EP3999613A1 - Process for the preparation of olefins, comprising hydrotreatment, de-asphalting, hydrocracking and steam cracking - Google Patents

Process for the preparation of olefins, comprising hydrotreatment, de-asphalting, hydrocracking and steam cracking

Info

Publication number
EP3999613A1
EP3999613A1 EP20735615.5A EP20735615A EP3999613A1 EP 3999613 A1 EP3999613 A1 EP 3999613A1 EP 20735615 A EP20735615 A EP 20735615A EP 3999613 A1 EP3999613 A1 EP 3999613A1
Authority
EP
European Patent Office
Prior art keywords
fraction
boiling point
separation
compounds
hydrocracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20735615.5A
Other languages
German (de)
French (fr)
Inventor
Wilfried Weiss
Isabelle MERDRIGNAC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3999613A1 publication Critical patent/EP3999613A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • C10G67/0409Extraction of unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/003Solvent de-asphalting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/14Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/14Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with moving solid particles
    • C10G45/16Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with moving solid particles suspended in the oil, e.g. slurries
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • C10G67/0454Solvent desasphalting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/06Vacuum distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • DOLEFINES PRODUCTION PROCESS INCLUDING HYDRO-TREATMENT, DESASPHALTING, HYDRO-CRACKING AND VAPOCRAQUAGE
  • the present invention relates to a process for the production of olefins from heavy fractions of hydrocarbons containing, inter alia, sulfur impurities, metals and asphaltenes.
  • ethylene and propylene are highly desirable olefins, because they are essential intermediates for many petrochemicals such as polyethylene and polypropylene.
  • refining sites and the existing petrochemical sites in remodeling the refining sites, so as to produce at least part of petrochemical bases, or to design new integrated refining-petrochemical schemes, or even to design sites where most or all of the crude is converted into petrochemical bases.
  • the main process for converting heavy hydrocarbon fractions into high yield olefins is steam cracking.
  • the production of the desired olefins is accompanied by co-products, in particular aromatic compounds and pyrolysis oil which require purification steps.
  • the selectivity for the desired olefins is highly dependent on the quality of the feeds introduced in the steam cracking step. There is therefore an interest in identifying new processes allowing the production of olefins from heavy hydrocarbon fractions in a more efficient, profitable manner and independent of the heavy hydrocarbon fraction treated.
  • the process according to the invention makes it possible to optimize the properties of the fractions which will be introduced in the steam cracking stage and thus to maximize the yields of olefins of interest during the steam cracking stage.
  • the hydrotreatment of the residue in a fixed bed makes it possible to remove some of the contaminants from the feed, in particular metals, sulfur and asphaltenes.
  • Deasphalting separates an asphalt fraction rich in asphaltenes called pitch according to English terminology from a deasphalted oil fraction, called DAO for “DeAsphalted OU” according to English terminology, with a greatly reduced asphaltene content, thus facilitating its upgrading by catalytic cracking or hydrocracking.
  • the conversion products and more particularly the heavy cuts resulting from the conversion processes such as deasphalted oils and vacuum distillates are difficult to treat directly in a steam cracking step.
  • the presence of high contents of naphthenic and aromatic compounds leads to a sharp drop in the yields of olefins of interest, to an increase in the yield of pyrolysis oil and to increased coking of the tubes of the steam cracking furnaces, which affects the operability. . It is therefore necessary to improve the operability of the steam cracking step in order to produce olefins with good yield.
  • the present invention aims to overcome the problems set out above, and in particular to provide a process allowing flexible and optimized production of olefins from heavy hydrocarbon feedstocks so as to improve the profitability of the olefin production process.
  • the Applicant has developed a new process for the production of olefins comprising a step of hydroconversion of residues in an ebullated bed, a step of deasphalting to produce a DAO fraction and an asphalt fraction, a step of hydrocracking in a fixed bed. , an extraction step to produce a raffinate and a fraction rich in aromatics and a steam cracking step of said raffinate.
  • the object of the present invention relates to a process for the production of olefins from a hydrocarbon feed 1 having a sulfur content of at least 0.1% by weight, an initial boiling temperature of at least 180 ° C and a final boiling temperature of at least 600 ° C, said process comprising the following steps: a) a hydroconversion step carried out in an ebullating bed reactor in which said heavy hydrocarbon feed 1 in the presence of hydrogen 2 are brought into contact in the presence of a hydroconversion catalyst, said step making it possible to obtain an effluent 3; b) a step of separating the effluent 3 from hydroconversion step a) into a gaseous fraction 4, a fraction 1 1 comprising compounds having a boiling point of between 350 and 540 ° C and a fraction vacuum residue liquid 5 comprising compounds having a boiling point of at least 540 ° C, c) a deasphalting step by liquid-liquid extraction of the vacuum residue fraction 5 from separation step b), said step c) being carried out using a
  • step b) of separation comprises a vacuum distillation allowing the production of at least one vacuum distillate fraction 1 1 and at least one vacuum residue fraction 5.
  • step b) of separation comprises, upstream of the vacuum distillation, atmospheric distillation making it possible to obtain at least one atmospheric distillate fraction and at least one atmospheric residue fraction, said fraction atmospheric residue being sent to said vacuum distillation, making it possible to obtain at least one vacuum distillate fraction 1 1 and at least one vacuum residue fraction 5.
  • all of the residue fraction 5 obtained from step b) is sent to step c) for deasphalting.
  • the solvent 6 used in step c) is an apolar solvent composed of at least 80% by volume of saturated hydrocarbon (s) comprising a carbon number of between 3 and 7
  • at least part of a distillate fraction resulting from stage b) of separation is introduced into stage d) of extraction of the aromatics.
  • step d) for extracting the aromatics is carried out on fractions having a boiling point greater than or equal to 180 ° C.
  • the compounds extracted during step d) have a boiling point higher than the boiling point of the solvent 6 used.
  • hydrocracking step e) is carried out so as to obtain a yield of liquid compounds having a boiling point of less than 220 ° C. greater than 50% by weight of the feed at the inlet of the hydrocracking step e).
  • the separation step f) comprises at least one atmospheric distillation making it possible to obtain at least one atmospheric distillate fraction 16 comprising compounds having a boiling point of less than 350 ° C. and a fraction liquid comprising vacuum distillate comprising compounds having a boiling point greater than 350 ° C.
  • the atmospheric distillate fraction 16 and the fraction comprising vacuum distillate are sent to step g) of steam cracking.
  • step g) of steam cracking part of a fraction comprising compounds having a boiling point between 80 and 180 ° C resulting from step b) of separation is introduced in step g) of steam cracking.
  • step g) of steam cracking is carried out in at least one pyrolysis furnace at a temperature between 700 and 900 ° C, under a pressure between 0.05 and 0.3 MPa for a period of time. stay less than or equal to 1.0 seconds.
  • the cuts rich in saturated compounds obtained from the light gases or from the pyrolysis gasoline obtained from stage h) of separation can be recycled to stage g) of steam cracking.
  • the pyrolysis oil fraction 21 is subjected to an additional separation step so as to obtain a light pyrolysis oil comprising compounds having a boiling point of less than 350 ° C and a heavy pyrolysis oil. comprising compounds having a boiling point greater than 350 ° C.
  • Said light pyrolysis oil is injected upstream of hydrocracking step e), and said heavy pyrolysis oil is injected upstream of hydroconversion step a) and / or deasphalting step c).
  • FIG. 1 represents a sequence of the method according to the invention.
  • FIG. 1 illustrates an exemplary implementation of the process for producing olefins from heavy hydrocarbon feedstocks according to the invention.
  • FIG. 1 illustrates an exemplary implementation of the process for producing olefins from heavy hydrocarbon feedstocks according to the invention.
  • the mention of the elements referenced in Figure 1 in the remainder of the description allows a better understanding of the invention, without it being limited to the particular example illustrated in Figure 1.
  • the method according to the invention comprises the following steps:
  • step b) of separation of the effluent 3 from step a) of hydroconversion making it possible to obtain at least one fraction 4 comprising hydrogen, a liquid fraction 1 1 containing compounds having a temperature of boiling between 350 and 540 ° C and a heavy liquid fraction containing compounds having a boiling point above 540 ° C;
  • DAO deasphalted oil
  • step d) of extracting at least part of fraction 8 comprising deasphalted oil (DAO) from step c) of deasphalting and at least part of fraction 11 from step b) separation with a solvent or a combination of solvents 9, makes it possible to obtain at least a fraction 10 rich in saturated compounds (raffinate), and a fraction 13 rich in aromatic compounds (extract);
  • At least part of the pyrolysis oil fraction 21 resulting from the separation step h) can be injected upstream of the deasphalting step c) and / or of the d) step. hydrocracking.
  • this variant eliminates the asphaltenes contained in the pyrolysis oil and thus maximizes the production of olefins.
  • the pyrolysis oil fraction 21 resulting from separation step h) can be separated into at least two fractions, for example into an oil fraction. of light pyrolysis which is sent at least in part to hydrocracking stage d), and to a heavy pyrolysis oil fraction which is sent at least in part to hydroconversion stage a) and / or stage c) deasphalting.
  • this variant still makes it possible to maximize the production of olefins.
