xp que la deuxième courbe selon le rayon de la poulie dans le plan de coupe BB.On the realization of the figure 7 , the first curve 25 is merged with the second curve 28 at the end points 33, 34 of the second curve 28. The end points 33, 34 of the second curve are the points of the second curve which are spaced apart by the width Iv according to a straight parallel to the axis of the pulley xp. They delimit the first groove and the second groove along an axis parallel to the axis of the pulley and along an axis parallel to the radius of the pulley passing through the bottom 26. The first curve 25 is, at all points between each of the points extremes 33, 34 and the bottom 26, combined with the second curve or closer to the axis of the pulley xp than the second curve according to the radius of the pulley in the cutting plane BB.

Par conséquent, pour assurer le retournement souhaité la première courbe concave 25 délimitant la première gorge 24 peut présenter le profil visible sur la figure 7 ou bien se trouver, entre les points d'extrémité, en tout point autre que le fond et les points d'extrémité 33, 34, sous la courbe 28 et au moins à une distance de l'axe égale à la distance séparant le fond de la poulie de l'axe de la poulie (Rayon R de la poulie). Autrement dit, la première courbe concave se situe en tous points, dans l'espace délimité par la courbe 28, la droite d1 parallèle à l'axe passant par le fond 26 et les droites d3 et d4 parallèles au rayon R de la poulie passant par les points 33 et 34.Consequently, to ensure the desired reversal, the first concave curve 25 delimiting the first groove 24 may have the profile visible on the figure 7 or else be, between the end points, at any point other than the bottom and the end points 33, 34, under the curve 28 and at least at a distance from the axis equal to the distance separating the bottom of the pulley axis pulley (Radius R of the pulley). In other words, the first concave curve is located at all points, in the space delimited by curve 28, the line d1 parallel to the axis passing through the bottom 26 and the lines d3 and d4 parallel to the radius R of the passing pulley by points 33 and 34.

La première courbe concave 25 est la courbe délimitant la première gorge 24 destinée à recevoir le câble caréné dans un plan radial (voir figure 7).The first concave curve 25 is the curve delimiting the first groove 24 intended to receive the faired cable in a radial plane (see figure 7 ).

Sur la figure 14, on a représenté en traits pointillés, dans un plan radial une portion 250 d'une première courbe concave respectant une caractéristique avantageuse de l'invention. La carène 13 s'étend bord d'attaque perpendiculaire au plan radial. Cette caractéristique est la suivante : la première courbe concave est définie dans un plan radial BB de la poulie de façon que, lorsque la carène s'étend bord d'attaque BA perpendiculaire au plan radial BB, quelle que soit la position d'une carène dans la première gorge 24, lorsque le nez 14 de la carène 13 est en appui sur la première courbe concave et que le câble 1 exerce sur la carène 13, dans le plan radial, un effort de placage du nez de la carène contre la poulie, ledit effort de placage Fp comprenant une composante CP perpendiculaire à l'axe de la poulie et une composante latérale CL (c'est-à-dire parallèle à l'axe de la poulie) le bord de fuite BF de la carène 13 n'est pas en contact avec la première courbe concave ou est en contact avec une partie 251 de la première courbe concave formant, avec une droite dp du plan radial perpendiculaire à l'axe xa s'étendant depuis l'axe du câble x jusqu'au bord de fuite de la carène, un angle γ au moins égal à un angle de glissement αt. L'angle de glissement est donné par la formule suivante : αt = Arctan Cf

Figure imgb0009
On the figure 14 , there is shown in dotted lines, in a radial plane a portion 250 of a first concave curve respecting an advantageous characteristic of the invention. The hull 13 extends leading edge perpendicular to the radial plane. This characteristic is as follows: the first concave curve is defined in a radial plane BB of the pulley so that, when the hull extends leading edge BA perpendicular to the radial plane BB, whatever the position of a hull in the first groove 24, when the nose 14 of the hull 13 is in abutment on the first concave curve and the cable 1 exerts on the hull 13, in the radial plane, an effort of plating the nose of the hull against the pulley , said plating force Fp comprising a component CP perpendicular to the axis of the pulley and a lateral component CL (that is to say parallel to the axis of the pulley) the trailing edge BF of the hull 13 n is not in contact with the first concave curve or is in contact with part 251 of the first concave curve forming, with a straight line dp of the radial plane perpendicular to the axis xa extending from the axis of the cable x to at the trailing edge of the hull, an angle γ at least equal to a sliding angle αt. The sliding angle is given by the following formula: αt = Arctan Cf
Figure imgb0009

Cette caractéristique permet d'éviter que la carène ne bloque le câble dans la gorge lorsque le câble bouge latéralement dans la gorge, c'est-à-dire parallèlement à l'axe de la poulie. En effet, si cette condition angulaire est respectée, on assure un glissement de la carène en cas de poussée latérale du câble. Autrement dit, une poulie présentant un profil tel que défini en référence à la figure 14 permet d'assurer le retournement de la carène depuis une position retournée jusqu'à une position acceptable.This characteristic makes it possible to prevent the hull from blocking the cable in the groove when the cable moves laterally in the groove, that is to say parallel to the axis of the pulley. Indeed, if this angular condition is respected, the hull is slid in the event of lateral cable thrust. In other words, a pulley having a profile as defined with reference to the figure 14 allows the hull to be turned over from an inverted position to an acceptable position.

La première courbe concave 25, et par conséquent le profil de la première gorge, est obtenu par l'homme du métier par simulations à partir de cette définition.The first concave curve 25, and therefore the profile of the first groove, is obtained by a person skilled in the art by simulations from this definition.

En pratique, pour un angle αt de l'ordre de 10°, une première courbe formant une ligne courbe présentant en tout point un rayon de courbure au moins égal à la moitié de la longueur de corde LC de la carène permet d'assurer le glissement de la carène en cas de poussée latérale du câble. Une ligne courbe est une ligne dépourvue d'angle vif ou saillant (au sens mathématique du terme). En effet, si on trace, comme visible sur la figure 15, un cercle Cr passant par le nez de la carène 14 et le bord de fuite BF de la carène 13 dont la tangente T au niveau du bord de fuite forme un angle αt avec la droite dp, le rayon RA de ce cercle est environ égal à 55% de la longueur de corde LC de la carène, ce qui est supérieur à la valeur de 50% retenue ci-dessus.In practice, for an angle αt of the order of 10 °, a first curve forming a curved line having at all points a radius of curvature at least equal to half the length of the hull cord LC makes it possible to ensure the sliding of the hull in case of lateral thrust of the cable. A curved line is a line without a sharp or protruding angle (in the mathematical sense of the term). Indeed, if we trace, as visible on the figure 15 , a circle Cr passing through the nose of the hull 14 and the trailing edge BF of the hull 13 whose tangent T at the trailing edge forms an angle αt with the line dp, the radius RA of this circle is approximately equal at 55% of the length of the hull LC cord, which is greater than the value of 50% retained above.

Avantageusement, les dimensions et la forme du profil première gorge sont déterminées, de façon à permettre de faire basculer une carène de référence présentant une longueur maximale CAR, prise parallèlement à la corde séparant le bord de fuite BF des carènes du carénage, une longueur de corde LC des carènes et une épaisseur maximale E et éventuellement en fonction du coefficient de frottement Cf entre la carène de référence et la poulie. Ces dimensions et profil sont avantageusement définis de façon à assurer le basculement de la carène depuis une position retournée jusqu'à une position acceptable sans déformer cette carène de référence.Advantageously, the dimensions and the shape of the first groove profile are determined, so as to make it possible to tilt a reference hull having a maximum length CAR, taken parallel to the rope separating the trailing edge BF of the hulls of the fairing, a length of LC chord of the hulls and a maximum thickness E and possibly as a function of the coefficient of friction Cf between the reference hull and the pulley. These dimensions and profile are advantageously defined so as to ensure the tilting of the hull from an inverted position to an acceptable position without deforming this reference hull.

Sur la réalisation de la figure 7, la largeur de la première gorge Igb est égale à la largeur du V Iv. En variante, la première gorge s'étend au-delà des points extrêmes. Elle peut comprendre la gorge de la poulie uniquement ou comprendre la gorge de la poulie et être délimitée, de part et d'autre de la poulie par des déflecteurs ou flasques verticaux (c'est-à-dire perpendiculaires à l'axe de la poulie) ou sensiblement verticaux. La première gorge peut en outre être la gorge de la poulie qui comprend, au-delà du V ou au-dessus du V des parois verticales (c'est-à-dire perpendiculaires à l'axe de la poulie) ou sensiblement verticales. Les parois et flasques tels que définis permettent d'empêcher que le câble ne quitte la première gorge en cas de débattement latéral.On the realization of the figure 7 , the width of the first groove Igb is equal to the width of the V Iv. Alternatively, the first groove extends beyond the end points. It can include the groove of the pulley only or include the groove of the pulley and be delimited on either side of the pulley by deflectors or vertical flanges (i.e. perpendicular to the axis of the pulley) or substantially vertical. The first groove may also be the groove of the pulley which comprises, beyond the V or above the V of the vertical walls (that is to say perpendicular to the axis of the pulley) or substantially vertical. The walls and flanges as defined make it possible to prevent the cable from leaving the first groove in the event of lateral movement.

Sur la réalisation de la figure 7, la première gorge est la gorge 24 de la poulie. En variante, la première gorge comprend la gorge de la poulie. Le fond de la première gorge est le fond de la gorge de la poulie. En revanche, la première gorge s'étend au-delà de la gorge de la poulie. Elle est par exemple délimitée au moins d'un côté de la poulie par rapport à un plan perpendiculaire à l'axe de la poulie, par un déflecteur ou un flasque. Le déflecteur ou flasque peut être fixe par rapport à la poulie ou mobile en rotation par rapport à la poulie autour de l'axe de la poulie. Avantageusement, la première gorge comprend des bords latéraux permettant de limiter le débattement latéral du câble. Les bords latéraux peuvent s'étendre complètement au sein de la partie située entre les deux points extrêmes ou bien partiellement et s'étendre aussi partiellement au-delà de ces points.On the realization of the figure 7 , the first groove is the groove 24 of the pulley. As a variant, the first groove comprises the groove of the pulley. The bottom of the first groove is the bottom of the pulley groove. In contrast, the first groove extends beyond the groove of the pulley. It is for example delimited at least on one side of the pulley with respect to a plane perpendicular to the axis of the pulley, by a deflector or a flange. The deflector or flange can be fixed relative to the pulley or movable in rotation relative to the pulley around the axis of the pulley. Advantageously, the first groove comprises lateral edges making it possible to limit the lateral clearance of the cable. The lateral edges may extend completely within the part situated between the two extreme points or else partially and also extend partially beyond these points.

