EP3261764A1 - Outil de portoir de tubes - Google Patents
Outil de portoir de tubesInfo
- Publication number
- EP3261764A1 EP3261764A1 EP16756063.0A EP16756063A EP3261764A1 EP 3261764 A1 EP3261764 A1 EP 3261764A1 EP 16756063 A EP16756063 A EP 16756063A EP 3261764 A1 EP3261764 A1 EP 3261764A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tubes
- rack
- tube
- base
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000003825 pressing Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L9/00—Supporting devices; Holding devices
- B01L9/06—Test-tube stands; Test-tube holders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
- B01L3/5085—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
- B01L3/50855—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates using modular assemblies of strips or of individual wells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L9/00—Supporting devices; Holding devices
- B01L9/06—Test-tube stands; Test-tube holders
- B01L9/065—Test-tube stands; Test-tube holders specially adapted for capillary tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L9/00—Supporting devices; Holding devices
- B01L9/52—Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
- B01L9/523—Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for multisample carriers, e.g. used for microtitration plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L9/00—Supporting devices; Holding devices
- B01L9/52—Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
- B01L9/527—Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for microfluidic devices, e.g. used for lab-on-a-chip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L99/00—Subject matter not provided for in other groups of this subclass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/02—Adapting objects or devices to another
- B01L2200/021—Adjust spacings in an array of wells, pipettes or holders, format transfer between arrays of different size or geometry
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/02—Adapting objects or devices to another
- B01L2200/025—Align devices or objects to ensure defined positions relative to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/04—Exchange or ejection of cartridges, containers or reservoirs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0848—Specific forms of parts of containers
- B01L2300/0851—Bottom walls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/12—Specific details about materials
- B01L2300/123—Flexible; Elastomeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L9/00—Supporting devices; Holding devices
- B01L9/54—Supports specially adapted for pipettes and burettes
- B01L9/543—Supports specially adapted for pipettes and burettes for disposable pipette tips, e.g. racks or cassettes
Definitions
- Embodiments of the present disclosure relate generally to tube rack tools for dislodging a plurality of tubes from a rack of tubes, and more specifically for synchronously dislodging a plurality of tubes from a rack of tubes, and methods for using the same.
- a microtiter plate is a flat plate with multiple "wells" used as small test tubes or used to receive tubes therein.
- the microtiter plate has become a standard tool in analytical research and clinical diagnostic testing laboratories.
- a microtiter plate typically has 6, 24, 96, 384, 1536, 6144, or 24576 sample wells arranged in a 2:3 rectangular matrix.
- Some microtiter plates have even been manufactured with 3456 or even 9600 wells, although 96 wells, provided in an 8 x 12 arrangement is the most common.
- each well typically holds somewhere between a few nanoliters to several hundred milliliters of liquid or an equivalent amount of a solid sample, such as a dry powder.
- some plates have wells with closed bottoms.
- plates may be provided as racks to support glass or plastic tube or tube strip inserts.
- the wells can alternatively have open bottoms.
- Illustrative wells can be circular (including cylindrical or conical) or square in cross-section.
- Pipettes e.g., multi-channel pipettes
- PCR devices and other instruments for a wide variety of laboratory applications have been developed to receive microtiter plates of standard sizes and to process samples contained in the wells therein. A number of companies have even developed robots specifically configured to handle microtiter plates.
- Microtiter plates often are provided with wells formed in the plate.
- the most common manufacturing process is injection molding, used typically for polystyrene, polypropylene and cyclo-olefin.
- microplates may be made from a variety of polymers, as is appropriate to withstand a wide temperature range and provide chemical resistance.
- plates have become available that include a rack and a plurality of strips or individual tubes, a common configuration being twelve strips of eight tubes (or eight strips of twelve tubes). Such an arrangement may make it easier to use a portion of a plate or to prepare smaller groups of reactions within a single plate.
- the spacing of the tubes results in standard spacing of wells of a 96-well microtiter plate, and the rack and tubes, once assembled, are compatible with the myriad tools and instrumentation that have been developed for use with microtiter plates.