  • step b) of separating the effluent 3 resulting from hydrotreatment step a) also makes it possible to obtain an atmospheric distillate fraction comprising compounds having a boiling point between 180 and 350 ° C. which can be introduced at least in part in stage d) for extracting the aromatics.
  • the heavy hydrocarbon feed 1 treated in the process according to the invention is advantageously a hydrocarbon feed containing asphaltenes, and in particular having a C7 asphaltenes content of at least 1.0% by weight, preferably of at least 2.0%. weight in relation to the weight of the load.
  • Charge 1 has an initial boiling temperature of at least 180 ° C, preferably at least 350 ° C and more preferably at least 540 ° C and a final boiling temperature of at least 600 ° C.
  • the hydrocarbon feedstock 1 according to the invention can be chosen from atmospheric residues, vacuum residues from direct distillation, crude oils, topped crude oils, tar sands or their derivatives, bituminous shales or their derivatives, oils. of parent rock or their derivatives, taken alone or as a mixture.
  • the feeds treated are preferably atmospheric residues or vacuum residues, or mixtures of these residues, and more preferably vacuum residues.
  • the heavy hydrocarbon feed treated in the process may contain, among other things, sulfur impurities.
  • the sulfur content can be at least 0.1% by weight, at least 0.5% by weight, preferably at least 1.0% by weight, more preferably at least 2.0% by weight relative to the weight of the load.
  • the heavy hydrocarbon feed treated in the process may contain, inter alia, metals.
  • the nickel and vanadium content may be at least 20 ppm, preferably at least 50 ppm based on the weight of the feed.
  • the heavy hydrocarbon feed treated in the process may contain, inter alia, Conradson carbon.
  • Conradson carbon content can be at least 2.0% by weight, preferably at least 5.0% by weight based on the weight of the filler.
  • fillers can advantageously be used as they are.
  • said charges can be mixed with at least one co-charge.
  • co-fillers can be used at different stages of the process according to the invention in order to modulate the viscosity of the charge introduced at each of the stages.
  • a co-charge can be introduced upstream of at least one reactor of hydroconversion stage a).
  • This co-charge can be a hydrocarbon fraction or a mixture of lighter hydrocarbon fractions, which can preferably be chosen from the products resulting from a fluid bed catalytic cracking process (FCC or “Fluid Catalytic Cracking” according to the English terminology).
  • FCC fluid bed catalytic cracking process
  • Saxon in particular a light cut (LCO or "light cycle oil” according to Anglo-Saxon terminology), a heavy cut (FICO or "heavy cycle oil” according to Anglo-Saxon terminology), a decanted oil, a residue of FCC .
  • This co-charge can also be an atmospheric gas oil fraction or a vacuum gas oil fraction obtained by atmospheric or vacuum distillation of a crude oil or of an effluent from a conversion process such as coking or visbreaking or resulting from stages c) and / or e) of separation.
  • This co-charge does not represent more than 20% by weight of the heavy hydrocarbon feed 1.
  • a hydroconversion step a) is carried out in an ebullating bed reactor in which the heavy hydrocarbon feed 1 or the feed mixture, in the presence of hydrogen, are brought into contact with a hydroconversion catalyst.
  • the load or the mixture of loads is introduced in step a) in the presence of a co-load.
  • hydroconversion is meant all the reactions carried out making it possible to reduce the size of the molecules, mainly by cleavage of carbon-carbon bonds, by the action of hydrogen in the presence of a catalyst. During the hydroconversion step, hydrotreatment and hydrocracking reactions take place in particular.
  • the hydroconversion stage comprises one or more three-phase reactors with an upward flow of liquid and gas containing at least one hydroconversion catalyst, the ebullating bed reactors possibly being arranged in series and / or in parallel, typically operating using the technology and under the conditions of the H-Oil TM process as described for example in US Patents 4,521, 295 or US 4,495,060 or US 4,457,831 or US 4,354,852, or in the article AlChE, March 19-23 , 1995, Houston, Texas, paper number 46d, "Second generation ebullated bed technology", or in chapter 3.5 "Hydroprocessing and Hydroconversion of Residue Fractions" of the book “Catalysis by Transition Métal Sulphides", edited by Éditions Technip in 2013.
  • Each reactor advantageously comprises a recirculation pump allowing the catalyst to be maintained in an ebullating bed by continuous recycling of at least part of a liquid fraction advantageously withdrawn at the head of the re actor and reinjected
  • the hydroconversion step a) is carried out under conditions making it possible to obtain a liquid effluent with a reduced content of sulfur, Conradson carbon, metals, and nitrogen.
  • step a) is preferably carried out under an absolute pressure of between 2 MPa and 38 MPa, more preferably between 5 MPa and 25 MPa and even more preferably between 6 MPa and 20 MPa, at a temperature of between 300 ° C and 550 ° C, more preferably between 350 ° C and 500 ° C and in a preferred manner between 370 ° C and 450 ° C.
  • the hourly space velocity (WH) relative to the volume of each three-phase reactor is preferably between 0.05 h 1 and 10 h 1 .
  • the WH is between 0.1 h 1 and 10 h 1 , more preferably between 0.1 h 1 and 5.0 h 1 and even more preferably between 0.15 h 1 and 2.0 hrs 1 .
  • the WH is between 0.05 h 1 and 0.09 h 1 .
  • the quantity of hydrogen mixed with the feed is preferably between 50 and 5000 normal cubic meters (Nm 3 ) per cubic meter (m 3 ) of liquid feed, preferably between 100 and 2000 Nm 3 / m 3 and preferably very preferred between 200 and 1000 Nm 3 / m 3 .
  • the hydroconversion catalyst used in the hydroconversion step a) of the process according to the invention may contain one or more elements from groups 4 to 12 of the periodic table of the elements, which may or may not be deposited on a support.
  • a catalyst comprising a support, preferably amorphous, such as silica, alumina, silica-alumina, titanium dioxide or combinations of these structures, and very preferably alumina.
  • the catalyst may contain at least one non-noble group VIII metal chosen from nickel and cobalt, and preferably nickel, said group VIII element being preferably used in combination with at least one group VIB metal chosen from group VIII. molybdenum and tungsten, and preferably the group VIB metal is molybdenum.
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • the hydroconversion catalyst used in the hydroconversion step a) comprises an alumina support and at least one metal from group VIII chosen from nickel and cobalt, preferably nickel, and at least one metal from group VIB chosen from molybdenum and tungsten, preferably molybdenum.
  • the hydroconversion catalyst comprises nickel as a group VIII element and molybdenum as a group VIB element.
  • non-noble group VIII metal in particular nickel
  • metal oxide in particular of NiO
  • metal from group VIB in particular molybdenum
  • the metal contents are expressed as a percentage by weight of metal oxide relative to the weight of the catalyst.
  • This catalyst is advantageously used in the form of extrudates or beads.
  • the balls have for example a diameter of between 0.4 mm and 4.0 mm.
  • the extrudates have for example a cylindrical shape with a diameter of between 0.5 and 4.0 mm and a length of between 1.0 and 5.0 mm.
  • the extrudates can also be objects of a different shape such as trilobes, regular or irregular tetralobes, or other multilobes. Catalysts of other forms can also be used.
  • the size of these different forms of catalyst can be characterized using the equivalent diameter.
  • the equivalent diameter is defined by 6 times the ratio between the volume of the particle and the outer surface of the particle.
  • the catalyst used in the form of extrudates, beads or other forms therefore has an equivalent diameter of between 0.4 mm and 4.4 mm. These catalysts are well known to those skilled in the art.
  • a different hydroconversion catalyst is used in each reactor of this initial hydroconversion stage (a ⁇ , the catalyst offered to each reactor being adapted to the load sent to this reactor.
  • each reactor contains one or more catalysts suitable for ebullating bed operation.
  • the hydroconversion catalyst when it is used, can be partly replaced by fresh catalyst, and / or used catalyst but with catalytic activity. greater than the used catalyst to be replaced, and / or regenerated catalyst, and / or rejuvenated catalyst (catalyst from a rejuvenation zone in which most of the deposited metals are removed, before sending the spent and rejuvenated catalyst to a regeneration zone in which the carbon and sulfur which it contains are removed, thus increasing the activity of the catalyst), by withdrawing the used catalyst preferably at the bottom of the reactor, and by introducing the replacement catalyst either at the top or at the bottom of the reactor.
  • This replacement of used catalyst is preferably carried out at regular time intervals, and preferably by puff or almost continuously.
  • the replacement of spent catalyst can be done in whole or in part with used and / or regenerated and / or rejuvenated catalyst obtained from the same reactor and / or from another reactor of any hydroconversion stage.
  • the catalyst can be added with the metals in the form of metal oxides, with the metals in the form of metal sulfides, or after preconditioning.
  • the rate of replacement of the spent hydroconversion catalyst with fresh catalyst is advantageously between 0.01 kg and 10 kg per cubic meter of feed treated, and preferably between 0.1 kg and 3 kg per cubic meter. load processed. This racking and this replacement are carried out using devices advantageously allowing the continuous operation of this hydroconversion step.
  • the replacement at least in part by regenerated catalyst it is possible to send the spent catalyst withdrawn from the reactor to a regeneration zone in which the carbon and sulfur which it contains are removed, then this catalyst can be returned. regenerated in the hydroconversion step.