La poulie, et plus précisément la gorge de la poulie, présente un profil constant. Autrement dit, il est le même selon tous les plans radiaux de la poulie.The pulley, and more precisely the groove of the pulley, has a constant profile. In other words, it is the same according to all the radial planes of the pulley.

La première courbe 25 et la deuxième courbe 28 sont symétriques par rapport à un plan perpendiculaire à l'axe xp de la poulie et comprenant un rayon de la poulie passant par la fond 26. Ce plan est alors le plan médian de la gorge.The first curve 25 and the second curve 28 are symmetrical with respect to a plane perpendicular to the axis xp of the pulley and comprising a radius of the pulley passing through the bottom 26. This plane is then the median plane of the groove.

Nous allons maintenant expliquer plus précisément comment est obtenu le profil de poulie selon l'invention tel que représenté sur la figure 7. Le demandeur est parti de la constatation qu'il faut ouvrir le V de la figure 6a pour que la queue puisse dégager sur le côté lors de l'enroulement du câble. Sur la figure 8a, on a représenté une section partielle d'une poulie 40 selon un deuxième mode de réalisation, dans le plan M, qui est un plan formé par une face latérale 18 de la carène de tête 13a du segment 12b entrant en contact avec la poulie. La face latérale comprend le point de la carène entrant le premier en contact avec la poulie. La poulie présente un profil en V ouvert permettant d'obtenir le retournement. Sur cette figure, la poulie 40 comprend une gorge 44 en V. La carène remarquable 13a est en appui sur une première patte du V 45 bord d'attaque vers le fond 46 de la gorge 44. L'ouverture de la gorge αg est telle que l'angle formé entre la ligne d'action de force (représentée par la flèche représentée dans la carène) et la deuxième patte 47 αf est supérieur à 90°. Dans ce cas, on donne à la queue une voie de dégagement qui lui permet de se retourner selon les flèches représentées sur la figure 8a pour adopter la position représentée sur la figure 8c en passant par la position représentée sur la figure 8b en suivant le mouvement indiqué par les flèches par pivotement autour de l'axe du câble sous l'action de la tension du câble (exercée selon la ligne d'action de force) lorsque le câble est tracté le long de la gorge. Comme visible sur la figure 8a, la direction de la ligne d'action de force est sensiblement parallèle à la première patte 45. C'est pourquoi l'ouverture du V αg dans le plan M, qui est au moins égale au double de l'angle limite αi est sensiblement égale à αf. Par conséquent, l'ouverture du V αg est supérieure à 90°. Pour tenir compte des frottements entre la queue de la carène et la surface de la gorge, l'ouverture limite αg= 2αi est au moins égal à 95° et de préférence au moins égal à 100°.We will now explain more precisely how the pulley profile according to the invention is obtained as shown in the figure 7 . The plaintiff started from the observation that the V of the figure 6a so that the tail can clear on the side when winding the cable. On the figure 8a , there is shown a partial section of a pulley 40 according to a second embodiment, in the plane M, which is a plane formed by a lateral face 18 of the head hull 13a of the segment 12b coming into contact with the pulley. The side face includes the point of the hull that first comes into contact with the pulley. The pulley has an open V-shaped profile for turning. In this figure, the pulley 40 comprises a groove 44 in V. The remarkable hull 13a is supported on a first tab of the V 45 leading edge towards the bottom 46 of the groove 44. The opening of the groove αg is such that the angle formed between the line of force action (represented by the arrow represented in the hull) and the second leg 47 αf is greater than 90 °. In this case, the tail is given an escape route which allows it to turn around according to the arrows shown on the figure 8a to adopt the position represented on the figure 8c passing through the position shown on the figure 8b following the movement indicated by the arrows by pivoting around the axis of the cable under the action of the cable tension (exerted along the line of force action) when the cable is pulled along the groove. As visible on the figure 8a , the direction of the force action line is substantially parallel to the first leg 45. This is why the opening of the V αg in the plane M, which is at least equal to twice the limit angle αi is substantially equal to αf. Consequently, the opening of V αg is greater than 90 °. To take account of the friction between the tail of the hull and the surface of the groove, the limit opening αg = 2 αi is at least equal to 95 ° and preferably at least equal to 100 °.

La caractéristique angulaire n'est pas suffisante pour obtenir le bon retournement des carènes. Il est nécessaire que la largeur de la gorge Igm, dans le plan M, soit au moins égale une largeur limite li qui est donnée par la formule suivante : li = 2 LC + E sin α i

Figure imgb0010
The angular characteristic is not sufficient to obtain the correct turning of the hulls. It is necessary that the width of the groove Igm, in the plane M, be at least equal to a limiting width li which is given by the following formula: li = 2 LC + E sin α i
Figure imgb0010

Or, comme visible sur la figure 5, le profil de la gorge de la poulie dans le plan BB est la projection, sur un plan formant un angle β avec le plan M, du profil de la gorge dans le plan M. L'angle β dépend de la longueur CAR qui est la longueur maximale séparant le bord de fuite BF des carènes du carénage de l'axe du câble prise parallèlement à la corde CO de la carène 13a. Il est défini de la manière suivante : CAR = R Rcosβ

Figure imgb0011
CAR = R 1 cosβ
Figure imgb0012
β = arccos 1 CAR R
Figure imgb0013
Il faut donc corriger le V précédemment défini par le biais introduit par l'angle β. L'ouverture αv du V formé par la deuxième courbe 28 dans le plan BB est au moins égale à un angle seuil αs. L'angle seuil αs est donné par la formule suivante : αs = αi cosβ
Figure imgb0014
D'où αs = αi R R CAR
Figure imgb0015
Par conséquent, la largeur du V Iv dans le plan BB est au moins égale à la largeur idéale lid donnée par la formule suivante : lid = 2 LC + E sin αs
Figure imgb0016
However, as visible on the figure 5 , the profile of the groove of the pulley in the plane BB is the projection, on a plane forming an angle β with the plane M, of the profile of the groove in the plane M. The angle β depends on the length CAR which is the maximum length separating the trailing edge BF of the hulls of the fairing of the axis of the cable taken parallel to the cord CO of the hull 13a. It is defined as follows: BECAUSE = R - Rcosβ
Figure imgb0011
BECAUSE = R 1 - cosβ
Figure imgb0012
β = arccos 1 - BECAUSE R
Figure imgb0013
It is therefore necessary to correct the V previously defined by the bias introduced by the angle β. The opening αv of the V formed by the second curve 28 in the plane BB is at least equal to a threshold angle αs. The threshold angle αs is given by the following formula: αs = αi cosβ
Figure imgb0014
From where αs = αi R R - BECAUSE
Figure imgb0015
Consequently, the width of V Iv in the plane BB is at least equal to the ideal width lid given by the following formula: lid = 2 LC + E sin αs
Figure imgb0016

La première courbe 25 délimitant la première gorge 24 présente au moins depuis le premier point extrémal 33 jusqu'au deuxième point extrême 34 une forme concave.The first curve 25 delimiting the first groove 24 has at least from the first extremal point 33 to the second extreme point 34 a concave shape.

Elle peut présenter au moins depuis le premier point extrémal 33 jusqu'au deuxième point extrême 34 une forme de V ou bien présenter plusieurs angles vifs ou saillants AS comme représenté sur les figures 9a et 9b. Autrement dit, courbe forme sensiblement une ligne brisée Sur ces figures, les courbes présentent un angle vif ou saillant au niveau du fond 26 et sont symétriques par rapport au plan perpendiculaire à l'axe de la poulie et comprenant un rayon de la poulie. Ces profils sont plus performants pour assurer le retournement des carènes que le profil en V. Ces profils sont avantageusement, mais non nécessairement symétriques par rapport à un plan perpendiculaire à l'axe de la poulie passant par le fond 26. En variante, la première courbe présente des angles saillants et présente une tangente sensiblement parallèle à l'axe de la poulie xp au fond. Le fond est alors le point de la courbe situé sur le plan médian de la gorge.It can have at least from the first extremal point 33 to the second extreme point 34 a V shape or have several sharp or projecting angles AS as shown in the Figures 9a and 9b . In other words, the curve substantially forms a broken line. In these figures, the curves have a sharp or projecting angle at the bottom 26 and are symmetrical with respect to the plane perpendicular to the axis of the pulley and comprising a radius of the pulley. These profiles are more efficient in ensuring the reversal of the hulls than the V-shaped profile. These profiles are advantageously, but not necessarily symmetrical with respect to a plane perpendicular to the axis of the pulley passing through the bottom 26. As a variant, the first curve has salient angles and has a tangent substantially parallel to the axis of the pulley xp at the bottom. The bottom is then the point of the curve located on the median plane of the throat.

Avantageusement, comme représenté sur la figure 7, la première courbe 25 est, entre les points extrêmes 33, 34, une ligne courbe. Autrement dit, il s'agit d'une courbe concave dépourvue d'angle vif ou saillant (au sens mathématique du terme). On parle de profil en U. En d'autres termes, la courbe ne comprend sensiblement jamais plus d'une tangente en un même point. Sa dérivée est sensiblement continue.Advantageously, as shown in the figure 7 , the first curve 25 is, between the extreme points 33, 34, a curved line. In other words, it is a concave curve devoid of a sharp or salient angle (in the mathematical sense of the term). We speak of a U-shaped profile. In other words, the curve never includes more than one tangent at the same point. Its derivative is substantially continuous.