- the Loborack-96 can hold, for example, 96 individual tubes (for example, 0.50ml or 0.75ml tubes), eight strips of twelve tubes, or twelve strips of eight tubes, in a 96-well configuration. Each tube may be individually capped, or each strip may be capped with a strip of eight or twelve caps, respectively. While the tubes are disposable and are intended as single-use items, the rack is reusable. However, it can be difficult to remove the tubes from the rack manually, and tubes often open as they are removed, potentially contaminating the tube contents or spilling hazardous or contaminating materials. While Micronic sells a tool for removing one tube at a time, a tool that removes rows of tubes or all tubes quickly and easily is desired.
- a tube rack tool comprising a base for receiving a rack of tubes (the rack of tubes illustratively comprising a rack and a plurality of tubes disposed in the rack), the base having a surface for engaging the tubes, wherein pressure on the rack dislodges a plurality of tubes from the rack.
- the plurality of tubes can be simultaneously, concurrently, synchronously, and/or immediately sequentially (e.g., instantaneously) dislodged from the rack.
- the rack of tubes can be positioned atop the surface such that the surface engages a bottom (e.g., closed end) of the plurality of tubes, optionally without engaging at least a portion of the rack such that a substantially or at least partially downward force (e.g., pressure) on the rack dislodges the plurality of tubes from the rack.
- the tube rack tool may further comprise a top piece configured to provide the force on at least a portion of the rack.
- Various surface and/or other configurations are provided for the tube rack tool.
- a tube rack tool comprising a top piece for receiving a rack of tubes therein, and a base having a surface for engaging a plurality of the tubes in the rack of tubes, wherein pressure on the top piece (e.g., in the direction of the surface) dislodges the plurality of tubes from the rack.
- a method of removing a plurality of tubes from a rack of tubes having a rack and a set of tubes comprising placing the rack of tubes into a base, the base having a surface for engaging the plurality of the tubes in the rack of tubes, and providing pressure on the rack to dislodge the plurality of tubes from the rack.
- FIG. 1 is a perspective view of a base for an illustrative tube rack tool.
- Fig. 2 is a perspective view of a top piece for use with the base of Fig. 1.
- Fig. 3 is an exploded perspective view of a rack of tubes inserted between the base of Fig. 1 and the top piece of Fig. 2.
- Fig. 4 is a cross-sectional view of a rack of tubes inserted between the base of Fig. 1 and the top piece of Fig. 2.
- Fig. 5 is similar to Fig. 4, except that pressure has been exerted on the top piece and some of the tubes are being removed from the rack.
- Fig. 6 is similar to Fig. 1, except showing a base for a different illustrative tube rack tool.
- Fig. 7 is similar to Fig. 2, except showing a top piece for an alternate illustrative tube rack tool.
- Fig. 8 is similar to Fig. 5 except showing a base and top piece for an alternate illustrative tube rack tool.
- Fig. 9 is a top view of the base and top piece of Fig. 8.
- Fig. 10 shows a row of tubes with caps, and a top piece positioned to apply pressure to the caps.
- Fig. 11 is similar to Fig. 10, except that the caps are in process of being seated by pressure from the top piece.
- Fig. 12 is a cross-sectional view of a row of tubes with caps, and an inverted base positioned to apply pressure to the caps.
- Fig. 13 is similar to Fig. 12, except that the caps are in process of being seated by pressure from the inverted base.
- directional and/or arbitrary terms such as “top,” “bottom,” “left,” “right,” “up,” “down,” “upper,” “lower,” “inner,” “outer,” “internal,” “external,” “interior,” “exterior,” “proximal,” “distal” and the like can be used solely to indicate relative directions and/or orientations and may not be otherwise intended to limit the scope of the disclosure, including the specification, drawings, and/or claims.
- Fig. 1 shows a base 10 of an illustrative tube rack tool 8 (see Fig. 3) according to an embodiment of the present disclosure.
- the base has a support surface 12, and four walls 15, 16, 17, 18, which surround a rack-receiving area 11 for receiving a rack of tubes.
- support surface 12 is curved along an axis extending in the direction from wall 18 to wall 17.
- support surface 12 can (also or alternatively) be curved along an axis extending in the direction from wall 16 to wall 15. As discussed further below, however, support surface 12 need not have a curved configuration in certain embodiments.
- two spacings 13, 14 are provided between support surface 12 and walls 17, 18, respectively.
- Spacings 13, 14 comprise openings through base 10, although optionally openings 13, 14 may be provided with bottoms to result in recesses.
