EP3260520B1 - Improved method for deep hydroconversion by extracting aromatics and resins with recovery of the hydroconversion extract and the raffinate in the downstream units - Google Patents

Improved method for deep hydroconversion by extracting aromatics and resins with recovery of the hydroconversion extract and the raffinate in the downstream units Download PDF

Info

Publication number
EP3260520B1
EP3260520B1 EP17176996.1A EP17176996A EP3260520B1 EP 3260520 B1 EP3260520 B1 EP 3260520B1 EP 17176996 A EP17176996 A EP 17176996A EP 3260520 B1 EP3260520 B1 EP 3260520B1
Authority
EP
European Patent Office
Prior art keywords
vacuum
fraction
hydroconversion
unit
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17176996.1A
Other languages
German (de)
French (fr)
Other versions
EP3260520A1 (en
Inventor
Jean-François Le Coz
Frédéric Morel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axens SA
Original Assignee
Axens SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axens SA filed Critical Axens SA
Publication of EP3260520A1 publication Critical patent/EP3260520A1/en
Application granted granted Critical
Publication of EP3260520B1 publication Critical patent/EP3260520B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • C10G67/0409Extraction of unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/003Solvent de-asphalting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • C10G67/0454Solvent desasphalting
    • C10G67/049The hydrotreatment being a hydrocracking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/06Vacuum distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents

Definitions

  • the invention relates to the field of deep conversion of heavy hydrocarbon feedstocks which makes it possible to obtain valuable hydrocarbon cuts such as liquified petroleum gas (LPG), gasolines or naphthas, kerosene, diesel and oils.
  • LPG liquified petroleum gas
  • gasolines or naphthas kerosene
  • diesel and oils valuable hydrocarbon cuts
  • the invention provides process schemes for improving the performance of conversion units by introducing aromatics extraction.
  • Refineries typically include a deep hydroconversion unit of the residue, followed by atmospheric fractionation, followed by vacuum fractionation and downstream, a catalytic cracking unit and / or a hydrocracking unit.
  • a deasphalting unit of the unconverted residue during the hydroconversion is also present.
  • Deep hydroconversion processes are used in refineries to convert heavy hydrocarbon mixtures into easily recoverable products. They are usually mainly used to convert heavy loads such as heavy petroleum or synthetic cuts, for example residues from atmospheric distillation and vacuum to convert them to lighter gasoline and gas oil. During hydroconversion, fuel oil, and light cuts such as LPG (liquefied petroleum gas) and naphtha (gasoline cut) are also produced.
  • LPG liquefied petroleum gas
  • naphtha gasoline cut
  • the deep hydroconversion process may be hydrocracking of bubbling bed residue. This technology is marketed under the name of H-OIL ®. The charge is then usually the residue under vacuum.
  • the deep hydroconversion unit produces heavy unconverted residue with high asphaltene content. Asphaltenes are unstable and tend to precipitate in hot spots such as furnaces and column bottoms (especially in the vacuum column). As a result, units and columns are periodically shut down for cleaning, reducing their uptime. Typically, the continuous running times ("runs" in the English terminology) last two years, then the units are stopped and opened for cleaning. The vacuum column is stopped even more frequently (typically every year).
  • Asphaltenes are a family of compounds soluble in aromatic solvents and polyaromatic and insoluble in aliphatic hydrocarbons (N-pentane, N-heptane ). Their structure and composition vary according to the origin of the petroleum charge, but some atoms and groups of said structure are always present in varying proportions. Among these atoms, there may be mentioned oxygen, sulfur, nitrogen, heavy metals such as for example nickel and vanadium. The presence of numerous polycyclic groups gives the asphaltene molecules a highly aromatic character. Because of their insolubility in aliphatic hydrocarbons and depending on the more or less aromatic nature of crude oil or petroleum fractions (also referred to as by-products), asphaltenes can precipitate. This phenomenon leads to deposit formation in production lines and equipment (reactors, balloons, columns and exchangers).
  • the resins are asphaltene-like hydrocarbon compounds, but they are soluble in solvents such as N-pentane or N-heptane in contrast to asphaltenes.
  • the resins typically consist of a condensed polycyclic ring composed of aromatic and cyclanic rings and sulfurous or nitrogenous heterocycles with a lower molecular weight and a less condensed structure than the asphaltenes.
  • a first way to improve the stability of the residue is to play on the conversion in the reaction section by limiting it.
  • the stability of the residue dictates the maximum achievable conversion in the deep hydroconversion units (typically from 60% to more than 80% by weight).
  • diluent 5 to 10% by weight, and typically up to 20% by weight
  • this diluent may be catalytic cracking slurry (ie sludge or heavy residual fraction from the FCC, 360 ° C + predominantly aromatic cut).
  • refiners combine the two means (suitable conversion and dilution of the feedstock) in the hydroconversion unit to limit asphaltene deposits.
  • the possible diluents such as the catalytic cracked heavy slurry fraction, are available in limited quantities and are therefore a factor limiting the maximum achievable conversion in deep hydroconversion units.
  • Licences US 5,980,730 and US 6,017,441 describe a method for deep conversion of a heavy petroleum fraction, said process comprising a three-phase bubbling bed hydroconversion step, an atmospheric distillation of the effluent obtained, a vacuum distillation of the obtained atmospheric residue, a deasphalting of the residue under vacuum obtained and a hydrotreatment of the deasphalted fraction. It is also possible in this process to send at least one heavy liquid fraction resulting from the step hydrotreating in a fluidized catalytic cracking section or recycling a portion of the deasphalted fraction or part of the asphalt to the hydroconversion inlet.
  • the patent FR 2 969 650 B1 describes a hydrocarbon feedstock conversion process comprising a shale oil, said method comprising a bubbling bed hydroconversion stage, an atmospheric distillation of the obtained effluent and a liquid / liquid extraction of the atmospheric residue fraction with a solvent allowing extract aromatics and resins.
  • a fraction of the raffinate to a catalytic cracking section and to recycle a fraction of the extract to the hydroconversion unit. Since the atmospheric residue resulting from the hydroconversion is not deasphalted in the process described in this patent, the extract from the extraction unit is likely to contain asphaltenes, which would lead to a degradation of the hydroconversion performances. in case of recycling it to hydroconversion.
  • the process described in this patent is specifically adapted to the treatment of fillers comprising shale oils whose nature is different from conventional hydrocarbon feeds.
  • the patent FR 2 984 917 B1 discloses a method for optimizing the production of middle distillate in a refinery containing at least one catalytic cracking unit for which one of the variants comprises subjecting the residue under vacuum from a catalytic cracking unit to a solvent extraction of aromatic or alternatively to a propane deasphalting, then send the fuel extract and recycle the raffinate at the inlet of the catalytic cracking unit.
  • the extract of the extraction unit is not upgraded to the hydroconversion unit.
  • FR3014897 discloses a process for treating a hydrocarbon feedstock comprising a hydroconversion step, a separation step by atmospheric distillation followed by a vacuum distillation, a selective deasphalting step carried out in two stages, by contacting with a mixture of at least one polar solvent and at least one apolar solvent, in a so-called decreasing polarity configuration, and a recycling step at the inlet of the hydroconversion stage.
  • the process according to the invention proposes to add, following the deep hydroconversion unit and the fractionation section, a deasphalting unit, followed by a unit for extracting the aromatic hydrocarbons and resins on the residual residue fraction. fractionation under vacuum, and to recover the extract and the raffinate obtained in the aromatics extraction unit.
  • the invention simultaneously improves the performance of the deep hydroconversion unit and those of any downstream units such as hydrocracking or catalytic cracking.
  • the process according to the invention makes it possible to obtain higher yields of hydrocarbon fractions that can be upgraded while guaranteeing the same cycle time to the deep hydroconversion unit, or even increasing it. , and improving the performance of downstream units.
  • the unconverted oil fraction from the hydrocracking and / or the heavy residual fraction from the catalytic cracking can be sent to the aromatics extraction section.
  • the extract may be partly used as a fluxing oil mixed with the residual asphalt produced by the deasphalting step d) to give a liquid fuel or to enter the bitumen composition or to feed a coking unit.
  • the raffinate produced by the aromatics extraction unit can be sent to the hydrocracking unit and / or to the catalytic cracking unit concomitantly with one or more other fillers selected from vacuum gas oil from direct distillation crude oil (Straight Run VGO) and the distillates under light vacuum (LVGO) and heavy distillates (HVGO) obtained at the outlet of the vacuum fractionation (c).
  • one or more other fillers selected from vacuum gas oil from direct distillation crude oil (Straight Run VGO) and the distillates under light vacuum (LVGO) and heavy distillates (HVGO) obtained at the outlet of the vacuum fractionation (c).
  • At least a portion of the light vacuum distillate (LVGO) or heavy vacuum distillate (HVGO) is sent to the extraction section of the aromatics.
  • a part of the atmospheric residue is sent directly into the deasphalting section.
  • the hydroconversion stage a) is preferably carried out under an absolute pressure of between 5 and 35 MPa, at a weighted average temperature of the catalytic bed of 300 to 600 ° C., at an hourly space velocity ranging from 0.1 h . 1 to 10 h -1 and a ratio H 2 / HC hydrogen on charge ranging from 200 to 1000m 3 / m 3 .
  • the hydrocracking step f1) is preferably carried out under an average temperature of the catalytic bed of between 300 and 550 ° C., a pressure of between 5 and 35 MPa and a liquid space velocity of between 0.1 and 10 h -1. .
  • the fluidized catalytic cracking step f 2) is preferably carried out in upward flow with a reactor outlet temperature of between 520 ° C. and 600 ° C., a C / O ratio of between 6 and 14, and a reaction time of residence between 1 and 10 s or in downflow with a reactor outlet temperature between 580 ° C and 630 ° C, a C / O ratio between 15 and 40, and a residence time of between 0.1 and 1 s.
  • the deasphalting step is carried out in an extraction column, the solvent comprising at least 50 percent by weight of hydrocarbon compounds having 3 to 7 carbon atoms, the temperature at the extractor head being between 50 and 250 ° C, the temperature at the bottom of the extractor being between 30 and 220 ° C, the pressure being between 2 and 10 MPa.
  • the solvent is butane.
  • the liquid-liquid extraction is carried out using a solvent selected from furfural, N-methyl-2-pyrrolidone (NMP), sulfolane, dimethylformamide (DMF), dimethylsulfoxide (DMSO) , phenol, or a mixture of these solvents in equal or different proportions, with a solvent / charge ratio of 0.5 / 1 to 3/1, at a temperature between room temperature and 150 ° C, at a pressure of between atmospheric pressure and 2 MPa.
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • DMSO dimethylsulfoxide
  • the filler is advantageously chosen from heavy hydrocarbon feedstocks of the atmospheric or vacuum residue type obtained, for example by direct distillation of petroleum fraction or by vacuum distillation of crude oil, distillate type feedstocks such as vacuum gas oils or oils. deasphalted, asphalts from solvent deasphalting petroleum residues, coal suspended in a hydrocarbon fraction such as for example gas oil obtained by vacuum distillation of crude oil or distillate from the liquefaction of coal, alone or in mixture .
  • the process according to the invention is preferably applied to hydrocarbon feeds containing refractory asphaltenes.
  • the process according to the invention proposes to insert an additional unit for extracting aromatics in order to improve the performance of the scheme, by enhancing the extract and possibly the raffinate obtained.
  • the figure 2 presents by way of illustration the process according to the invention and its variants.
  • the feedstock 01 composed of hydrocarbons of petroleum origin or of mineral-source synthetic hydrocarbons is sent into the deep hydroconversion section 10 with a diluent fluid 02 which comes from the aromatics extraction unit 50 via the transport 53.
  • the liquid effluent from the deep hydroconversion section is sent via line 11 to an atmospheric fractionation section 20.
  • This fractionation section comprises one or more atmospheric distillation columns equipped with trays and internals making it possible to separate different recoverable cuts. withdrawn by means of the transport lines 21, 22 and 23, plus possibly other lateral withdrawals. These sections have ranges of boiling points located for example in the range of gasoline, kerosene and gas oil. In the bottom of fractionation, a heavier fraction of unconverted atmospheric residue 24 is recovered with a boiling point typically greater than 350 ° C.
  • the atmospheric residue is sent at least in part through line 24 to a vacuum fractionation section 30.
  • This fractionation section comprises at least one vacuum distillation column equipped with trays and internals for separating different recoverable cuts withdrawn at average lines 31 and 32 plus possibly other lateral rackings. These sections have ranges of boiling points located for example in the range of light vacuum distillates (LVGO) and heavy (HVGO). At the bottom of the fractionation section, a heavier fraction of unconverted vacuum residue is recovered, the boiling point of which is typically greater than 540 ° C.
  • the light vacuum distillate (LVGO) 31 and the heavy vacuum distillate (HVGO) 32 can be sent to the hydrocracking units 60 and / or catalytic cracking units 70.
  • the vacuum residue is sent via line 33 to the deasphalting unit 40 which makes it possible to extract the asphaltenes by precipitation in a solvent and to produce the deasphalted oil 41 and the pitch (residual asphalt) 42.
  • the deasphalted oil 41 is sent to the aromatics extraction unit 50; as well as possibly the unconverted oil purge of the hydrocracking unit 62 or the heavy residual fraction of the catalytic cracking (FCC slurry) 72 according to the variants of the invention.
  • the raffinate 51 produced by the aromatics extraction unit 50 is sent to the hydrocracking unit, as well as possibly other charges, such as, for example, vacuum distillate obtained from the direct distillation of the crude oil (Straight Run VGO) 91 and the light vacuum 31 and heavy 32 distillate, products of hydroconversion 10.
  • all or part of the light vacuum distillate 31 or the heavy vacuum distillate 32 may also be sent to the aromatics extraction unit 50.
  • part of the atmospheric residue 24 is sent to the deasphalting unit. It is also possible to envisage the case, in which all the atmospheric residue 24 is sent to the deasphalting unit, there is then no vacuum fractionation section 30 and the recoverable cuts in the ranges of boiling points. light (LVGO) and heavy (HVGO) vacuum distillates are not separated, but are sent to the deasphalting unit.
  • the process according to the invention does not comprise a hydrocracking unit 60 or a catalytic cracking unit 70.
  • the process according to the invention comprises a hydrocracking unit 60.
  • the process according to the invention does not comprise a hydrocracking unit 60, but it comprises a catalytic cracking unit 70.
  • the process according to the invention comprises a hydrocracking unit 60 and a catalytic cracking unit 70.
  • the extract 52 produced by the aromatics extraction unit is used at least in part as a diluent to the hydroconversion unit via line 53 and the excess is valorized with the pitch 42 corresponding to the residual asphalt of the deasphalting unit via line 54.
  • the pitch 42 can be upgraded, for example, into bitumen after appropriate treatment or into heavy fuel oil after dilution or sent to a visbreaking, coking or gasification unit 80.
  • the extraction makes it possible to obtain a raffinate containing at most 10% by weight of resins and preferably at most 5% by weight of resins.
  • the extract obtained contains at least 20% by weight of aromatics and 30% by weight of resins and preferably at least 30% by weight of aromatics and 40% by weight of resins with an asphaltene content of less than 1000 ppm.
  • the advantage of the invention lies in the presence of the deasphalting unit upstream of the aromatics extraction, which makes it possible to obtain an aromatic extract with a low content of impurities, since these are found in the asphalt at the outlet of the deasphalting.
  • the resulting extract is ideally suited as an aromatic diluent for deep hydroconversion.
  • the continuous cycle time of the deep hydroconversion unit is elongated very significantly.
  • the use of the extract as an aromatic diluent in the deep hydroconversion unit, whether this is done at iso-conversion or not, also makes it possible to obtain an increased production of recoverable finished products such as naphtha, diesel and VGO vacuum gas oil.
  • DAO deasphalted hydrocarbon fraction
  • the catalytic performances of the catalytic cracking unit are improved as well as the production of recoverable products compared to a unit fed by the deasphalted hydrocarbon fraction leaving the deasphalting unit.
  • the impurity levels of FCC fluidized catalytic cracking products are reduced.
  • the hydrotreatment units of the downstream finished products operate with reduced costs on catalyst quantities and / or cycle times.
  • Hydroconversion technology bubbling beds of residual type charges is marketed in particular as the H-Oil ® process.
  • the bubbling bed process comprises passing the stream, comprising liquid from the solid and gas, flowing vertically through a reactor containing a catalyst bed.
  • the catalyst in the bed is kept in random motion in the liquid.
  • the gross volume of the catalyst dispersed through the liquid is therefore greater than the volume of the catalyst at standstill.
  • This technology is generally used for the conversion of heavy liquid hydrocarbons or for converting coal into synthetic oils.
  • VVH hourly space velocity
  • hydrogen partial pressure are important factors that are chosen according to the characteristics of the product to be treated and the desired conversion.
  • This catalyst may be a catalyst comprising metals of groups 9 and 10 (former group VIII), for example nickel and / or cobalt most often in combination with at least one metal of group 6 (former group VIB), for example molybdenum and / or tungsten and other promoter elements.
  • the support is for example chosen from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals.
  • the carrier may also contain other compounds. Most often, an alumina support is used.
  • the spent catalyst is partly replaced by fresh (ie new or regenerated) catalyst by withdrawal at the bottom of the reactor and introduction at the top of the reactor.
  • catalyst fresh at regular time interval, that is to say for example by puff or almost continuously.
  • fresh catalyst can be introduced every day.
  • the replacement rate of spent catalyst with fresh catalyst may be, for example, from about 0.01 kilogram to about 10 kilograms per cubic meter of charge.
  • the unit usually comprises a recirculation pump for maintaining the bubbling bed catalyst by continuously recycling at least a portion of the liquid withdrawn at the top of the reactor and reinjected at the bottom of the reactor. It is also possible to send the spent catalyst withdrawn from the reactor into a regeneration zone in which the carbon and the sulfur contained therein are removed and then to return this regenerated catalyst.
  • Deep ebullated bed hydroconversion reduces Conradson's carbon input flux by approximately 50-95% and its nitrogen content by approximately 30-95%.
  • the cutting point of the atmospheric residue is typically set between 300 ° C and 400 ° C, preferably between 340 ° C and 380 ° C.
  • the withdrawn cuts such as naphtha, kerosene and diesel are sent respectively to the gasoline pool, the kerosene pool or the diesel pool.
  • the atmospheric residue is sent at least in part to the vacuum fractionation.
  • the cutting point of the vacuum residue is typically set between 450 ° C and 600 ° C, preferably between 500 ° C and 550 ° C.
  • Squeezed cuts such as Light Vacuum Gasoil (LVGO) or Heavy Vacuum Gasoil (HVGO) are sent at least in part to downstream units such as hydrocracking or catalytic cracking.
  • the atmospheric residue (AR) can be sent partly to the deasphalting unit.
  • the light vacuum distillate (LVGO) is characterized by a distillation range of from 300 ° C to 430 ° C, preferably from 340 ° C to 400 ° C.
  • the heavy vacuum distillate (HVGO) is characterized by a distillation range of from 400 ° C to 600 ° C, preferably from 440 ° C to 550 ° C.
  • the vacuum residue (VR) is sent at least partly, preferably completely, to the deasphalting unit.
  • the deasphalted effluent often referred to as DAO deasphalted oil, has a very low content of asphaltenes and metals.
  • One of the objectives of the deasphalting step is, on the one hand, to maximize the amount of deasphalted oil and, on the other hand, to maintain, or even to minimize, the asphaltene content.
  • This asphaltene content is generally determined in terms of the content of asphaltenes insoluble in heptane, that is to say measured according to a method described in standard NF-T 60-115 of January 2002.
  • the deasphalting makes it possible to obtain a deasphalted oil (DAO) containing at most 10 000 ppm by weight of asphaltenes, preferably at most 2000 ppm by weight of asphaltenes.
  • DAO deasphalted oil
  • the solvent used in the deasphalting step is only a paraffinic solvent.
  • the solvent used comprises at least 50 percent by weight of hydrocarbon compounds (alkanes) having between 3 and 7 carbon atoms, more preferably between 3 and 6 carbon atoms, even more preferably 4 or 5 carbon atoms. carbon.
  • hydrocarbon compounds alkanes
  • the deasphalted oil yield and the quality of this oil may vary.
  • the oil yield increases but, in return, the levels of impurities (asphaltenes, metals, carbon Conradson, sulfur, nitrogen ...) also increase.
  • the deasphalting step may be carried out by any means known to those skilled in the art. This step is generally carried out in a settling mixer or in an extraction column. Preferably, the deasphalting step is carried out in an extraction column.
  • a mixture comprising the hydrocarbon feedstock and a first fraction of a solvent feed is introduced into the extraction column, the volume ratio between the solvent feed fraction and the hydrocarbon feedstock. being called the rate of solvent injected with the charge.
  • This step is intended to mix well the load with the solvent entering the extraction column.
  • a second fraction of the solvent charge the volume ratio between the second solvent loading fraction and the hydrocarbon feed being called the solvent content injected at the bottom of the solvent. extractor.
  • the volume of the hydrocarbon feedstock considered in the settling zone is generally that introduced into the extraction column.
  • the sum of the two volume ratios between each of the solvent feed fractions and the hydrocarbon feed is referred to as the overall solvent level.
  • the decantation of the asphalt consists of the countercurrent washing of the asphalt emulsion in the solvent-oil mixture with pure solvent. It is favored by an increase in the solvent content (it is in fact to replace the solvent-oil environment with a pure solvent environment) and a decrease in temperature.
  • a temperature gradient is established between the head and the bottom of the column to create an internal reflux, which improves the separation between the oily medium and the resins.
  • the mixture of solvent and oil heated at the top of the extractor makes it possible to precipitate a fraction comprising resin which descends into the extractor.
  • the upward countercurrent of the mixture makes it possible to dissolve at a lower temperature the fractions comprising the resin which are the lightest.
  • the pressure inside the extractor is generally adjusted so that all the products remain in the liquid state.
  • the objective of the aromatics extraction unit is to extract the aromatic compounds and resins from the heavy fraction obtained from the deasphalting stage.
  • liquid-liquid extraction using a polar solvent is a known solvent for extracting aromatic compounds preferentially.
  • the liquid / liquid extraction is carried out on the heavy fraction, in order to avoid losses of yield of fuel bases during the recovery of the solvent after extraction.
  • the products which are to be extracted from the heavy fraction preferably have a boiling point higher than the boiling point of the solvent in order to avoid a loss of yield during the separation of the solvent from the raffinate after the extraction. Indeed, during the separation of the solvent and the raffinate, any compound having a boiling point below the boiling point of the solvent will inevitably leave with the solvent and thus lower the amount of the raffinate obtained (and therefore the yield of fuel bases ).
  • a solvent it is possible to use furfural, N-methyl-2-pyrrolidone (NMP), sulfolane, dimethylformamide (DMF), dimethylsulfoxide (DMSO), phenol, or a mixture of these solvents in equal proportions or different.
  • the preferred solvent is furfural, product sufficiently heavy compared to the treated fluid: deasphalted oil DAO.
  • An aromatics extraction unit originally constructed for an oil chain may advantageously be modified for use in the process according to the invention.
  • the operating conditions are in general a solvent / charge ratio of from 0.5: 1 to 3: 1, preferably from 1: 1 to 2: 1, a temperature profile of between room temperature and 150.degree. C., preferably between 50.degree. ° C and 150 ° C.
  • the pressure is between atmospheric pressure and 2 MPa, preferably between 0.1MPa and 1MPa.
  • the liquid / liquid extraction can be carried out generally in a mixer-settler or in an extraction column operating against the current.
  • the extraction is carried out in an extraction column.
  • the chosen solvent has a sufficiently high boiling point in order to be able to thin the heavy fraction resulting from the fractionation without vaporizing, the heavy fraction being typically conveyed at temperatures of between 200 ° C. and 300 ° C.
  • the extract consisting of the parts of the heavy fraction that are not soluble in the solvent (and highly concentrated in aromatics)
  • the raffinate consisting of solvent and soluble parts of the heavy fraction.
  • the solvent is distilled off from the soluble portions and recycled internally to the liquid / liquid extraction process, the solvent management being known to those skilled in the art.
  • the raffinate resulting from the extraction of aromatics is sent to the hydrocracking unit and / or catalytic cracking unit alone or concomitantly with one or more other fillers chosen from vacuum gas oil for direct distillation of crude oil (Straight Run VGO) and the low vacuum (LVGO) and heavy (HVGO) distillates obtained at the outlet of the vacuum fractionation (c).
  • vacuum gas oil for direct distillation of crude oil (Straight Run VGO) and the low vacuum (LVGO) and heavy (HVGO) distillates obtained at the outlet of the vacuum fractionation (c).
  • hydrocracking includes cracking processes comprising at least one charge conversion step using at least one catalyst in the presence of hydrogen.
  • the hydrocracking may be carried out according to one-step diagrams comprising in the first place advanced hydrorefining which is intended to carry out extensive hydrodenitrogenation and desulfurization of the feedstock before the effluent is wholly sent to the hydrocracking catalyst. itself, especially in the case where it comprises a zeolite.
  • It also includes two-step hydrocracking which comprises a first step which aims, as in the "one-step” process, to perform the hydrorefining of the feed, but also to achieve a conversion of the feedstock. order in general from 30 to 60 percent.
  • first step which aims, as in the "one-step” process, to perform the hydrorefining of the feed, but also to achieve a conversion of the feedstock. order in general from 30 to 60 percent.
  • second step of a two-stage hydrocracking process generally only the fraction of the unconverted feedstock in the first step is processed.
  • Conventional hydrorefining catalysts generally contain at least one amorphous support and at least one hydro-dehydrogenating element (generally at least one element of the non-noble groups VIB and VIII, and most often at least one element of group VIB and at least one non-noble group VIII element).
  • the matrices that can be used in the hydrorefining catalyst alone or as a mixture are, by way of example, alumina, halogenated alumina, silica, silica-alumina, clays (chosen by for example, natural clays such as kaolin or bentonite), magnesia, titanium oxide, boron oxide, zirconia, aluminum phosphates, titanium phosphates, phosphate phosphates and the like. zirconium, coal, aluminates. It is preferred to use matrices containing alumina, in all the forms known to those skilled in the art, and even more preferably aluminas, for example gamma-alumina.
  • the operating conditions of the hydrocracking step are adjusted so as to maximize the production of the desired cut while ensuring good operability of the hydrocracking unit.
  • the operating conditions used in the reaction zone (s) are generally an average catalyst bed temperature (WABT) of between 300 and 550 ° C., preferably of between 350 and 500 ° C.
  • the pressure is generally between 5 and 35 MPa, preferably between 6 and 25 MPa.
  • the liquid space velocity (charge rate / volume of catalyst) is generally between 0.1 and 10 h -1, preferably between 0.2 and 5 h -1.
  • An amount of hydrogen is introduced such that the volume ratio in m3 of hydrogen per m3 of hydrocarbon at the inlet of the hydrocracking step is between 300 and 2000 m3 / m3, most often between 500 and 1800 m3 / m3, preferably between 600 and 1500 m3 / m3.
  • This reaction zone generally comprises at least one reactor comprising at least one fixed-bed hydrocracking catalyst.
  • the fixed bed of hydrocracking catalyst may be optionally preceded by at least one fixed bed of a hydrorefining catalyst (hydrodesulfurization, hydrodenitrogenation for example).
  • the hydrocracking catalysts used in the hydrocracking processes are generally of the bifunctional type associating an acid function with a hydrogenating function.
  • the acid function can be provided by supports having a large surface area (generally 150 to 800 m 2 g -1) and having surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), combinations of boron oxides and aluminum, amorphous silica-aluminas known as amorphous hydrocracking catalysts and zeolites.
  • the hydrogenating function may be provided either by one or more metals of Group VIII of the Periodic Table of Elements, or by a combination of at least one Group VIB metal of the Periodic Table and at least one Group VIII metal.
  • the hydrocracking catalyst may also comprise at least one crystalline acid function such as a zeolite Y, or an amorphous acid function such as a silica-alumina, at least one matrix and a hydrodehydrogenating function.
  • crystalline acid function such as a zeolite Y
  • amorphous acid function such as a silica-alumina
  • it may also comprise at least one element chosen from boron, phosphorus and silicon, at least one element of group VIIA (chlorine, fluorine for example), at least one element of group VIIB (manganese for example), with least one element of the group VB (niobium for example).
  • group VIIA chlorine, fluorine for example
  • group VIIB manganese for example
  • group VB niobium for example
  • Fluidized catalytic cracking is a well-known process that has undergone many changes since the 1930s (see Avidan A., Shinnar R., "Development of Catalytic Cracking Technology: A Lesson in Chemical Reactor Design", Ind.Eng.Chem.Res, 29, 931-942, 1990 ).
  • This process is characterized by a reaction zone in which the cracking reactions are carried out on a zeolite type catalyst, and a regeneration zone which makes it possible to burn off the coke deposited on the catalyst during the cracking reactions.
  • the main objective of the catalytic cracking unit of a refinery is the production of gasoline bases, ie cuts having a distillation range of between 35 ° C and 250 ° C.
  • Gasoline is produced by cracking the feedstock in the main reactor, called riser, because of the elongated shape of this reactor and its upward flow mode. When the flow is down in the main reactor, it is called “downer”.
  • the conventional feedstock of a fluidized bed catalytic cracking unit of heavy cuts is generally composed of a hydrocarbon or a mixture of hydrocarbons containing essentially (ie at least 80%) of molecules whose boiling is greater than 340 ° C.
  • This main charge also contains limited quantities of metals (Ni + V), in concentration generally less than 50 ppm, preferably less than 20 ppm, and a content of hydrogen in general greater than 11% by weight, typically between 11.5% and 14.5%, and preferably between 11.8% and 14% by weight.
  • the conradson carbon content (abbreviated as CCR) of the feed (defined by ASTM D 482) provides an evaluation of coke production during catalytic cracking.
  • the coke yield requires a specific sizing of the unit to satisfy the heat balance.
  • the C / O ratio is the ratio of the mass flow rate of catalyst circulating in the unit to the mass flow rate at the inlet of the unit.
  • the residence time is defined as the volume of the riser (m3) on the volume flow rate of charge (m3 / s).
  • the feed used in this example has the composition detailed in Table 1. It is a vacuum residue of the "Ural" type (Urals in the English terminus), therefore a vacuum residue obtained from 'a crude oil from Russia.
  • Table 1 ⁇ / u> composition of the load used ("Ural" type vacuum residue)
  • Property Unit Value Density - 1,003 Viscosity at 100 ° C cSt 540 Conradson Carbon %weight 15.0 Asphaltenes in C7 %weight 4.0 Nickel ppm wt 70 Vanadium ppm wt 200 Nitrogen ppm wt 5,800 Sulfur %weight 2.7 Cup 540 ° C - * %weight 10.0 * cup containing products with a boiling point below 540 ° C.
  • the charge is carried out in the process according to the invention ( figure 2 ), without hydrocracking 60 nor catalytic cracking 70 and thus also without the addition of vacuum distillate obtained by the direct distillation of crude oil (SR-VGO) 91 at the inlet of the hydrocracking and / or catalytic cracking steps.
  • SR-VGO crude oil
  • certain products obtained can be subsequently sent to a hydrocracking stage, in particular the raffinate resulting from the extraction stage, alone or as a mixture with other cuts resulting from the process according to the invention.
  • the feedstock is treated in a bubbling bed H-Oil® reactor containing a commercial ebullated bed hydroconversion catalyst (eg TEX2740 or TEX2910, available from Criterion).
  • a commercial ebullated bed hydroconversion catalyst eg TEX2740 or TEX2910, available from Criterion.
  • the liquid products from the reactor are fractionated by atmospheric distillation into a naphtha fraction (C5 + -150 ° C), a gas oil fraction (150-370 ° C) and a residual fraction 370 ° C +.
  • the residual fraction is fractionated by vacuum distillation into a gas fraction which is sent to the fuel, a vacuum distillate fraction VGO (370 ° C.-540 ° C.) and a residual fraction under vacuum at 540 ° C.
  • VGO vacuum distillate fraction
  • the residual fraction under vacuum is subjected to solvent deasphalting C4 with an extraction column.
  • a deasphalted DAO oil and a pitch (residual asphalt) are obtained.
  • the DAO deasphalted oil is subjected to a liquid / liquid furfural extraction to give a raffinate and an extract.
  • the extract is advantageously used in part as a diluent in the deep hydroconversion unit and partly upgraded with the pitch.
  • the solvent used in the SDA unit is a mixture of butanes comprising 60% nC4 and 40% iC4.
  • the DAO yield of the deasphalting unit is increased to 75% in order to maximize the recovery of the deasphalted oil.
  • Table 3 shows that using the extract obtained in the extraction unit as a diluent at the hydroconversion unit doubles the run time of the deep hydroconversion.
  • the associated finished product production gain is just over 3% (1.5 months over 4 years run).
  • the hydroconversion unit produces 5% additional recoverable products, ie 5% Naphtha, 5% Diesel and 5% VGO vacuum gas oil.
  • the properties of the raffinate and the extract at the outlet of the extraction unit are compared with the deasphalted oil DAO in Table 5.
  • Table 5 ⁇ / u> properties of the deasphalted oil (DAO) at the inlet, the raffinate and the extract at the outlet of the extraction unit
  • DAO raffinate Extract Density - 0.97 0,880 0.967 Conradson Carbon %weight 12.6 3.0 19 Asphaltenes in C7 %weight 0.1 ⁇ 0.05 0.2 Nickel + Vanadium ppm wt 20 ⁇ 2 40
  • the raffinate density and the nitrogen and sulfur content of the raffinate are lower than those of the deasphalted DAO oil.
  • the raffinate is therefore a less refractory feedstock to be treated in a fixed bed hydrotreating unit, for example, or in a hydrocracking unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