Lorsque la première gorge (ou première courbe) présente une section en forme de V (première courbe en V), elle doit présenter une largeur au moins égale à lid pour que le retournement soit garanti. Lorsque la première gorge (ou première courbe) présente une section telle que la première courbe est en U, alors elle peut présenter une largeur inférieure pouvant aller jusqu'à 0,7lid car elle ne présente pas d d'angles vifs dans lesquels la queue de la carène peut se coincer. Dans ce cas, l'ouverture du V peut aussi être inférieure à l'angle seuil. Autrement dit, le V doit présenter une largeur au moins égal à 0,7lid. En revanche, le retournement peut s'avérer plus difficile que lorsque le V présente une largeur au moins égale à lid. En dessous de ce seuil, on n'est pas certain que le retournement ait lieu.When the first groove (or first curve) has a V-shaped section (first V curve), it must have a width at least equal to lid so that the inversion is guaranteed. When the first groove (or first curve) has a section such that the first curve is U-shaped, then it can have a width less than up to 0.7 lid because it does not have d sharp angles in which the bottom of the hull may get caught. In this case, the opening of the V can also be less than the threshold angle. In other words, the V must have a width at least equal to 0.7 lid. On the other hand, turning over can be more difficult than when the V has a width at least equal to lid. Below this threshold, it is not certain that the reversal will take place.

Avantageusement, dans le cas d'une première gorge présentant un profil en U, la première gorge est en fond de baignoire. La gorge en fond de baignoire présente l'avantage d'assurer une réorientation certaine et fluide de la carène et permet d'orienter la carène dans une position sensiblement couchée dans le fond de la gorge.Advantageously, in the case of a first groove having a U-shaped profile, the first groove is at the bottom of the bathtub. The groove at the bottom of the bath has the advantage of ensuring a certain and fluid reorientation of the hull and makes it possible to orient the hull in a position substantially lying in the bottom of the throat.

Cela signifie que la première courbe présente une zone centrale, cette zone centrale présente une largeur égale à g* lid où lid est la largeur idéale et g est compris entre 0, 7 et 1, entre les points extrêmes confondus avec les points extrêmes d'une courbe de référence en V 128 présentant une largeur égale à glid. La zone centrale est délimitée par les deux courbes (voir zone hachurée) 10 :

  • une courbe supérieure SUP présentant un premier rayon de courbure R1 égal à ½* glid passant par le fond et dont le centre est situé sur une droite perpendiculaire à l'axe de la poulie passant par le fond,
  • une courbe inférieure INF comprenant une portion centrale CENT s'étendant sensiblement parallèlement à l'axe de la poulie symétrique par rapport à un plan perpendiculaire au plan radial passant par le fond et s'étendant, le long de l'axe de la poulie sur une première largeur égale à ½glid et comprenant, de part et d'autre de la portion centrale CENT, des portions latérales LAT1 et LAT2 reliant la portion centrale aux points extrêmes 133, 134 et présentant un deuxième rayon de courbure R2 égal à 1/4glid. Chaque portion latérale s'étend sur une largeur égale à ¼glid selon l'axe de la poulie. Les centres des portions latérales sont symétriques l'une de l'autre par rapport au plan vertical PV passant par le fond et perpendiculaire à l'axe de la poulie xp
This means that the first curve has a central area, this central area has a width equal to g * lid where lid is the ideal width and g is between 0, 7 and 1, between the extreme points merged with the extreme points of a reference curve in V 128 having a width equal to g lid. The central zone is delimited by the two curves (see hatched zone) 10:
  • an upper curve SUP having a first radius of curvature R1 equal to ½ * g lid passing through the bottom and the center of which is situated on a straight line perpendicular to the axis of the pulley passing through the bottom,
  • a lower curve INF comprising a central portion CENT extending substantially parallel to the axis of the pulley symmetrical with respect to a plane perpendicular to the radial plane passing through the bottom and extending, along the axis of the pulley on a first width equal to ½ g lid and comprising, on either side of the central portion CENT, lateral portions LAT1 and LAT2 connecting the central portion at the extreme points 133, 134 and having a second radius of curvature R2 equal to 1/4 g lid. Each lateral portion extends over a width equal to ¼ g lid along the axis of the pulley. The centers of the lateral portions are symmetrical to each other with respect to the vertical plane PV passing through the bottom and perpendicular to the axis of the pulley xp

La zone centrale peut être une des deux courbes. La courbe inférieure est le mode de réalisation préféré de l'invention.The central area can be one of two curves. The lower curve is the preferred embodiment of the invention.

Avantageusement, la zone centrale de la première courbe est formée par une poulie présentant une gorge dont la largeur est la largeur de la zone centrale.Advantageously, the central zone of the first curve is formed by a pulley having a groove whose width is the width of the central zone.

Avantageusement, la première courbe comprend des parties supérieures s'étendant sensiblement perpendiculairement au-dessus des points extrêmes du V de façon à empêcher le câble de sortir de la première gorge lors d'un débattement vertical du câble. Ces flasques sont solidaire de la poulie ou appartiennent à la poulie ou sont fixes par rapport à l'axe de la poulie.Advantageously, the first curve comprises upper parts extending substantially perpendicularly above the extreme points of the V so as to prevent the cable from leaving the first groove during a vertical movement of the cable. These flanges are integral with the pulley or belong to the pulley or are fixed relative to the axis of the pulley.

Les premières courbes comprises entre la courbe supérieure et la courbe inférieure présentent l'avantage de vérifier la condition angulaire permettant d'éviter que la carène n'empêche le débattement latéral du câble.The first curves between the upper curve and the lower curve have the advantage of verifying the angular condition making it possible to prevent the hull from preventing lateral movement of the cable.

Sur les figures 11a à 11c on a représenté, dans des plans successifs parallèles au plan M, des orientations successivement adoptées par la face latérale de la carène de référence comprenant le premier point à entrer en contact avec la poulie, lorsque l'on enroule le câble. La carène 13a arrive bord de fuite vers le bas (figure 11a dans le plan M) et lorsque l'on tire le câble, elle pivote autour de l'axe du câble (voir figure 11b), sous l'effet de la tension du câble, jusqu'à atteindre la position sensiblement à plat dans laquelle le bord d'attaque est tourné vers le fond de la gorge et le bord de fuite est tourné vers l'extérieur de la gorge (figure 11c). Ce profil permet de faciliter et de simplifier le basculement d'une carène car la portion centrale aplatie de la gorge de la poulie implique une distance importante entre l'axe de la réaction de la gorge de la poulie sur la carène (axe allant du bord de fuite vers le centre de la portion de cercle formée par la portion centrale) et l'axe de rotation de la carène (s'étendant selon l'axe bord de fuite - vers l'axe du canal xc ou axe du câble x) du fait de la distance importante entre l'axe du câble et le centre de la portion de cercle formée par la portion centrale . Ce profil permet en outre au câble et à son carénage qui se sont placés sensiblement à plat de venir s'appuyer sans danger sur les flancs de la poulie lorsque le câble est sollicité latéralement (c'est-à-dire parallèlement à l'axe de la poulie) en cas de virage du navire par exemple. Si le câble et le bord d'attaque du carénage sont positionnés du bon côté, ils y restent. S'ils sont du mauvais côté, le profil de la poulie permet un quasi retournement en douceur qui permet au câble (là où siègent les efforts) de venir s'appuyer contre le flanc de la poulie. Ce glissement est présent mais moins fluide dans les autres configurations de poulies.On the Figures 11a to 11c there has been shown, in successive planes parallel to the plane M, orientations successively adopted by the lateral face of the reference hull comprising the first point to come into contact with the pulley, when the cable is wound. The hull 13a arrives at the trailing edge downwards ( figure 11a in plane M) and when the cable is pulled, it pivots around the axis of the cable (see figure 11b ), under the effect of the cable tension, until reaching the substantially flat position in which the leading edge is turned towards the bottom of the groove and the trailing edge is turned towards the outside of the groove (( figure 11c ). This profile facilitates and simplifies the tilting of a hull because the flattened central portion of the groove of the pulley implies a significant distance between the axis of the reaction of the groove of the pulley on the hull (axis going from the edge trailing towards the center of the circle portion formed by the central portion) and the axis of rotation of the hull (extending along the trailing edge axis - towards the axis of the channel xc or axis of the cable x) due to the large distance between the axis of the cable and the center of the circle portion formed by the central portion. This profile also allows the cable and its fairing which are placed substantially flat to come to rest safely on the sides of the pulley when the cable is biased laterally (that is to say parallel to the axis pulley) in the event of a turn of the vessel, for example. If the cable and the leading edge of the fairing are positioned on the correct side, they remain there. If they are on the wrong side, the profile of the pulley allows an almost smooth reversal which allows the cable (where the forces sit) to come to rest against the side of the pulley. This slip is present but less fluid in the other pulley configurations.

En résumé, la poulie selon l'invention, et plus généralement le dispositif de guidage selon l'invention, permet d'assurer le redressement d'une carène venant prendre appui sur la poulie avec une orientation bord de fuite vers le fond de la gorge de la poulie et bord d'attaque à la verticale du bord de fuite. La carène entraîne avec elle les carènes auxquelles elle est liée à rotation autour du câble, c'est-à-dire les carènes du même tronçon. La poulie selon l'invention permet également de redresser les carènes d'un câble organisé en un unique tronçon dans lequel les carènes sont toutes liées entre elles à rotation autour du câble en cas de rupture d'une liaison inter-carènes par exemple sous l'effet d'une double torsion ce qui permet d'assurer un passage du câble caréné dans la poulie sans déformation des carènes. Elle permet également de redresser la carène de tête d'un carénage comprenant un unique tronçon s'étendant sur une longueur inférieure à la longueur du câble à partir de l'extrémité destinée à être immergée. Elle permet aussi de redresser des carènes d'un câble caréné comprenant des carènes qui sont toutes libres en rotation autour du câble les unes par rapport aux autres. Elle permet en outre, de par sa largeur, d'assurer le guidage d'un câble organisé en un unique tronçon présentant une torsion rémanente (torsion immergée très resserrée non résorbée au passage de la poulie) sans déformer les carènes ce qui n'est pas possible avec une poulie en V étroite.In summary, the pulley according to the invention, and more generally the guide device according to the invention, makes it possible to ensure the straightening of a hull coming to bear on the pulley with a trailing edge orientation towards the bottom of the groove pulley and leading edge vertical to the trailing edge. The hull carries with it the hulls to which it is linked to rotate about the cable, that is to say the hulls of the same section. The pulley according to the invention also makes it possible to straighten the hulls of a cable organized in a single section in which the hulls are all linked together to rotate about the cable in the event of a break in an inter-hull connection, for example under the 'effect of a double twist which ensures a passage of the faired cable in the pulley without deformation of the hulls. It also makes it possible to straighten the head hull of a fairing comprising a single section extending over a length less than the length of the cable from the end intended to be submerged. It also makes it possible to straighten the hulls of a faired cable comprising hulls which are all free to rotate about the cable relative to each other. It also makes it possible, by virtue of its width, to ensure the guiding of a cable organized in a single section having a residual twist (very tight submerged twist not absorbed when the pulley passes) without deforming the hulls which is not not possible with a narrow V-pulley.