  • the replacement at least in part by rejuvenated catalyst it is possible to send the spent catalyst withdrawn from the reactor to a rejuvenation zone in which most of the deposited metals are removed, before sending the spent catalyst. and rejuvenated in a regeneration zone in which the carbon and sulfur which it contains are removed, and then this regenerated catalyst is returned to hydroconversion stage a).
  • Hydroconversion step a) is characterized by a degree of conversion of the compounds boiling above 540 ° C greater than 50% by mass, preferably greater than 70% by mass.
  • the effluent 3 obtained at the end of hydroconversion step a) comprises at least one heavy liquid fraction 5 also called the residue liquid fraction and a gaseous fraction 4 containing the gases, in particular H 2 , H 2 S, NH 3 , and hydrocarbons in CC 4 (that is to say comprising from 1 to 4 carbon atoms).
  • the process comprises a step b) of separation of the effluent 3 resulting from the hydroconversion step a) into a gas fraction 4, a fraction 1 1 comprising compounds having a boiling point included between 350 and 540 ° C and at least one residual liquid fraction comprising compounds having a boiling point of at least 540 ° C.
  • the gas fraction 4 can be separated from the effluent 3 using separation devices well known to those skilled in the art, in particular using one or more separator flasks which can operate at different pressures and temperatures, optionally. associated with a steam or hydrogen stripping means and one or more distillation columns. After optional cooling, this gas fraction 4 is preferably treated in a means for purifying hydrogen so as to recover the hydrogen not consumed during the hydroconversion reactions.
  • the purified hydrogen can then advantageously be recycled in the process according to the invention.
  • the hydrogen can be recycled to the inlet and / or to different places of stage a) of hydroconversion and / or of stage d) of hydrocracking in an ebullating bed.
  • Step b) of separation comprises a vacuum distillation in which the effluent 3 from step a) is fractionated by vacuum distillation into at least one vacuum distillate fraction 1 1 and at least one vacuum residue fraction 5
  • the vacuum distillate fraction 1 1 comprises fractions of the vacuum gas oil type, that is to say compounds having a boiling point between 350 and 540 ° C.
  • the heavy liquid fraction 5 is preferably a liquid hydrocarbon fraction containing at least 80% of compounds having a boiling point greater than or equal to 540 ° C.
  • step b) of separation firstly comprises atmospheric distillation, that is to say upstream of vacuum distillation, in which the liquid hydrocarbon fraction (s) ( s) obtained after separation is (are) fractionated by atmospheric distillation into at least one atmospheric distillate fraction and at least one atmospheric residue fraction, then vacuum distillation in which the atmospheric residue fraction obtained after atmospheric distillation is fractionated by vacuum distillation into at least one vacuum distillate fraction 1 1 and at least one vacuum residue fraction 5.
  • the separation step b) further comprises at least one atmospheric distillation upstream from the vacuum distillation, in which the effluent 3 is fractionated by atmospheric distillation into at least one distillate fraction containing naphtha, that is - ie comprising compounds having a boiling point between 80 and 180 ° C, and a distillate fraction containing diesel, ie comprising compounds having a boiling point between 180 and 350 ° vs.
  • the distillate fraction containing naphtha is at least partially and preferably entirely sent to step g) of steam cracking.
  • the diesel-containing distillate fraction can be at least in part and preferably in full sent to step d) of extraction.
  • the diesel-containing distillate fraction can optionally be sent in part to hydrocracking step e).
  • At least part, and preferably all, of the vacuum residue fraction 5 is sent to deasphalting step c). At least part, and preferably all, of the vacuum distillate fraction 11 is sent to step d) for extracting the aromatics.
  • the process comprises a step c) of deasphalting by liquid-liquid extraction of the residue fraction 5 from step b) of separation.
  • Said step c) is carried out by liquid-liquid extraction using a solvent or a mixture of solvents 6 making it possible to obtain on the one hand a fraction 7 comprising asphalt, and on the other hand a deasphalted oil fraction (DAO) 8.
  • DAO deasphalted oil fraction
  • Step c) of deasphalting is preferably carried out under specific conditions making it possible to obtain a quality DAO 8, preferably with a low asphaltene content.
  • Step c) of deasphalting is preferably carried out in a single step using an apolar solvent or a mixture of apolar solvents.
  • Step c) can be carried out in an extraction column or extractor, or in a mixer-settler.
  • Step c) is preferably carried out in an extraction column containing liquid-liquid contactors (packing elements and / or trays, etc.) placed in one or more zones.
  • the solvent or the mixture of solvents 6 is introduced into the extraction column at two different levels.
  • the deasphalting feedstock is introduced into an extraction column at a single introduction level, generally mixed with at least part of the solvent or mixture of solvents 6 and generally below a first contactor zone. liquid-liquid.
  • the other part of the solvent or mixture of solvents 6 is injected lower than the deasphalting charge, generally below a second zone of liquid-liquid contactors, the deasphalting charge being injected above this second. contactors area.
  • Step c) is carried out under subcritical conditions, that is to say below the critical point, for said solvent or mixture of solvents 6.
  • Step c) is carried out at a temperature advantageously between 50 and 350 ° C, preferably between 80 and 320 ° C, more preferably between 120 and 310 ° C, even more preferably between 150 and 300 ° C, and at a pressure advantageously between 0.1 and 6 MPa, preferably between 1 and 6 MPa, more preferably between 2 and 5 MPa.
  • the volume ratio of the solvent or of the mixture of solvents 6 to the mass of residue fraction 5 resulting from step b) is generally between 1/1 and 12/1, preferably between 2/1 and 9/1 expressed in liters per kilograms. This ratio includes all of the solvent or mixture of solvents which can be divided into several injection points.
  • the apolar solvent used is preferably a solvent composed of saturated hydrocarbon (s) comprising a number of carbons greater than or equal to 3, preferably between 3 and 5.
  • These solvents can be for example propane, butane. or pentane. These solvents are used pure or as a mixture.
  • the solvent 6 used in step c) is an apolar solvent composed of at least 80% by volume of saturated hydrocarbon (s) comprising a number of carbons of between 3 and 7, preferably of between between 4 and 5, so as to maximize the yield of DAO fraction 8.
  • Step c) can make it possible, thanks to these specific deasphalting conditions, to precipitate in the asphalt fraction 7 an adjusted amount of polar structures of heavy resin and asphaltene type, which makes it possible to obtain an asphalt fraction 7 with a moderate yield. , generally less than 40%, or even less than 30% relative to the amount of compounds having a boiling point greater than 540 ° C. at the inlet of deasphalting step c).
  • the high yield of DAO 8 makes it possible to obtain more cracked products at the outlet of step g) of steam cracking.
  • the DAO 8 fraction obtained comprises less than 2000 ppm of C7 asphaltenes, generally less than 1000 ppm of C7 asphaltenes, or even less than 500 ppm of C7 asphaltenes.
  • a fraction is recovered which comprises the DAO 8 and a part solvent or mixture of solvents.
  • a fraction 7 is recovered which comprises asphalt and part of the solvent. or mixture of solvents.
  • the solvent or mixture of solvents 6 may consist of an makeup and / or a part recycled during separation steps. These additions advantageously allow compensate for the losses of solvent in the asphalt fraction 7 and / or in the DAO fraction 8, due to the separation steps.
  • Step c) of deasphalting comprises an integrated sub-step of separation of fraction 8 comprising the DAO and the solvent or mixture of solvents.
  • the solvent or mixture of solvents recovered can be recycled in step c) of deasphalting.
  • This integrated separation sub-step making it possible to separate the DAO 8 and the solvent or the mixture of solvents can use all the necessary equipment known to those skilled in the art (separator flasks, distillation or stripping columns, heat exchangers, etc. furnaces, pumps, compressors, etc.).
  • At least part, and preferably all, of the DAO 8 is sent to step d) of extracting aromatics.
  • the process comprises a step d) of extracting the aromatics from at least a part of the deasphalted oil fraction 8 from step c) of deasphalting. Said step making it possible to obtain an extract fraction 13 and a raffinate fraction 10.
  • At least part, preferably all, of the distillate fraction comprising compounds having a boiling point of between 180 and 350 ° C resulting from stage b) of separation, is also introduced in stage d ) extraction of aromatics.
  • part of fraction 11 from step b) of separation and comprising compounds having a boiling point of between 350 and 540 ° C can be introduced in step d) of extraction.
  • the objective of the aromatics extraction step is to extract at least part of the aromatic compounds, by liquid-liquid extraction using a polar solvent 9, as well as the resins contained in the DAO fraction 8.
  • the extraction of the aromatics is carried out on fractions having a boiling point higher than 180 ° C and preferably higher than 350 ° C, in order to avoid losses of yield of light fractions during the recovery of the solvent after extraction.
  • the compounds extracted during step d) preferably have a boiling point greater than the boiling point of the solvent, which advantageously makes it possible to maximize the yield during the separation of the solvent from the raffinate after the extraction. In addition, the recovery of the solvent is also more efficient and economical.
  • the solvent is furfural.
  • the operating conditions are generally a solvent / feed ratio of step d) of 1/2 to 6/1, preferably from 1/1 to 4/1, a temperature profile between ambient temperature and 150 ° C, preferably between 50 and 150 ° C.