DOMAINE DE L'INVENTION : FIELD OF THE INVENTION :

L'invention concerne le domaine de la conversion profonde de charges hydrocarbonées lourdes qui permet d'obtenir des coupes hydrocarbonées valorisables telles que du gaz de pétrole liquéfié (Liquified Petroleum Gas ou LPG selon la terminologie anglo-saxonne), des essences ou naphtas, du kérosène, du gasoil et des huiles.The invention relates to the field of deep conversion of heavy hydrocarbon feedstocks which makes it possible to obtain valuable hydrocarbon cuts such as liquified petroleum gas (LPG), gasolines or naphthas, kerosene, diesel and oils.

L'invention porte sur des schémas de procédés permettant d'améliorer les performances des unités de conversion en introduisant une extraction des aromatiques.The invention provides process schemes for improving the performance of conversion units by introducing aromatics extraction.

Les raffineries comprennent en règle générale une unité d'hydroconversion profonde du résidu, suivie d'un fractionnement atmosphérique, puis d'un fractionnement sous vide et en aval, une unité de craquage catalytique ou/et une unité d'hydrocraquage. Eventuellement, une unité de désasphaltage du résidu non converti lors de l'hydroconversion est également présente.Refineries typically include a deep hydroconversion unit of the residue, followed by atmospheric fractionation, followed by vacuum fractionation and downstream, a catalytic cracking unit and / or a hydrocracking unit. Optionally, a deasphalting unit of the unconverted residue during the hydroconversion is also present.

Les procédés d'hydroconversion profonde sont utilisés en raffinerie pour transformer des mélanges hydrocarbonés lourds en produits aisément valorisables. Ils sont habituellement principalement utilisés pour convertir des charges lourdes telles que des coupes pétrolières ou synthétiques lourdes, par exemple des résidus issus de distillation atmosphérique et sous vide afin de les convertir en essence et gasoil plus légers. Lors de l'hydroconversion, du fioul gaz, et des coupes légères tel que les LPG (gaz de pétrole liquéfié) et du naphta (coupe essence) sont également produits.Deep hydroconversion processes are used in refineries to convert heavy hydrocarbon mixtures into easily recoverable products. They are usually mainly used to convert heavy loads such as heavy petroleum or synthetic cuts, for example residues from atmospheric distillation and vacuum to convert them to lighter gasoline and gas oil. During hydroconversion, fuel oil, and light cuts such as LPG (liquefied petroleum gas) and naphtha (gasoline cut) are also produced.

Le procédé d'hydroconversion profonde peut être un hydrocraquage de résidu en lit bouillonnant. Cette technologie est notamment commercialisée sous le nom de H-OIL ®. La charge est alors usuellement du résidu sous vide.The deep hydroconversion process may be hydrocracking of bubbling bed residue. This technology is marketed under the name of H-OIL ®. The charge is then usually the residue under vacuum.

L'unité d'hydroconversion profonde produit du résidu non converti lourd à forte teneur en asphaltènes. Les asphaltènes sont instables et tendent à précipiter dans les points chauds comme les fours et les fonds de colonne (tout particulièrement dans la colonne sous vide). En conséquence, les unités et les colonnes sont périodiquement arrêtées pour être nettoyées, ce qui réduit leur temps de disponibilité. Typiquement, les durées continues d'opération (« runs » dans la terminologie anglo-saxonne) durent deux ans, puis les unités sont arrêtées et ouvertes pour nettoyage. La colonne sous-vide est arrêtée encore plus fréquemment (typiquement tous les ans).The deep hydroconversion unit produces heavy unconverted residue with high asphaltene content. Asphaltenes are unstable and tend to precipitate in hot spots such as furnaces and column bottoms (especially in the vacuum column). As a result, units and columns are periodically shut down for cleaning, reducing their uptime. Typically, the continuous running times ("runs" in the English terminology) last two years, then the units are stopped and opened for cleaning. The vacuum column is stopped even more frequently (typically every year).

Les asphaltènes constituent une famille de composés solubles dans les solvants aromatiques et polyaromatiques et insolubles dans les hydrocarbures aliphatiques (N-pentane, N-heptane...). Leur structure et leur composition varient suivant l'origine de la charge pétrolière, mais certains atomes et groupements de ladite structure sont toujours présents dans des proportions variables. Parmi ces atomes, on peut citer l'oxygène, le soufre, l'azote, les métaux lourds tels que par exemple le nickel et le vanadium. La présence de nombreux groupements polycycliques donne aux molécules d'asphaltènes un caractère hautement aromatique. Du fait de leur insolubilité dans les hydrocarbures aliphatiques et en fonction de la nature plus ou moins aromatique du pétrole brut ou des coupes pétrolières (également désignés par produits dérivés), les asphaltènes peuvent précipiter. Ce phénomène engendre la formation de dépôt dans les lignes et les équipements de production (réacteurs, ballons, colonnes et échangeurs).Asphaltenes are a family of compounds soluble in aromatic solvents and polyaromatic and insoluble in aliphatic hydrocarbons (N-pentane, N-heptane ...). Their structure and composition vary according to the origin of the petroleum charge, but some atoms and groups of said structure are always present in varying proportions. Among these atoms, there may be mentioned oxygen, sulfur, nitrogen, heavy metals such as for example nickel and vanadium. The presence of numerous polycyclic groups gives the asphaltene molecules a highly aromatic character. Because of their insolubility in aliphatic hydrocarbons and depending on the more or less aromatic nature of crude oil or petroleum fractions (also referred to as by-products), asphaltenes can precipitate. This phenomenon leads to deposit formation in production lines and equipment (reactors, balloons, columns and exchangers).

Les résines sont des composés hydrocarbonés analogues aux asphaltènes, mais elles sont solubles dans des solvants tels que le N-pentane ou l'N-heptane à l'inverse des asphaltènes. Les résines sont typiquement constituées d'un noyau polycyclique condensé, composé de cycles aromatiques et cyclaniques et d'hétérocycles sulfurés ou azotés avec un poids moléculaire inférieur et une structure moins condensée que les asphaltènes.The resins are asphaltene-like hydrocarbon compounds, but they are soluble in solvents such as N-pentane or N-heptane in contrast to asphaltenes. The resins typically consist of a condensed polycyclic ring composed of aromatic and cyclanic rings and sulfurous or nitrogenous heterocycles with a lower molecular weight and a less condensed structure than the asphaltenes.

Un premier moyen d'améliorer la stabilité du résidu est de jouer sur la conversion dans la section réactionnelle en la limitant. Dans ce cas, la stabilité du résidu dicte la conversion maximum atteignable dans les unités d'hydroconversion profonde (typiquement de 60% à plus de 80% poids).A first way to improve the stability of the residue is to play on the conversion in the reaction section by limiting it. In this case, the stability of the residue dictates the maximum achievable conversion in the deep hydroconversion units (typically from 60% to more than 80% by weight).

Un autre moyen d'obtenir un accroissement de la conversion des unités d'hydroconversion profonde est de mélanger à la charge un diluant (5 à 10% poids, et typiquement jusqu'à 20% poids) constitué de charges lourdes riches en composés aromatiques et résines seules ou en mélange. Cela permet d'opérer avec des durées continues d'opération (runs suivant la terminologie anglo saxonne) plus longues ou bien à durée d'opération équivalente à des taux de conversion plus élevés. Typiquement, ce diluant peut être du slurry de craquage catalytique (à savoir la boue ou fraction résiduelle lourde issue du FCC, coupe 360°C+ à dominante aromatique).Another way to obtain an increase in the conversion of the deep hydroconversion units is to mix with the feed a diluent (5 to 10% by weight, and typically up to 20% by weight) consisting of heavy feeds rich in aromatic compounds and resins alone or in a mixture. This makes it possible to operate with longer running times (runs in the English terminology) longer or with a duration of operation equivalent to higher conversion rates. Typically, this diluent may be catalytic cracking slurry (ie sludge or heavy residual fraction from the FCC, 360 ° C + predominantly aromatic cut).