Le dispositif de guidage selon l'invention est efficace et simple car il ne nécessite pas la mise en place de dispositif suiveur de câble (c'est-à-dire apte à suivre le câble lorsqu'il se déplace latéralement et verticalement par rapport à la poulie).The guide device according to the invention is effective and simple because it does not require the installation of a cable follower device (that is to say able to follow the cable when it moves laterally and vertically relative to pulley).

La poulie selon l'invention, et plus généralement le dispositif de guidage selon l'invention, de par son profil, n'assure pas un retournement de la carène jusqu'à une situation dans laquelle le bord de fuite est situé à la verticale du bord d'attaque. Par exemple, dans le cas de la poulie en fond de baignoire, la carène est retournée dans une position dans laquelle elle est sensiblement à plat (bord de fuite légèrement relevé vers le haut). Elle doit donc pivoter d'environ ¼ de tour contre ½ tour (si elle devait adopter la position bord de fuite au-dessus et à la verticale du bord d'attaque) ce qui facilite l'opération de redressement de la carène par la poulie.The pulley according to the invention, and more generally the guide device according to the invention, by its profile, does not ensure a reversal of the hull until a situation in which the trailing edge is located vertically leading edge. For example, in the case of the pulley at the bottom of the bathtub, the hull is returned to a position in which it is substantially flat (trailing edge slightly raised upwards). It must therefore pivot about ¼ turn against ½ turn (if it were to adopt the trailing edge position above and vertically from the leading edge) which facilitates the operation of straightening the hull by the pulley .

Avantageusement, le dispositif de guidage comprend, entre le treuil et la poulie, un dispositif de redressement permettant d'orienter les carènes qui sortent de la poulie en direction du treuil autour de l'axe du câble de façon qu'elles présentent une orientation prédéterminée par rapport au touret du treuil, par exemple bord d'attaque vers le bas et bord de fuite à la verticale du bord d'attaque. Ces dispositifs ne sont réellement efficaces que lorsque la position du câble est parfaitement connue (et c'est le cas à la sortie de la poulie).Advantageously, the guide device comprises, between the winch and the pulley, a straightening device making it possible to orient the hulls which come out of the pulley in the direction of the winch around the axis of the cable so that they have a predetermined orientation. relative to the winch drum, for example leading edge down and trailing edge vertical to the leading edge. These devices are only really effective when the position of the cable is perfectly known (and this is the case at the output of the pulley).

Sur la réalisation des figures 4a et 4b, les carènes des tronçons présentent une section constante, c'est-à-dire fixe, le long du bord d'attaque. Par section, on entend le profil de la carène dans un plan transversal, c'est à dire un plan s'étendant perpendiculairement au bord d'attaque BA, c'est-à-dire à l'axe du canal xc. Par section constante, on entend une section présentant sensiblement la même forme et les mêmes dimensions dans tous les plans transversaux, quelques soient leurs positions le long du bord d'attaque entre les faces latérales 17, 18. Autrement dit, le bord de fuite BF est sensiblement parallèle au bord d'attaque BA sur toute la largeur I de la carène. La largeur I de la carène est la distance entre les deux faces latérales 17, 18 selon un axe parallèle au bord d'attaque BA.On the realization of Figures 4a and 4b , the hulls of the sections have a constant section, that is to say fixed, along the leading edge. By section is meant the profile of the hull in a transverse plane, that is to say a plane extending perpendicular to the leading edge BA, that is to say to the axis of the channel xc. By constant section is meant a section having substantially the same shape and the same dimensions in all the transverse planes, whatever their positions along the leading edge between the lateral faces 17, 18. In other words, the trailing edge BF is substantially parallel to the leading edge BA over the entire width I of the hull. The width I of the hull is the distance between the two lateral faces 17, 18 along an axis parallel to the leading edge BA.

Le bord de fuite BF constitue un bord d'appui parallèle au bord d'attaque BA.The trailing edge BF constitutes a bearing edge parallel to the leading edge BA.

En variante, comme visible sur les figures 12a à 12c, au moins une carène 130 du carénage est une carène biseautée. Une carène biseautée est une carène qui comprend un bord d'appui BAPa comprenant un premier bord d'appui en biseau Bza par rapport au bord d'attaque BAa, le biseau étant réalisé de façon que la distance entre le bord d'attaque BAa et le premier bord d'appui en biseau Bza, prise selon un axe perpendiculaire au bord d'attaque BAa et à l'axe xc du canal 16 varie linéairement le long de l'axe xc. Par premier bord d'appui en biseau Bza, on entend un premier bord d'appui Bza qui s'étend longitudinalement sensiblement selon une droite qui est en biais ou inclinée par rapport au bord d'attaque BAa. Le premier bord d'appui Bza s'étendant longitudinalement dans un premier plan contenant un plan ou parallèle à plan défini par le bord d'attaque BAa et la corde CO de la carène. Autrement dit, le premier bord d'appui Bza est en biais par rapport au bord d'attaque BAa dans ce premier plan.Alternatively, as visible on the Figures 12a to 12c , at least one hull 130 of the fairing is a bevelled hull. A bevelled hull is a hull which comprises a bearing edge BAPa comprising a first bearing edge in bevel Bza relative to the leading edge BAa, the bevel being produced so that the distance between the leading edge BAa and the first bevel bearing edge Bza, taken along an axis perpendicular to the leading edge BAa and to the axis xc of the channel 16 varies linearly along the axis xc. By first bevel bearing edge Bza is meant a first bearing edge Bza which extends longitudinally substantially along a straight line which is at an angle or inclined relative to the leading edge BAa. The first bearing edge Bza extending longitudinally in a first plane containing a plane or parallel to the plane defined by the leading edge BAa and the chord CO of the hull. In other words, the first bearing edge Bza is biased relative to the leading edge BAa in this first plane.

Le bord d'appui BAPa s'étend longitudinalement entre deux extrémités E1 et E2. Le bord d'appui BAPa est agencé de façon que la distance entre le bord d'appui BAPa et le bord d'attaque BAa diminue continument depuis une première extrémité E1 du premier bord d'appui Bza jusqu'à une première face latérale 180 de la carène plus proche de la deuxième extrémité du premier bord d'appui Bza que de la première extrémité du premier bord d'appui, selon un axe parallèle au bord d'attaque BA.The support edge BAPa extends longitudinally between two ends E1 and E2. The support edge BAPa is arranged so that the distance between the support edge BAPa and the leading edge BAa decreases continuously from a first end E1 of the first support edge Bza to a first lateral face 180 of the hull closer to the second end of the first support edge Bza than to the first end of the first support edge, along an axis parallel to the leading edge BA.

Sur la réalisation de la figure 12b, cette face latérale 180 est la face latérale de la carène 130a la plus éloignée de l'extrémité libre 6 du câble (visible sur la figure 2) dans le sens inverse de la flèche. L'autre face latérale 170 est la face latérale de la carène 130a la plus proche de l'extrémité libre 6 du câble. Cette caractéristique permet de faciliter le retournement de la carène 130 lorsqu'elle arrive en appui sur la poulie par son bord de fuite, lors de l'enroulement du câble, c'est à dire lors de la traction du câble par rapport à l'axe de la poulie xp selon la flèche f. En effet, sur la figure 12b, on a représenté la position P', sur la poulie 4 de la figure 7, du point où la carène 130a entre en contact avec la poulie 4 du fait de la traction du câble par rapport à l'axe de la poulie xp dans le sens de la flèche. Ce point est situé à une distance B' (représenté sur la figure 12b) du câble 1 perpendiculairement à l'axe du câble x. On a également représenté la position P, sur la poulie 4, du point où une carène 13 qui aurait eu la forme représentée sur les figures 4a et 4b serait entrée en contact avec la poulie P. Ce point est situé à une distance dB du câble 1 perpendiculairement à l'axe du câble x. La distance dB' est inférieure à la distance B, par conséquent, le retournement de la carène est facilité et par conséquent le retournement des carènes du tronçon est aussi facilité. Ceci est valable dans le cas de la poulie de l'invention mais aussi dans le cas de tout dispositif de guidage, en particulier du type permettant de modifier l'orientation de la carène par rapport au dispositif de guidage par rotation de la carène autour de l'axe du câble. En particulier, le bord d'appui en biseau permet de faciliter la réorientation d'une carène dans tout dispositif de guidage permettant de modifier l'orientation de la carène par rapport au dispositif de guidage par rotation de la carène autour de l'axe du câble (ou du canal) lorsque la carène vient en appui sur une surface d'appui du dispositif de guidage par le bord d'appui. Autrement dit, le bord d'appui en biseau facilite en particulier la réorientation de la carène par tout dispositif de guidage comprenant une surface s'opposant à la traction du câble caréné lors de l'enroulement ou lors du déroulement du câble. L'invention fonctionne par exemple avec des dispositifs de guidage permettant d'assurer le suivi du câble en cas de débattement latéral et/ou vertical du câble. De manière générale, la présence d'une carène biseautée permet de limiter les risques de détérioration du carénage, notamment en présence d'une double torsion en facilitant le basculement d'une carène à son entrée dans un dispositif de guidage, ce qui limite les risques que le carénage ne se coince dans le dispositif de guidage.On the realization of the figure 12b , this lateral face 180 is the lateral face of the hull 130a furthest from the free end 6 of the cable (visible on the figure 2 ) in the opposite direction of the arrow. The other lateral face 170 is the lateral face of the hull 130a closest to the free end 6 of the cable. This characteristic makes it easier to turn over the hull 130 when it comes to bear on the pulley by its trailing edge, during the winding of the cable, that is to say during the pulling of the cable relative to the pulley axis xp according to arrow f. Indeed, on the figure 12b , the position P 'has been shown on the pulley 4 of the figure 7 , from the point where the hull 130a comes into contact with the pulley 4 due to the pulling of the cable relative to the axis of the pulley xp in the direction of the arrow. This point is located at a distance B '(represented on the figure 12b ) of cable 1 perpendicular to the axis of cable x. Also shown is the position P, on the pulley 4, of the point where a hull 13 which would have had the shape shown on the Figures 4a and 4b would have come into contact with the pulley P. This point is located at a distance dB from the cable 1 perpendicular to the axis of the cable x. The distance dB 'is less than the distance B, therefore, the inversion of the hull is facilitated and therefore the inversion of the hulls of the section is also facilitated. This is valid in the case of the pulley of the invention but also in the case of any guide device, in particular of the type making it possible to modify the orientation of the hull relative to the guide device by rotation of the hull about the axis of the cable. In particular, the beveled support edge makes it possible to facilitate the reorientation of a hull in any guiding device making it possible to modify the orientation of the hull relative to the guiding device by rotation of the hull around the axis of the cable (or channel) when the hull comes to bear on a bearing surface of the guide device by the bearing edge. In other words, the beveled support edge facilitates in particular the reorientation of the hull by any guide device comprising a surface opposing the traction of the faired cable during the winding or during the unwinding of the cable. The invention works, for example, with guiding devices making it possible to follow the cable in the event of lateral and / or vertical movement of the cable. In general, the presence of a bevelled hull makes it possible to limit the risks of deterioration of the fairing, in particular in the presence of a double twist by facilitating the tilting of a hull at its entry into a guide device, which limits the risk that the fairing gets stuck in the guide device.