  • the pressure is between atmospheric pressure and 2.0 MPa, preferably between 0.1 and 1.0 MPa.
  • the liquid / liquid extraction can generally be carried out in a mixer-settler or in an extraction column operating in counter-current.
  • the extraction is carried out in an extraction column.
  • the chosen solvent has a sufficiently high boiling point to be able to fluidify the charge of step d) without vaporizing.
  • step d After contact of the solvent, with the effluent introduced in step d), two fractions are obtained at the end of step d), an extract fraction 13, consisting of parts of the heavy fraction not soluble in the solvent ( and highly concentrated in aromatics) and a raffinate fraction 10, consisting of the solvent and the soluble parts of the heavy fraction.
  • the solvent is separated from the soluble parts by distillation and recycled internally to the liquid / liquid extraction process.
  • the separation of the extract and the raffinate and the recovery of the solvent are carried out in a separation sub-step integrated in step d) of extracting the aromatics.
  • the process comprises a stage e) of hydrocracking in a fixed bed of at least part of the fraction 11 resulting from stage b) of separation and at least one part of the extracted fraction 13 from extraction step d) in the presence of a hydrocracking catalyst.
  • Hydrogen 12 can also be injected upstream of the various catalytic beds making up the hydrocracking reactor (s). Along with the hydrocracking reactions desired in this step, any type of hydrotreatment reaction (HDM, HDS, HDN, etc.) also occurs. Hydrocracking reactions leading to the formation of atmospheric distillates take place with a degree of conversion of the vacuum distillate to atmospheric distillate which is generally greater than 30%, typically between 30 and 50% for mild hydrocracking and greater than 80% for extensive hydrocracking. Specific conditions, particularly temperature, and / or the use of one or more specific catalysts, promote the desired hydrocracking reactions.
  • Hydrocracking step e) is carried out under hydrocracking conditions. It can advantageously be carried out at a temperature between 340 and 480 ° C, preferably between 350 and 430 ° C and under an absolute pressure between 5 and 25 MPa, preferably between 8 and 20 MPa, preferably between 10 and 18 MPa. The temperature is usually adjusted depending on the desired level of hydrotreatment and the duration of the intended treatment. Most often, the space velocity of the hydrocarbon feed, commonly called WH, and which is defined as being the volumetric flow rate of the feed divided by the total volume of the catalyst, can be in a range from 0.1 to 3, 0 h 1 , preferably from 0.2 to 2.0 h 1 , and more preferably from 0.25 to 1.0 h 1 .
  • the quantity of hydrogen mixed with the feed can be between 100 and 5000 normal cubic meters (Nm 3 ) per cubic meter (m 3 ) of liquid feed, preferably between 200 and 2000 Nm 3 / m 3 , and more preferably between 300 and 1500 Nm 3 / m 3 .
  • Hydrocracking step e) can be carried out industrially in at least one reactor with a downward flow of liquid.
  • Hydrocracking stage e) preferably comprises two catalytic sections in series, with an upstream hydrotreatment catalytic section so as to limit the deactivation of the downstream hydrocracking catalytic section.
  • This hydrotreatment section aims in particular to significantly reduce the nitrogen content of the feed, the nitrogen being an inhibitor of the acid function of the bifunctional catalysts of the hydrocracking catalytic section.
  • Hydrocracking stage e) can also comprise a second catalytic hydrocracking section treating at least one heavy cut resulting from a separation stage.
  • the catalysts in hydrocracking step e) used can be hydrotreatment and hydrocracking catalysts.
  • the hydrotreatment catalysts used can be hydrotreatment catalysts consisting of a support of inorganic oxide type (preferably an alumina) and of an active phase comprising chemical elements from group VIII (Ni, Co, etc.) and group VI (Mo, etc.).
  • the hydrocracking catalysts can advantageously be bifunctional catalysts, having a hydrogenating phase in order to be able to hydrogenate the aromatics and to achieve the equilibrium between the saturated compounds and the corresponding olefins and an acid phase which makes it possible to promote the hydroisomerization reactions. and hydrocracking.
  • the acid function is advantageously provided by supports with large surfaces (generally 100 to 800 m 2 .g 1 ) having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), combinations of oxides of boron and of aluminum, amorphous silica-aluminas and zeolites.
  • the hydrogenating function is advantageously provided either by one or more metals from group VIII of the periodic table of the elements, such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum , or by a combination of at least one metal from group VIB of the periodic table, such as molybdenum and tungsten, and at least one non-noble metal from group VIII (such as nickel and cobalt).
  • the bifunctional catalyst used comprises at least one metal chosen from the group formed by the metals of groups VIII and VIB, taken alone or as a mixture, and a support comprising 10 to 90% by weight of a zeolite and 90 to 10% weight of inorganic oxides.
  • the metal from group VIB used is preferably chosen from tungsten and molybdenum and the metal from group VIII is preferably chosen from nickel and cobalt.
  • monofunctional catalysts and bifunctional catalysts of the alumina, silica-amorphous or zeolitic alumina type can be used as a mixture or in successive layers.
  • the catalytic volume used during the second stage e) of hydrocracking consists of at least 30% of hydrocracking catalysts of the bifunctional type.
  • a co-feed (not shown) can be injected upstream of any catalytic bed of hydrocracking section d).
  • This co-charge is typically a vacuum distillate resulting from direct distillation or resulting from a conversion process, or a deasphalted oil.
  • hydrocracking step e) is carried out in "maxi naphtha" mode, that is to say it makes it possible to obtain a yield of liquid compounds having a boiling point of less than 220 ° C. greater than 50% by weight of the feedstock at the inlet of hydrocracking stage e).
  • step f The effluent 14 from step e) of fixed bed hydrocracking is sent to a separation step f).
  • Step f separation of the hydrocraquaqe effluent in a fixed bed
  • the process further comprises a step f) of separating the effluent 14 from step e) of fixed bed hydrocracking into at least one gas fraction 15 and at least one liquid fraction 16.
  • Said effluent 14 is advantageously separated in at least one separating flask into at least one gaseous fraction 15 and at least one liquid fraction 16.
  • the step of separating said effluent 14 can be carried out using any known separation devices of the invention. a person skilled in the art, such as one or more separator flasks which can operate at different pressures and temperatures, optionally associated with a means for stripping with steam or with hydrogen and with one or more distillation columns.
  • These separators can for example be high pressure high temperature (HPHT) separators and / or high pressure low temperature (HPBT) separators.
  • the gas fraction 15 obtained at the end of stage e) of separation comprises gases, such as H 2 , H 2 S, NH 3 , and C1 -C4 hydrocarbons (such as methane, ethane, propane, etc. butane).
  • the hydrogen contained in the gas fraction 15 is purified and recycled in any one of the steps a) of hydroconversion in an ebullating bed and / or e) of hydrocracking in a fixed bed.
  • the purification of the hydrogen contained in the gaseous fraction 15 can be carried out simultaneously with the treatments of the gaseous fractions resulting from the separation of the effluents from stages a) of hydroconversion in an ebullating bed and e) of hydrocracking.
  • the separation step f) further comprises gas-liquid separation or the succession of separation devices, at least one atmospheric distillation, in which the hydrocarbon fraction (s) ) liquid (s) obtained after separation is (are) fractionated by atmospheric distillation into at least one atmospheric distillate fraction 16 comprising compounds having a boiling point of less than 350 ° C and optionally a liquid fraction comprising vacuum distillate comprising compounds having a boiling point greater than 350 ° C. At least a part, and preferably all, of the atmospheric distillate fraction 16 and optionally of the fraction comprising vacuum distillate is advantageously sent to step g) of steam cracking.
  • At least part of the vacuum distillate type fraction is recycled to hydrocracking step e), and according to this variant it may be necessary to perform a purge consisting of unconverted fractions of the vacuum distillate type of so as to deconcentrate the polyaromatic species and to limit the deactivation of the hydrocracking catalyst of step e).
  • a purge consisting of unconverted fractions of the vacuum distillate type of so as to deconcentrate the polyaromatic species and to limit the deactivation of the hydrocracking catalyst of step e).
  • it may be advantageous to optionally carry out this purge by sending at least part of the unconverted fraction of vacuum distillate type at the input of step c) of deasphalting of so as to at least partly eliminate the polyaromatic species in the asphalt fraction 7.
  • the process comprises a step g) of steam cracking of the raffinate fraction 10 resulting from the extraction step d) and of the liquid fraction 16 resulting from the separation step f) comprising compounds having a boiling point lower than 350 ° C, and preferably a fraction comprising compounds having a boiling point higher than 350 ° C resulting from stage f) of separation.
  • part of the fraction comprising compounds having a boiling point between 80 and 180 ° C resulting from step b) of separation can be introduced in step g) of steam cracking.
  • Step g) of steam cracking is advantageously carried out in at least one pyrolysis furnace at a temperature between 700 and 900 ° C, preferably between 750 and 850 ° C, and under a pressure between 0.05 and 0.3 Relative MPa.
  • the residence time of hydrocarbons is generally less than or equal to 1.0 seconds (denoted s), preferably between 0.1 and 0.5 s.
  • water vapor is introduced upstream of steam cracking step g).