- Opposing recesses 20 are also disposed between support surface 12 and walls 15, 16, respectively. It is understood that walls 15, 16, 17, and 18, as well as spacings 13, 14, and recesses 20 are provided to aid in placement and retention of a rack (of tubes) within rack-receiving area 11, and that any or all of these walls, spacings, and/or recesses are optional and may be omitted. Similarly, the walls need not entirely surround the rack-receiving area 11 in some embodiments.
- Fig. 2 shows a top piece 50 that may be used with base 10 (e.g., to form the tube rack tool 8 of Fig. 3).
- Top piece 50 has a top 52, and two legs 60, 61 extending downward from top 50. Legs 60, 61 are spaced to receive a rack of tubes therebetween.
- top piece 50 can have a single leg or more than two legs extending downward therefrom. For example, a single leg can extend (entirely or partially) about top piece 50 and/or extend downward therefrom. Alternatively, three or four legs can be disposed at corners of top piece 50.
- leg 60 is provided with leg extensions 63, 64, and leg 61 is provided with leg extension 65 (and a second leg extension not shown in Fig. 2).
- leg extension 63 the leg extensions project inward from each leg (e.g., toward the opposing leg).
- the leg extensions may be provided to aid in containing and/or properly positioning the rack of tubes between legs 60, 61, and/or restrain the rack of tubes from slipping sideways out of top piece 50.
- the leg extensions may also aid in properly positioning the rack of tubes about support surface 12 of base 10 (Fig. 1).
- top piece 50 may be provided with side walls extending between legs 60 and 61 to contain the rack of tubes.
- FIG. 3 shows an exploded view of a tube removal tool assembly 40 comprising a rack of tubes 78 including rack 80 and ninety-six tubes 82 being inserted between base 10 and top piece 50.
- rack 80 includes space for ninety-six tubes, any other number or arrangement of a rack and tubes may be used.
- illustrative rack of tubes 78 is full, the illustrative embodiments may be used with a partially full rack of tubes.
- walls 15, 16, 17, 18 of base 10 are sized to receive rack of tubes 78 therein, thereby supporting rack of tubes 78 on support surface 12.
- top piece 50 As top piece 50 is placed over rack of tubes 78, legs 60, 61 of top piece 50 extend down at least partially around tubes 82, fit inside walls 15, 16, 17, 18, and assist with maintaining the orientation of rack 80 and tubes 82 relative to base 10 and/or support surface 12 thereof.
- rack 80 is provided with twelve rows 85 of eight tubes 82, although it is understood that other configurations are within the scope of this disclosure.
- Each tube 82 has an open top portion 88 and a closed opposing bottom portion 90 (see Fig. 4) inserted into its respective well 84 in rack 80.
- Wells 84 comprise openings in a surface portion 81 of rack 80, and each tube 82 or a bottom portion 90 thereof (see Fig. 4) extends below surface portion 81.
- a skirt 89 functions as a stand for rack 80, extending below any bottom 90 of tubes 82.
- rack 80 may have a skirt 89 having two, three, or four walls, or may have feet or other bottom projections to function to keep tubes 82 elevated.
- Tubes 82 may be of any configuration, illustratively with flat bottoms, rounded bottoms, or conical bottoms. Tubes 82 may snap into rack 80, or may be held in place by pressure. While not shown in Figs. 3-5, tubes 82 may be provided with caps, illustratively which may be screw caps, press fit caps, strip caps, or film adhered to or heat-sealed to tubes 82. For instance, in at least one embodiment, as shown in Figs.
- tubes 82 can have sealing cap(s) 83 disposed thereon and/or attached thereto (e.g., sealing the upper open portions 88 thereof).
- Other configurations are also contemplated within the scope of this disclosure.
- Fig. 4 shows a cross-sectional view of a tube removal tool assembly 40, including rack of tubes 78 inserted into base 10, and top piece 50 fitted on top of rack of tubes 78, with legs 60, 61 engaging rack 80 at upper surface portion 81. Because of the curvature of support surface 12, only a portion of the rows 85 of tubes 82 are in contact with support surface 12. In this illustrative embodiment, ends 86, 87 of rack 80 are cantilevered over openings 13, 14. Shown in Figs.