Ce mode de réalisation présente également un avantage dans le cas d'une poulie présentant un profil constant, et plus particulièrement d'une poulie selon l'invention. En effet, le point de contact P' est situé dans un plan M' situé à une distance D' plus faible que la distance D à laquelle est situé le plan M (comprenant le point P), par rapport à l'axe de la poulie, parallèlement à l'axe du câble x. Par conséquent, la gorge de la poulie est moins profonde selon le plan M' que selon le plan M. En effet, le profil de la gorge dans le plan M (ou M') est la projection du profil de la gorge dans un plan radial passant par le plan P (ou respectivement P') sur le plan M (ou respectivement M') formant un angle β (ou respectivement β' inférieur à β) avec le plan radial au point considéré. Or, le fait que la gorge soit moins profonde selon le plan M' que selon le plan M implique que la poulie est plus plate selon le plan M que selon le plan M' au moins au niveau du fond (c'est-à-dire au niveau de la portion centrale de la courbe délimitant la gorge) . Si la carène arrive en contact sur la portion centrale de la poulie en fond de baignoire, la portion centrale est plus plate dans le plan M' que dans le plan M, autrement dit, le rayon de la surface de contact au point P est plus important dans le plan M' que dans le plan M, ce qui facilite le basculement de la carène sous l'effet de la traction du câble par rapport à l'axe de la poulie.This embodiment also has an advantage in the case of a pulley having a constant profile, and more particularly of a pulley according to the invention. Indeed, the contact point P 'is located in a plane M' located at a distance D 'smaller than the distance D at which the plane M is located (including the point P), relative to the axis of the pulley, parallel to the axis of the cable x. Consequently, the groove of the pulley is less deep in the plane M 'than in the plane M. In fact, the profile of the groove in the plane M (or M') is the projection of the profile of the groove in a plane radial passing through the plane P (or respectively P ') on the plane M (or respectively M') forming an angle β (or respectively β 'less than β) with the radial plane at the point considered. However, the fact that the groove is less deep according to the plane M 'than according to the plane M implies that the pulley is flatter according to the plane M than according to the plane M' at least at the bottom level (that is to say say at the level of the central portion of the curve delimiting the throat). If the hull comes into contact on the central portion of the pulley at the bottom of the bathtub, the central portion is flatter in the plane M 'than in the plane M, in other words, the radius of the contact surface at point P is more important in the plane M 'than in the plane M, which facilitates the tilting of the hull under the effect of the traction of the cable relative to the axis of the pulley.

Sur la réalisation de la figure 12b, la carène biseautée comprenant le biseau est la carène 130a de tête du tronçon, c'est-à-dire la carène la plus éloignée de l'extrémité du câble destinée à être immergée. Cela permet de faciliter le basculement de la carène 130a lors de l'enroulement du câble et de faciliter le basculement de tout le tronçon 120 car la carène, étant liée à rotation autour du câble aux autres carènes du tronçon, elle entraîne toutes les carènes du tronçon 120 dans son mouvement autour du câble. La carène de tête 130a est une carène qui est adjacente à une seule autre carène 130b appartenant au même tronçon 120. Le premier bord d'appui Bza de la carène de tête 130a est agencé de façon que la distance entre le bord d'attaque BAa et le premier bord d'appui en biseau Bza diminue continûment, le long d'un axe parallèle au bord d'attaque BAa, depuis une première extrémité E1 du premier bord d'appui Bza jusqu'à une deuxième extrémité E2 du premier bord d'appui Bza plus éloignée de l'autre carène 130b que la première extrémité E1, selon l'axe parallèle au bord d'attaque BAa.On the realization of the figure 12b , the bevelled hull comprising the bevel is the hull 130a at the head of the section, that is to say the hull farthest from the end of the cable intended to be immersed. This makes it easier to tilt the hull 130a during the winding of the cable and to facilitate the tilting of the entire section 120 because the hull, being linked in rotation around the cable to the other hulls of the section, it drives all the hulls of the section 120 in its movement around the cable. The head hull 130a is a hull which is adjacent to a single other hull 130b belonging to the same section 120. The first bearing edge Bza of the head hull 130a is arranged so that the distance between the leading edge BAa and the first bevel bearing edge Bza decreases continuously, along an axis parallel to the leading edge BAa, from a first end E1 of the first support edge Bza to a second end E2 of the first edge d 'support Bza further from the other hull 130b than the first end E1, along the axis parallel to the leading edge BAa.

En variante, la carène biseautée est la carène de queue du tronçon, c'est-à-dire la carène la plus proche de l'extrémité du câble destinée à être immergée. Cela permet de faciliter le basculement de la carène lors du déroulement du câble (lorsque la carène vient en appui sur la poulie de l'autre côté de la poulie par rapport à l'axe de la poulie) et de faciliter le basculement de tout le tronçon car la carène (par propagation du mouvement de rotation sur tout le tronçon). La carène de queue est une carène qui est adjacente à une seule autre carène appartenant au même tronçon. Le premier bord d'appui est configuré de façon que la distance entre le bord d'attaque BAa et le premier bord d'appui en biseau diminue, le long du bord d'attaque BAa, depuis une première extrémité du premier bord d'appui en regard de l'autre carène jusqu'au une deuxième extrémité du premier bord d'appui plus éloignée de l'autre carène que la première extrémité, selon l'axe parallèle à BAa. L'autre extrémité du premier bord d'appui est plus proche d'une face latérale que la première extrémité du bord d'appui. Ce mode de réalisation, comme le précédent, permet d'assurer le basculement de toutes les carènes des tronçons de carénage, sans avoir à prévoir uniquement des carènes biseautées sur tout le carénage, ce qui aurait pour effet de limiter les performances du carénage en termes de réduction de la trainée.As a variant, the bevelled hull is the bottom hull of the section, that is to say the hull closest to the end of the cable intended to be submerged. This makes it easier to tilt the hull during the unwinding of the cable (when the hull comes to rest on the pulley on the other side of the pulley relative to the axis of the pulley) and to facilitate the tilting of all section because the hull (by propagation of the rotational movement over the entire section). The tail hull is a hull which is adjacent to only one other hull belonging to the same section. The first support edge is configured so that the distance between the leading edge BAa and the first beveled support edge decreases, along the leading edge BAa, from a first end of the first support edge opposite the other hull to a second end of the first bearing edge further from the other hull than the first end, along the axis parallel to BAa. The other end of the first support edge is closer to a lateral face than the first end of the support edge. This embodiment, like the previous one, ensures the tilting of all the hulls of the fairing sections, without having to provide only bevelled hulls over the entire fairing, which would have the effect of limiting the performance of the fairing in terms of reducing drag.

Avantageusement, chaque tronçon comprend au moins une carène d'extrémité (de tête ou de queue) comprenant un bord en biseau. Les autres carènes ne sont pas des carènes biseautées. Elles ne comprennent pas de premier bord d'appui en biseau. Le bord d'appui est le bord de fuite et est sensiblement parallèle au bord d'attaque sur toute sa longueur. Dans une variante non revendiquée, un carénage comprenant un unique tronçon tel que défini plus haut peut comprendre une carène avec un bord d'appui en biseau. Ce tronçon s'étend par exemple sur une longueur inférieure à la longueur du câble à partir de l'extrémité destinée à être immergée. Dans ce cas, la carène de tête du tronçon est avantageusement une carène comprenant un bord d'appui biseauté agencé comme pour la carène de tête précédemment décrite.Advantageously, each section comprises at least one end hull (head or tail) comprising a beveled edge. The other hulls are not beveled hulls. They do not include a first beveled support edge. The bearing edge is the trailing edge and is substantially parallel to the leading edge over its entire length. In an unclaimed variant, a fairing comprising a single section as defined above may comprise a hull with a beveled support edge. This section extends for example over a length less than the length of the cable from the end intended to be submerged. In this case, the hull at the head of the section is advantageously a hull comprising a beveled bearing edge arranged as for the head hull previously described.