  • the amount of water introduced is between 0.3 and 3.0 kg of water per kg of hydrocarbons entering step g).
  • step g) is carried out in several pyrolysis ovens in parallel so as to adapt the operating conditions to the different flows feeding step g) and resulting from steps b), e), f) and h), and also to manage the decoking times of the tubes.
  • a furnace comprises one or more tubes arranged in parallel.
  • a furnace can also refer to a group of furnaces operating in parallel.
  • one furnace can be dedicated to cracking fractions rich in ethane, another furnace dedicated to cuts rich in propane and butane, another furnace dedicated to cuts comprising compounds having a boiling point between 80 and 180 ° C, a another oven dedicated to cuts comprising compounds having a boiling point of between 180 and 350 ° C, and another oven dedicated to cuts comprising compounds having a boiling point greater than 350 ° C.
  • the method comprises a step h) of separating the effluent 17 from steam cracking step g) making it possible to obtain at least one fraction 18 comprising, preferably consisting of, hydrogen, a fraction 19 comprising, preferably consisting of ethylene, a fraction 20 comprising, preferably consisting of, propylene and a fraction 21 comprising, preferably consisting, and pyrolysis oil.
  • step h) of separation also makes it possible to recover a fraction comprising, preferably consisting of butenes and a fraction comprising, preferably consisting of pyrolysis gasoline.
  • the cuts rich in saturated compounds resulting from the light gases or from the pyrolysis gasoline resulting from the separation stage h) can be recycled to the steam cracking stage g), in particular ethane and propane, of so as to increase the yield of ethylene and propylene.
  • the pyrolysis oil fraction 21 can optionally be subjected to an additional separation step so as to obtain several fractions, for example a light pyrolysis oil comprising compounds having a boiling point of less than 350 ° C. and a heavy pyrolysis oil. comprising compounds having a boiling point greater than 350 ° C.
  • the light pyrolysis oil can advantageously be injected upstream of hydrocracking step d).
  • the heavy pyrolysis oil can advantageously be injected upstream of stage a) of hydroconversion and / or of stage c) of deasphalting.
  • the separation of fraction 21 into two fractions and their recycling in one of steps a), c) or e) of the process making it possible to maximize the formation of olefins from heavy hydrocarbon feedstocks.
  • the heavy hydrocarbon feedstock 1 treated in the process is a vacuum residue originating from the Middle East and having the properties shown in Table 1.
  • the feed is subjected to a hydroconversion step a) in two ebullating bed reactors in series and in the presence of an ebullating bed hydroconversion catalyst of NiMo type on alumina under the conditions indicated in Table 2.
  • step b) of separation comprising separator flasks as well as an atmospheric distillation column and a vacuum distillation column.
  • Table 3 % mass relative to the feed upstream of step a) of ebullating bed hydrocracking, noted% m / m):
  • a DAO 8 fraction is obtained with a yield of 62% and a pitch fraction is obtained with a yield of 38%; these yields are related to the charge of the deasphalting step corresponding to fraction 5 (540 ° C +) from step b) of separation of the effluent from step a) from hydrocracking.
  • the DAO fraction 8 from step c) of deasphalting, the fraction (180-350 ° C) and the fraction 11 (350-540 ° C) from step b) of separation are sent to a step d ) extraction of aromatics carried out in a mixer-settler, the conditions of which are presented in Table 5:
  • step d) of extracting the aromatics is sent to a step e) of fixed bed hydrocracking carried out under the conditions presented in Table 6:
  • the effluent 14 resulting from fixed-bed hydrocracking stage e) is subjected to a separation stage comprising separator flasks and an atmospheric distillation column.
  • the yields of the different fractions obtained after separation are shown in Table 7 (% mass relative to the feedstock upstream of the fixed bed hydrocracking stage, noted% m / m):
  • step f After separation in step f).
  • the liquid fractions PI-220 ° C, 220-350 ° C and 350 ° C + from step f) of separation of the effluent from the fixed bed hydrocracking step, the PI-180 ° C fraction from of stage a) of hydrocracking in an ebullating bed and the raffinate fraction 10 resulting from stage d) of extraction of the aromatics are sent to a stage g) of steam cracking where each of the liquid fraction is cracked under different conditions ( table 8).
  • Table 8 conditions of the steam cracking step
  • the effluents from the various steam cracking furnaces are subjected to a separation step making it possible to recycle the saturated compounds and to obtain the yields presented in Table 9 (% by mass relative to the total load upstream of step g) of steam cracking , noted% m / m).
  • Table 9 shows the yields of steam cracking products. Compared to the atmospheric residue type feed introduced in hydroconversion step a), the process according to the invention makes it possible to achieve mass yields of ethylene and propylene of 29.4% and 16.0% respectively. In addition, the specific sequence of steps upstream of the steam cracking step helps limit the formation of coke.

Abstract

The present invention relates to a process for the preparation of olefins from a hydrocarbon feedstock (1) having a sulphur content of at least 0.1 wt.%, an initial boiling temperature of at least 180 °C and a final boiling temperature of at least 600 °C.

Description

PROCEDE DE PRODUCTION DOLEFINES COMPRENANT UN HYDROTRAITEMENT, UN DESASPHALTAGE, UN HYDROCRAQUAGE ET UN VAPOCRAQUAGE DOLEFINES PRODUCTION PROCESS INCLUDING HYDRO-TREATMENT, DESASPHALTING, HYDRO-CRACKING AND VAPOCRAQUAGE
DOMAINE TECHNIQUE TECHNICAL AREA
La présente invention concerne un procédé de production d’oléfines à partir de fractions lourdes d'hydrocarbures contenant entre autres des impuretés soufrées, des métaux et des asphaltènes. The present invention relates to a process for the production of olefins from heavy fractions of hydrocarbons containing, inter alia, sulfur impurities, metals and asphaltenes.
TECHNIQUE ANTERIEURE PRIOR TECHNIQUE
L’amélioration des motorisations et l’électrification progressive d’une partie des véhicules ont entraîné une évolution de la demande en produits pétroliers avec une tendance à réduire la croissance de la demande en carburants. A l’inverse, la croissance de la demande en bases pétrochimiques et notamment en oléfines est plus soutenue. L’éthylène et le propylène sont par exemple des oléfines très recherchées, car elle sont des intermédiaires essentiels pour de nombreux produits pétrochimiques tels le polyéthylène ou encore le polypropylène. Il y a donc un intérêt à intégrer davantage les sites de raffinage et les sites pétrochimiques existants, à remodeler les sites de raffinage, de manière à produire au moins en partie des bases pétrochimiques, ou à concevoir de nouveaux schémas intégrés de raffinage- pétrochimie, ou encore à concevoir des sites où la majeure partie ou la totalité du brut est convertie en bases pétrochimiques. The improvement of engines and the gradual electrification of some of the vehicles have led to a change in demand for petroleum products with a tendency to reduce the growth in demand for fuels. Conversely, the growth in demand for petrochemical bases and in particular for olefins is more sustained. For example, ethylene and propylene are highly desirable olefins, because they are essential intermediates for many petrochemicals such as polyethylene and polypropylene. There is therefore an interest in further integrating the refining sites and the existing petrochemical sites, in remodeling the refining sites, so as to produce at least part of petrochemical bases, or to design new integrated refining-petrochemical schemes, or even to design sites where most or all of the crude is converted into petrochemical bases.
Le principal procédé permettant la conversion de fractions lourdes hydrocarbonées en oléfines à haut rendement est le vapocraquage. La production des oléfines recherchées s’accompagne de co-produits, notamment de composés aromatiques et d’huile de pyrolyse qui nécessitent des étapes de purification. De plus, la sélectivité en oléfines recherchées est fortement dépendante de la qualité des charges introduites dans l’étape de vapocraquage. Il y a donc un intérêt à identifier de nouveaux procédés permettant la production d’oléfines à partir de fractions lourdes hydrocarbonées de manière plus efficace, rentable et indépendante de la fraction hydrocarbonée lourde traitée. The main process for converting heavy hydrocarbon fractions into high yield olefins is steam cracking. The production of the desired olefins is accompanied by co-products, in particular aromatic compounds and pyrolysis oil which require purification steps. In addition, the selectivity for the desired olefins is highly dependent on the quality of the feeds introduced in the steam cracking step. There is therefore an interest in identifying new processes allowing the production of olefins from heavy hydrocarbon fractions in a more efficient, profitable manner and independent of the heavy hydrocarbon fraction treated.
Avantageusement, le procédé selon l’invention permet d’optimiser les propriétés des fractions qui vont être introduites à l’étape de vapocraquage et ainsi maximiser les rendements en oléfines d’intérêt lors de l’étape de vapocraquage. Dans les procédés de traitement de fractions lourdes d'hydrocarbures, l’hydrotraitement de résidu en lit fixe permet d’éliminer une partie des contaminants de la charge, notamment les métaux, le soufre et les asphaltènes. Advantageously, the process according to the invention makes it possible to optimize the properties of the fractions which will be introduced in the steam cracking stage and thus to maximize the yields of olefins of interest during the steam cracking stage. In the processes for treating heavy fractions of hydrocarbons, the hydrotreatment of the residue in a fixed bed makes it possible to remove some of the contaminants from the feed, in particular metals, sulfur and asphaltenes.