En pratique, les raffineurs associent les deux moyens (conversion adaptée et dilution de la charge) dans l'unité d'hydroconversion afin de limiter les dépôts d'asphaltènes.In practice, refiners combine the two means (suitable conversion and dilution of the feedstock) in the hydroconversion unit to limit asphaltene deposits.

Dans une raffinerie typique, les diluants possibles, comme la fraction résiduelle lourde (slurry) de craquage catalytique, sont disponibles en quantité limitée et sont donc un facteur limitant la conversion maximale atteignable dans les unités d'hydroconversion profonde.In a typical refinery, the possible diluents, such as the catalytic cracked heavy slurry fraction, are available in limited quantities and are therefore a factor limiting the maximum achievable conversion in deep hydroconversion units.

ART ANTERIEUR : PRIOR ART :

De nombreux schémas ont été mis en oeuvre afin de résoudre les problèmes cités ci-dessus, dans un objectif d'améliorer les procédés d'hydroconversion profonde en augmentant les rendements en produits valorisables tout en maintenant un coût de fonctionnement optimal.Numerous schemes have been implemented to solve the problems mentioned above, with the aim of improving deep hydroconversion processes by increasing the yields of recoverable products while maintaining an optimal operating cost.

Les brevets US 5,980,730 et US 6,017,441 décrivent un procédé de conversion profonde d'une fraction pétrolière lourde, ledit procédé comprenant une étape d'hydroconversion en lit bouillonnant triphasique, une distillation atmosphérique de l'effluent obtenu, une distillation sous vide du résidu atmosphérique obtenu, un désasphaltage du résidu sous vide obtenu et un hydrotraitement de la fraction désasphaltée. Il est également possible dans ce procédé d'envoyer au moins une fraction liquide lourde issue de l'étape d'hydrotraitement dans une section de craquage catalytique en lit fluidisé ou de recycler une partie de la fraction désasphaltée ou une partie de l'asphalte à l'entrée de l'hydroconversion.Licences US 5,980,730 and US 6,017,441 describe a method for deep conversion of a heavy petroleum fraction, said process comprising a three-phase bubbling bed hydroconversion step, an atmospheric distillation of the effluent obtained, a vacuum distillation of the obtained atmospheric residue, a deasphalting of the residue under vacuum obtained and a hydrotreatment of the deasphalted fraction. It is also possible in this process to send at least one heavy liquid fraction resulting from the step hydrotreating in a fluidized catalytic cracking section or recycling a portion of the deasphalted fraction or part of the asphalt to the hydroconversion inlet.

Le brevet FR 2 969 650 B1 décrit un procédé de conversion de charge hydrocarbonée comprenant une huile de schiste ledit procédé comprenant une étape d' hydroconversion en lit bouillonnant, une distillation atmosphérique de l'effluent obtenu et une extraction liquide/liquide de la fraction résidu atmosphérique avec un solvant permettant d'extraire les aromatiques et les résines. Selon les variantes du procédé, il est possible d'envoyer une fraction du raffinat dans une section de craquage catalytique et de recycler une fraction de l'extrait vers l'unité d'hydroconversion. Le résidu atmosphérique issu de l'hydroconversion n'étant pas désasphalté dans le procédé décrit dans ce brevet, l'extrait issu de l'unité d'extraction est susceptible de contenir des asphaltènes ce qui conduirait à une dégradation des performances de l'hydroconversion en cas de recyclage de celui-ci à l'hydroconversion. De plus, le procédé décrit dans ce brevet est spécifiquement adapté au traitement des charges comprenant des huiles de schiste dont la nature est différente des charges hydrocarbures conventionnelles.The patent FR 2 969 650 B1 describes a hydrocarbon feedstock conversion process comprising a shale oil, said method comprising a bubbling bed hydroconversion stage, an atmospheric distillation of the obtained effluent and a liquid / liquid extraction of the atmospheric residue fraction with a solvent allowing extract aromatics and resins. Depending on the process variants, it is possible to send a fraction of the raffinate to a catalytic cracking section and to recycle a fraction of the extract to the hydroconversion unit. Since the atmospheric residue resulting from the hydroconversion is not deasphalted in the process described in this patent, the extract from the extraction unit is likely to contain asphaltenes, which would lead to a degradation of the hydroconversion performances. in case of recycling it to hydroconversion. In addition, the process described in this patent is specifically adapted to the treatment of fillers comprising shale oils whose nature is different from conventional hydrocarbon feeds.

Le brevet FR 2 984 917 B1 décrit un procédé pour optimiser la production de distillat moyen au sein d'une raffinerie contenant au moins une unité de craquage catalytique pour lequel une des variantes consiste à soumettre le résidu sous vide provenant d'une unité de craquage catalytique à une extraction au solvant des aromatiques ou selon une variante à un désasphaltage au propane, puis envoyer l'extrait au fioul et recycler le raffinat à l'entrée de l'unité de craquage catalytique. Dans le procédé décrit dans ce brevet, l'extrait de l'unité d'extraction n'est pas valorisé vers l'unité d'hydroconversion.The patent FR 2 984 917 B1 discloses a method for optimizing the production of middle distillate in a refinery containing at least one catalytic cracking unit for which one of the variants comprises subjecting the residue under vacuum from a catalytic cracking unit to a solvent extraction of aromatic or alternatively to a propane deasphalting, then send the fuel extract and recycle the raffinate at the inlet of the catalytic cracking unit. In the process described in this patent, the extract of the extraction unit is not upgraded to the hydroconversion unit.

La demande de brevet US 2013/0026065 A1 décrit un procédé permettant de produire des combustibles de transport à partir d'hydrocarbures lourds en les soumettant à une extraction liquide/liquide des aromatiques, puis en envoyant la fraction enrichie en aromatiques à un hydrocraqueur et la fraction appauvrie en aromatiques à une unité de craquage catalytique.
La demande 14/62.715 déposée le 18 décembre 2014 par la Demanderesse, non publiée, décrit un procédé de conversion profonde de résidus comprenant une étape d'hydroconversion, une étape de séparation, une étape d'hydrocraquage de la fraction gazole sous vide, une étape de fractionnement de l'effluent d'hydrocraquage et un recyclage de la fraction gazole sous-vide non convertie dans l'étape d'hydroconversion, dans l'objectif de maximiser la production de gazole. FR3014897 divulgue un procédé de traitement d'une charge hydrocarbonée comprenant une étape d'hydroconversion, une étape de séparation par une distillation atmosphérique suivi d'une distillation sous-vide, une étape de désasphaltage sélectif mise en oeuvre en deux étapes, par mise en contact avec un mélange d'au moins un solvant polaire et d'au moins un solvant apolaire, dans une configuration dite de polarité décroissante, et une étape de recyclage à l'entrée de l'étape d'hydroconversion.
The patent application US 2013/0026065 A1 discloses a process for producing transportable fuels from heavy hydrocarbons by subjecting them to liquid / liquid extraction of aromatics, then sending the aromatic-enriched fraction to a hydrocracker and the aromatics-depleted fraction to a cracking unit catalytic.
Requirement 14 / 62.715 filed on December 18, 2014 by the Applicant, unpublished, discloses a deep conversion process of residues comprising a hydroconversion step, a separation step, a step of hydrocracking the gas oil fraction under vacuum, a step of fractionation of the hydrocracking effluent and recycling the unconverted vacuum gas oil fraction in the hydroconversion stage, with the aim of maximizing diesel production. FR3014897 discloses a process for treating a hydrocarbon feedstock comprising a hydroconversion step, a separation step by atmospheric distillation followed by a vacuum distillation, a selective deasphalting step carried out in two stages, by contacting with a mixture of at least one polar solvent and at least one apolar solvent, in a so-called decreasing polarity configuration, and a recycling step at the inlet of the hydroconversion stage.

Aucun des documents de l'art antérieur ne permet néanmoins de résoudre l'ensemble des problèmes cités.None of the documents of the prior art nevertheless makes it possible to solve all the problems mentioned.

Le procédé selon l'invention propose d'ajouter à la suite de l'unité d'hydroconversion profonde et de la section de fractionnement, une unité de désasphaltage, suivie par une unité d'extraction des hydrocarbures aromatiques et résines sur la fraction résidu issue du fractionnement sous vide, et de valoriser l'extrait et le raffinat obtenus à l'unité d'extraction des aromatiques.The process according to the invention proposes to add, following the deep hydroconversion unit and the fractionation section, a deasphalting unit, followed by a unit for extracting the aromatic hydrocarbons and resins on the residual residue fraction. fractionation under vacuum, and to recover the extract and the raffinate obtained in the aromatics extraction unit.

L'invention permet d'améliorer simultanément les performances de l'unité d'hydroconversion profonde et celles des éventuelles unités situées en aval comme l'hydrocraquage ou le craquage catalytique.The invention simultaneously improves the performance of the deep hydroconversion unit and those of any downstream units such as hydrocracking or catalytic cracking.

En effet, par rapport au schéma de raffinerie usuel, le procédé selon l'invention permet d'obtenir des rendements en coupes hydrocarbonées valorisables supérieurs tout en garantissant la même durée de cycle à l'unité d'hydroconversion profonde, voire en l'augmentant, et en améliorant les performances des unités aval.Indeed, compared to the usual refinery scheme, the process according to the invention makes it possible to obtain higher yields of hydrocarbon fractions that can be upgraded while guaranteeing the same cycle time to the deep hydroconversion unit, or even increasing it. , and improving the performance of downstream units.

La présente invention a pour objet de pallier les inconvénients des procédés de l'art antérieur en extrayant des effluents d'hydroconversion profonde une fraction lourde enrichie en composés aromatiques et résines,

  • pour d'une part, utiliser cette fraction extraite en diluant aromatique à l'hydroconversion,
  • d'autre part, utiliser le raffinat issu de cette extraction dans les unités aval éventuelles comme l'hydrocraquage et / ou le craquage catalytique.
Le procédé selon l'invention permet d'atteindre des rendements en produits valorisables plus importants au moyen d'une extraction des aromatiques et résines contenus dans le résidu non converti issu de l'hydroconversion profonde selon les variantes de schémas de procédé détaillées ci-après.The object of the present invention is to overcome the disadvantages of the processes of the prior art by extracting deep hydroconversion effluents from a heavy fraction enriched in aromatic compounds and resins.
  • for one hand, use this fraction extracted by aromatic diluent to hydroconversion,
  • on the other hand, using the raffinate from this extraction in any downstream units such as hydrocracking and / or catalytic cracking.
The method according to the invention makes it possible to achieve higher yields of valuable products by means of extraction of aromatics and resins. contained in the unconverted residue resulting from the deep hydroconversion according to the variants of the process schemes detailed below.

RESUME DE L'INVENTION :SUMMARY OF THE INVENTION:

L'invention concerne un procédé de conversion profonde d'une charge hydrocarbonée lourde comprenant les étapes suivantes :

  1. a) hydroconversion en lit bouillonnant de la charge, en présence d'hydrogène, dans une section d'hydroconversion comprenant au moins un réacteur triphasique, contenant au moins un catalyseur d'hydroconversion supporté,
  2. b) fractionnement atmosphérique d'au moins une partie de l'effluent liquide hydroconverti issu de l'étape a) dans une section de fractionnement atmosphérique pour produire une fraction comprenant une coupe essence et une coupe gazole, et un résidu atmosphérique ;
  3. c) fractionnement sous vide d'au moins une partie du résidu atmosphérique issu de l'étape b) dans une section de fractionnement sous vide pour obtenir une fraction gazole sous vide comprenant des distillats sous vide léger (LVGO) et lourd (HVGO), et une fraction résidu sous vide non convertie,
  4. d) désasphaltage d'au moins une partie de la fraction résidu sous vide non convertie issue de l'étape c) dans une section de désasphaltage uniquement au moyen d'un solvant paraffinique dans des conditions permettant d'obtenir une coupe hydrocarbonée appauvrie en asphaltènes dite huile désasphaltée et de l'asphalte résiduel.
  5. e) extraction liquide-liquide sur la coupe hydrocarbonée appauvrie en asphaltènes dans une section d'extraction des aromatiques au moyen d'un solvant polaire dans des conditions permettant l'extraction des aromatiques pour produire un extrait enrichi en aromatiques et résines et un raffinat appauvri en aromatiques et résines, l'extrait étant envoyé au moins en partie comme diluant aromatique vers l'entrée de la section d'hydroconversion.
The invention relates to a method for deep conversion of a heavy hydrocarbon feedstock comprising the following steps:
  1. a) boiling bed hydroconversion of the feed, in the presence of hydrogen, in a hydroconversion section comprising at least one three-phase reactor, containing at least one supported hydroconversion catalyst,
  2. b) atmospheric fractionation of at least a portion of the hydroconverted liquid effluent from step a) in an atmospheric fractionation section to produce a fraction comprising a gasoline cut and a gas oil cut, and an atmospheric residue;
  3. c) vacuum fractionation of at least a portion of the atmospheric residue from step b) in a vacuum fractionation section to obtain a vacuum gas oil fraction comprising light vacuum (LVGO) and heavy (HVGO) distillates, and an unconverted vacuum residue fraction,
  4. d) deasphalting of at least a portion of the unconverted vacuum residue fraction from step c) in a deasphalting section only by means of a paraffinic solvent under conditions making it possible to obtain an asphaltenes-depleted hydrocarbon fraction called deasphalted oil and residual asphalt.
  5. e) liquid-liquid extraction on the asphaltene-depleted hydrocarbon fraction in an aromatic extraction section by means of a polar solvent under conditions allowing the extraction of the aromatics to produce an extract enriched in aromatics and resins and a depleted raffinate in aromatics and resins, the extract being at least partly sent as an aromatic diluent to the inlet of the hydroconversion section.

Le procédé selon l'invention peut comprendre en outre :

  • une étape f1) d'hydrocraquage d'au moins une partie du raffinat issu de l'étape d'extraction e) dans un réacteur comprenant au moins un catalyseur d'hydrocraquage en lit fixe pour produire une fraction essence, une fraction gazole (GO), gazole sous vide (VGO) et une fraction d'huile non convertie (UCO)
  • et/ou une étape f2) de craquage catalytique en lit fluidisé d'au moins une partie du raffinat issu de l'extraction e) dans un réacteur en lit fluidisé pour produire une fraction gazeuse, une fraction essence, une fraction gazole et une fraction résiduelle lourde dite slurry.
The method according to the invention may furthermore comprise:
  • a step f1) of hydrocracking at least a portion of the raffinate from the extraction step e) in a reactor comprising at least one fixed-bed hydrocracking catalyst to produce a gasoline fraction, a gas oil fraction (GO ), vacuum gas oil (VGO) and an unconverted oil fraction (UCO)
  • and / or a fluidized catalytic cracking step f 2) of at least a portion of the raffinate from the extraction e) in a fluidized bed reactor to produce a gaseous fraction, a gasoline fraction, a gas oil fraction and a fraction heavy residual called slurry.

La fraction d'huile non convertie issue de l'hydrocraquage et/ou la fraction résiduelle lourde issue du craquage catalytique peuvent être envoyées vers la section d'extraction des aromatiques.The unconverted oil fraction from the hydrocracking and / or the heavy residual fraction from the catalytic cracking can be sent to the aromatics extraction section.

L'extrait peut être en partie utilisé comme huile de fluxage en mélange avec l'asphalte résiduel produit par l'étape de désasphaltage d) pour donner un combustible liquide ou pour entrer dans la composition de bitumes ou pour alimenter une unité de cokéfaction.The extract may be partly used as a fluxing oil mixed with the residual asphalt produced by the deasphalting step d) to give a liquid fuel or to enter the bitumen composition or to feed a coking unit.

Le raffinat produit par l'unité d'extraction des aromatiques peut être envoyé vers l'unité d'hydrocraquage et/ou vers l'unité de craquage catalytique de manière concomitante à une ou plusieurs autres charges choisies parmi du gazole sous vide de distillation directe du pétrole brut (Straight Run VGO) et les distillats sous vide léger (LVGO) et lourd (HVGO) obtenus en sortie du fractionnement sous vide c).The raffinate produced by the aromatics extraction unit can be sent to the hydrocracking unit and / or to the catalytic cracking unit concomitantly with one or more other fillers selected from vacuum gas oil from direct distillation crude oil (Straight Run VGO) and the distillates under light vacuum (LVGO) and heavy distillates (HVGO) obtained at the outlet of the vacuum fractionation (c).

Au moins une partie du distillat sous vide léger (LVGO) ou du distillat sous vide lourd (HVGO) est envoyée dans la section-d'extraction des aromatiques.At least a portion of the light vacuum distillate (LVGO) or heavy vacuum distillate (HVGO) is sent to the extraction section of the aromatics.

Dans une variante, une partie du résidu atmosphérique est envoyée directement dans la section de désasphaltage.In a variant, a part of the atmospheric residue is sent directly into the deasphalting section.

L'étape a) d'hydroconversion est opérée de préférence sous une pression absolue comprise entre 5 et 35 MPa, à une température moyenne pondérée du lit catalytique de 300 à 600 °C, à une vitesse volumique horaire allant de 0,1 h-1 à 10 h-1 et à un ratio H2/HC hydrogène sur charge allant de 200 à 1000m3/m3.The hydroconversion stage a) is preferably carried out under an absolute pressure of between 5 and 35 MPa, at a weighted average temperature of the catalytic bed of 300 to 600 ° C., at an hourly space velocity ranging from 0.1 h . 1 to 10 h -1 and a ratio H 2 / HC hydrogen on charge ranging from 200 to 1000m 3 / m 3 .

L'étape f1) d'hydrocraquage est opérée de préférence sous une température moyenne du lit catalytique comprise entre 300 et 550°C, une pression comprise entre 5 et 35 MPa, une vitesse spatiale liquide comprise entre 0,1 et 10 h-1.The hydrocracking step f1) is preferably carried out under an average temperature of the catalytic bed of between 300 and 550 ° C., a pressure of between 5 and 35 MPa and a liquid space velocity of between 0.1 and 10 h -1. .

L'étape f2) de craquage catalytique en lit fluidisé est opérée de préférence en écoulement ascendant avec une température en sortie de réacteur comprise entre 520°C et 600°C, un rapport C/O compris entre 6 et 14, et un temps de résidence compris entre 1 et 10 s ou en écoulement descendant avec une température de sortie du réacteur comprise entre 580°C et 630°C, un rapport C/O compris entre 15 et 40, et un temps de résidence compris entre 0,1 et 1 s.The fluidized catalytic cracking step f 2) is preferably carried out in upward flow with a reactor outlet temperature of between 520 ° C. and 600 ° C., a C / O ratio of between 6 and 14, and a reaction time of residence between 1 and 10 s or in downflow with a reactor outlet temperature between 580 ° C and 630 ° C, a C / O ratio between 15 and 40, and a residence time of between 0.1 and 1 s.

De préférence, l'étape de désasphaltage est réalisée dans une colonne d'extraction, le solvant comprenant au moins 50 percent en poids de composés hydrocarbonés ayant entre 3 et 7 atomes de carbone, la température en tête d'extracteur étant comprise entre 50 et 250°C, la température en fond d'extracteur étant comprise entre 30 et 220°C, la pression étant comprise entre 2 et 10 MPa.Preferably, the deasphalting step is carried out in an extraction column, the solvent comprising at least 50 percent by weight of hydrocarbon compounds having 3 to 7 carbon atoms, the temperature at the extractor head being between 50 and 250 ° C, the temperature at the bottom of the extractor being between 30 and 220 ° C, the pressure being between 2 and 10 MPa.

De manière très préférée, le solvant est le butane.Very preferably, the solvent is butane.

De préférence, l'extraction liquide-liquide est réalisée à l'aide d'un solvant choisi parmi le furfural, la N-méthyl-2-pyrrolidone (NMP), le sulfolane, le diméthylformamide(DMF), le diméthylsulfoxide (DMSO), le phénol, ou un mélange de ces solvants dans des proportions égales ou différentes, avec un ratio solvant / charge de 0,5/1 à 3/1, à une température comprise entre la température ambiante et 150°C, à une pression comprise entre la pression atmosphérique et 2 MPa.Preferably, the liquid-liquid extraction is carried out using a solvent selected from furfural, N-methyl-2-pyrrolidone (NMP), sulfolane, dimethylformamide (DMF), dimethylsulfoxide (DMSO) , phenol, or a mixture of these solvents in equal or different proportions, with a solvent / charge ratio of 0.5 / 1 to 3/1, at a temperature between room temperature and 150 ° C, at a pressure of between atmospheric pressure and 2 MPa.

La charge est avantageusement choisie parmi les charges hydrocarbonées lourdes de type résidus atmosphériques ou sous vide obtenus par exemple par distillation directe de coupe pétrolière ou par distillation sous-vide de pétrole brut, les charges de type distillats telles que les gazole sous vide ou les huiles désasphaltées, des asphaltes issues de désasphaltage au solvant de résidus pétroliers, le charbon en suspension dans une fraction hydrocarbonée telle que par exemple du gazole obtenu par distillation sous vide de pétrole brut ou alors du distillat issu de la liquéfaction du charbon, seules ou en mélange.The filler is advantageously chosen from heavy hydrocarbon feedstocks of the atmospheric or vacuum residue type obtained, for example by direct distillation of petroleum fraction or by vacuum distillation of crude oil, distillate type feedstocks such as vacuum gas oils or oils. deasphalted, asphalts from solvent deasphalting petroleum residues, coal suspended in a hydrocarbon fraction such as for example gas oil obtained by vacuum distillation of crude oil or distillate from the liquefaction of coal, alone or in mixture .