Dans une autre variante non revendiquée, le tronçon s'étend sur toute la longueur du câble.In another variant not claimed, the section extends over the entire length of the cable.

Dans toutes les configurations de carénage (du type comprenant un tronçon, plusieurs tronçons ou comprenant des carènes toutes libres en rotation les unes par rapport aux autres autour de l'élément allongé), toutes les carènes pourraient être des carènes biseautées. Cela permettrait de faciliter le basculement de chaque carène en cas de rupture de liaison inter-carène en aval de la carène vue de la poulie, lorsque les carènes sont initialement liées. Dans le cas où les carènes sont libres en rotation les unes par rapport aux autres, cela permet de faciliter le basculement de chaque carène à son arrivée sur un dispositif de guidage De manière plus générale, la carène biseautée permet d'éviter d'avoir à lier les carènes les unes aux autres et permet donc de limiter les coûts du carénage et le temps de montage du carénage.In all the fairing configurations (of the type comprising a section, several sections or comprising hulls all free to rotate with respect to one another around the elongated element), all the hulls could be beveled hulls. This would facilitate the tilting of each hull in the event of an inter-hull connection break downstream of the hull seen from the pulley, when the hulls are initially linked. In the case where the hulls are free to rotate with respect to each other, this makes it easier to tilt each hull on arrival on a guide device. More generally, the bevelled hull avoids having to link the hulls to each other and therefore makes it possible to limit the costs of the fairing and the time for assembling the fairing.

Si on veut faciliter la réorientation des carènes en cas d'enroulement du câble, le biseau est réalisé de façon que la distance entre le bord d'attaque BA et le premier bord d'appui en biseau diminue, le long de l'axe xc, depuis l'extrémité du premier bord d'appui le plus proche de l'extrémité du câble destiné à être immergé jusqu'à l'extrémité du bord d'appui opposée à l'extrémité du câble destinée à être immergée et inversement si on souhaite facilite le basculement lors du déroulement du câble.If we want to facilitate the reorientation of the hulls in the event of winding of the cable, the bevel is made so that the distance between the leading edge BA and the first bevel bearing edge decreases, along the axis xc , from the end of the first support edge closest to the end of the cable intended to be immersed to the end of the support edge opposite the end of the cable intended to be immersed and vice versa if wishes facilitates tilting during the unwinding of the cable.

Sur la réalisation des figures 12a et 12b, le bord d'appui BAPa est le bord de fuite BF. Il comprend le premier bord d'appui en biseau Bza et un deuxième bord d'appui Bla qui s'étend parallèlement à l'axe x et est situé à une distance fixe du bord d'attaque le long de l'axe x. Le premier bord d'appui en biseau est relié à la face latérale 180 et au deuxième bord d'appui Bla, selon la direction du bord d'attaque, par des arrondis de raccordement ou chanfreins. La longueur de corde maximale LC est la distance entre ce deuxième bord d'appui Bla et le bord d'attaque. En variante, le bord d'appui ne présente pas de deuxième bord d'appui Bla s'étendant parallèlement à l'axe x. Le biseau s'étend sensiblement sur toute la largeur de la carène et est avantageusement, mais non nécessairement, relié aux faces latérales par des congés de raccordement ou chanfreins.On the realization of Figures 12a and 12b , the bearing edge BAPa is the trailing edge BF. It comprises the first bevel bearing edge Bza and a second bearing edge Bla which extends parallel to the x axis and is located at a fixed distance from the leading edge along the x axis. The first bevel bearing edge is connected to the lateral face 180 and to the second bearing edge Bla, in the direction of the leading edge, by connecting rounds or chamfers. The maximum length of rope LC is the distance between this second bearing edge Bla and the leading edge. As a variant, the bearing edge does not have a second bearing edge Bla extending parallel to the axis x. The bevel extends substantially over the entire width of the hull and is advantageously, but not necessarily, connected to the lateral faces by connection fillets or chamfers.

Comme visible sur les figure 12c et 12d représentant des sections de la carène selon des plans respectifs N et Q, représentés la figure 12a, parallèles au bord d'attaque et perpendiculaire aux faces latérales 170, 180, la carène comprend une première portion épaisse 130a1 visible sur la figure 12c et une deuxième portion mince 130a2 présentant une deuxième épaisseur e2 inférieure à la première épaisseur e1 de la partie épaisse. La deuxième épaisseur e2 est sensiblement égale l'épaisseur de l'extrémité de la queue 15 opposée à l'extrémité de la queue reliée au nez 14 de la carène. Le premier bord comprend une première portion Bza1 s'étendant dans la première portion épaisse 130a1 de la carène et une deuxième portion Bza2 s'étendant dans la partie mince. La première portion du premier bord d'appui Bza1 est raccordée aux faces longitudinales 122, 123 par des chanfreins respectifs 132, 133 respectifs. Autrement dit, la carène comprend des chanfreins reliant la première portion du premier bord d'appui Bza1 aux faces longitudinales 122, 123 respectives. Cela permet d'amincir le bord de fuite dans la partie épaisse de la carène et donc de limiter les risques que la carène ne vienne se coincer sur le dispositif de guidage. En variante, les chanfreins s'étendent sur toute la longueur du premier bord d'appui.As seen on figure 12c and 12d representing sections of the hull according to respective planes N and Q, represented the figure 12a , parallel to the leading edge and perpendicular to the lateral faces 170, 180, the hull comprises a first thick portion 130a1 visible on the figure 12c and a second thin portion 130a2 having a second thickness e2 less than the first thickness e1 of the thick part. The second thickness e2 is substantially equal to the thickness of the end of the tail 15 opposite the end of the tail connected to the nose 14 of the hull. The first edge comprises a first portion Bza1 extending in the first thick portion 130a1 of the hull and a second portion Bza2 extending in the thin part. The first portion of the first bearing edge Bza1 is connected to the longitudinal faces 122, 123 by respective chamfers 132, 133 respectively. In other words, the hull comprises chamfers connecting the first portion of the first bearing edge Bza1 to the respective longitudinal faces 122, 123. This makes it possible to thin the trailing edge in the thick part of the hull and therefore to limit the risks that the hull will get stuck on the guide device. As a variant, the chamfers extend over the entire length of the first bearing edge.

En variante, la première portion du bord d'attaque Bza1 est raccordée aux faces latérales par des surfaces renflées respectives. Par surfaces renflées on entend des surfaces galbées convexes. Ce mode de réalisation permet également de limiter l'épaisseur du bord d'appui. En variante, les surfaces galbées s'étendent sur toute la longueur du premier bord d'appui. Les chanfreins et surfaces galbées sont deux solutions techniques non limitatives permettent d'obtenir la caractéristique selon laquelle au moins une première portion du premier bord d'appui Bza1 présente une épaisseur e1 inférieure à l'épaisseur de la carène dans tout plan longitudinal parallèle au bord d'attaque et perpendiculaire aux faces latérales de la carène croisant la première portion du premier bord d'appui Bza1. L'épaisseur de la carène dans un plan de coupe est la distance séparant la première face longitudinale 122 de la deuxième face longitudinale 123 selon une direction perpendiculaire à la corde CO dans le plan de coupe de la carène. Avantageusement, la première portion Bza1 présente la même épaisseur que le deuxième bord d'appui Bla qui s'étend parallèlement à l'axe x et est situé à une distance fixe du bord d'attaque le long de l'axe x.As a variant, the first portion of the leading edge Bza1 is connected to the lateral faces by respective bulged surfaces. By swollen surfaces is meant convex curved surfaces. This embodiment also makes it possible to limit the thickness of the bearing edge. As a variant, the curved surfaces extend over the entire length of the first bearing edge. Chamfers and curved surfaces are two non-limiting technical solutions which make it possible to obtain the characteristic that at least a first portion of the first bearing edge Bza1 has a thickness e1 less than the thickness of the hull in any longitudinal plane parallel to the edge of attack and perpendicular to the lateral faces of the hull crossing the first portion of the first bearing edge Bza1. The thickness of the hull in a cutting plane is the distance separating the first longitudinal face 122 from the second longitudinal face 123 in a direction perpendicular to the cord CO in the cutting plane of the hull. Advantageously, the first portion Bza1 has the same thickness as the second bearing edge Bla which extends parallel to the axis x and is located at a fixed distance from the leading edge along the axis x.

Nous allons maintenant décrire un bord d'appui d'une carène selon un deuxième mode de réalisation de l'invention en référence à la figure 13. Tout ce qui a été dit sur l'implantation de la carène sur un carénage, la configuration du carénage, sur l'épaisseur du bord d'appui et sur l'agencement entre le premier bord d'appui et le deuxième bord d'appui reste valable.We will now describe a support edge of a hull according to a second embodiment of the invention with reference to the figure 13 . Everything that has been said on the layout of the hull on a fairing, the configuration of the fairing, on the thickness of the support edge and on the arrangement between the first support edge and the second support edge remains valid.