Il est également connu de réaliser des opérations de désasphaltage. Le désasphaltage permet de séparer une fraction asphalte riche en asphaltènes appelée pitch selon la terminologie anglo-saxonne d’une fraction huile désasphaltée, appelée DAO pour “DeAsphalted OU” selon la terminologie anglo-saxonne, à teneur fortement réduite en asphaltènes, facilitant ainsi sa valorisation par craquage catalytique ou hydrocraquage. It is also known to carry out deasphalting operations. Deasphalting separates an asphalt fraction rich in asphaltenes called pitch according to English terminology from a deasphalted oil fraction, called DAO for “DeAsphalted OU” according to English terminology, with a greatly reduced asphaltene content, thus facilitating its upgrading by catalytic cracking or hydrocracking.
Les produits de conversion et plus particulièrement les coupes lourdes issues des procédés de conversion telles les huiles déasphaltées et les distillais sous vide sont difficilement traitables directement dans une étape de vapocraquage. La présence de fortes teneurs en composés naphténiques et aromatiques conduit à une forte baisse des rendements en oléfines d’intérêt, à une hausse du rendement en huile de pyrolyse et à un cokage accru des tubes des fours de vapocraquage ce qui nuit à l’opérabilité. Il est donc nécessaire d’améliorer l’opérabilité de l’étape de vapocraquage afin de produire des oléfines avec de bon rendement. The conversion products and more particularly the heavy cuts resulting from the conversion processes such as deasphalted oils and vacuum distillates are difficult to treat directly in a steam cracking step. The presence of high contents of naphthenic and aromatic compounds leads to a sharp drop in the yields of olefins of interest, to an increase in the yield of pyrolysis oil and to increased coking of the tubes of the steam cracking furnaces, which affects the operability. . It is therefore necessary to improve the operability of the steam cracking step in order to produce olefins with good yield.
La présente invention vise à surmonter les problèmes exposés ci-dessus, et notamment à fournir un procédé permettant une production flexible d’oléfines et optimisée à partir de charges hydrocarbonées lourdes de manière à améliorer la rentabilité du procédé de production d’oléfines. The present invention aims to overcome the problems set out above, and in particular to provide a process allowing flexible and optimized production of olefins from heavy hydrocarbon feedstocks so as to improve the profitability of the olefin production process.
Ainsi, la demanderesse a mis au point un nouveau procédé de production d’oléfines comprenant une étape d’hydroconversion de résidus en lit bouillonnant, une étape de désasphaltage pour produire une fraction DAO et une fraction asphalte, une étape d’hydrocraquage en lit fixe, une étape d’extraction pour produire un raffinât et une fraction riche en aromatiques et une étape de vapocraquage dudit raffinât. Thus, the Applicant has developed a new process for the production of olefins comprising a step of hydroconversion of residues in an ebullated bed, a step of deasphalting to produce a DAO fraction and an asphalt fraction, a step of hydrocracking in a fixed bed. , an extraction step to produce a raffinate and a fraction rich in aromatics and a steam cracking step of said raffinate.
Le procédé selon la présente invention présente les avantages suivants : The method according to the present invention has the following advantages:
- la valorisation de fraction lourde en intermédiaires pétrochimiques essentiels, - upgrading of heavy fraction into essential petrochemical intermediates,
- une production d’oléfines à partir de fractions lourdes avec un bon rendement, - a production of olefins from heavy fractions with a good yield,
- la diminution du coût de production d’oléfine, - une flexibilité du procédé permettant de traiter toutes fractions lourdes hydrocarbonées quelques soient leurs origines, - reduction in the cost of olefin production, - flexibility of the process making it possible to treat all heavy hydrocarbon fractions regardless of their origins,
- l’enchaînement d’une étape d’hydroconversion de résidus et d’une étape de désasphaltage permettant une conversion profonde de la fraction résiduelle et notamment des asphaltènes, - la limitation de la formation de coke lors de ladite étape de vapocraquage. - the sequence of a residue hydroconversion step and a deasphalting step allowing a deep conversion of the residual fraction and in particular asphaltenes, - limitation of the formation of coke during said steam cracking step.
RESUME DE L'INVENTION SUMMARY OF THE INVENTION
L’objet de la présente invention concerne un procédé de production d’oléfines à partir d’une charge 1 hydrocarbonée ayant une teneur en soufre d'au moins 0,1 % poids, une température initiale d'ébullition d'au moins 180°C et une température finale d'ébullition d'au moins 600°C, ledit procédé comprenant les étapes suivantes : a) une étape d’hydroconversion réalisée dans un réacteur en lit bouillonnant dans lequel ladite charge hydrocarbonée lourde 1 en présence d’hydrogène 2 sont mis en contact en présence d’un catalyseur d’hydroconversion, ladite étape permettant l’obtention d’un effluent 3 ; b) une étape de séparation de l’effluent 3 issu de l’étape a) d’hydroconversion en une fraction gazeuse 4, une fraction 1 1 comprenant des composés ayant une température d’ébullition compris entre 350 et 540°C et une fraction liquide résidu sous vide 5 comprenant des composés ayant un point d’ébullition d’au moins 540°C, c) une étape de désasphaltage par extraction liquide-liquide de la fraction résidu sous vide 5 issue de l’étape b) de séparation, ladite étape c) étant mise en oeuvre au moyen d’un solvant 6 ou d’un mélange de solvants permettant d’obtenir d’une part une fraction 7 comprenant de l’asphalte, et d’autre part une fraction huile désasphaltée 8, d) une étape d’extraction des aromatiques d’au moins une partie de la fraction huile désasphaltée 8 issue de l’étape c) de désasphaltage et d’au moins une partie de la fraction 1 1 issue de l’étape b) de séparation, permettant l’obtention d’une fraction extrait 13 et d’une fraction raffinât 10, e) une étape e) d’hydrocraquage en lit fixe d’au moins une partie de la fraction extrait 13 issue de l’étape d’extraction d) en présence d’hydrogène 12 et d’un catalyseur d’hydrocraquage, permettant l’obtention d’un effluent 14, f) une étape de séparation de l’effluent 14 issu de l’étape e) d’hydrocraquage en lit fixe en au moins une fraction gazeuse 15 et au moins une fraction liquide 16, g) une étape g) de vapocraquage de la fraction raffinât 10 issue de l’étape d) d’extraction et de la fraction liquide 16 issue de l’étape f) de séparation comportant des composés ayant une température d’ébullition inférieure ou égale à 350°C, permettant l’obtention d’un effluent 17, h) une étape de séparation de l’effluent 17 issu de l’étape g) de vapocraquage permettant l’obtention d’au moins une fraction 18 comprenant d’hydrogène, d’une fraction 19 comprenant d’éthylène, d’une fraction 20 comprenant du propylène et d’une fraction 21 comprenant de l’huile de pyrolyse. The object of the present invention relates to a process for the production of olefins from a hydrocarbon feed 1 having a sulfur content of at least 0.1% by weight, an initial boiling temperature of at least 180 ° C and a final boiling temperature of at least 600 ° C, said process comprising the following steps: a) a hydroconversion step carried out in an ebullating bed reactor in which said heavy hydrocarbon feed 1 in the presence of hydrogen 2 are brought into contact in the presence of a hydroconversion catalyst, said step making it possible to obtain an effluent 3; b) a step of separating the effluent 3 from hydroconversion step a) into a gaseous fraction 4, a fraction 1 1 comprising compounds having a boiling point of between 350 and 540 ° C and a fraction vacuum residue liquid 5 comprising compounds having a boiling point of at least 540 ° C, c) a deasphalting step by liquid-liquid extraction of the vacuum residue fraction 5 from separation step b), said step c) being carried out using a solvent 6 or a mixture of solvents making it possible to obtain, on the one hand, a fraction 7 comprising asphalt, and on the other hand a deasphalted oil fraction 8, d) a step of extracting the aromatics from at least part of the deasphalted oil fraction 8 from deasphalting step c) and from at least part of the fraction 11 from step b) from separation, making it possible to obtain an extract fraction 13 and a raffinate fraction 10, e) a hydrocracking stage e) in bed fixes at least part of the extracted fraction 13 resulting from the extraction step d) in the presence of hydrogen 12 and a hydrocracking catalyst, making it possible to obtain an effluent 14, f) a step of separating the effluent 14 from step e) of hydrocracking in a fixed bed into at least one gaseous fraction 15 and at least one liquid fraction 16, g) a step g) of steam cracking of the fraction raffinate 10 from step d) of extraction and from the liquid fraction 16 from step f) of separation comprising compounds having a boiling point of less than or equal to 350 ° C, making it possible to obtain an effluent 17, h) a step of separating the effluent 17 from steam cracking step g) making it possible to obtain at least one fraction 18 comprising hydrogen, from a fraction 19 comprising ethylene, a fraction 20 comprising propylene and a fraction 21 comprising pyrolysis oil.
Dans un mode de réalisation préféré, l’étape b) de séparation comprend une distillation sous vide permettant l’obtention d’au moins une fraction distillât sous vide 1 1 et au moins une fraction résidu sous vide 5. In a preferred embodiment, step b) of separation comprises a vacuum distillation allowing the production of at least one vacuum distillate fraction 1 1 and at least one vacuum residue fraction 5.