DESCRIPTION DETAILLEE DE L'INVENTION : DETAILED DESCRIPTION OF THE INVENTION

Le procédé selon l'invention s'applique préférentiellement à des charges d'hydrocarbures contenant des asphaltènes réfractaires. Par rapport aux schémas connus de l'art antérieur, le procédé selon l'invention propose d'insérer une unité supplémentaire d'extraction des aromatiques afin d'améliorer la performance du schéma, en valorisant l'extrait et éventuellement le raffinat obtenus.The process according to the invention is preferably applied to hydrocarbon feeds containing refractory asphaltenes. Compared to the known schemes of the prior art, the process according to the invention proposes to insert an additional unit for extracting aromatics in order to improve the performance of the scheme, by enhancing the extract and possibly the raffinate obtained.

Liste des figuresList of Figures

  • La figure 1 décrit le schéma de procédé selon l'art antérieur :
    ∘ Schéma 1 (Art antérieur) : Enchaînement d'une unité d'hydroconversion profonde, d'une unité de désasphaltage SDA et éventuellement d'une unité d'hydrocraquage HCK et/ou une unité de craquage catalytique en lit fluidisé FCC.
    The figure 1 describes the scheme of the process according to the prior art:
    ∘ Scheme 1 (prior art): Sequence of a deep hydroconversion unit, a deasphalting unit SDA and optionally an HCK hydrocracking unit and / or an FCC fluidized catalytic cracking unit.
  • La figure 2 décrit le schéma de procédé selon l'invention.
    ∘ Schéma 2 (Invention) : Enchaînement d'une unité d'hydroconversion profonde , d'une unité de désasphaltage SDA, d'une unité d'extraction des aromatiques et éventuellement envoi du raffinat obtenu vers une unité d'hydrocraquage HCK et/ou une unité de craquage catalytique en lit fluidisé FCC.
    The figure 2 describes the process scheme according to the invention.
    ∘ Scheme 2 (Invention): Sequencing of a deep hydroconversion unit, an SDA deasphalting unit, an aromatics extraction unit and optionally sending the obtained raffinate to an HCK hydrocracking unit and / or an FCC fluidized catalytic cracking unit.
Description des figuresDescription of figures Figure 1 : Art antérieur Figure 1 : Prior Art

Le schéma selon l'art antérieur intègre les unités suivantes :

  • ∘ Au moins une première unité d'hydroconversion profonde de la charge en lit bouillonnant 10. Cette technologie est notamment commercialisée sous le nom de procédé H-Oil® RC. L'unité d'hydroconversion profonde raffine et craque la charge composée d'hydrocarbures de type résidu sous vide obtenu à partir d'une distillation de pétrole brut VR (vacuum residue, résidu sous vide) en des quantités significatives de gaz 21, naphta léger et lourd (heavy naphta HN et light naphta LN) 22, Gasoil (GO) 23 et distillats sous vide (vacuum gasoil, VGO) en une ou deux fractions Light Vacuum GasOil, LVGO distillat sous vide léger 31 et Heavy Vacuum GasOil, HVGO distillat sous vide lourd 32. Ces différents produits sont séparés dans une section de fractionnement atmosphérique 20 et de fractionnement sous vide 30. En fond de la distillation sous vide, il subsiste un flux de résidu sous-vide (VR) 33 non converti envoyé dans l'unité de désasphaltage 40.
  • ∘ L'unité de désasphaltage au solvant (solvent deasphalting, SDA) 40 alimentée par le résidu sous vide (VR) 33 non converti de l'unité d'hydroconversion profonde produit une huile désasphaltée (deasphalted oil, DAO) 41 de bonne qualité, compatible avec le fonctionnement d'une unité d'hydrocraquage ou de craquage catalytique en lit fluidisé (FCC) et un asphalte résiduel 42 concentrant la majeure partie des contaminants du résidu sous-vide VR issu de l'unité d'hydroconversion profonde qui a différentes destinations possibles : par exemple, alimentation d'une unité 80 de cokéfaction, ou de gazéification ou de viscoréduction, ou utilisation en fuel solide (flaker) ou liquide ou utilisation en bitume.
  • ∘ L'unité d'hydrocraquage en lit fixe (HCK) 60 peut convertir l'huile désasphaltée (DAO) 41 ainsi que le distillat sous vide (Vacuum Gas Oil VGO) 31 et 32 issu de l'unité d'hydroconversion profonde , ainsi que par exemple du SR-VGO (straight run vacuum gas oil, distillat sous vide obtenu par distillation directe de pétrole brut) 91 et d'autres charges compatibles, pour former un flux 71 comprenant des quantités significatives de naphta, Gas Oil et Vacuum Gas Oil. Il reste un flux de VGO non converti (Unconverted Oil, UCO) 62 dont une partie est purgée (bleed). Ce flux non converti 62 peut être utilisé comme base pour des unités d'huile ou utilisé en diluant pour valoriser l'asphalte en fuel lourd. Optionnellement, le distillat sous vide (VGO) produit dans l'unité d'hydrocraquage (HCK) peut être recyclé dans l'unité d'hydroconversion profonde pour être en partie craqué en Gazole et Naphta sans impact significatif sur le fonctionnement de cette unité. Selon une variante, le schéma de raffinerie ne comprend pas d'unité d'hydrocraquage en lit fixe (HCK), mais une unité de craquage catalytique en lit fluidisé (FCC) 70 qui peut aussi être alimentée par l'huile désasphaltée (DAO) 41 et le distillat sous vide (31 et 32) VGO ex H-Oil RC. Selon une variante, du distillat sous vide obtenu par distillation directe de pétrole brut (SR VGO) 91 peut être envoyé dans le procédé de manière concomitante avec les deux charges précédentes, ainsi que potentiellement avec d'autres charges externes. L'unité de craquage catalytique en lit fluidisé FCC produit une fraction 71 comprenant des quantités significatives de gaz, essence légère et lourde (Heavy Naphta HN et light naphta LN), Light cycle oil (LCO) et Heavy cycle oil (HCO) et une fraction résiduelle lourde 72 appelée « slurry » selon la terminologie anglo-saxonne. La fraction résiduelle lourde (« slurry ») de cette unité de FCC, disponible en quantité limitée, est utilisée avantageusement comme diluant de la charge de l'unité d'hydroconversionprofonde .
  • ∘ Selon une autre variante, le schéma comprend à la fois une unité d'hydrocraquage en lit fixe (HCK) 60 et une unité de craquage catalytique en lit fluidisé (FCC) 70. Les deux unités peuvent traiter le gazole sous vide issu de l'hydroconversion en lit bouillonnant (VGO ex Hydroconversion) 31 et 32, l'huile désasphaltée DAO 41, typiquement du Gazole sous vide de distillation directe (SR-VGO) 91 et d'autres charges pour les convertir en des quantités significatives de naphta, gazole et gazole sous vide.
The diagram according to the prior art integrates the following units:
  • ∘ At least one first unit for deep hydroconversion of the ebullated bed charge 10. This technology is marketed in particular as the H-Oil® RC process . The deep hydroconversion unit refines and cracks the charge composed of hydrocarbons of vacuum residue type obtained from a distillation of crude oil VR (vacuum residue, residue under vacuum) in significant quantities of gas 21, light and heavy naphtha (heavy naphtha HN and light naphtha LN) 22, Gasoil (GO) 23 and vacuum distillates (vacuum gasoil, VGO) in one or two fractions Light Vacuum GasOil, LVGO Light vacuum distillate 31 and Heavy Vacuum Gas Oil, HVGO heavy vacuum distillate 32. These different products are separated in an atmospheric fractionation and vacuum fractionation section 30. In the bottom of the vacuum distillation, there is a residue stream unconverted vacuum (VR) 33 sent to the deasphalting unit 40.
  • ∘ The solvent deasphalting (SDA) unit 40 fed by the unconverted vacuum residue (VR) 33 of the deep hydroconversion unit produces a good quality deasphalted oil (DAO) 41, compatible with the operation of a hydrocracking or fluidized catalytic cracking unit (FCC) and a residual asphalt 42 concentrating the majority of the contaminants of the vacuum residue VR from the deep hydroconversion unit which has different possible destinations: for example, feeding a unit 80 of coking, or gasification or visbreaking, or use in solid fuel (flaker) or liquid or use in bitumen.
  • ∘ The fixed bed hydrocracking unit (HCK) 60 can convert the deasphalted oil (DAO) 41 as well as the vacuum distillate (Vacuum Gas Oil VGO) 31 and 32 from the deep hydroconversion unit, and that for example SR-VGO (straight run vacuum gas oil, vacuum distillate obtained by direct distillation of crude oil) 91 and other compatible charges, to form a stream 71 comprising significant quantities of naphtha, Gas Oil and Vacuum Gas Oil. There remains a stream of unconverted VGO (Unconverted Oil, UCO) 62 some of which is purged (bleed). This unconverted stream 62 can be used as a base for oil units or used in diluting to upgrade asphalt to heavy fuel oil. Optionally, the vacuum distillate (VGO) produced in the hydrocracking unit (HCK) can be recycled in the deep hydroconversion unit to be partly cracked in Diesel and Naphtha without impact. significant on the operation of this unit. Alternatively, the refinery scheme does not include a fixed bed hydrocracking unit (HCK), but a fluidized catalytic cracking unit (FCC) 70 which can also be fed with the deasphalted oil (DAO). 41 and vacuum distillate (31 and 32) VGO ex H-Oil RC . Alternatively, vacuum distillate obtained by direct distillation of crude oil (SR VGO) 91 may be fed into the process concurrently with the two previous feeds, as well as potentially with other external feeds. The FCC fluidized catalytic cracking unit produces a fraction 71 comprising significant amounts of gas, light and heavy gasoline (Heavy Naphta HN and light naphtha LN), light cycle oil (LCO) and heavy cycle oil (HCO) and a heavy residual fraction 72 called "slurry" according to the English terminology. The heavy residual fraction ("slurry") of this FCC unit, available in limited quantities, is advantageously used as a feed diluent for the deep hydroconversion unit.
  • According to another variant, the scheme comprises both a fixed bed hydrocracking unit (HCK) 60 and a fluidized catalytic cracking unit (FCC) 70. The two units can treat the vacuum gas oil obtained from the boiling-bed hydroconversion (VGO ex Hydroconversion) 31 and 32, deasphalted oil DAO 41, typically straight-run vacuum gas oil (SR-VGO) 91 and other feeds to convert them to significant amounts of naphtha, diesel and diesel under vacuum.

Figure 2 : Schéma de procédé selon l'invention Figure 2 : Process diagram according to the invention

La figure 2 présente à titre illustratif le procédé selon l'invention et ses variantes. La charge 01 composée d'hydrocarbures d'origine pétrolière ou d'hydrocarbures synthétiques de source minérale est envoyée dans la section d'hydroconversion profonde 10 avec un fluide diluant 02 qui provient de l'unité d'extraction des aromatiques 50 par la ligne de transport 53.The figure 2 presents by way of illustration the process according to the invention and its variants. The feedstock 01 composed of hydrocarbons of petroleum origin or of mineral-source synthetic hydrocarbons is sent into the deep hydroconversion section 10 with a diluent fluid 02 which comes from the aromatics extraction unit 50 via the transport 53.

L'effluent liquide de la section d'hydroconversion profonde est envoyé par la ligne 11 vers une section de fractionnement atmosphérique 20. Cette section de fractionnement comprend une ou plusieurs colonnes de distillation atmosphérique équipées de plateaux et d'internes permettant de séparer différentes coupes valorisables soutirées au moyen des lignes de transport 21, 22 et 23, plus éventuellement d'autres soutirages latéraux. Ces coupes présentent des gammes de points d'ébullition situés par exemple dans la gamme des essences, du kérosène et du gasoil. En fond de fractionnement, on récupère une fraction plus lourde de résidu atmosphérique non converti 24 avec un point d'ébullition typiquement supérieur à 350°C.The liquid effluent from the deep hydroconversion section is sent via line 11 to an atmospheric fractionation section 20. This fractionation section comprises one or more atmospheric distillation columns equipped with trays and internals making it possible to separate different recoverable cuts. withdrawn by means of the transport lines 21, 22 and 23, plus possibly other lateral withdrawals. These sections have ranges of boiling points located for example in the range of gasoline, kerosene and gas oil. In the bottom of fractionation, a heavier fraction of unconverted atmospheric residue 24 is recovered with a boiling point typically greater than 350 ° C.

Le résidu atmosphérique est envoyé au moins en partie par la ligne 24 vers une section de fractionnement sous vide 30. Cette section de fractionnement comprend au moins une colonne de distillation sous vide équipée de plateaux et d'internes permettant de séparer différentes coupes valorisables soutirées au moyen des lignes 31 et 32 plus éventuellement d'autres soutirages latéraux. Ces coupes présentent des gammes de points d'ébullition situés par exemple dans la gamme des distillats sous vide légers (LVGO) et lourds (HVGO). En fond de section de fractionnement, on récupère une fraction plus lourde de résidu sous vide non converti dont le point d'ébullition est supérieur à 540°C typiquement.The atmospheric residue is sent at least in part through line 24 to a vacuum fractionation section 30. This fractionation section comprises at least one vacuum distillation column equipped with trays and internals for separating different recoverable cuts withdrawn at average lines 31 and 32 plus possibly other lateral rackings. These sections have ranges of boiling points located for example in the range of light vacuum distillates (LVGO) and heavy (HVGO). At the bottom of the fractionation section, a heavier fraction of unconverted vacuum residue is recovered, the boiling point of which is typically greater than 540 ° C.

Le distillat sous vide léger (LVGO) 31 et le distillat sous vide lourd (HVGO) 32 peuvent être envoyés vers les unités d'hydrocraquage 60 et/ou de craquage catalytique 70.The light vacuum distillate (LVGO) 31 and the heavy vacuum distillate (HVGO) 32 can be sent to the hydrocracking units 60 and / or catalytic cracking units 70.

Le résidu sous vide est envoyé par la ligne 33 à l'unité de désasphaltage 40 qui permet d'extraire les asphaltènes par précipitation dans un solvant et de produire l'huile désasphaltée 41 et le brai (asphalte résiduel) 42.The vacuum residue is sent via line 33 to the deasphalting unit 40 which makes it possible to extract the asphaltenes by precipitation in a solvent and to produce the deasphalted oil 41 and the pitch (residual asphalt) 42.

L'huile désasphaltée 41 est envoyée vers l'unité d'extraction des aromatiques 50 ; ainsi qu'éventuellement la purge d'huile non convertie de l'unité d'hydrocraquage 62 ou la fraction résiduelle lourde du craquage catalytique (slurry de FCC) 72 suivant les variantes de l'invention.The deasphalted oil 41 is sent to the aromatics extraction unit 50; as well as possibly the unconverted oil purge of the hydrocracking unit 62 or the heavy residual fraction of the catalytic cracking (FCC slurry) 72 according to the variants of the invention.

Le raffinat 51 produit par l'unité d'extraction des aromatiques 50 est envoyé vers l'unité d'hydrocraquage, ainsi qu'éventuellement d'autres charges comme par exemple du distillat sous vide issu de la distillation directe du pétrole brut (Straight Run VGO) 91 et le distillat sous vide léger 31 et lourd 32, produits de l'hydroconversion 10.The raffinate 51 produced by the aromatics extraction unit 50 is sent to the hydrocracking unit, as well as possibly other charges, such as, for example, vacuum distillate obtained from the direct distillation of the crude oil (Straight Run VGO) 91 and the light vacuum 31 and heavy 32 distillate, products of hydroconversion 10.

Selon une variante, tout ou partie du distillat sous vide léger 31 ou du distillat sous vide lourd 32 peut également être envoyé à l'unité d'extraction des aromatiques 50.Alternatively, all or part of the light vacuum distillate 31 or the heavy vacuum distillate 32 may also be sent to the aromatics extraction unit 50.

Selon une variante, une partie du résidu atmosphérique 24 est envoyée à l'unité de désasphaltage. On peut également envisager le cas, dans lequel tout le résidu atmosphérique 24 est envoyé à l'unité de désasphaltage, il n'y a alors pas de section de fractionnement sous-vide 30 et les coupes valorisables dans les gammes de points d'ébullition des distillats sous vide légers (LVGO) et lourds (HVGO) ne sont pas séparées, mais sont envoyées à l'unité de désasphaltage.According to a variant, part of the atmospheric residue 24 is sent to the deasphalting unit. It is also possible to envisage the case, in which all the atmospheric residue 24 is sent to the deasphalting unit, there is then no vacuum fractionation section 30 and the recoverable cuts in the ranges of boiling points. light (LVGO) and heavy (HVGO) vacuum distillates are not separated, but are sent to the deasphalting unit.

Selon une variante, le procédé selon l'invention ne comprend ni unité d'hydrocraquage 60 ni unité de craquage catalytique 70.According to one variant, the process according to the invention does not comprise a hydrocracking unit 60 or a catalytic cracking unit 70.

Selon une autre variante, le procédé selon l'invention comprend une unité d'hydrocraquage 60.According to another variant, the process according to the invention comprises a hydrocracking unit 60.

Selon une autre variante, le procédé selon l'invention ne comprend pas d'unité d'hydrocraquage 60, mais il comprend une unité de craquage catalytique 70.According to another variant, the process according to the invention does not comprise a hydrocracking unit 60, but it comprises a catalytic cracking unit 70.

Selon une autre variante, le procédé selon l'invention comprend une unité d'hydrocraquage 60 et une unité de craquage catalytique 70.According to another variant, the process according to the invention comprises a hydrocracking unit 60 and a catalytic cracking unit 70.

L'extrait 52 produit par l'unité d'extraction des aromatiques est utilisé au moins en partie comme diluant à l'unité d'hydroconversion par la ligne 53 et l'excèdent est valorisé avec le brai 42 correspondant à l'asphalte résiduel de l'unité de désasphaltage via la ligne 54.The extract 52 produced by the aromatics extraction unit is used at least in part as a diluent to the hydroconversion unit via line 53 and the excess is valorized with the pitch 42 corresponding to the residual asphalt of the deasphalting unit via line 54.

Le brai 42 peut être valorisé par exemple en bitume après traitement approprié ou en fuel lourd après dilution ou bien envoyé vers une unité de viscoréduction, cokéfaction, ou gazéification 80.The pitch 42 can be upgraded, for example, into bitumen after appropriate treatment or into heavy fuel oil after dilution or sent to a visbreaking, coking or gasification unit 80.