Sur la figure 13, le bord d'appui BAPb relie les deux faces latérales 270, 280. La carène 230 est formée de deux parties 231, 232 accolées le long du premier bord d'appui en biseau Bzb. La carène est configurée de manière à être maintenue dans une configuration déployée (visible sur la figure 13), lorsqu'elle est soumise au flux hydrodynamique de l'eau, dans laquelle les deux parties 231, 232 sont disposées, l'une par rapport à l'autre autour du premier bord d'appui, de façon que la carène présente un bord de fuite parallèle au bord d'attaque et une section constante le long du bord d'attaque. Autrement dit, la longueur de corde est constante. La carène est maintenue dans la position déployée tant que le couple de pivotement relatif entre les deux parties autour d'un axe formé par le premier bord d'appui Bzb est inférieur ou égal à un seuil prédéterminé. La direction longitudinal du premier bord d'appui est la direction de l'axe formé par le bord d'appui. Le seuil est supérieur au couple pouvant être exercés par le flux hydrodynamique de l'eau sur la carène lorsque la carène est immergée et éventuellement tractée selon l'axe bord de fuite, bord d'attaque. La carène est également configurée de manière à autoriser le pivotement relatif entre les deux parties 231, 232 autour du premier bord d'appui Bzb (voir la flèche), lorsqu'un couple de pivotement relatif entre les deux parties 231, 232, appliqué autour de l'axe formé par le premier bord d'appui Bzb excède le seuil de façon que la carène d'extrémité passe de la configuration déployée à une configuration repliée autour du bord d'appui. L'axe formé par le premier bord d'appui est un axe contenu dans le premier bord d'appui et parallèle à l'axe longitudinal du premier bord d'appui. Dans la configuration repliée la carène ne présente pas une section constante et le bord de fuite n'est pas parallèle au bord d'attaque sur toute sa longueur. Dans la position repliée, la carène est pliée selon le premier bord d'appui Bzb. Dans la position déployée, la carène est dépliée. Ce mode de réalisation permet de limiter ou d'éviter les réductions de performances en termes de réduction de la trainée hydrodynamiques de la carène tout en facilitant la progression de la carène dans la poulie et son retournement.On the figure 13 , the support edge BAPb connects the two lateral faces 270, 280. The hull 230 is formed of two parts 231, 232 joined together along the first bevel support edge Bzb. The hull is configured to be kept in a deployed configuration (visible on the figure 13 ), when subjected to the hydrodynamic flow of water, in which the two parts 231, 232 are arranged, one with respect to the other around the first bearing edge, so that the hull has a trailing edge parallel to the leading edge and a constant section along the leading edge. In other words, the length of the rope is constant. The hull is kept in the deployed position as long as the relative pivoting torque between the two parts around an axis formed by the first bearing edge Bzb is less than or equal to a predetermined threshold. The longitudinal direction of the first support edge is the direction of the axis formed by the support edge. The threshold is greater than the torque that can be exerted by the hydrodynamic flow of water on the hull when the hull is immersed and possibly towed along the trailing edge axis, leading edge. The hull is also configured to allow relative pivoting between the two parts 231, 232 around the first bearing edge Bzb (see arrow), when a relative pivoting torque between the two parts 231, 232, applied around the the axis formed by the first support edge Bzb exceeds the threshold so that the end hull changes from the deployed configuration to a configuration folded around the support edge. The axis formed by the first support edge is an axis contained in the first support edge and parallel to the longitudinal axis of the first support edge. In the folded configuration, the hull does not have a constant section and the trailing edge is not parallel to the leading edge over its entire length. In the folded position, the hull is folded along the first bearing edge Bzb. In the deployed position, the hull is unfolded. This embodiment makes it possible to limit or avoid the performance reductions in terms of reduction of the hydrodynamic drag of the hull while facilitating the progression of the hull in the pulley and its reversal.

La première partie 231 s'étend d'un côté du premier bord d'appui délimitée par le premier bord d'appui Bzb, le deuxième bord d'appui (s'il existe) Blb, le bord d'attaque BA, une face latérale 280 et la portion de l'autre face latérale 270 s'étendant entre le bord d'attaque BA et le premier bord d'appui Bzb.The first part 231 extends on one side of the first support edge delimited by the first support edge Bzb, the second support edge (if there is one) Blb, the leading edge BA, one face lateral 280 and the portion of the other lateral face 270 extending between the leading edge BA and the first bearing edge Bzb.

La deuxième partie 232 est délimitée par le premier bord d'appui Bzb, la partie de la première face latérale 270 s'étendant depuis Bzb jusqu'au bord de fuite BF et la partie du bord de fuite BF située entre Bzb et la première face latérale 270.The second part 232 is delimited by the first bearing edge Bzb, the part of the first lateral face 270 extending from Bzb to the trailing edge BF and the part of the trailing edge BF situated between Bzb and the first face lateral 270.

La première partie 231 est par exemple réalisée en matériau rigide et la deuxième partie 232 est réalisée en matériau flexible ou souple qui ne se déforme sensiblement pas lorsque le couple de pivotement relatif entre les deux parties autour du premier bord d'appui est inférieur ou égal au seuil et qui se plie lorsque le couple excède le seuil, notamment lorsque le point d'intersection entre le bord de fuite et la première face latérale 270 arrive en butée contre un dispositif de guidage. La deuxième partie peut, par exemple, être réalisée en polyuréthane. La première partie peut être réalisée en polyuréthane avec une rigidité supérieure à celle de la deuxième partie ou bien en POM ou en PET. En variante, les deux parties présentent une rigidité telles qu'elles ne se déforment pas sous l'effet d'un couple supérieur au seuil mais sont liées par une liaison pivot autour du premier bord d'appui et la carène comprend un dispositif de stabilisation configuré pour maintenir les deux parties dans la position relative déployée lorsque le couple de pivotement relatif est inférieur ou égal au seuil et de façon à autoriser la rotation entre les deux parties de façon qu'elles passent dans la position relative pliée autour du premier bord d'appui lorsque le couple dépasser le seuil. Le dispositif d'accouplement est par exemple un dispositif comprenant un fusible ou un ressort de compression.The first part 231 is for example made of rigid material and the second part 232 is made of flexible or flexible material which does not deform substantially when the relative pivoting torque between the two parts around the first bearing edge is less than or equal at the threshold and which bends when the torque exceeds the threshold, in particular when the point of intersection between the trailing edge and the first lateral face 270 comes into abutment against a guide device. The second part can, for example, be made of polyurethane. The first part can be made of polyurethane with a rigidity greater than that of the second part or in POM or PET. As a variant, the two parts have a rigidity such that they do not deform under the effect of a torque greater than the threshold but are linked by a pivot link around the first bearing edge and the hull comprises a stabilization device configured to maintain the two parts in the relative deployed position when the relative pivoting torque is less than or equal to the threshold and so as to allow the rotation between the two parts so that they pass in the relative folded position around the first bearing edge when the torque exceeds the threshold. The coupling device is for example a device comprising a fuse or a compression spring.

Avantageusement, au moins une carène biseautée ou chaque carène biseautée est dimensionnée de manière à être plus résistante à un effort de pression, appliqué selon une direction perpendiculaire au bord d'attaque reliant le bord d'attaque au bord de fuite, que les autres carènes du tronçon considéré (qui ne sont pas biseautées). Cette caractéristique permet de limiter les risques de déformation et de cassure des carènes lorsqu'elles s'engagent dans le dispositif de guidage, se retournent et traversent ce dispositif de guidage. A cet effet, cette carène est par exemple réalisée dans un matériau plus dur que les autres carènes et/ou elle comprend des nervures assurant ce renfort supplémentaire. Avantageusement, le carénage comprend au moins une carène d'extrémité biseautée renforcée et coopérant avec le dispositif d'immobilisation. Cela permet de réduire les coûts et éventuellement le poids du carénage car seule la ou les carènes biseautées diffèr(ent) des autres, toutes les autres étant identiques.Advantageously, at least one bevelled hull or each bevelled hull is dimensioned so as to be more resistant to a pressure force, applied in a direction perpendicular to the leading edge connecting the leading edge to the trailing edge, than the other hulls of the section considered (which are not bevelled). This characteristic makes it possible to limit the risks of deformation and breakage of the hulls when they engage in the guide device, turn around and pass through this guide device. For this purpose, this hull is for example made of a harder material than the other hulls and / or it includes ribs ensuring this additional reinforcement. Advantageously, the fairing comprises at least one reinforced bevelled end hull and cooperating with the immobilization device. This makes it possible to reduce the costs and possibly the weight of the fairing because only the beveled hull or hulls differ (s) from the others, all the others being identical.

L'invention se rapporte également à un ensemble comprenant un navire, l'ensemble de remorquage étant embarqué à bord du navire. Le navire est destiné à se déplacer à une vitesse nominale par un état de mer nominal. L'ensemble de remorquage est installé sur le navire de sorte que le point de remorquage soit situé à une hauteur nominale.The invention also relates to an assembly comprising a vessel, the towing assembly being carried on board the vessel. The ship is intended to move at nominal speed through a nominal sea state. The towing assembly is installed on the vessel so that the towing point is located at a nominal height.

Claims (15)