- a recess 20 between support surface 12 and wall 15 allows skirt 89 of rack 80 to extend below support surface 12.
- a similar recess may be provided between support surface 12 and wall 16. Accordingly, in at least one embodiment, support surface 12 of base 10 engages a plurality of tubes 82 (or bottom portion(s) thereof) but does not engage and/or contact at least a portion of skirt 89 of rack 80.
- a plurality of tubes 82 (e.g., at least one row 85) can be simultaneously, concurrently, and/or synchronously dislodge from the rack.
- a back-and-forth rocking motion about or along the curvature of support surface 12, as indicated by arrows X-X, causes additional rows 85 of tubes 82 to engage support surface 12 of base 10, which in turn causes the additional rows 85 of tubes 82 to dislodge from rack 80.
- pressure is placed more directly over leg 60, pressure is placed more directly over cantilevered end 86, which may deflect toward opening 13 (e.g., without engaging support surface 12 of base 10), thereby releasing the row 85 closest to end 86.
- top piece 50 is rocked in the other direction and pressure is placed more directly over leg 61, pressure is placed more directly over cantilevered end 87, which may deflect toward opening 14 (e.g., without engaging support surface 12 of base 10), thereby releasing the row 85 closest to end 87.
- pressure is placed more directly over cantilevered end 87, which may deflect toward opening 14 (e.g., without engaging support surface 12 of base 10), thereby releasing the row 85 closest to end 87.
- a plurality of tubes 82 and/or rows 85 of tubes 82 can be simultaneously, concurrently, synchronously, and/or immediately sequentially (e.g., instantaneously) dislodged from the rack 80.
- the rack 80 and tubes 82 may then be removed from base 10 and top piece 50.
- support surface 12 is curved. While the illustrative curvature is an arc of a circle having a radius of approximately 20 inches, it is understood that this is illustrative only, and that other curvatures would be operational, illustratively having a radius of 15 inches to 25 inches, 10 inches to 30 inches, or 7 inches to 40 inches. While circular curvatures are used in certain embodiments herein, it is understood that other shapes are within the scope of this disclosure, including parabolic, and curved in two dimensions. In one illustrative embodiment, support surface 12 may be planar, provided that support surface 12 is smaller than skirt 89.
- flatter support surfaces can dislodge more tubes at once but may require more pressure, while more curved support surfaces may dislodge fewer tubes at once, but may also require less pressure.
- curvature in one direction can dislodge tubes by rows, while curvature in both directions may allow dislodging of a single tube or a small group of tubes.
- top piece 50 may be optional, and insertion of rack 80 into base 10 may allow for removal of tubes 82 by manual pressure directly on ends 86, 87 of rack 80 or on skirt 89 (e.g., pressure on surface 81 in the direction of support surface 12).
- pressure can be applied to surface 81, illustratively by one or more fingers or hands of an operator or any suitable pressure applicator.
- a top portion 52 of top piece 50 is provided with an opening 53.
- top portion 52 is also provided with curved edge 55, shaped for pressing on tube caps 83 (e.g., to seal opening 88 with cap 83), and configured for capping a row 85 of tubes 82 with a (downward) force and/or a rocking motion, as indicated by arrows Y-Y in Fig. 11.
- curved edge 55 can be shaped and/or configured for seating (a row 85 of) tubes 82 into rack 80 (not shown) with a (pressing) force or the rocking motion indicated by arrows Y-Y in Fig. 11.
- Opening 53 optionally may be provided with grips 54 for comfortably holding top piece 50 during this capping operation.
- base 10 may be inverted and support surface 12 positioned over (row 85 of) tubes 82 as depicted in Figure 12.
- a similar rocking motion, indicated by arrows Y-Y in Fig. 13, and/or (downward) force can be applied for pressing on tube caps 83 (e.g., to seal opening 88 with cap 83).
- inverted base 10 and/or support surface 12 thereof may be used for seating part or all of the tubes 82 of a rack of tubes 78 into rack 80 (see Fig. 3), or for capping one or more tubes 82 or part or all of one or more rows 85 of tubes 82 in a rack of tubes 78 by placing pressure on base 10 (e.g., using rocking motion Y-Y).