Dans le procédé selon l'invention, une unité d'extraction liquide-liquide des aromatiques et résines traite l'huile désasphaltée issue de l'unité de désasphaltage du résidu non converti de l'hydroconversion profonde :

  • ∘ La charge est convertie dans la première étape d'hydroconversion profonde de la charge. Les effluents sont séparés dans une section de fractionnement et en fond du fractionnement sous vide une coupe de résidu sous vide (VR) non converti est séparée.
  • ∘ L'unité de désasphaltage SDA est alimentée par le résidu sous vide (VR) non converti et produit une coupe hydrocarbonée desasphaltée DAO qui est envoyée à l'unité d'extraction liquide-liquide et de l'asphalte résiduel qui est valorisé comme dans le schéma antérieur. Eventuellement, tout type d'unité permettant de réduire la teneur en asphalte du résidu pourrait être également installée à la place de l'unité de désasphaltage.
  • ∘ L'unité d'extraction des aromatiques produit par extraction liquide-liquide un extrait enrichi en aromatiques et résines et un raffinat appauvri en aromatiques et résines. L'unité d'extraction est alimentée par l'huile désasphaltée (DAO). Elle peut également être alimentée par la purge d'huile non convertie (UCO) issue de l'hydrocraquage et/ou la fraction résiduelle lourde de craquage catalytique suivant les variantes du schéma. L'extrait est utilisé en partie comme diluant aromatique pour l'unité d'hydroconversion de résidu et en partie valorisé en tant qu'huile de fluxage avec l'asphalte résiduel produit par le SDA par exemple pour donner un combustible liquide ou pour entrer dans la composition de bitumes ou pour alimenter une unité de cokéfaction. Le raffinat est une fraction hydrocarbonée appauvrie en aromatiques, en résines et en impuretés par comparaison avec l'huile désasphaltée.
  • ∘ Le schéma selon l'invention comprend de préférence une unité d'hydrocraquage en lit fixe (HCK) qui est généralement alimentée par le raffinat provenant de l'unité d'extraction et éventuellement en sus par le distillat sous vide léger (light vacuum gasoil, LVGO) et le distillat sous vide lourd (heavy vacuum gasoil, HVGO) issus de l'unité d'hydroconversion profonde. Le raffinat est une charge bien plus favorable que l'huile désasphaltée DAO pour les performances catalytiques de l'hydrocraquage. L'hydrocraquage produit des quantités significatives de naphta, gazole et distillat. Il reste un flux de distillat sous vide VGO non converti (Unconverted Oil, UCO) dont une partie est purgée (bleed) et peut être envoyée vers l'unité d'extraction car cette coupe concentre les composés polynucléaires aromatiques lourds (Heavy Polynuclear Aromatics, HPNA) réfractaires. Typiquement, les composés polynucléaires aromatiques lourds HPNA dits lourds sont définis comme des composés aromatiques polycycliques ou polynucléaires qui comprennent au moins 4 voire 6 cycles benzéniques condensés dans chaque molécule, comme par exemple le coronène (composé à 24 carbones), le dibenzo(e,ghi) pérylène (26 carbones), coronène (30 carbones) et l'ovaléne (32 carbones). Leur récupération dans l'unité d'extraction permet de recycler du flux non converti (UCO) sans composés polynucléaires aromatiques lourds HPNA à l'entrée de l'hydrocraquage et de valoriser les composés polynucléaires aromatiques lourds dans l'extrait.
  • ∘ Dans une variante, le schéma ne comprend pas d'unité d'hydrocraquage, mais une unité de craquage catalytique (FCC). Celle-ci peut aussi être alimentée par le distillat sous vide léger (light vacuum gasoil, LVGO) et le distillat sous vide lourd (heavy vacuum gasoil, HVGO) issus de l'unité d'hydroconversion profonde après fractionnement, et par le raffinat provenant de l'unité d'extraction. Le raffinat est une charge plus favorable que l'huile désasphaltée pour les performances catalytiques et en formation de coke du craquage catalytique. D'une part, la teneur réduite en aromatiques de la charge conduit à diminuer la production de coke. D'autre part, la teneur réduite en azote permet d'atteindre un meilleur rendement. De plus, la teneur réduite en impuretés dans la charge conduit à diminuer la consommation de catalyseur. Enfin, les teneurs en impuretés des produits du craquage catalytique sont réduites. En conséquence, les unités d'hytrotraitement des produits finis en aval opèrent avec des coûts réduits en termes de quantités de catalyseur et ou de durées de cycles.
  • ∘ Selon une autre variante, du distillat sous vide obtenu par distillation directe de pétrole brut (SR VGO) ou d'autres charges compatibles peuvent être envoyées de manière concomitante à l'hydrocraquage ou au craquage catalytique en lit fluidisé.
  • ∘ Selon une autre variante, le schéma comprend à la fois une unité de craquage catalytique en lit fluidisé (FCC) et une unité d'hydrocraquage en lit fixe (HCK). Au global, les deux unités traitent le gazole sous vide VGO ex unité d'hydroconversion profonde, le raffinat de l'unité d'extraction plus éventuellement du distillat sous vide obtenu par distillation directe de pétrole brut (SR-VGO). Le flux non converti issu de l'unité d'hydrocraquage (UCO) purgé et /ou la fraction résiduelle lourde du craquage catalytique (slurry de FCC) sont envoyés au moins en partie à l'unité d'extraction liquide-liquide.
  • ∘ Selon une variante de l'invention, une partie du distillat sous vide (vacuum gasoil, VGO) ou une partie du distillat sous vide lourd (HVGO), issus de l' unité d'hydroconversion profonde après fractionnement, peuvent être envoyés soit à l'unité de désasphaltage en plus du résidu non converti, soit directement à l'unité d'extraction liquide-liquide.
  • ∘ Selon une autre variante de l'invention, au moins une partie du résidu atmosphérique peut être envoyée directement à l'unité de désasphaltage.
  • ∘ Le raffinat permet aussi de produire avantageusement une base d'huile groupe I.
In the process according to the invention, a liquid-liquid extraction unit of the aromatics and resins treats the deasphalted oil from the deasphalting unit of the unconverted residue of the deep hydroconversion:
  • ∘ The load is converted in the first stage of deep hydroconversion of the load. The effluents are separated in a fractionation section and in the bottom of the vacuum fractionation an unconverted vacuum residue (VR) section is separated.
  • ∘ The SDA deasphalting unit is fed with the unconverted vacuum residue (VR) and produces a DAO desasphalted hydrocarbon fraction which is sent to the liquid-liquid extraction unit and the residual asphalt which is recovered as in the previous scheme. Optionally, any type of unit to reduce the asphalt content of the residue could also be installed in place of the deasphalting unit.
  • ∘ The aromatics extraction unit produced by liquid-liquid extraction an extract enriched in aromatics and resins and a raffinate depleted in aromatics and resins. The extraction unit is fed with deasphalted oil (DAO). It can also be fed by the unconverted oil purge (UCO) from the hydrocracking and / or the catalytic cracking heavy residual fraction according to the variants of the scheme. The extract is used in part as an aromatic diluent for the residue hydroconversion unit and partly upgraded as a fluxing oil with the residual asphalt produced by the SDA for example to give a liquid fuel or to enter the composition of bitumens or to feed a unit of coking. The raffinate is a hydrocarbon fraction depleted of aromatics, resins and impurities as compared to the deasphalted oil.
  • The scheme according to the invention preferably comprises a fixed bed hydrocracking unit (HCK) which is generally fed by the raffinate from the extraction unit and optionally in addition by the light vacuum distillate (light vacuum gas oil). , LVGO) and the heavy vacuum distillate (heavy vacuum gas oil, HVGO) from the deep hydroconversion unit. The raffinate is a much more favorable feed than DAO deasphalted oil for the catalytic performance of hydrocracking. Hydrocracking produces significant amounts of naphtha, diesel and distillate. There remains an unconverted VGO (Unconverted Oil, UCO) stream a portion of which is purged (bleed) and can be sent to the extraction unit because this section concentrates the heavy aromatic polynuclear aromatic compounds (Heavy Polynuclear Aromatics, HPNA) refractory. Typically, the so-called heavy HPNA heavy aromatic polynuclear compounds are defined as polycyclic or polynuclear aromatic compounds which comprise at least 4 or even 6 fused benzene rings in each molecule, for example coronene (compound with 24 carbons), dibenzo (e, ghi) perylene (26 carbons), coronene (30 carbons) and ovalene (32 carbons). Their recovery in the extraction unit makes it possible to recycle unconverted flux (UCO) without heavy aromatic polynuclear compounds HPNA at the hydrocracking inlet and to valorize the heavy aromatic polynuclear compounds in the extract.
  • In a variant, the scheme does not include a hydrocracking unit, but a catalytic cracking unit (FCC). It can also be fed by the light vacuum distillate (LVGO) and the heavy vacuum gasoil (HVGO) from the deep hydroconversion unit after fractionation, and by the raffinate from of the extraction unit. Raffinate is a more favorable feedstock than deasphalted oil for catalytic performance and coke formation of catalytic cracking. On the one hand, the reduced aromatic content of the feed leads to lower coke production. On the other hand, the reduced nitrogen content makes it possible to achieve a better yield. In addition, the reduced content of impurities in the feed leads to decreased catalyst consumption. Finally, the impurity contents of the products of the catalytic cracking are reduced. As a result, the hytrotreatment units of the downstream finished products operate with reduced costs in terms of catalyst amounts and / or cycle times.
  • According to another variant, vacuum distillate obtained by direct distillation of crude oil (SR VGO) or other compatible feedstocks may be sent concomitantly with hydrocracking or fluidized catalytic cracking.
  • According to another variant, the scheme comprises both a fluidized catalytic cracking unit (FCC) and a fixed bed hydrocracking unit (HCK). On the whole, the two units process the VGO gas oil ex deep hydroconversion unit, the raffinate of the extraction unit plus possibly the vacuum distillate obtained by direct distillation of crude oil (SR-VGO). The unconverted stream from the purged hydrocracking unit (UCO) and / or the heavy residual fraction of the catalytic cracking (FCC slurry) is sent at least in part to the liquid-liquid extraction unit.
  • According to a variant of the invention, part of the vacuum distillate (vacuum gas oil, VGO) or part of the heavy vacuum distillate (HVGO), coming from the deep hydroconversion unit after fractionation, can be sent either to the deasphalting unit in addition to the unconverted residue, either directly to the liquid-liquid extraction unit.
  • According to another variant of the invention, at least a part of the atmospheric residue can be sent directly to the deasphalting unit.
  • ∘ The raffinate also makes it possible to advantageously produce a Group I oil base.

Les conditions opératoires des unités d'hydroconversion et de désasphaltage (SDA) sont connues de l'homme du métier et identiques aux conditions opératoires du schéma selon l'art antérieur.The operating conditions of the hydroconversion and deasphalting units (SDA) are known to those skilled in the art and identical to the operating conditions of the scheme according to the prior art.

L'extraction permet d'obtenir un raffinat contenant au plus 10 % en poids de résines et de préférence au plus 5 % en poids de résines.
L'extrait obtenu contient au minimum 20 % en poids en aromatiques et 30% en poids en résines et de préférence au moins 30 % en poids en aromatiques et 40% en poids en résines avec une teneur en asphaltènes inférieure à 1 000 ppm.
The extraction makes it possible to obtain a raffinate containing at most 10% by weight of resins and preferably at most 5% by weight of resins.
The extract obtained contains at least 20% by weight of aromatics and 30% by weight of resins and preferably at least 30% by weight of aromatics and 40% by weight of resins with an asphaltene content of less than 1000 ppm.

L'avantage de l'invention réside dans la présence de l'unité de désasphaltage en amont de l'extraction des aromatiques, qui permet d'obtenir un extrait aromatique avec une faible teneur en impuretés, puisque celles-ci se retrouvent dans l'asphalte en sortie du désasphaltage.
L'extrait obtenu convient parfaitement comme diluant aromatique pour l'hydroconversion profonde.
The advantage of the invention lies in the presence of the deasphalting unit upstream of the aromatics extraction, which makes it possible to obtain an aromatic extract with a low content of impurities, since these are found in the asphalt at the outlet of the deasphalting.
The resulting extract is ideally suited as an aromatic diluent for deep hydroconversion.

En envoyant une partie de l'extrait obtenu à l'hydroconversion, celle-ci étant préférentiellement opérée à iso-conversion, la durée de cycle continue de l'unité d'hydroconversion profonde est allongée de façon très significative.By sending part of the extract obtained to the hydroconversion, this being preferably carried out at iso-conversion, the continuous cycle time of the deep hydroconversion unit is elongated very significantly.

Dans une autre approche, en envoyant une partie de l'extrait obtenu à l'hydroconversion, celle-ci étant opérée avec une durée de cycle continu inchangée, la conversion maximale obtenue à l'unité d'hydroconversion profonde est accrue de façon significative.In another approach, by sending part of the extract obtained to the hydroconversion, which is operated with a continuous cycle duration unchanged, the maximum conversion obtained at the deep hydroconversion unit is significantly increased.

L'utilisation de l'extrait comme diluant aromatique à l'unité d'hydroconversion profonde, celle-ci étant opérée à iso-conversion ou non, permet également d'obtenir une production accrue de produits finis valorisables comme le naphta, le diesel et le gazole sous vide VGO.The use of the extract as an aromatic diluent in the deep hydroconversion unit, whether this is done at iso-conversion or not, also makes it possible to obtain an increased production of recoverable finished products such as naphtha, diesel and VGO vacuum gas oil.

En envoyant tout ou partie du raffinat produit à l'unité d'extraction dans l'unité d'hydrocraquage, les performances catalytiques de l'unité d'hydrocraquage sont améliorées ainsi que la production de produits valorisables par rapport à une unité alimentée par la coupe hydrocarbonée désasphaltée (DAO) sortie de l'unité de désasphaltage.By sending all or part of the raffinate produced to the extraction unit in the hydrocracking unit, the catalytic performances of the hydrocracking unit are improved as well as the production of products that can be upgraded compared to a unit supplied by the hydrocracking unit. deasphalted hydrocarbon fraction (DAO) output from the deasphalting unit.

En envoyant dans l'unité d'extraction tout ou partie du résidu non converti (UCO) obtenu en sortie de l'unité d'hydrocraquage, une partie du résidu non converti purifié des composés polynucléaires aromatiques lourds HPNA est recyclée à l'entrée de l'HCK et le reste du flux, contenant les composés polynucléaires aromatiques lourds HPNA, est valorisé dans l'extrait, au lieu que ce résidu non converti et habituellement purgé soit en totalité valorisé en fuel.By sending all or part of the unconverted residue (UCO) obtained at the outlet of the hydrocracking unit to the extraction unit, part of the unconverted purified residue of the HPNA heavy aromatic polynuclear compounds is recycled to the inlet of the hydrocracking unit. the HCK and the remainder of the stream, containing the HPNA heavy aromatic polynuclear compounds, is recovered in the extract, instead of the unconverted and usually purged residue being recovered as fuel.

En envoyant tout ou partie du raffinat produit à l'unité d'extraction des aromatiques dans l'unité de craquage catalytique, seul ou en mélange avec d'autres charges, les performances catalytiques de l'unité de craquage catalytique (consommation de catalyseurs, conversion, production de coke) sont améliorées ainsi que la production de produits valorisables par rapport à une unité alimentée par la coupe hydrocarbonée désasphaltée sortie de l'unité de désasphaltage. De plus, les teneurs en impuretés des produits du craquage catalytique en lit fluidisé FCC sont réduites. En conséquence, les unités d'hytrotraitement des produits finis en aval opèrent avec des coûts réduits sur les quantités de catalyseur et/ou les durées de cycles.
En envoyant tout ou partie de la fraction résiduelle lourde (slurry FCC) sortie de l'unité de craquage catalytique à l'unité d'extraction, une partie de ce flux peut être recyclée à l'entrée de l'unité de craquage catalytique en lit fluidisé FCC.
By sending all or part of the raffinate produced to the aromatics extraction unit in the catalytic cracking unit, alone or in admixture with other feeds, the catalytic performances of the catalytic cracking unit (consumption of catalysts, conversion, coke production) are improved as well as the production of recoverable products compared to a unit fed by the deasphalted hydrocarbon fraction leaving the deasphalting unit. In addition, the impurity levels of FCC fluidized catalytic cracking products are reduced. As a result, the hydrotreatment units of the downstream finished products operate with reduced costs on catalyst quantities and / or cycle times.
By sending all or part of the heavy residual fraction (FCC slurry) out of the catalytic cracking unit to the extraction unit, part of this stream can be recycled to the inlet of the catalytic cracking unit. fluidized bed FCC.

Les conditions générales de fonctionnement des unités mises en oeuvre dans le procédé selon l'invention sont décrites ci-après.The general operating conditions of the units used in the method according to the invention are described below.

Hydroconversion en lit bouillonnant : Hydroconversion in bubbling bed :

La technologie d'hydroconversion en lit bouillonnant de charges de type résidu est notamment commercialisée sous le nom de procédé H-Oil ®.Hydroconversion technology bubbling beds of residual type charges is marketed in particular as the H-Oil ® process.

Le procédé en lit bouillonnant comprend le passage du flux, comprenant du liquide du solide et du gaz, circulant verticalement à travers un réacteur contenant un lit de catalyseur. Le catalyseur dans le lit est maintenu en mouvement aléatoire dans le liquide. Le volume brut du catalyseur dispersé à travers le liquide est donc supérieur au volume du catalyseur à l'arrêt. Cette technologie est généralement utilisée pour la conversion des hydrocarbures liquides lourds ou pour convertir le charbon en huiles synthétiques.The bubbling bed process comprises passing the stream, comprising liquid from the solid and gas, flowing vertically through a reactor containing a catalyst bed. The catalyst in the bed is kept in random motion in the liquid. The gross volume of the catalyst dispersed through the liquid is therefore greater than the volume of the catalyst at standstill. This technology is generally used for the conversion of heavy liquid hydrocarbons or for converting coal into synthetic oils.

La vitesse spatiale horaire (VVH) et la pression partielle d'hydrogène sont des facteurs importants que l'on choisit en fonction des caractéristiques du produit à traiter et de la conversion souhaitée.The hourly space velocity (VVH) and the hydrogen partial pressure are important factors that are chosen according to the characteristics of the product to be treated and the desired conversion.

Tout type de catalyseur d'hydroconversion supporté comprenant une fonction hydrodéshydrogénante peut être utilisé. Ce catalyseur peut être un catalyseur comprenant des métaux des groupes 9 et 10 (ancien groupe VIII) par exemple du nickel et/ou du cobalt le plus souvent en association avec au moins un métal du groupe 6 (ancien groupe VIB) par exemple du molybdène et/ou du tungstène et d'autres éléments promoteurs. Le support est par exemple choisi dans le groupe formé par l'alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d'au moins deux de ces minéraux. Le support peut également renfermer d'autres composés. On utilise le plus souvent un support d'alumine.Any type of supported hydroconversion catalyst comprising a hydrodehydrogenating function may be used. This catalyst may be a catalyst comprising metals of groups 9 and 10 (former group VIII), for example nickel and / or cobalt most often in combination with at least one metal of group 6 (former group VIB), for example molybdenum and / or tungsten and other promoter elements. The support is for example chosen from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals. The carrier may also contain other compounds. Most often, an alumina support is used.

Le catalyseur usagé est en partie remplacé par du catalyseur frais (c'est-à-dire neuf ou régénéré) par soutirage en bas du réacteur et introduction en haut du réacteur de catalyseur frais à intervalle de temps régulier, c'est-à-dire par exemple par bouffée ou de façon quasi continue. On peut par exemple introduire du catalyseur frais tous les jours. Le taux de remplacement du catalyseur usé par du catalyseur frais peut être par exemple d'environ 0,01 kilogramme à environ 10 kilogrammes par mètre cube de charge. Ce soutirage et ce remplacement sont effectués à l'aide de dispositifs permettant le fonctionnement continu de cette étape d'hydroconversion. L'unité comporte habituellement une pompe de recirculation permettant le maintien du catalyseur en lit bouillonnant par recyclage continu d'au moins une partie du liquide soutiré en tête du réacteur et réinjecté en bas du réacteur. Il est également possible d'envoyer le catalyseur usé soutiré du réacteur dans une zone de régénération dans laquelle on élimine le carbone et le soufre qu'il renferme puis de renvoyer ce catalyseur régénéréThe spent catalyst is partly replaced by fresh (ie new or regenerated) catalyst by withdrawal at the bottom of the reactor and introduction at the top of the reactor. catalyst fresh at regular time interval, that is to say for example by puff or almost continuously. For example, fresh catalyst can be introduced every day. The replacement rate of spent catalyst with fresh catalyst may be, for example, from about 0.01 kilogram to about 10 kilograms per cubic meter of charge. This withdrawal and replacement are performed using devices for the continuous operation of this hydroconversion step. The unit usually comprises a recirculation pump for maintaining the bubbling bed catalyst by continuously recycling at least a portion of the liquid withdrawn at the top of the reactor and reinjected at the bottom of the reactor. It is also possible to send the spent catalyst withdrawn from the reactor into a regeneration zone in which the carbon and the sulfur contained therein are removed and then to return this regenerated catalyst.

Les conditions opératoires de l'hydroconversion en lit bouillonnant sont avantageusement les suivantes :

  • ∘ Pression : la pression est généralement comprise entre 5 et 35 MPa, de manière préférée entre 10 et 25 MPa, typiquement aux environs de 18 MPa.
  • ∘ LHSV (« liquid hourly space velocity » ou vitesse spatiale liquide par heure): la vitesse spatiale liquide est généralement comprise entre 0,1 et 10 h-1, de manière préférée entre 0,15 et 5 h-1, typiquement environ 0,25 h-1.
  • ∘ Température moyenne du lit catalytique (, c'est-à-dire la moyenne arithmétique des mesures de température dans le lit catalytique) est généralement comprise entre 300 et 600°C, de manière préférée entre 350 et 510°C, typiquement 420°C.
  • ∘ H2/HC : le ratio Hydrogène/Charge est généralement compris entre : 200 et 1000 m3/m3, de manière préférée entre 300 et 800 m3/m3, de manière très préférée entre 300 et 600 m3/m3.
The operating conditions of the bubbling bed hydroconversion are advantageously as follows:
  • ∘ Pressure: the pressure is generally between 5 and 35 MPa, preferably between 10 and 25 MPa, typically around 18 MPa.
  • ∘ LHSV (liquid hourly space velocity): the liquid space velocity is generally between 0.1 and 10 h -1 , preferably between 0.15 and 5 h -1, typically about 0. 25 h -1 .
  • The average temperature of the catalytic bed (that is to say the arithmetic average of the temperature measurements in the catalytic bed) is generally between 300 and 600 ° C., preferably between 350 and 510 ° C., typically 420 ° C. vs.
  • ∘ H 2 / HC: the Hydrogen / Charge ratio is generally between: 200 and 1000 m 3 / m 3 , preferably between 300 and 800 m 3 / m 3 , very preferably between 300 and 600 m 3 / m 3 .