Dans un mode de réalisation préféré, l’étape b) de séparation comprend en amont de la distillation sous vide, une distillation atmosphérique permettant l’obtention d’au moins une fraction distillât atmosphérique et d’au moins une fraction résidu atmosphérique, ladite fraction résidu atmosphérique étant envoyée dans ladite distillation sous vide, permettant l’obtention d’au moins une fraction distillât sous vide 1 1 et au moins une fraction résidu sous vide 5. Dans un mode de réalisation préféré, la totalité de la fraction résidu 5 issue de l’étape b) est envoyée à l’étape c) de désasphaltage. In a preferred embodiment, step b) of separation comprises, upstream of the vacuum distillation, atmospheric distillation making it possible to obtain at least one atmospheric distillate fraction and at least one atmospheric residue fraction, said fraction atmospheric residue being sent to said vacuum distillation, making it possible to obtain at least one vacuum distillate fraction 1 1 and at least one vacuum residue fraction 5. In a preferred embodiment, all of the residue fraction 5 obtained from step b) is sent to step c) for deasphalting.
Dans un mode de réalisation préféré, le solvant 6 utilisé à l’étape c) est un solvant apolaire composé d’au moins 80% en volume d'hydrocarbure(s) saturé(s) comprenant un nombre de carbone compris entre 3 et 7. Dans un mode de réalisation préféré, au moins une partie d’une fraction distillât issue de l’étape b) de séparation, est introduite à l’étape d) d’extraction des aromatiques. In a preferred embodiment, the solvent 6 used in step c) is an apolar solvent composed of at least 80% by volume of saturated hydrocarbon (s) comprising a carbon number of between 3 and 7 In a preferred embodiment, at least part of a distillate fraction resulting from stage b) of separation, is introduced into stage d) of extraction of the aromatics.
Dans un mode de réalisation préféré, l’étape d) d’extraction des aromatiques est réalisée sur des fractions ayant une température d’ébullition supérieure ou égale à 180°C. Dans un mode de réalisation préféré, les composés extraits lors de l’étape d) ont un point d'ébullition supérieur au point d'ébullition du solvant 6 utilisé. In a preferred embodiment, step d) for extracting the aromatics is carried out on fractions having a boiling point greater than or equal to 180 ° C. In a preferred embodiment, the compounds extracted during step d) have a boiling point higher than the boiling point of the solvent 6 used.
Dans un mode de réalisation préféré, l’étape e) d’hydrocraquage est opérée de manière à obtenir un rendement en composés liquides ayant une température d’ébullition inférieure à 220°C supérieur à 50% en poids de la charge en entrée de l’étape e) d’hydrocraquage. In a preferred embodiment, hydrocracking step e) is carried out so as to obtain a yield of liquid compounds having a boiling point of less than 220 ° C. greater than 50% by weight of the feed at the inlet of the hydrocracking step e).
Dans un mode de réalisation préféré, l’étape de séparation f) comprend au moins une distillation atmosphérique permettant l’obtention d’au moins une fraction distillât atmosphérique 16 comportant des composés ayant une température d’ébullition inférieure à 350°C et une fraction liquide comprenant du distillât sous vide comportant des composés ayant une température d’ébullition supérieure à 350°C. In a preferred embodiment, the separation step f) comprises at least one atmospheric distillation making it possible to obtain at least one atmospheric distillate fraction 16 comprising compounds having a boiling point of less than 350 ° C. and a fraction liquid comprising vacuum distillate comprising compounds having a boiling point greater than 350 ° C.
Dans un mode de réalisation préféré, la fraction distillât atmosphérique 16 et la fraction comprenant du distillât sous vide sont envoyées vers l’étape g) de vapocraquage. In a preferred embodiment, the atmospheric distillate fraction 16 and the fraction comprising vacuum distillate are sent to step g) of steam cracking.
Dans un mode de réalisation préféré, une partie d’une fraction comprenant des composés ayant une température d’ébullition entre 80 de 180°C issue de l’étape b) de séparation est introduite à l’étape g) de vapocraquage. In a preferred embodiment, part of a fraction comprising compounds having a boiling point between 80 and 180 ° C resulting from step b) of separation is introduced in step g) of steam cracking.
Dans un mode de réalisation préféré, l’étape g) de vapocraquage est réalisée dans au moins un four de pyrolyse à une température comprise entre 700 et 900°C, sous une pression comprise entre 0,05 et 0,3 MPa durant un temps de séjour inférieur ou égal à 1 ,0 seconde. In a preferred embodiment, step g) of steam cracking is carried out in at least one pyrolysis furnace at a temperature between 700 and 900 ° C, under a pressure between 0.05 and 0.3 MPa for a period of time. stay less than or equal to 1.0 seconds.
Dans un mode de réalisation préféré, les coupes riches en composés saturés issus des gaz légers ou de l’essence de pyrolyse issu de l’étape h) de séparation peuvent être recyclés vers l’étape g) de vapocraquage. In a preferred embodiment, the cuts rich in saturated compounds obtained from the light gases or from the pyrolysis gasoline obtained from stage h) of separation can be recycled to stage g) of steam cracking.
Dans un mode de réalisation préféré, la fraction huile de pyrolyse 21 est soumise à une étape additionnelle de séparation de manière à obtenir une huile de pyrolyse légère comprenant des composés ayant une température d’ébullition inférieure à 350 °C et une huile de pyrolyse lourde comprenant des composés ayant une température d’ébullition supérieure à 350°C. Ladite huile de pyrolyse légère est injectée en amont de l’étape e) d’hydrocraquage, et ladite huile de pyrolyse lourde est injectée en amont de l’étape a) d’hydroconversion et/ou de l’étape c) de désasphaltage. LISTE DES FIGURES In a preferred embodiment, the pyrolysis oil fraction 21 is subjected to an additional separation step so as to obtain a light pyrolysis oil comprising compounds having a boiling point of less than 350 ° C and a heavy pyrolysis oil. comprising compounds having a boiling point greater than 350 ° C. Said light pyrolysis oil is injected upstream of hydrocracking step e), and said heavy pyrolysis oil is injected upstream of hydroconversion step a) and / or deasphalting step c). LIST OF FIGURES
La figure 1 représente un enchaînement du procédé selon l'invention. FIG. 1 represents a sequence of the method according to the invention.
DESCRIPTION DES MODES DE REALISATION DESCRIPTION OF THE EMBODIMENTS
Il est précisé que, dans toute cette description, l’expression « compris(e) entre ... et ... », « inférieur(e) à... » ou « supérieur(e) à » doit s’entendre comme incluant les bornes citées. It is specified that, throughout this description, the expression "between ... and ...", "less than ..." or "greater than" must be understood as including the cited terminals.
Dans le sens de la présente invention, les différents modes de réalisation présentés peuvent être utilisés seul ou en combinaison les uns avec les autres, sans limitation de combinaison. In the sense of the present invention, the various embodiments presented can be used alone or in combination with each other, without limitation of combination.
Dans la suite de la description, il est fait référence à la figure 1 qui illustre un exemple de mise en oeuvre du procédé de production d’oléfines à partir de charges hydrocarbonées lourdes selon l’invention. La mention des éléments référencés à la figure 1 dans la suite de la description permet une meilleure compréhension de l’invention, sans que celle-ci ne se limite à l’exemple particulier illustré à la figure 1 . In the remainder of the description, reference is made to FIG. 1, which illustrates an exemplary implementation of the process for producing olefins from heavy hydrocarbon feedstocks according to the invention. The mention of the elements referenced in Figure 1 in the remainder of the description allows a better understanding of the invention, without it being limited to the particular example illustrated in Figure 1.