- Figs. 6-7 show a base 110 and top piece 150 of an alternative embodiment of a tube removal tool 140, wherein like reference numerals indicate similar components or components having similar functions.
- the base 110 has a support surface 112, and two walls 115, 116, which define a space for receiving a rack of tubes.
- support surface 112 is much narrower and is configured to contact a single row of tubes 85. It is understood that support surface 112 may be provided with any shape to contact any number of tubes or rows of tubes. For instance, support surface 112 can be curved along an axis extending in the direction from wall 116 to wall 115.
- Fig. 7 shows a top piece 150 that may be used with base 110, to form a tube rack tool 140, as shown in Fig. 8.
- Top piece 150 has a top portion 152, and four legs 158, 159, 160, 161 extending downward from top 150. Legs 158, 159, 160, 161 are spaced to receive a rack of tubes 78 therebetween. It is understood that four legs is illustrative only, and that any or all of the legs may be omitted. An embodiment having leg extensions, as in Fig. 2, is also contemplated. It is understood that top piece 150 is not limited to use with base 110, and that the various top pieces described herein may be used with any compatible base, as desired for a specific application.
- top pieces described herein may be used without a base.
- a rack of tubes can be received by or within a portion of a top piece (e.g., between legs thereof) and a plurality of tubes dislodged from the rack by pressing on the (bottom of) the tubes (e.g., with a hand or other device, apparatus, or element).
- top piece 150 is optional, and pressure may be applied by hand or by other means directly to rack 80 to apply pressure to rack 80 to dislodge any tubes 82 that are positioned over support surface member 112.
- support surface member 112 can be moveable within base 110.
- support surface 1 12 can be disposed on or connected to a movement mechanism configured to permit support surface 112 to be positioned and/or secured at a plurality of positions within base 110.
- the movement mechanism can comprise a plurality of slots configured to receive a (detachable) support surface member 112, a rail or slide member configured to permit movement of support surface member 112 thereon, or any other means for moving support surface member 112 and/or changing the position thereof with base 110.
- systems, processes, and/or products according to certain embodiments of the present disclosure may include, incorporate, or otherwise comprise properties features (e.g., components, members, elements, parts, and/or portions) described in other embodiments disclosed and/or described herein. Accordingly, the various features of certain embodiments can be compatible with, combined with, included in, and/or incorporated into other embodiments of the present disclosure. Thus, disclosure of certain features relative to a specific embodiment of the present disclosure should not be construed as limiting application or inclusion of said features to the specific embodiment. Rather, it will be appreciated that other embodiments can also include said features without necessarily departing from the scope of the present disclosure.
- any feature herein may be combined with any other feature of a same or different embodiment disclosed herein.
- various well-known aspects of illustrative systems, processes, products, and the like are not described herein in particular detail in order to avoid obscuring aspects of the example embodiments. Such aspects are, however, also contemplated herein.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Dispersion Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Devices For Use In Laboratory Experiments (AREA)