L'hydroconversion profonde en lit bouillonnant permet de réduire le carbone Conradson du flux entrant d'environ 50 à 95 % et sa teneur en azote d'environ 30 à 95%.Deep ebullated bed hydroconversion reduces Conradson's carbon input flux by approximately 50-95% and its nitrogen content by approximately 30-95%.

Fractionnement : Splitting :

Dans le fractionnement atmosphérique, le point de coupe du résidu atmosphérique est réglé typiquement entre 300°C et 400°C, préférablement entre 340°C et 380°C. Les coupes soutirées comme le naphta, le kérosène et le diesel sont envoyées respectivement au pool essence, au pool kérosène ou au pool diesel. Le résidu atmosphérique est envoyé au moins en partie au fractionnement sous vide.In atmospheric fractionation, the cutting point of the atmospheric residue is typically set between 300 ° C and 400 ° C, preferably between 340 ° C and 380 ° C. The withdrawn cuts such as naphtha, kerosene and diesel are sent respectively to the gasoline pool, the kerosene pool or the diesel pool. The atmospheric residue is sent at least in part to the vacuum fractionation.

Dans la section de fractionnement sous vide (colonne de distillation sous vide), le point de coupe du résidu sous vide est réglé typiquement entre 450°C et 600°C, préférablement entre 500°C et 550°C. Les coupes soutirées comme le distillat sous vide léger (Light Vacuum Gasoil, LVGO) ou le distillat sous vide lourd (Heavy Vacuum Gasoil, HVGO) sont envoyées au moins en partie dans les unités aval comme l'hydrocraquage ou le craquage catalytique. Le résidu atmosphérique (AR) peut être envoyé en partie vers l'unité de désasphaltage.In the vacuum fractionation section (vacuum distillation column), the cutting point of the vacuum residue is typically set between 450 ° C and 600 ° C, preferably between 500 ° C and 550 ° C. Squeezed cuts such as Light Vacuum Gasoil (LVGO) or Heavy Vacuum Gasoil (HVGO) are sent at least in part to downstream units such as hydrocracking or catalytic cracking. The atmospheric residue (AR) can be sent partly to the deasphalting unit.

Le distillat sous vide léger (LVGO) est caractérisé par un intervalle de distillation compris entre 300°C et 430°C, préférablement entre 340°C et 400°C. Le distillat sous vide lourd (HVGO) est caractérisé par un intervalle de distillation compris entre 400°C et 600°C, préférablement entre 440°C et 550°C.
Le résidu sous vide (VR) est envoyé au moins en partie, de préférence en totalité, vers l'unité de désasphaltage.
The light vacuum distillate (LVGO) is characterized by a distillation range of from 300 ° C to 430 ° C, preferably from 340 ° C to 400 ° C. The heavy vacuum distillate (HVGO) is characterized by a distillation range of from 400 ° C to 600 ° C, preferably from 440 ° C to 550 ° C.
The vacuum residue (VR) is sent at least partly, preferably completely, to the deasphalting unit.

Désasphaltage au solvant : Solvent deasphalting :

Cette opération permet d'extraire une grande partie des asphaltènes et de réduire la teneur en métaux. Lors de ce désasphaltage, ces derniers éléments se retrouvent concentrés dans un effluent appelé asphalte, ici dénommé asphalte résiduel.This operation makes it possible to extract a large part of the asphaltenes and to reduce the metal content. During this deasphalting, the latter elements are concentrated in an effluent called asphalt, here called residual asphalt.

L'effluent désasphalté, souvent qualifié d'huile désasphaltée DAO, présente une teneur très réduite en asphaltènes et en métaux.The deasphalted effluent, often referred to as DAO deasphalted oil, has a very low content of asphaltenes and metals.

L'un des objectifs de l'étape de désasphaltage est, d'une part, de maximiser la quantité d'huile désasphaltée et, d'autre part, de maintenir, voire de minimiser, la teneur en asphaltènes. Cette teneur en asphaltènes est généralement déterminée en terme de teneur en asphaltènes insolubles dans l'heptane, c'est à dire mesurée selon une méthode décrite dans la norme NF-T 60-115 de janvier 2002.One of the objectives of the deasphalting step is, on the one hand, to maximize the amount of deasphalted oil and, on the other hand, to maintain, or even to minimize, the asphaltene content. This asphaltene content is generally determined in terms of the content of asphaltenes insoluble in heptane, that is to say measured according to a method described in standard NF-T 60-115 of January 2002.

Selon l'invention, le désasphaltage permet d'obtenir une huile désasphaltée (DAO) contenant au plus 10 000 ppm poids d'asphaltènes, de préférence au plus 2 000 ppm poids d'asphaltènes.According to the invention, the deasphalting makes it possible to obtain a deasphalted oil (DAO) containing at most 10 000 ppm by weight of asphaltenes, preferably at most 2000 ppm by weight of asphaltenes.

Le solvant utilisé lors de l'étape de désasphaltage est uniquement un solvant paraffinique.The solvent used in the deasphalting step is only a paraffinic solvent.

De préférence, le solvant utilisé comprend au moins 50 percent en poids de composés hydrocarbonés (alcanes) ayant entre 3 et 7 atomes de carbone, de manière plus préférée entre 3 et 6 atomes de carbone, de manière encore plus préférée 4 ou 5 atomes de carbone.Preferably, the solvent used comprises at least 50 percent by weight of hydrocarbon compounds (alkanes) having between 3 and 7 carbon atoms, more preferably between 3 and 6 carbon atoms, even more preferably 4 or 5 carbon atoms. carbon.

En fonction du solvant utilisé, le rendement en huile désasphaltée et la qualité de cette huile peuvent varier. A titre d'exemple, lorsque que l'on passe d'un solvant à 3 atomes de carbone à un solvant à 7 atomes de carbone, le rendement en huile augmente mais, en contrepartie, les teneurs en impuretés (asphaltènes, métaux, Carbone Conradson, soufre, azote...) augmentent également.Depending on the solvent used, the deasphalted oil yield and the quality of this oil may vary. By way of example, when passing from a solvent containing 3 carbon atoms to a solvent containing 7 carbon atoms, the oil yield increases but, in return, the levels of impurities (asphaltenes, metals, carbon Conradson, sulfur, nitrogen ...) also increase.

Par ailleurs pour un solvant donné, le choix des conditions opératoires en particulier la température et la quantité de solvant injectée a un impact sur le rendement en huile désasphaltée et sur la qualité de cette huile. L'homme du métier peut choisir les conditions optimales pour obtenir une teneur en asphaltène inférieure à 3000 ppm. L'étape de désasphaltage peut être réalisée par tout moyen connu de l'homme du métier. Cette étape est généralement réalisée dans un mélangeur décanteur ou dans une colonne d'extraction. De préférence, l'étape de désasphaltage est réalisée dans une colonne d'extraction.Moreover, for a given solvent, the choice of operating conditions, in particular the temperature and the quantity of solvent injected, has an impact on the deasphalted oil yield and on the quality of this oil. The person skilled in the art can choose the optimum conditions for obtaining an asphaltene content of less than 3000 ppm. The deasphalting step may be carried out by any means known to those skilled in the art. This step is generally carried out in a settling mixer or in an extraction column. Preferably, the deasphalting step is carried out in an extraction column.

Selon un mode de réalisation préféré, on introduit dans la colonne d'extraction un mélange comprenant la charge d'hydrocarbures et une première fraction d'une charge de solvant, le rapport volumique entre la fraction de charge de solvant et la charge d'hydrocarbures étant appelé taux de solvant injecté avec la charge. Cette étape a pour objet de bien mélanger la charge avec le solvant entrant dans la colonne d'extraction. Dans la zone de décantation en fond d'extracteur, on peut introduire une seconde fraction de la charge de solvant, le rapport volumique entre la seconde fraction de charge de solvant et la charge d'hydrocarbures étant appelé taux de solvant injecté en fond d'extracteur. Le volume de la charge d'hydrocarbures considérée dans la zone de décantation est généralement celui introduit dans la colonne d'extraction. La somme des deux rapports volumiques entre chacune des fractions de charge de solvant et la charge d'hydrocarbures est appelé taux de solvant global. La décantation de l'asphalte consiste au lavage à contre-courant de l'émulsion d'asphalte dans le mélange solvant-huile par du solvant pur. Elle est favorisée par une augmentation du taux de solvant (il s'agit en fait de remplacer l'environnement solvant-huile par un environnement de solvant pur) et une diminution de la température.According to a preferred embodiment, a mixture comprising the hydrocarbon feedstock and a first fraction of a solvent feed is introduced into the extraction column, the volume ratio between the solvent feed fraction and the hydrocarbon feedstock. being called the rate of solvent injected with the charge. This step is intended to mix well the load with the solvent entering the extraction column. In the settling zone at the bottom of the extractor, it is possible to introduce a second fraction of the solvent charge, the volume ratio between the second solvent loading fraction and the hydrocarbon feed being called the solvent content injected at the bottom of the solvent. extractor. The volume of the hydrocarbon feedstock considered in the settling zone is generally that introduced into the extraction column. The sum of the two volume ratios between each of the solvent feed fractions and the hydrocarbon feed is referred to as the overall solvent level. The decantation of the asphalt consists of the countercurrent washing of the asphalt emulsion in the solvent-oil mixture with pure solvent. It is favored by an increase in the solvent content (it is in fact to replace the solvent-oil environment with a pure solvent environment) and a decrease in temperature.

Par ailleurs, selon un mode préféré, on établit un gradient de température entre la tête et le fond de la colonne permettant de créer un reflux interne, ce qui améliore la séparation entre le milieu huileux et les résines. En effet, le mélange de solvant et d'huile chauffé en tête d'extracteur permet de précipiter une fraction comprenant de la résine qui descend dans l'extracteur. Le contre-courant ascendant du mélange permet de dissoudre à une température plus basse les fractions comprenant de la résine qui sont les plus légères.Furthermore, according to a preferred embodiment, a temperature gradient is established between the head and the bottom of the column to create an internal reflux, which improves the separation between the oily medium and the resins. Indeed, the mixture of solvent and oil heated at the top of the extractor makes it possible to precipitate a fraction comprising resin which descends into the extractor. The upward countercurrent of the mixture makes it possible to dissolve at a lower temperature the fractions comprising the resin which are the lightest.

La pression régnant à l'intérieur de l'extracteur est généralement ajustée de manière à ce que tous les produits demeurent à l'état liquide.The pressure inside the extractor is generally adjusted so that all the products remain in the liquid state.

Les conditions opératoires de l'unité de désasphaltage (SDA) sont avantageusement les suivantes:

  • ∘ De manière préférée, le solvant utilisé est un solvant paraffinique en C3,C4 ou C5, de préférence C4 dans l'invention. Le solvant très préféré dans le cadre de l'invention est le butane.
  • ∘ Le taux de solvant est généralement compris entre 2,5/1 et 20/1, de manière préférée entre 5/1 et 15/1 et de manière plus préférée entre 5/1 et 10/1, typiquement 6/1 en volume globalement (une partie ajoutée en tête et une partie en fond d'extracteur).
  • ∘ La pression est généralement comprise entre 2 et 10 MPa, de manière préférée entre 3 et 6 MPa, de manière très préférée comprise entre 4 et 5 MPa, typiquement 4,5 MPa.
  • ∘ La température en tête d'extracteur est généralement comprise entre 50°C et 250°C et la température en fond d'extracteur entre 30°C et 220°C
  • ∘ Pour un solvant comprenant 4 atomes de carbone (C4) : la température en tête d'extracteur est généralement comprise entre 70 et 150°C, de manière préférée entre 90 et 130 °C, de manière très préférée 120°C. La température en fond d'extracteur est généralement comprise entre 40 et 120°C, de préférence entre 60 et 100°C.
  • ∘ Pour un solvant comprenant 5 atomes de carbone (C5) : la température en tête d'extracteur est généralement comprise entre 120 et 240°C, de manière préférée entre 150 et 210 °C, de manière très préférée 180°C. La température en fond d'extracteur est généralement comprise entre 90 et 210°C, de préférence entre 120 et 180°C.
The operating conditions of the deasphalting unit (SDA) are advantageously as follows:
  • Preferably, the solvent used is a C3, C4 or C5 paraffinic solvent, preferably C4 in the invention. The most preferred solvent in the context of the invention is butane.
  • The level of solvent is generally between 2.5 / 1 and 20/1, preferably between 5/1 and 15/1 and more preferably between 5/1 and 10/1, typically 6/1 by volume. globally (a part added at the head and a part at the bottom of the extractor).
  • The pressure is generally between 2 and 10 MPa, preferably between 3 and 6 MPa, very preferably between 4 and 5 MPa, typically 4.5 MPa.
  • ∘ The temperature at the extractor head is generally between 50 ° C and 250 ° C and the temperature at the bottom of the extractor between 30 ° C and 220 ° C
  • ∘ For a solvent comprising 4 carbon atoms (C4): the temperature at the extractor head is generally between 70 and 150 ° C, preferably between 90 and 130 ° C, very preferably 120 ° C. The temperature at the bottom of the extractor is generally between 40 and 120 ° C., preferably between 60 and 100 ° C.
  • For a solvent comprising 5 carbon atoms (C5): the temperature at the extractor head is generally between 120 and 240 ° C, preferably between 150 and 210 ° C, very preferably 180 ° C. The temperature at the bottom of the extractor is generally between 90 and 210 ° C., preferably between 120 and 180 ° C.

Extraction des aromatiques:Extraction of aromatics:

L'unité d'extraction des aromatiques a pour objectif d'extraire les composés aromatiques et résines de la fraction lourde issue de l'étape de désasphaltage par extraction liquide-liquide à l'aide d'un solvant polaire. Le solvant utilisé est un solvant connu pour extraire préférentiellement des composés aromatiques.The objective of the aromatics extraction unit is to extract the aromatic compounds and resins from the heavy fraction obtained from the deasphalting stage. liquid-liquid extraction using a polar solvent. The solvent used is a known solvent for extracting aromatic compounds preferentially.

Il est important de souligner que l'extraction liquide/liquide est réalisée sur la fraction lourde, afin d'éviter des pertes de rendement en bases carburants lors de la récupération du solvant après extraction. Les produits qu'on souhaite extraire de la fraction lourde ont préférentiellement un point d'ébullition supérieur au point d'ébullition du solvant pour éviter une perte de rendement lors de la séparation du solvant du raffinat après l'extraction. En effet, lors de la séparation du solvant et du raffinat, tout composé ayant un point d'ébullition inférieur au point d'ébullition du solvant partira inévitablement avec le solvant et abaissera donc la quantité du raffinat obtenu (et donc le rendement en bases carburants). Par exemple, dans le cas du furfural comme solvant d'extraction, ayant un point d'ébullition de 162°C, les composés C10-, composés représentatifs de la fraction essence/naphta, seront perdus. En traitant uniquement la fraction lourde comportant des composés ayant des points d'ébullition supérieurs au point d'ébullition du solvant d'extraction, il n'y a pas de perte de ces composés supérieurs au point d'ébullition du solvant d'extraction (composés C10-). De plus, on évite la contamination du solvant avec les composés C10- ainsi que les éventuelles étapes de traitement du solvant en vue de son recyclage. La récupération du solvant est donc plus efficace et économique.It is important to underline that the liquid / liquid extraction is carried out on the heavy fraction, in order to avoid losses of yield of fuel bases during the recovery of the solvent after extraction. The products which are to be extracted from the heavy fraction preferably have a boiling point higher than the boiling point of the solvent in order to avoid a loss of yield during the separation of the solvent from the raffinate after the extraction. Indeed, during the separation of the solvent and the raffinate, any compound having a boiling point below the boiling point of the solvent will inevitably leave with the solvent and thus lower the amount of the raffinate obtained (and therefore the yield of fuel bases ). For example, in the case of furfural as an extraction solvent, having a boiling point of 162 ° C, the compounds C10-, compounds representative of the gasoline / naphtha fraction, will be lost. By treating only the heavy fraction containing compounds having boiling points above the boiling point of the extraction solvent, there is no loss of these compounds greater than the boiling point of the extraction solvent ( compounds C10-). In addition, it avoids the contamination of the solvent with the compounds C10- as well as possible stages of treatment of the solvent for recycling. Solvent recovery is therefore more efficient and economical.

Comme solvant, on peut utiliser le furfural, la N-méthyl-2-pyrrolidone (NMP), le sulfolane, le diméthylformamide(DMF), le diméthylsulfoxide (DMSO), le phénol, ou un mélange de ces solvants dans des proportions égales ou différentes.As a solvent, it is possible to use furfural, N-methyl-2-pyrrolidone (NMP), sulfolane, dimethylformamide (DMF), dimethylsulfoxide (DMSO), phenol, or a mixture of these solvents in equal proportions or different.

Dans le cadre de l'invention, le solvant préféré est le furfural, produit suffisamment lourd par rapport au fluide traité : l'huile désasphaltée DAO.In the context of the invention, the preferred solvent is furfural, product sufficiently heavy compared to the treated fluid: deasphalted oil DAO.

Une unité d'extraction des aromatiques construite à l'origine pour une chaine d'huile peut avantageusement être modifiée pour être utilisée dans le procédé selon l'invention.An aromatics extraction unit originally constructed for an oil chain may advantageously be modified for use in the process according to the invention.

Les conditions opératoires sont en général un ratio solvant / charge de 0,5/1 à 3/1, préférentiellement de 1/1 à 2/1, un profil de température compris entre la température ambiante et 150°C, de préférence entre 50°C et 150°C. La pression se situe entre la pression atmosphérique et 2 MPa, de préférence entre 0,1MPa et 1MPa.The operating conditions are in general a solvent / charge ratio of from 0.5: 1 to 3: 1, preferably from 1: 1 to 2: 1, a temperature profile of between room temperature and 150.degree. C., preferably between 50.degree. ° C and 150 ° C. The pressure is between atmospheric pressure and 2 MPa, preferably between 0.1MPa and 1MPa.

L'extraction liquide/liquide peut être réalisée généralement dans un mélangeur-décanteur ou dans une colonne d'extraction fonctionnant à contre-courant. De préférence, l'extraction est réalisée dans une colonne d'extraction.The liquid / liquid extraction can be carried out generally in a mixer-settler or in an extraction column operating against the current. Preferably, the extraction is carried out in an extraction column.

Le solvant choisi a un point d'ébullition suffisamment élevé afin de pouvoir fluidifier la fraction lourde issue du fractionnement sans se vaporiser, la fraction lourde étant typiquement véhiculée à des températures comprises entre 200°C et 300°C.The chosen solvent has a sufficiently high boiling point in order to be able to thin the heavy fraction resulting from the fractionation without vaporizing, the heavy fraction being typically conveyed at temperatures of between 200 ° C. and 300 ° C.

Après contact du solvant, avec la fraction lourde, deux phases se forment : (i) l'extrait, constitué des parties de la fraction lourde non solubles dans le solvant (et fortement concentré en aromatiques) et (ii) le raffinat, constitué du solvant et des parties solubles de la fraction lourde. Le solvant est séparé par distillation des parties solubles et recyclé en interne au procédé d'extraction liquide/liquide, la gestion du solvant étant connue de l'homme du métier.After contact of the solvent with the heavy fraction, two phases are formed: (i) the extract, consisting of the parts of the heavy fraction that are not soluble in the solvent (and highly concentrated in aromatics) and (ii) the raffinate, consisting of solvent and soluble parts of the heavy fraction. The solvent is distilled off from the soluble portions and recycled internally to the liquid / liquid extraction process, the solvent management being known to those skilled in the art.

Unités avalDownstream units

Le raffinat issu de l'extraction des aromatiques est envoyé vers l'unité d'hydrocraquage et/ou de craquage catalytique seul ou de manière concomitante à une ou plusieurs autres charges choisies parmi du gazole sous vide de distillation directe du pétrole brut (Straight Run VGO) et les distillats sous vide léger (LVGO) et lourd (HVGO) obtenus en sortie du fractionnement sous vide c).The raffinate resulting from the extraction of aromatics is sent to the hydrocracking unit and / or catalytic cracking unit alone or concomitantly with one or more other fillers chosen from vacuum gas oil for direct distillation of crude oil (Straight Run VGO) and the low vacuum (LVGO) and heavy (HVGO) distillates obtained at the outlet of the vacuum fractionation (c).

HvdrocraquaqeHydrocracking

Dans le cadre de la présente invention, l'expression hydrocraquage englobe les procédés de craquage comprenant au moins une étape de conversion des charges utilisant au moins un catalyseur en présence d'hydrogène.In the context of the present invention, the term "hydrocracking" includes cracking processes comprising at least one charge conversion step using at least one catalyst in the presence of hydrogen.