  1. A faired elongated element intended to be at least partially submerged, comprising an elongated object and a fairing, the fairing comprising a plurality of fairing sections (12), each fairing section (12) comprising a plurality of conduits (13), the conduits comprising a channel (16) receiving the elongated object and being streamlined so as to reduce the hydrodynamic drag of the at least partially submerged elongated object, said conduits (13) being pivotally mounted on the elongated object about the longitudinal axis of the channel (16), said conduits (13) being connected together along the axis of the channel and being hinged together, the fairing sections (12) being free to rotate about the channel one relative to the other, wherein the conduits of the same fairing section are connected together by means of a plurality of individual coupling devices (19), each individual coupling device allowing one of the conduits of said section to be connected to another conduit of said section adjacent to said conduit.
  2. The faired elongated element as claimed in claim 1, wherein the fairing sections have respective heights along the axis of the channel, defined as a function of the angular stiffnesses k of the respective fairing sections and as a function of the chord length LC of said conduits of said respective sections so as to prevent a full twist from forming on said respective sections.
  3. The faired elongated element as claimed in any one of the preceding claims, wherein at least one fairing section has a height along the axis of the channel, defined as a function of the angular stiffness k of said fairing section and as a function of the chord length LC of said conduits of said section, so as to prevent a full aerial twist from forming on said fairing section when the fairing section is exposed to a torsion torque that is less than or equal to a predetermined twist torque.
  4. The faired elongated element as claimed in claim 1, wherein at least one section has a height, along the axis of the channel, that is defined as a function of the angular stiffness k of said fairing section, as a function of the chord length LC of said conduits of said section, so that the section is able to undergo a full twist and so as to prevent a full aerial twist from forming on said fairing section when the fairing section is exposed to a twist torque that is less than or equal to a predetermined torsion torque.
  5. The faired elongated element as claimed in any one of claims 2 to 4, wherein the fairing sections have respective heights below a maximum height hmax, such that: hmax π k F LC 2 ,
    Figure imgb0021
    where F is a constant between 250 and 500.
  6. The faired elongated element as claimed in any one of the preceding claims, wherein at least one section from among said sections comprises at least one end conduit, adjacent to only one other conduit belonging to said section, which conduit is a chamfered conduit such that it has a support edge comprising a first support edge (Bza) that is chamfered relative to the leading edge (BA), the first support edge (Bza) being arranged so that the distance between the leading edge (BA) and the first support edge (Bza), taken perpendicular to the leading edge (BA), continuously decreases along an axis parallel to the leading edge, from a first end (E1) of the first support edge (Bza) up to a second end (E2) of the first support edge (Bza) further away from the other conduit (130b) than the first end (E1), along the axis parallel to the leading edge.
  7. The faired elongated element as claimed in claim 6, wherein each chamfered conduit is an end conduit.
  8. The faired elongated element as claimed in any one of claims 6 to 7, wherein the end conduit is designed so as to be more resistant to a pressure force, applied in a direction perpendicular to the leading edge and connecting the leading edge to the trailing edge, than the other conduits of the section.
  9. The faired elongated element as claimed in claim 6, wherein the end conduit comprises two adjacent parts (231, 232) along the first support edge (Bzb), the end conduit being configured so as to be held in a deployed configuration when it is exposed to the hydrodynamic flow of the water, the two parts (231, 232) being disposed one relative to the other around the first support edge (Bzb), so that the end conduit has a trailing edge parallel to the leading edge (BA) and a constant section along the leading edge and is configured so as to allow relative pivoting between the two parts (231, 232) around the first support edge (Bzb) when a relative pivoting torque between the two parts (231, 232), applied around an axis formed by the first support edge (Bzb), exceeds a predetermined threshold, so that the end conduit transitions from the deployed configuration to a stowed configuration folded around the support edge.
  10. The faired elongated element as claimed in any one of the claims, wherein the support edge is the trailing edge.
  11. The faired elongated element as claimed in any one of the preceding claims, wherein the conduits are translationally immobilised relative to the elongated element along the axis of the elongated element.
  12. A towing assembly comprising a faired elongated element as claimed in any one of the preceding claims and a towing and handling device intended to tow the faired elongated element while said element is partially submerged, the towing device comprising a winch (5) for winding and unwinding the faired elongated element (1) through a guide device (4) for guiding the elongated element (1).
  13. The towing assembly as claimed in the preceding claim, wherein the guide device (4) is configured so as to allow the orientation of a conduit (13a) of the fairing (12) to be modified relative to the guide device (4) by rotating the conduit (13a) about the axis of the elongated element (1) under the effect of the traction of the elongated element (1) relative to the guide device (4) when the conduit (13a) exhibits an orientation in which it is in abutment on the guide device (4) and in which the line of action established by the elongated element (1) on the pulley (4) substantially extends along the axis extending from the axis of the elongated element up to the trailing edge (BF).
  14. The towing assembly as claimed in the preceding claim, wherein the guide device comprises a first groove (24), the bottom (26) of which is formed by the bottom of the groove of a pulley (4), the first groove (24) being demarcated by a first surface (25) having a concave profile in a radial plane of the pulley, the width of the first groove and the curvature of the profile of the first curved surface in the radial plane being determined so as to allow the conduit to be rocked, by rotating the conduit about the axis of the elongated element x, under the effect of the traction of the elongated element relative to the guide device along its longitudinal axis, from a returned position, in which the conduit is oriented from the trailing edge towards the bottom of the first groove, to an acceptable position, in which it is oriented from the leading edge towards the bottom of the first groove.
  15. The towing assembly as claimed in any one of claims 13 to 14, wherein the conduits comprise a conduit comprising a nose (14) receiving the elongated element and comprising a leading edge (BA), a tail (15) having a tapered shape extending from the nose (14) and comprising a trailing edge (BF), the first curved surface forming a first concave curve in the radial plane of the pulley, the first concave curve being defined in a radial plane (BB) of the pulley so that, when the conduit extends from the leading edge (BA) perpendicular to the radial plane (BB), irrespective of the position of a conduit in the first groove (24), when the nose (14) of the conduit (13) is in abutment on the first concave curve and when the elongated element (1) exerts, on the conduit (13) in the radial plane, a force for pressing the nose (14) of the conduit (13) against the pulley, said pressing force Fp comprising a component CP perpendicular to the axis of the pulley and a lateral component CL, with the trailing edge (BF) of the conduit (13) not being in contact with the first concave curve or being in contact with part (251) of the first concave curve, which forms, with a straight line dp of the radial plane perpendicular to the axis xa that extends from the axis of the elongated element x up to the trailing edge of the conduit, an angle γ that is at least equal to a slip angle αt, the slip angle being provided by the following formula: α t = Arctan Cf ,
    Figure imgb0022
    where Cf is the friction coefficient between the material forming the outer part of the tail of the conduit and the material forming the surface demarcating the groove of the pulley.
EP16707698.3A 2015-02-27 2016-02-26 Fairing, elongate faired element and towing assembly Active EP3261913B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1500388A FR3033158B1 (en) 2015-02-27 2015-02-27 CARENAGE, CARENE EXTENSION ELEMENT AND TOWING ASSEMBLY
PCT/EP2016/054149 WO2016135323A1 (en) 2015-02-27 2016-02-26 Fairing, elongate faired element and towing assembly

Publications (2)

Publication Number Publication Date
EP3261913A1 EP3261913A1 (en) 2018-01-03
EP3261913B1 true EP3261913B1 (en) 2020-03-25

Family

ID=53794248

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16707698.3A Active EP3261913B1 (en) 2015-02-27 2016-02-26 Fairing, elongate faired element and towing assembly

Country Status (8)

Country Link
US (1) US10392081B2 (en)
EP (1) EP3261913B1 (en)
AU (1) AU2016223411B2 (en)
CA (1) CA2977719C (en)
ES (1) ES2796281T3 (en)
FR (1) FR3033158B1 (en)
SG (1) SG11201706874VA (en)
WO (1) WO2016135323A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3379162A (en) * 1966-11-16 1968-04-23 Navy Usa Positioning device for cable fairing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3347526A (en) * 1966-11-16 1967-10-17 Cymmer Thomas Guide for faired cable
US3461830A (en) * 1968-02-20 1969-08-19 Shell Oil Co Fairings for a marine towline
GB1248605A (en) * 1968-11-23 1971-10-06 Fathom Oceanology Ltd Low drag fairing configuration for flexible towing cables
US3670988A (en) * 1970-08-03 1972-06-20 Boeing Co Winch apparatus for faired towline
CA1206383A (en) * 1983-01-18 1986-06-24 Neville Hale Fairing assembly for towed underwater cables
US4542708A (en) * 1984-01-06 1985-09-24 Raytheon Company Composite cable fairing
JPS61113093U (en) * 1984-12-28 1986-07-17
US4829929A (en) * 1987-11-02 1989-05-16 Kerfoot Branch P Fluid-flow drag reducers
GB2445751B (en) * 2007-01-17 2009-02-25 Trelleborg Crp Ltd Fairing
FR2923452B1 (en) 2007-11-09 2010-02-26 Thales Sa DEVICE FOR RETURNING SCALES ESPECIALLY FOR CARINE TRACTOR CABLE COMPRISING SUCH SCALES
FR3033155B1 (en) * 2015-02-27 2018-04-13 Thales TOWING ASSEMBLY
FR3033154B1 (en) * 2015-02-27 2018-03-30 Thales CARENE, CARENAGE, CARENE EXTENSION ELEMENT AND TOWING ASSEMBLY

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3379162A (en) * 1966-11-16 1968-04-23 Navy Usa Positioning device for cable fairing

Also Published As

Publication number Publication date
US20180244353A1 (en) 2018-08-30
SG11201706874VA (en) 2017-10-30
ES2796281T3 (en) 2020-11-26
AU2016223411A1 (en) 2017-09-07
EP3261913A1 (en) 2018-01-03
WO2016135323A1 (en) 2016-09-01
CA2977719A1 (en) 2016-09-01
CA2977719C (en) 2023-03-28
US10392081B2 (en) 2019-08-27
AU2016223411B2 (en) 2019-10-24
FR3033158A1 (en) 2016-09-02
FR3033158B1 (en) 2018-04-13

Similar Documents

Publication Publication Date Title
EP2855252B1 (en) System for launching and retrieving submarine vehicles, in particular towed submarine vehicles
WO2015014886A1 (en) Towing device with a two-piece fairlead
FR2994560A1 (en) Device for towing e.g. autonomous underwater vehicle by boat, has rope extending on sides of liquid surface, and reserve unit retaining fixing units on rope when vehicle is fixed on rope to transform vehicle into towed body
EP3261912B1 (en) Towing arrangement
EP3261914B1 (en) Fairing, faired cable and towing arrangement
EP3261913B1 (en) Fairing, elongate faired element and towing assembly
EP3976461B1 (en) Underwater device and underwater system
EP3871000B1 (en) Sonar system
EP3976460B1 (en) Sonar device and sonar system
WO2018065385A1 (en) Automatic-opening fairlead and towing device comprising the fairlead
EP3261976B1 (en) Method for handling a faired cable towed by a vessel
FR2931139A1 (en) MULTI-DIAMETER CABLE GUIDING DEVICE
EP3894314B1 (en) Faired towing cable

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190314

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602016032471

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B63B0021660000

Ipc: B63H0020200000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B63H 23/30 20060101ALI20190910BHEP

Ipc: B63H 20/20 20060101AFI20190910BHEP

Ipc: B63H 23/08 20060101ALI20190910BHEP

INTG Intention to grant announced

Effective date: 20190924

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20200123

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016032471

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1248277

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200626

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200625

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200325

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200725

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200818

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1248277

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200325

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2796281

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016032471

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240307

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240116

Year of fee payment: 9

Ref country code: GB

Payment date: 20240118

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240130

Year of fee payment: 9

Ref country code: NO

Payment date: 20240208

Year of fee payment: 9

Ref country code: IT

Payment date: 20240126

Year of fee payment: 9

Ref country code: FR

Payment date: 20240123

Year of fee payment: 9