- Cleaning In General (AREA)
- Sampling And Sample Adjustment (AREA)
- Supports For Pipes And Cables (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201514998015A | 2015-02-24 | 2015-02-24 | |
PCT/US2016/017620 WO2016137756A1 (fr) | 2015-02-24 | 2016-02-11 | Outil de portoir de tubes |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3261764A1 true EP3261764A1 (fr) | 2018-01-03 |
EP3261764A4 EP3261764A4 (fr) | 2018-07-18 |
EP3261764B1 EP3261764B1 (fr) | 2024-10-02 |
Family
ID=59191991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16756063.0A Active EP3261764B1 (fr) | 2015-02-24 | 2016-02-11 | Outil de portoir de tubes et procédé pour retirer des tubes d'un portoir de tubes |
Country Status (7)
Country | Link |
---|---|
US (1) | USD791337S1 (fr) |
EP (1) | EP3261764B1 (fr) |
CN (1) | CN107405622B (fr) |
BR (1) | BR112017018124B1 (fr) |
CA (1) | CA2977505C (fr) |
CL (1) | CL2017002151A1 (fr) |
NZ (1) | NZ734396A (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD826425S1 (en) * | 2016-10-17 | 2018-08-21 | Becton, Dickinson And Company | Tube tray |
USD825775S1 (en) * | 2016-10-17 | 2018-08-14 | Becton, Dickinson And Company | Tube tray |
USD826426S1 (en) * | 2016-10-17 | 2018-08-21 | Becton, Dickinson And Company | Tube tray |
USD852978S1 (en) * | 2017-06-26 | 2019-07-02 | Seville Medical Inc. | Surgical tool organizer |
USD908224S1 (en) * | 2018-06-11 | 2021-01-19 | Siemens Healthcare Gmbh | Component for patient table |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3443396A (en) | 1967-08-17 | 1969-05-13 | Gerald J Ziolkowski | Rotary test tube ice bath |
US3627170A (en) | 1969-09-15 | 1971-12-14 | Simpson Timber Co | Container |
US3915296A (en) | 1974-01-24 | 1975-10-28 | Richard Hugh H Spencer | Container for mixing liquid with a material |
US4124122A (en) | 1976-04-21 | 1978-11-07 | Emmitt Ronald W | Test tube rack |
US4453639A (en) * | 1980-05-30 | 1984-06-12 | Yash Sharma | Rack or holder for test tubes |
US5632388A (en) | 1995-01-30 | 1997-05-27 | Forma Scientific, Inc. | Test tube rack assembly |
USD466219S1 (en) * | 1999-09-13 | 2002-11-26 | Micronic B.V. | Carrier for test-tubes |
US20020108917A1 (en) * | 2001-01-15 | 2002-08-15 | Shoji Maruyama | Tube rack and clamp system |
US6533133B2 (en) * | 2001-05-18 | 2003-03-18 | Jun-Tai Liu | Test tube rack with inserting structure |
US6893613B2 (en) * | 2002-01-25 | 2005-05-17 | Bristol-Myers Squibb Company | Parallel chemistry reactor with interchangeable vessel carrying inserts |
GB0322443D0 (en) * | 2003-09-25 | 2003-10-29 | Rts Thurnall Plc | Compound storage vessel handling apparatus |
US7232038B2 (en) * | 2004-04-27 | 2007-06-19 | Whitney Steven G | Disposable test tube rack |
CN2875581Y (zh) * | 2006-01-17 | 2007-03-07 | 李继广 | 一种新型试管架 |
EP1872855A1 (fr) * | 2006-06-27 | 2008-01-02 | F.Hoffmann-La Roche Ag | Plaque pour l'équilibrage d'un fluide |
US8357538B2 (en) | 2007-04-06 | 2013-01-22 | Qiagen Gaithersburg, Inc. | Automated assay and system |
CN201091840Y (zh) * | 2007-08-23 | 2008-07-30 | 天津市口腔医院 | 升降式试管架 |
US8168137B2 (en) | 2008-06-02 | 2012-05-01 | Agilent Technologies, Inc. | Nestable, stackable pipette rack for nestable pipette tips |
US8136679B2 (en) | 2009-02-03 | 2012-03-20 | Genesee Scientific Corporation | Tube reload system and components |
USD628305S1 (en) * | 2009-07-14 | 2010-11-30 | Medical Research Council | Sitting-drop microwell plate for crystalization |
US20120009104A1 (en) * | 2010-07-07 | 2012-01-12 | Eugene Leonidovich Bolotin | Smart Test Tube Rack |
EP2623204A1 (fr) * | 2012-02-03 | 2013-08-07 | F. Hoffmann-La Roche AG | Système de gestion d'échantillons |
USD686749S1 (en) * | 2012-04-20 | 2013-07-23 | Stratec Biomedical Ag | Rack for holding sheaths |