L'hydrocraquage peut être opéré selon des schémas en une étape comportant en premier lieu un hydroraffinage poussé qui a pour but de réaliser une hydrodéazotation et une désulfuration poussées de la charge avant que l'effluent ne soit envoyé en totalité sur le catalyseur d'hydrocraquage proprement dit, en particulier dans le cas où celui-ci comporte une zéolithe.The hydrocracking may be carried out according to one-step diagrams comprising in the first place advanced hydrorefining which is intended to carry out extensive hydrodenitrogenation and desulfurization of the feedstock before the effluent is wholly sent to the hydrocracking catalyst. itself, especially in the case where it comprises a zeolite.

Il englobe également l'hydrocraquage en deux étapes qui comporte une première étape qui a pour objectif, comme dans le procédé en "une étape", de réaliser l'hydroraffinage de la charge, mais aussi d'atteindre une conversion de cette dernière de l'ordre en général de 30 à 60 percent. Dans la deuxième étape d'un procédé d'hydrocraquage en deux étapes, généralement seule la fraction de la charge non convertie lors de la première étape est traitée.It also includes two-step hydrocracking which comprises a first step which aims, as in the "one-step" process, to perform the hydrorefining of the feed, but also to achieve a conversion of the feedstock. order in general from 30 to 60 percent. In the second step of a two-stage hydrocracking process, generally only the fraction of the unconverted feedstock in the first step is processed.

Les catalyseurs d'hydroraffinage classiques contiennent généralement au moins un support amorphe et au moins un élément hydro-déshydrogénant (généralement au moins un élément des groupes VIB et VIII non noble, et le plus souvent au moins un élément du groupe VIB et au moins un élément du groupe VIII non noble).Conventional hydrorefining catalysts generally contain at least one amorphous support and at least one hydro-dehydrogenating element (generally at least one element of the non-noble groups VIB and VIII, and most often at least one element of group VIB and at least one non-noble group VIII element).

Les matrices qui peuvent être utilisées dans le catalyseur d'hydroraffinage seules ou en mélange sont, à titre d'exemple, de l'alumine, de l'alumine halogénée, de la silice, de la silice-alumine, des argiles (choisies par exemple parmi les argiles naturelles telles que le kaolin ou la bentonite), de la magnésie, de l'oxyde de titane, de l'oxyde de bore, de la zircone, des phosphates d'aluminium, des phosphates de titane, des phosphates de zirconium, du charbon, des aluminates. On préfère utiliser des matrices contenant de l'alumine, sous toutes les formes connues de l'homme du métier, et de manière encore plus préférée les alumines, par exemple l'alumine gamma.The matrices that can be used in the hydrorefining catalyst alone or as a mixture are, by way of example, alumina, halogenated alumina, silica, silica-alumina, clays (chosen by for example, natural clays such as kaolin or bentonite), magnesia, titanium oxide, boron oxide, zirconia, aluminum phosphates, titanium phosphates, phosphate phosphates and the like. zirconium, coal, aluminates. It is preferred to use matrices containing alumina, in all the forms known to those skilled in the art, and even more preferably aluminas, for example gamma-alumina.

Les conditions opératoires de l'étape d'hydrocraquage sont réglées de façon à maximiser la production de la coupe recherchée tout en assurant une bonne opérabilité de l'unité d'hydrocraquage. Les conditions opératoires utilisées dans le ou les zones réactionnelles sont généralement une température moyenne du lit catalytique (WABT) comprise entre 300 et 550°C, de préférence comprise entre 350 et 500°C.The operating conditions of the hydrocracking step are adjusted so as to maximize the production of the desired cut while ensuring good operability of the hydrocracking unit. The operating conditions used in the reaction zone (s) are generally an average catalyst bed temperature (WABT) of between 300 and 550 ° C., preferably of between 350 and 500 ° C.

La pression est généralement comprise entre 5 et 35 MPa, de préférence entre 6 et 25 MPa. La vitesse spatiale liquide (débit de charge/ volume de catalyseur) est généralement comprise entre 0,1 et 10h-1, de préférence entre 0,2 et 5h-1.The pressure is generally between 5 and 35 MPa, preferably between 6 and 25 MPa. The liquid space velocity (charge rate / volume of catalyst) is generally between 0.1 and 10 h -1, preferably between 0.2 and 5 h -1.

Une quantité d'hydrogène est introduite telle que le rapport volumique en m3 d'hydrogène par m3 d'hydrocarbure en entrée de l'étape d'hydrocraquage soit compris entre 300 et 2000 m3/m3, le plus souvent entre 500 et 1800 m3/m3, de préférence entre 600 et 1500 m3/m3.An amount of hydrogen is introduced such that the volume ratio in m3 of hydrogen per m3 of hydrocarbon at the inlet of the hydrocracking step is between 300 and 2000 m3 / m3, most often between 500 and 1800 m3 / m3, preferably between 600 and 1500 m3 / m3.

Cette zone réactionnelle comprend généralement au moins un réacteur comprenant au moins un catalyseur d'hydrocraquage en lit fixe. Le lit fixe de catalyseur d'hydrocraquage peut être éventuellement précédé d'au moins un lit fixe d'un catalyseur d'hydroraffinage (hydrodésulfuration, hydrodéazotation par exemple). Les catalyseurs d'hydrocraquage utilisés dans les procédés d'hydrocraquage sont généralement du type bi-fonctionnel associant une fonction acide à une fonction hydrogénante. La fonction acide peut être apportée par des supports ayant une grande surface (150 à 800 m2.g-1 généralement) et présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les combinaisons d'oxydes de bore et d'aluminium, les silices-alumines amorphes appelées catalyseurs d'hydrocraquage amorphes et les zéolithes. La fonction hydrogénante peut être apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, soit par une association d'au moins un métal du groupe VIB de la classification périodique et au moins un métal du groupe VIII.This reaction zone generally comprises at least one reactor comprising at least one fixed-bed hydrocracking catalyst. The fixed bed of hydrocracking catalyst may be optionally preceded by at least one fixed bed of a hydrorefining catalyst (hydrodesulfurization, hydrodenitrogenation for example). The hydrocracking catalysts used in the hydrocracking processes are generally of the bifunctional type associating an acid function with a hydrogenating function. The acid function can be provided by supports having a large surface area (generally 150 to 800 m 2 g -1) and having surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), combinations of boron oxides and aluminum, amorphous silica-aluminas known as amorphous hydrocracking catalysts and zeolites. The hydrogenating function may be provided either by one or more metals of Group VIII of the Periodic Table of Elements, or by a combination of at least one Group VIB metal of the Periodic Table and at least one Group VIII metal.

Le catalyseur d'hydrocraquage peut également comporter au moins une fonction acide cristallisée telle qu'une zéolithe Y, ou une fonction acide amorphe telle qu'une silice-alumine, au moins une matrice et une fonction hydrodéshydrogénante.The hydrocracking catalyst may also comprise at least one crystalline acid function such as a zeolite Y, or an amorphous acid function such as a silica-alumina, at least one matrix and a hydrodehydrogenating function.

Eventuellement, il peut également comporter au moins un élément choisi parmi le bore, le phosphore et le silicium, au moins un élément du groupe VIIA (chlore, fluor par exemple), au moins un élément du groupe VIIB (manganèse par exemple), au moins un élément du groupe VB (niobium par exemple).Optionally, it may also comprise at least one element chosen from boron, phosphorus and silicon, at least one element of group VIIA (chlorine, fluorine for example), at least one element of group VIIB (manganese for example), with least one element of the group VB (niobium for example).

Craquage catalytique en lit fluidiséCatalytic cracking in a fluidized bed

Le craquage catalytique en lit fluidisé (FCC) est un procédé bien connu qui a subi de nombreuses évolutions depuis les années 1930 (voir Avidan A., Shinnar R., "Development of catalytic cracking technology: A lesson in chemical reactor design", Ind.Eng.Chem.Res, 29, 931-942, 1990 ). Ce procédé est caractérisé par une zone de réaction dans laquelle s'effectuent les réactions de craquage sur un catalyseur de type zéolithique, et une zone de régénération qui permet d'éliminer par combustion le coke déposé sur le catalyseur au cours des réactions de craquage.
L'unité de craquage catalytique d'une raffinerie a pour objectif principal la production de bases pour essence, c'est à dire de coupes ayant un intervalle de distillation compris entre 35°C et 250°C.
La production d'essence est assurée par le craquage de la charge dans le réacteur principal, appelé riser, en raison de la forme longiligne de ce réacteur et de son mode d'écoulement ascendant. Lorsque l'écoulement est descendant dans le réacteur principal on parle de "downer".
Fluidized catalytic cracking (FCC) is a well-known process that has undergone many changes since the 1930s (see Avidan A., Shinnar R., "Development of Catalytic Cracking Technology: A Lesson in Chemical Reactor Design", Ind.Eng.Chem.Res, 29, 931-942, 1990 ). This process is characterized by a reaction zone in which the cracking reactions are carried out on a zeolite type catalyst, and a regeneration zone which makes it possible to burn off the coke deposited on the catalyst during the cracking reactions.
The main objective of the catalytic cracking unit of a refinery is the production of gasoline bases, ie cuts having a distillation range of between 35 ° C and 250 ° C.
Gasoline is produced by cracking the feedstock in the main reactor, called riser, because of the elongated shape of this reactor and its upward flow mode. When the flow is down in the main reactor, it is called "downer".

La charge conventionnelle d'une unité de craquage catalytique en lit fluidisé de coupes lourdes est généralement constituée d'un hydrocarbure ou d'un mélange d'hydrocarbures contenant essentiellement (c'est à dire au moins 80%) de molécules dont le point d'ébullition est supérieur à 340°C. Cette charge principale contient en outre des quantités de métaux (Ni+V) limitées, en concentration généralement inférieures à 50 ppm, préférentiellement inférieures à 20 ppm, et une teneur en hydrogène en général supérieure à 11 % poids, typiquement comprise entre 11,5% et 14,5%, et préférentiellement comprise entre 11,8% et 14% poids.The conventional feedstock of a fluidized bed catalytic cracking unit of heavy cuts is generally composed of a hydrocarbon or a mixture of hydrocarbons containing essentially (ie at least 80%) of molecules whose boiling is greater than 340 ° C. This main charge also contains limited quantities of metals (Ni + V), in concentration generally less than 50 ppm, preferably less than 20 ppm, and a content of hydrogen in general greater than 11% by weight, typically between 11.5% and 14.5%, and preferably between 11.8% and 14% by weight.

La teneur en carbone conradson (noté CCR en abrégé) de la charge (défini par la norme ASTM D 482) fournit une évaluation de la production de coke au cours du craquage catalytique. En fonction de la teneur en carbone conradson de la charge, le rendement en coke nécessite un dimensionnement spécifique de l'unité pour satisfaire le bilan thermique.The conradson carbon content (abbreviated as CCR) of the feed (defined by ASTM D 482) provides an evaluation of coke production during catalytic cracking. Depending on the conradson carbon content of the feed, the coke yield requires a specific sizing of the unit to satisfy the heat balance.

Dans le cadre de l'invention, l'unité de craquage catalytique en lit fluidisé est alimentée par au moins une partie du raffinat produit à l'unité d'extraction des aromatiques, seul ou en mélange avec d'autres charges. Les performances catalytiques de l'unité de craquage catalytique (consommation de catalyseurs, conversion, production de coke) ainsi que la quantité et la qualité des produits valorisables sont améliorées par rapport à une unité alimentée par la coupe hydrocarbonée désasphaltée sortie de l'unité de désasphaltage. En conséquence, les unités d'hydrotraitement des produits finis en aval opèrent avec des coûts réduits sur les quantités de catalyseur et/ou les durées de cycles.
En envoyant tout ou partie de la fraction résiduelle lourde (slurry FCC) sortie de l'unité de craquage catalytique à l'unité d'extraction des aromatiques, une partie de cette fraction résiduelle, appauvrie en aromatiques, peut par ailleurs être recyclée à l'entrée de l'unité de craquage catalytique en lit fluidisé FCC.

  • Lorsque l'unité de craquage catalytique fonctionne en écoulement ascendant, les conditions opératoires sont les suivantes :
    • Température sortie riser comprise entre 520°C et 600°C,
    • Rapport C/O compris entre 6 et 14, et préférentiellement compris entre 7 et 12,
    • Temps de résidence compris entre 1 et 10 s, et préférentiellement compris entre 2 et 6 s.
  • Lorsque l'unité de craquage catalytique fonctionne en écoulement descendant, les conditions opératoires sont les suivantes :
    • Température de sortie du réacteur comprise entre 580°C et 630°C,
    • Rapport C/O compris entre 15 et 40, et préférentiellement compris entre 20 et 30,
    • Temps de résidence compris entre 0,1 et 1 s, et préférentiellement compris entre 0,2 et 0,7 s.
In the context of the invention, the fluidized catalytic cracking unit is supplied with at least a portion of the raffinate produced in the aromatics extraction unit, alone or as a mixture with other fillers. The catalytic performance of the catalytic cracking unit (catalyst consumption, conversion, coke production) as well as the quantity and quality of the recoverable products are improved compared to a unit fed by the deasphalted hydrocarbon fraction leaving the unit of deasphalting. As a result, the hydrotreatment units of the downstream finished products operate with reduced costs on catalyst quantities and / or cycle times.
By sending all or part of the heavy residual fraction (FCC slurry) out of the catalytic cracking unit to the aromatics extraction unit, a part of this residual fraction, which is depleted in aromatics, can moreover be recycled at the same time. inlet of the FCC fluidized catalytic cracking unit.
  • When the catalytic cracking unit operates in upward flow, the operating conditions are as follows:
    • Riser outlet temperature between 520 ° C and 600 ° C,
    • C / O ratio between 6 and 14, and preferably between 7 and 12,
    • Residence time between 1 and 10 s, and preferably between 2 and 6 s.
  • When the catalytic cracking unit operates in downward flow, the operating conditions are as follows:
    • Reactor outlet temperature between 580 ° C and 630 ° C,
    • C / O ratio between 15 and 40, and preferably between 20 and 30,
    • Residence time between 0.1 and 1 s, and preferably between 0.2 and 0.7 s.

Le rapport C/O est le rapport du débit massique de catalyseur en circulation dans l'unité sur le débit massique de charge à l'entrée de l'unité.The C / O ratio is the ratio of the mass flow rate of catalyst circulating in the unit to the mass flow rate at the inlet of the unit.

Le temps de résidence est défini comme le volume du riser (m3) sur le débit volumique de charge (m3/s).The residence time is defined as the volume of the riser (m3) on the volume flow rate of charge (m3 / s).

EXEMPLE : EXAMPLE :

La charge utilisée dans cet exemple présente la composition détaillée au tableau 1. Il s'agit d'un résidu sous vide de type « Oural » (Urals dans la terminaison anglo-saxonne), donc d'un résidu sous vide obtenu à partir d'un pétrole brut provenant de Russie. Tableau 1: composition de la charge utilisée (Résidu sous vide de type « Oural ») Propriété Unité Valeur Densité - 1,003 Viscosité à 100 °C cSt 540 Carbone Conradson %poids 15,0 Asphaltènes en C7 %poids 4,0 Nickel ppm pds 70 Vanadium ppm pds 200 Azote ppm pds 5 800 Soufre %poids 2,7 Coupe 540 °C-- * %poids 10,0 *coupe contenant des produits de point d'ébullition inférieur à 540°C. The feed used in this example has the composition detailed in Table 1. It is a vacuum residue of the "Ural" type (Urals in the English terminus), therefore a vacuum residue obtained from 'a crude oil from Russia. <u> Table 1: </ u> composition of the load used ("Ural" type vacuum residue) Property Unit Value Density - 1,003 Viscosity at 100 ° C cSt 540 Conradson Carbon %weight 15.0 Asphaltenes in C7 %weight 4.0 Nickel ppm wt 70 Vanadium ppm wt 200 Nitrogen ppm wt 5,800 Sulfur %weight 2.7 Cup 540 ° C - * %weight 10.0 * cup containing products with a boiling point below 540 ° C.

Dans cet exemple, la charge est mise en oeuvre dans le procédé selon l'invention (figure 2), sans hydrocraquage 60 ni craquage catalytique 70 et donc également sans addition de distillat sous vide obtenu par distillation directe de pétrole brut (SR-VGO) 91 à l'entrée des étapes d'hydrocraquage et/ou de craquage catalytique.In this example, the charge is carried out in the process according to the invention ( figure 2 ), without hydrocracking 60 nor catalytic cracking 70 and thus also without the addition of vacuum distillate obtained by the direct distillation of crude oil (SR-VGO) 91 at the inlet of the hydrocracking and / or catalytic cracking steps.

Toutefois, selon une autre variante, certains produits obtenus peuvent être ultérieurement envoyés à une étape d'hydrocraquage, notamment le raffinat issu de l'étape d'extraction, seul ou en mélange avec d'autres coupes issues du procédé selon l'invention.However, according to another variant, certain products obtained can be subsequently sent to a hydrocracking stage, in particular the raffinate resulting from the extraction stage, alone or as a mixture with other cuts resulting from the process according to the invention.

La charge est traitée dans un réacteur H-Oil® à lit bouillonnant contenant un catalyseur commercial d'hydroconversion de résidu en lit bouillonnant (par exemple TEX2740 ou TEX2910, commercialisé par la société Criterion). Les produits liquides issus du réacteur sont fractionnés par distillation atmosphérique en une fraction naphta (C5+-150°C), une fraction gazole (150-370°C) et une fraction résiduelle 370°C+.The feedstock is treated in a bubbling bed H-Oil® reactor containing a commercial ebullated bed hydroconversion catalyst (eg TEX2740 or TEX2910, available from Criterion). The liquid products from the reactor are fractionated by atmospheric distillation into a naphtha fraction (C5 + -150 ° C), a gas oil fraction (150-370 ° C) and a residual fraction 370 ° C +.

La fraction résiduelle est fractionnée par distillation sous-vide en une fraction gaz qui est envoyée au Fuel, une fraction distillats sous vide VGO (370°C-540°C) et une fraction résiduelle sous vide 540°C+.The residual fraction is fractionated by vacuum distillation into a gas fraction which is sent to the fuel, a vacuum distillate fraction VGO (370 ° C.-540 ° C.) and a residual fraction under vacuum at 540 ° C.

La fraction résiduelle sous vide est soumise à un désasphaltage au solvant C4 avec une colonne d'extraction. On obtient une huile désasphaltée DAO et un brai (asphalte résiduel).The residual fraction under vacuum is subjected to solvent deasphalting C4 with an extraction column. A deasphalted DAO oil and a pitch (residual asphalt) are obtained.

Dans la section d'extraction des aromatiques, l'huile désasphaltée DAO est soumise à une extraction liquide/liquide au furfural pour donner un raffinat et un extrait. L'extrait est avantageusement utilisé en partie comme diluant à l'unité d'hydroconversion profonde et en partie valorisé avec le brai.In the aromatics extraction section, the DAO deasphalted oil is subjected to a liquid / liquid furfural extraction to give a raffinate and an extract. The extract is advantageously used in part as a diluent in the deep hydroconversion unit and partly upgraded with the pitch.

Les conditions opératoires des unités de conversion H-Oil® qui traitent des résidus, de l'unité de désasphaltage au solvant (SDA) et de l'Extraction Aromatique liquide-liquide sont résumées dans le tableau 2. Tableau 2: Conditions opératoires des unités Paramètres opératoires H-Oil® SDA Extraction Aromatique VVH Liquide h-1 0,25 - - Pression MPa 18 4,5 4,5 Température moyenne du lit catalytique* °C 416 - - Température extracteur 120 en tête 100 en tête 90 en fond 70 en fond H2/Charge m3/m3 400 - - Solvant/charge Entrée extracteur Fond extracteur m3/m3 - 2/1 1,8/1 m3/m3 4/1 4/1 Catalyseurs TEX 2731 - - Composition Catalyseurs NiMo/Al2O3 - - Solvant - Butanes Furfural The operating conditions of the H-Oil® conversion units that process the residues, the solvent deasphalting unit (SDA) and the liquid-liquid Aromatic Extraction are summarized in Table 2. <u> Table 2: </ u> Operating conditions of the units Operating parameters H-Oil® SDA Aromatic Extraction VVH Liquid h-1 0.25 - - Pressure MPa 18 4.5 4.5 Average temperature of the catalytic bed * ° C 416 - - Extractor temperature 120 in the lead 100 in the lead 90 in the background 70 in the background H2 / Charge m3 / m3 400 - - Solvent / charge Extractor inlet Extractor bottom m3 / m3 - 2/1 1.8 / 1 m 3 / m 3 4/1 4/1 catalysts TEX 2731 - - Catalysts composition NiMo / Al 2 O 3 - - Solvent - butanes furfural

Le solvant utilisé dans l'unité SDA est un mélange de butanes comprenant 60% de nC4 et 40% d'iC4.The solvent used in the SDA unit is a mixture of butanes comprising 60% nC4 and 40% iC4.

Le rendement en DAO de l'unité de désasphaltage est poussé à 75% afin de maximiser la valorisation de l'huile désasphaltée.The DAO yield of the deasphalting unit is increased to 75% in order to maximize the recovery of the deasphalted oil.

L'utilisation de diluant aromatique dans l'unité d'hydroconversion profonde permet d'améliorer la durée d'opération continue de celle-ci de façon très significative ainsi que le montre le tableau 3. Tableau 3: impact du diluant aromatique provenant de l'unité d'extraction sur les performances de l'unité d'hydroconversion H-Oil®. Conditions opératoires Cas sans diluant aromatique Cas avec diluant aromatique Débit Charge t/h 100 100 Débit Diluant Aromatique t/h 0 10 Conversion H-OIL®RC %wt 60 60 Durée de cycle H-OIL® RC 2 ans 4 ans The use of aromatic diluent in the deep hydroconversion unit makes it possible to improve the duration of continuous operation thereof in a very significant manner as shown in Table 3. <u> Table 3: </ u> impact of the aromatic diluent from the extraction unit on the performance of the H-Oil® hydroconversion unit. Operating conditions Case without aromatic diluent Case with aromatic diluent Flow Rate t / h 100 100 Flow Aromatic Thinner t / h 0 10 H-OIL® RC Conversion% wt 60 60 Cycle time H-OIL® RC 2 years Four years

Le tableau 3 montre que le fait d'utiliser l'extrait obtenu à l'unité d'extraction comme diluant à l'unité d'hydroconversion permet de doubler la durée du run de l'hydroconversion profonde. Le gain de production en produits finis associé est d'un peu plus de 3% (1,5 mois sur 4 ans de run).Table 3 shows that using the extract obtained in the extraction unit as a diluent at the hydroconversion unit doubles the run time of the deep hydroconversion. The associated finished product production gain is just over 3% (1.5 months over 4 years run).

L'utilisation du diluant aromatique permet également d'obtenir une production accrue de produits finis valorisables comme le montre le tableau 4 ci-dessous. Tableau 4: Charge et produits de l'unité d'hydroconversion avec et sans diluant aromatique, pour une conversion de 60%wt Sans diluant aromatique Avec diluant aromatique Charges de l'hydroconversion : Charge, t/h 100 100 Extrait utilisé comme diluant, t/h 0 10 Hydrogen, t/h 1.42 1.56 Produits de l'hydroconversion C1-C4, t/h 2.94 3.08 Naphta, t/h 7.45 7.83 Gazole (GO), t/h 23.23 24.39 Gazole sous vide (VGO), t/h 28.40 29.82 Résidu non converti, t/h 36.78 43.78 The use of the aromatic diluent also makes it possible to obtain an increased production of recoverable finished products as shown in Table 4 below. <u> Table 4: </ u> Load and products of the hydroconversion unit with and without aromatic diluent, for a conversion of 60% wt Without aromatic diluent With aromatic diluent Charges for hydroconversion: Load, t / h 100 100 Extract used as thinner, t / h 0 10 Hydrogen, t / h 1.42 1.56 Products of hydroconversion C1-C4, t / h 2.94 3.08 Naphtha, t / h 7.45 7.83 Diesel (GO), t / h 23.23 24.39 Vacuum Diesel (VGO), t / h 28.40 29.82 Unconverted residue, t / h 36.78 43.78

A conversion fixée, avec l'utilisation de l'extrait comme diluant aromatique, l'unité d'hydroconversion produit 5% de produits valorisables supplémentaires, soit 5% de Naphta, 5% de Gazole et 5% de Gazole sous vide VGO.At fixed conversion, with the use of the extract as an aromatic diluent, the hydroconversion unit produces 5% additional recoverable products, ie 5% Naphtha, 5% Diesel and 5% VGO vacuum gas oil.

Les propriétés du raffinat et de l'extrait à la sortie de l'unité d'extraction sont comparées à l'huile désasphaltée DAO dans le tableau 5. Tableau 5: propriétés de l'huile désasphaltée (DAO) à l'entrée, du raffinat et de l'extrait à la sortie de l'unité d'extraction Propriété Unité DAO Raffinat Extrait Densité - 0,97 0,880 0,967 Carbone Conradson %poids 12.6 3,0 19 Asphaltènes en C7 %poids 0,1 < 0,05 0.2 Nickel + Vanadium ppm pds 20 < 2 40 Azote ppm pds 4 000 900 6 400 Soufre %poids 1,16 0,57 1,60 Teneur en aromatiques %poids 47 55 41 Teneur en Résines %poids 27 0 48 Hydrogène %poids 11.1 14.0 9.0 The properties of the raffinate and the extract at the outlet of the extraction unit are compared with the deasphalted oil DAO in Table 5. <u> Table 5: </ u> properties of the deasphalted oil (DAO) at the inlet, the raffinate and the extract at the outlet of the extraction unit Property Unit DAO raffinate Extract Density - 0.97 0,880 0.967 Conradson Carbon %weight 12.6 3.0 19 Asphaltenes in C7 %weight 0.1 <0.05 0.2 Nickel + Vanadium ppm wt 20 <2 40 Nitrogen ppm wt 4000 900 6,400 Sulfur %weight 1.16 0.57 1.60 Aromatic content %weight 47 55 41 Resin content %weight 27 0 48 Hydrogen %weight 11.1 14.0 9.0

La densité du raffinat et la teneur en azote et en souffre du raffinat sont inférieures à celles de l'huile désasphaltée DAO. Le raffinat est donc une charge moins réfractaire à traiter dans une unité d'hydrotraitement en lit fixe par exemple ou dans une unité d'hydrocraquage.The raffinate density and the nitrogen and sulfur content of the raffinate are lower than those of the deasphalted DAO oil. The raffinate is therefore a less refractory feedstock to be treated in a fixed bed hydrotreating unit, for example, or in a hydrocracking unit.

Claims (14)

  1. A process for deep conversion of a heavy hydrocarbon feed, comprising the following steps:
    a) ebullated bed hydroconversion of the feed, in the presence of hydrogen, in a hydroconversion section comprising at least one three-phase reactor containing at least one supported hydroconversion catalyst,
    b) atmospheric fractionation of at least a portion of the hydroconverted liquid effluent obtained from step a) in an atmospheric fractionation section in order to produce a fraction comprising a gasoline cut and a gas oil cut, and an atmospheric residue;
    c) vacuum fractionation of at least a portion of the atmospheric residue obtained from step b) in a vacuum fractionation section in order to obtain a vacuum gas oil fraction comprising light vacuum distillates (LVGO) and heavy vacuum distillates (HVGO) and an unconverted vacuum residue fraction,
    d) deasphalting at least a portion of the unconverted vacuum residue fraction obtained from step c) in a deasphalting section only by means of a paraffinic solvent under conditions for obtaining a hydrocarbon cut depleted in asphaltenes, termed deasphalted oil, and residual asphalt,
    e) liquid/liquid extraction carried out on the hydrocarbon cut depleted in asphaltenes in a section for the extraction of aromatics by means of a polar solvent under conditions for extracting aromatics in order to produce an extract enriched in aromatics and resins and a raffinate depleted in aromatics and resins, at least a portion of the extract being sent to the inlet to the hydroconversion section as an aromatic diluent.
  2. The process as claimed in claim 1, comprising:
    • a step f1) for hydrocracking at least a portion of the raffinate obtained from the extraction step e) in a reactor comprising at least one fixed bed of hydrocracking catalyst in order to produce a gasoline fraction, a gas oil fraction (GO), vacuum gas oil (VGO) and an unconverted oil fraction (UCO),
    • and/or a step f2) for fluidized bed catalytic cracking of at least a portion of the raffinate obtained from the extraction e) in a fluidized bed reactor in order to produce a gaseous fraction, a gasoline fraction, a gas oil fraction and a heavy residual fraction termed slurry.
  3. The process as claimed in claim 2, in which the unconverted oil fraction obtained from hydrocracking and/or the heavy residual fraction obtained from catalytic cracking are sent to the aromatics extraction section.
  4. The process as claimed in one of the preceding claims, in which a portion of the extract is used as a flux oil as a mixture with residual asphalt produced by the deasphalting step d) in order to provide a liquid fuel or to form part of the bitumen composition or to be supplied to a coking unit.
  5. The process as claimed in one of claims 2 to 4, in which the raffinate produced by the aromatics extraction unit is sent to the hydrocracking unit and/or to the catalytic cracking unit together with one or more other feeds selected from straight run vacuum gas oil (straight run VGO) and light (LVGO) and heavy vacuum distillates (HVGO) obtained from the outlet from the vacuum fractionation c).
  6. The process as claimed in one of the preceding claims, in which at least a portion of the light vacuum distillate (LVGO) or of the heavy vacuum distillate (HVGO) is sent to the aromatics extraction section.
  7. The process as claimed in one of the preceding claims, in which a portion of the atmospheric residue is sent directly to the deasphalting section.
  8. The process as claimed in one of the preceding claims, in which the hydroconversion step a) is operated at an absolute pressure in the range 5 to 35 MPa, at a weighted average catalytic bed temperature of 300°C to 600°C, at an hourly space velocity of 0.1 h-1 to 10 h-1 and at a ratio of hydrogen to feed H2/HC of 200 to 1000 m3/m3.
  9. The process as claimed in one of claims 2 to 8, in which the hydrocracking step f1) is operated at an average catalytic bed temperature in the range 300°C to 550°C, a pressure in the range 5 to 35 MPa, and a liquid space velocity in the range 0.1 to 10 h-1.
  10. The process as claimed in one of claims 2 to 9, in which the fluidized bed catalytic cracking step f2) is operated in upflow mode with a reactor outlet temperature in the range 520°C to 600°C, a C/O ratio in the range 6 to 14, and a dwell time in the range 1 to 10 s, or in downflow mode with a reactor outlet temperature in the range 580°C to 630°C, a C/O ratio in the range 15 to 40, and with a dwell time in the range 0.1 to 1 s.
  11. The process as claimed in one of claims 1 to 10, in which the deasphalting step is carried out in an extraction column, the solvent comprising at least 50% by weight of hydrocarbon compounds containing 3 to 7 carbon atoms, the extracter head temperature being in the range 50°C to 250°C, the extracter bottom temperature being in the range 30°C to 220°C, and the pressure being in the range 2 to 10 MPa.
  12. The process as claimed in claim 11, in which the solvent is butane.
  13. The process as claimed in one of the preceding claims, in which the liquid/liquid extraction is carried out with the aid of a solvent selected from furfural, N-methyl-2-pyrrolidone (NMP), sulfolane, dimethylformamide (DMF), dimethylsulphoxide (DMSO), phenol, or a mixture of these solvents in equal or different proportions, with a solvent/feed ratio of 0.5/1 to 3/1, at a temperature in the range between ambient temperature and 150°C, and at a pressure in the range between atmospheric pressure and 2 MPa.
  14. The process as claimed in one of the preceding claims, in which the feed is selected from heavy hydrocarbon feeds of the atmospheric residue or vacuum residue type obtained, for example, by straight run distillation of an oil cut or by vacuum distillation of crude oil, distillate type feeds such as vacuum gas oil or deasphalted oils, asphaltenes obtained by solvent deasphalting oil residues, coal in suspension in a hydrocarbon fraction such as gas oil obtained from vacuum distillation of crude oil, for example, or in fact the distillate obtained from coal liquefaction, alone or as a mixture.
EP17176996.1A 2016-06-23 2017-06-20 Improved method for deep hydroconversion by extracting aromatics and resins with recovery of the hydroconversion extract and the raffinate in the downstream units Active EP3260520B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1655845A FR3053047B1 (en) 2016-06-23 2016-06-23 IMPROVED METHOD OF DEEP HYDROCONVERSION USING EXTRACTION OF AROMATICS AND RESINS WITH VALORIZATION OF EXTRACT TO HYDROCONVERSION AND REFINEMENT TO DOWNSTREAM UNITS.

Publications (2)

Publication Number Publication Date
EP3260520A1 EP3260520A1 (en) 2017-12-27
EP3260520B1 true EP3260520B1 (en) 2019-10-09

Family

ID=57137031

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17176996.1A Active EP3260520B1 (en) 2016-06-23 2017-06-20 Improved method for deep hydroconversion by extracting aromatics and resins with recovery of the hydroconversion extract and the raffinate in the downstream units

Country Status (5)

Country Link
US (1) US20170369796A1 (en)
EP (1) EP3260520B1 (en)
CN (1) CN107541290B (en)
FR (1) FR3053047B1 (en)
RU (1) RU2017121798A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10836967B2 (en) * 2017-06-15 2020-11-17 Saudi Arabian Oil Company Converting carbon-rich hydrocarbons to carbon-poor hydrocarbons
CN111263801A (en) 2017-08-29 2020-06-09 沙特阿拉伯石油公司 Integrated residue hydrocracking and hydrofinishing
CN108950229B (en) * 2018-06-20 2019-11-08 舞阳钢铁有限责任公司 A kind of low power consumption is without sludge slugging furnace operating procedure
FR3097229B1 (en) * 2019-06-12 2021-06-11 Ifp Energies Now OLEFINS PRODUCTION PROCESS INCLUDING HYDROTREATMENT, DESASPHALTING, HYDROCRACKING AND VAPOCRAQUAGE
FR3098522B1 (en) 2019-07-10 2021-07-09 Axens Process for converting a feed containing pyrolysis oil
FR3098824B1 (en) * 2019-07-17 2021-09-03 Ifp Energies Now OLEFIN PRODUCTION PROCESS INCLUDING HYDROTREATMENT, DESASPHALTING, HYDROCRACKING AND VAPOCRAQUAGE
US11180701B2 (en) * 2019-08-02 2021-11-23 Saudi Arabian Oil Company Hydrocracking process and system including separation of heavy poly nuclear aromatics from recycle by extraction
FR3101082B1 (en) * 2019-09-24 2021-10-08 Ifp Energies Now Integrated fixed bed hydrocracking and bubbling bed hydroconversion process with improved gas / liquid separation
FR3101637B1 (en) * 2019-10-07 2021-10-22 Ifp Energies Now OLEFINS PRODUCTION PROCESS INCLUDING DESASPHALTING, HYDROCONVERSION, HYDROCRAQUAGE AND VAPOCRAQUAGE
FR3102772B1 (en) * 2019-11-06 2021-12-03 Ifp Energies Now OLEFINS PRODUCTION PROCESS INCLUDING DESASPHALTING, HYDROCRACKING AND VAPOCRAQUAGE
CN112920839B (en) * 2019-12-06 2022-07-08 中国石化工程建设有限公司 Separation system and separation method for hydrocracking reaction products in slurry bed
US11248174B2 (en) * 2019-12-27 2022-02-15 Saudi Arabian Oil Company Process to remove asphaltene from heavy oil by solvent

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929617A (en) * 1972-08-31 1975-12-30 Exxon Research Engineering Co Hydrocracking extraction process for lubes
US3968023A (en) * 1975-01-30 1976-07-06 Mobil Oil Corporation Production of lubricating oils
US4591426A (en) * 1981-10-08 1986-05-27 Intevep, S.A. Process for hydroconversion and upgrading of heavy crudes of high metal and asphaltene content
US5034119A (en) * 1989-03-28 1991-07-23 Mobil Oil Corporation Non-carcinogenic bright stock extracts and deasphalted oils
US5041206A (en) * 1989-11-20 1991-08-20 Texaco Inc. Solvent extraction of lubricating oils
US6117305A (en) * 1996-07-12 2000-09-12 Jgc Corporation Method of producing water slurry of SDA asphaltene
FR2753982B1 (en) * 1996-10-02 1999-05-28 Inst Francais Du Petrole MULTI-STAGE CATALYTIC PROCESS FOR CONVERTING A HEAVY HYDROCARBON FRACTION
FR2753984B1 (en) * 1996-10-02 1999-05-28 Inst Francais Du Petrole METHOD FOR CONVERTING A HEAVY HYDROCARBON FRACTION INVOLVING HYDRODEMETALLIZATION IN A BUBBLE BED OF CATALYST
FR2879213B1 (en) * 2004-12-15 2007-11-09 Inst Francais Du Petrole CONNECTION OF HYDROCONVERSION AND STEAM REFORMING PROCESSES TO OPTIMIZE HYDROGEN PRODUCTION ON PRODUCTION FIELDS
CN101892074B (en) * 2010-04-07 2014-01-22 中国石油化工股份有限公司 Heavy oil processing combined process capable of using deasphalted oil efficiently
FR3014897B1 (en) * 2013-12-17 2017-04-07 Ifp Energies Now NEW INTEGRATED PROCESS FOR THE TREATMENT OF PETROLEUM LOADS FOR THE PRODUCTION OF LOW SULFUR AND SEDIMENT FIELDS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3260520A1 (en) 2017-12-27
CN107541290A (en) 2018-01-05
CN107541290B (en) 2022-04-12
RU2017121798A (en) 2018-12-21
FR3053047A1 (en) 2017-12-29
FR3053047B1 (en) 2018-07-27
US20170369796A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
EP3260520B1 (en) Improved method for deep hydroconversion by extracting aromatics and resins with recovery of the hydroconversion extract and the raffinate in the downstream units
EP3271441B1 (en) Improved method for converting heavy hydrocarbon feedstocks
EP3077483B1 (en) Method for converting a heavy hydrocarbon feedstock incorporating selective deasphalting in series with recycling of a deasphalted cut
EP3303523B1 (en) Method for converting feedstocks comprising a hydrotreatment step, a hydrocracking step, a precipitation step and a sediment separation step, in order to produce fuel oils
WO2015091033A1 (en) Novel integrated process for treating petroleum feedstocks for the production of fuel oils having a low content of sulphur and of sediments
WO2018073018A1 (en) Conversion process comprising fixed-bed hydrotreating, separation of a hydrotreated residue fraction, and a step of catalytic cracking for the production of marine fuels
EP3018189B1 (en) Process for converting petroleum feedstocks comprising a visbreaking stage, a maturation stage and a stage of separating the sediments for the production of fuel oils with a low sediment content
FR3098522A1 (en) Process for converting a feed containing pyrolysis oil
FR2854163A1 (en) Process for the valorization of heavy hydrocarbon charges by deasphalting and hydrocracking in a fluidized bed, useful for recovery of petrol, kerosenes and gasoils
EP2947133B1 (en) Method for converting a heavy hydrocarbon feedstock including selective de-asphalting upstream from the conversion step
FR2964388A1 (en) METHOD FOR CONVERTING RESIDUE INTEGRATING A DISASPHALTAGE STEP AND A HYDROCONVERSION STEP WITH RECYCLING OF DESASPHALTEE OIL
WO2015082313A1 (en) Method for refining a heavy hydrocarbon feedstock implementing selective deasphalting in series
EP3339401A1 (en) Integrated facility and method for hydrotreatment and hydroconversion with common fractionation
WO2014096591A1 (en) Method for converting a heavy hydrocarbon feedstock incorporating selective deasphalting with recycling of the deasphalted oil
FR3030567A1 (en) PROCESS FOR DEEP CONVERSION OF RESIDUES MAXIMIZING PERFORMANCE IN GASOLINE
FR3030568A1 (en) PROCESS FOR DEEP CONVERSION OF RESIDUES MAXIMIZING GAS OUTPUT
WO2019134811A1 (en) Two-step hydrocracking process comprising at least one high-pressure hot separation step
EP3999613A1 (en) Process for the preparation of olefins, comprising hydrotreatment, de-asphalting, hydrocracking and steam cracking
WO2012085406A1 (en) Method for converting hydrocarbon feedstock comprising a shale oil by hydroconversion in an ebullating bed, fractionation by atmospheric distillation and liquid/liquid extraction of the heavy fraction
FR2933711A1 (en) CONVERSION PROCESS COMPRISING VISCOREDUCTION OF RESIDUE, THEN DESASPHALTAGE AND HYDROCONVERSION
FR3084371A1 (en) PROCESS FOR THE TREATMENT OF A HEAVY HYDROCARBON LOAD COMPRISING HYDROTREATMENT IN A FIXED BED, A DEASPHALTING AND A HYDROCRACKING IN A BOILING ASPHALT BED
FR2969651A1 (en) HYDROCARBONATE LOADING CONVERSION METHOD COMPRISING SCIST OIL BY DECONTAMINATION, BOILING BED HYDROCONVERSION, AND ATMOSPHERIC DISTILLATION FRACTIONATION
FR3084372A1 (en) PROCESS FOR THE TREATMENT OF A HEAVY HYDROCARBON LOAD COMPRISING HYDROTREATMENT IN A FIXED BED, TWO DEASPHALTAGES AND A HYDROCRACKING IN A BOTTLE OF ASPHALT
EP3824049B1 (en) Two-step hydrocracking method using a partitioned distillation column
WO2023241930A1 (en) Hydrocracking process with optimized management of the recycling for the production of naphtha

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180627

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190430

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017007575

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1188796

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1188796

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200210

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200110

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017007575

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200630

Year of fee payment: 4

26N No opposition filed

Effective date: 20200710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017007575

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200620

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 7