USD710024S1 (en) * | 2013-03-14 | 2014-07-29 | Bio-Rad Laboratories, Inc. | Microplate |
USD729404S1 (en) * | 2014-06-02 | 2015-05-12 | Seahorse Bioscience | Carrier |
CN204074121U (zh) * | 2014-07-30 | 2015-01-07 | 台州市黄岩方野科技发展有限公司 | 试管盒 |
US9802200B2 (en) * | 2015-02-24 | 2017-10-31 | Biofire Defense, Llc | Tube rack tool |
-
2016
- 2016-02-11 EP EP16756063.0A patent/EP3261764B1/fr active Active
- 2016-02-11 CA CA2977505A patent/CA2977505C/fr active Active
- 2016-02-11 NZ NZ734396A patent/NZ734396A/en unknown
- 2016-02-11 BR BR112017018124-0A patent/BR112017018124B1/pt active IP Right Grant
- 2016-02-11 CN CN201680011997.8A patent/CN107405622B/zh active Active
- 2016-02-24 US US29/555,675 patent/USD791337S1/en active Active
-
2017
- 2017-08-23 CL CL2017002151A patent/CL2017002151A1/es unknown
Also Published As
Publication number | Publication date |
---|---|
CN107405622B (zh) | 2019-05-28 |
BR112017018124A2 (pt) | 2018-04-10 |
EP3261764A4 (fr) | 2018-07-18 |
CA2977505A1 (fr) | 2016-09-01 |
USD791337S1 (en) | 2017-07-04 |
CL2017002151A1 (es) | 2018-03-16 |
CN107405622A (zh) | 2017-11-28 |
EP3261764B1 (fr) | 2024-10-02 |
NZ734396A (en) | 2019-03-29 |
BR112017018124B1 (pt) | 2022-09-13 |
CA2977505C (fr) | 2018-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9802200B2 (en) | Tube rack tool | |
CA2977505C (fr) | Outil de portoir de tubes | |
JP5963862B2 (ja) | キャップ操作ツール及び使用方法 | |
US9579656B2 (en) | Rotation-limiting well plate assembly | |
US7972579B2 (en) | Device for the automatic opening and closing of reaction vessels | |
US20130203089A1 (en) | Filtered Adapter for Pipettors | |
US20190009271A1 (en) | Diagnostic cartridges having flexible seals | |
EP2739437B1 (fr) | Outils de manipulation d'opercule et procédés d'utilisation | |
US20210129154A1 (en) | Pipette tip tray | |
JP2022514225A (ja) | ピペット・ヘッド、ピペット・ヘッドを備えたピペット装置、およびピペット・ヘッドを使用したピペット操作方法 | |
KR102369640B1 (ko) | 패키징 및 자동화 시스템에서 스크류탑 용기에 접근하기 위한 장치 | |
US7438862B2 (en) | Apparatus for simultaneous processing of multiple samples | |
US10857533B2 (en) | Pipette tip loading and unloading mechanism for single row multichannel pipettors | |
KR100637030B1 (ko) | Pcr용 열순환기에 장착되는 다중 웰 플레이트의 튜브 내에서의 시료 증발 또는 응축을 최소화하기 위한 장치 | |
US20170120244A1 (en) | Modular Well Plates | |
JP6964609B2 (ja) | 計量装置で使用するマルチチャネル・シリンジ | |
EP3233281B1 (fr) | Recipiant de stockage de biopuce et methode de sa fermeture | |
US20170282187A1 (en) | Pipette Tips with Vertical Ribs | |
CN113164958B (zh) | 用于微量滴定板的盖子 | |
US20170282188A1 (en) | Apparatus and method for using a tip collar on a single row of pipette tips | |
JP2017509470A (ja) | 折り畳み式マイクロプレート | |
KR20240156607A (ko) | 캡핑 및 디캡핑 디바이스, 캡핑 및 디캡핑 시스템 및 튜브를 캡핑 및 디캡핑하는 방법 | |
EP2719457A1 (fr) | Dispositif de plaque à puits multiples et procédé d'utilisation | |
US20100088871A1 (en) | Ergonomic Hand-Held Device | |
JP2006507106A (ja) | 改良されたピペッタ及び外部にシールが設けられたピペット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170818 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20180618 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B01L 3/14 20060101ALI20180611BHEP Ipc: B01L 3/00 20060101ALN20180611BHEP Ipc: B01L 99/00 20100101ALI20180611BHEP Ipc: B01L 9/06 20060101AFI20180611BHEP Ipc: B01L 9/00 20060101ALI20180611BHEP Ipc: B01L 9/02 20060101ALI20180611BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190527 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B01L 3/00 20060101ALN20240311BHEP Ipc: B01L 99/00 20100101ALI20240311BHEP Ipc: B01L 3/14 20060101ALI20240311BHEP Ipc: B01L 9/00 20060101ALI20240311BHEP Ipc: B01L 9/02 20060101ALI20240311BHEP Ipc: B01L 9/06 20060101AFI20240311BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240425 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016089652 Country of ref document: DE |