Tel que représenté à la figure 1 , le procédé selon l'invention comprend les étapes suivantes :As represented in FIG. 1, the method according to the invention comprises the following steps:
- une étape a) d’hydroconversion de la charge hydrocarbonée lourde 1 , en présence d’un gaz riche en hydrogène 2 dans au moins un réacteur en lit bouillonnant comportant un catalyseur d’hydroconversion ; - a step a) of hydroconversion of the heavy hydrocarbon feed 1, in the presence of a gas rich in hydrogen 2 in at least one ebullating bed reactor comprising a hydroconversion catalyst;
- une étape b) de séparation de l’effluent 3 issu de l’étape a) d’hydroconversion permettant d’obtenir au moins une fraction 4 comprenant de l’hydrogène, une fraction liquide 1 1 contenant des composés ayant une température d’ébullition entre 350 et 540°C et une fraction liquide lourde 5 contenant des composés ayant une température d’ébullition supérieure à 540°C ; - A step b) of separation of the effluent 3 from step a) of hydroconversion making it possible to obtain at least one fraction 4 comprising hydrogen, a liquid fraction 1 1 containing compounds having a temperature of boiling between 350 and 540 ° C and a heavy liquid fraction containing compounds having a boiling point above 540 ° C;
- une étape c) de désasphaltage de la fraction 5 issue de l’étape b) de séparation en mélange avec un solvant ou une combinaison de solvants 6, permettant d’obtenir au moins une fraction comportant de l’huile désasphaltée (DAO) 8, et une fraction 7 comportant de l’asphalte ; - a step c) of deasphalting fraction 5 from step b) of separation as a mixture with a solvent or a combination of solvents 6, making it possible to obtain at least one fraction comprising deasphalted oil (DAO) 8 , and a fraction 7 comprising asphalt;
- une étape d) d’extraction d’au moins une partie de la fraction 8 comportant de l’huile désasphaltée (DAO) issue de l’étape c) de désasphaltage et d’au moins une partie de la fraction 1 1 issue de l’étape b) de séparation avec un solvant ou une combinaison de solvants 9, permet d’obtenir au moins une fraction 10 riche en composés saturés (raffinât), et une fraction 13 riche en composés aromatiques (extrait) ; - a step d) of extracting at least part of fraction 8 comprising deasphalted oil (DAO) from step c) of deasphalting and at least part of fraction 11 from step b) separation with a solvent or a combination of solvents 9, makes it possible to obtain at least a fraction 10 rich in saturated compounds (raffinate), and a fraction 13 rich in aromatic compounds (extract);
- une étape e) d’hydrocraquage en présence d’un gaz riche en hydrogène 12 et d’au moins une partie de la fraction 13 riche en aromatiques issue de l’étape d’extraction d), réalisée dans au moins un réacteur en lit fixe comportant un catalyseur d’hydrocraquage ; a hydrocracking step e) in the presence of a hydrogen-rich gas 12 and at least part of the fraction 13 rich in aromatics from the extraction step d), carried out in at least one reactor in fixed bed comprising a hydrocracking catalyst;
- une étape f) de séparation de l’effluent 14 issu de l’étape e) d’hydrocraquage permettant d’obtenir au moins une fraction gazeuse 15 comprenant de l’hydrogène, une fraction liquide 16 comprenant des composés ayant une température d’ébullition inférieure à 350°C ; a step f) of separating the effluent 14 from hydrocracking step e) making it possible to obtain at least one gaseous fraction 15 comprising hydrogen, a liquid fraction 16 comprising compounds having a temperature of boiling below 350 ° C;
- une étape g) de vapocraquage de la fraction raffinât 10 issue de l’étape d) d’extraction et de la fraction liquide 16 contenant des composés ayant une température d’ébullition inférieure à 350°C issue de l’étape f) de séparation ; - a step g) of steam cracking of the raffinate fraction 10 resulting from the extraction step d) and of the liquid fraction 16 containing compounds having a boiling point of less than 350 ° C resulting from step f) of separation;
- une étape h) de séparation de l’effluent 17 issu de l’étape g) de vapocraquage permettant de récupérer au moins une fraction 18 comprenant de l’hydrogène, une fraction 19 comprenant de l’éthylène, une fraction 20 comprenant du propylène et une fraction 21 comprenant de l’huile de pyrolyse. a step h) of separating the effluent 17 from steam cracking step g) making it possible to recover at least one fraction 18 comprising hydrogen, a fraction 19 comprising ethylene, a fraction 20 comprising propylene and a fraction 21 comprising pyrolysis oil.
La description de la figure 1 ci-dessus est un exemple de mise en oeuvre de l’invention qui ne limite en aucune façon l’invention. Seules les principales étapes sont représentées sur lesdites figures, il est entendu que tous les équipements nécessaires au fonctionnement sont présents (ballons, pompes, échangeurs, fours, colonnes, etc.). Seuls les principaux flux contenant les hydrocarbures sont représentés, mais il est entendu que des flux de gaz riche en hydrogène (appoint ou recycle) peuvent être injectés en entrée de chaque réacteur ou lit catalytique ou entre deux réacteurs ou deux lits catalytiques. Des moyens bien connus de l’homme du métier de purification et de recyclage d’hydrogène sont également mis en oeuvre. L’hydrogène produit lors de l’étape de vapocraquage est avantageusement utilisé en appoint des étapes a) d’hydroconversion et/ou d) d’hydrocraquage. The description of Figure 1 above is an exemplary embodiment of the invention which does not limit the invention in any way. Only the main stages are shown in said figures, it is understood that all the equipment necessary for operation is present (tanks, pumps, exchangers, furnaces, columns, etc.). Only the main streams containing hydrocarbons are shown, but it is understood that streams of gas rich in hydrogen (make-up or recycle) can be injected at the inlet of each reactor or catalytic bed or between two reactors or two catalytic beds. Means well known to those skilled in the art of purifying and recycling hydrogen are also used. The hydrogen produced during the steam cracking step is advantageously used in addition to steps a) hydroconversion and / or d) hydrocracking.
Selon une variante non représentée, au moins une partie de la fraction huile de pyrolyse 21 issue de l’étape h) de séparation peut être injectée en amont de l’étape c) de désasphaltage et/ou de l’étape d) d’hydrocraquage. Avantageusement, cette variante permet d’éliminer les asphaltènes contenus dans l’huile de pyrolyse et ainsi de maximiser la production d’oléfines. According to a variant not shown, at least part of the pyrolysis oil fraction 21 resulting from the separation step h) can be injected upstream of the deasphalting step c) and / or of the d) step. hydrocracking. Advantageously, this variant eliminates the asphaltenes contained in the pyrolysis oil and thus maximizes the production of olefins.
Selon une variante non représentée, la fraction huile de pyrolyse 21 issue de l’étape h) de séparation peut être séparée en au moins deux fractions, par exemple en une fraction huile de pyrolyse légère qui est envoyée au moins en partie vers l’étape d) d’hydrocraquage, et en une fraction huile de pyrolyse lourde qui est envoyée au moins en partie vers l’étape a) d’hydroconversion et/ou l’étape c) de désasphaltage. Avantageusement, cette variante permet encore de maximiser la production d’oléfines. Selon une variante non représentée, l’étape b) de séparation de l’effluent 3 issu de l’étape a) d’hydrotraitement permet d’obtenir en outre une fraction distillât atmosphérique comprenant des composés ayant une température d’ébullition entre 180 et 350°C qui peut être introduite au moins en partie à l’étape d) d’extraction des aromatiques. According to a variant not shown, the pyrolysis oil fraction 21 resulting from separation step h) can be separated into at least two fractions, for example into an oil fraction. of light pyrolysis which is sent at least in part to hydrocracking stage d), and to a heavy pyrolysis oil fraction which is sent at least in part to hydroconversion stage a) and / or stage c) deasphalting. Advantageously, this variant still makes it possible to maximize the production of olefins. According to a variant not shown, step b) of separating the effluent 3 resulting from hydrotreatment step a) also makes it possible to obtain an atmospheric distillate fraction comprising compounds having a boiling point between 180 and 350 ° C. which can be introduced at least in part in stage d) for extracting the aromatics.
La charge traitée et les différentes étapes du procédé selon l’invention sont à présent décrites plus en détail ci-dessous. The load treated and the various steps of the process according to the invention are now described in more detail below.
La charge Load
La charge 1 hydrocarbonée lourde traitée dans le procédé selon l’invention est avantageusement une charge hydrocarbonée contenant des asphaltènes, et notamment présentant une teneur en asphaltènes C7 d'au moins 1 ,0 % poids, de préférence d’au moins 2,0 % poids par rapport au poids de la charge. The heavy hydrocarbon feed 1 treated in the process according to the invention is advantageously a hydrocarbon feed containing asphaltenes, and in particular having a C7 asphaltenes content of at least 1.0% by weight, preferably of at least 2.0%. weight in relation to the weight of the load.
La charge 1 a une température initiale d'ébullition d'au moins 180°C, de préférence d’au moins 350°C et de manière préférée d’au moins 540°C et une température finale d'ébullition d’au moins 600°C. Charge 1 has an initial boiling temperature of at least 180 ° C, preferably at least 350 ° C and more preferably at least 540 ° C and a final boiling temperature of at least 600 ° C.
La charge hydrocarbonée 1 selon l’invention peut être choisie parmi les résidus atmosphériques, les résidus sous vide issus de distillation directe, des pétroles bruts, des pétroles bruts étêtés, des sables bitumineux ou leurs dérivés, des schistes bitumineux ou leurs dérivés, des huiles de roche mère ou leurs dérivés, pris seuls ou en mélange. Dans la présente invention, les charges traitées sont de préférence des résidus atmosphériques ou des résidus sous vide, ou des mélanges de ces résidus, et plus préférentiellement des résidus sous vide. The hydrocarbon feedstock 1 according to the invention can be chosen from atmospheric residues, vacuum residues from direct distillation, crude oils, topped crude oils, tar sands or their derivatives, bituminous shales or their derivatives, oils. of parent rock or their derivatives, taken alone or as a mixture. In the present invention, the feeds treated are preferably atmospheric residues or vacuum residues, or mixtures of these residues, and more preferably vacuum residues.
La charge hydrocarbonée lourde traitée dans le procédé peut contenir entre autres des impuretés soufrées. La teneur en soufre peut être d’au moins 0,1% en poids, d’au moins 0,5% en poids, préférentiellement d’au moins 1 ,0 % en poids, plus préférentiellement d’au moins 2,0 % en poids par rapport au poids de la charge. La charge hydrocarbonée lourde traitée dans le procédé peut contenir entre autres des métaux. La teneur en nickel et vanadium peut-être d’au moins 20 ppm, de préférence d’au moins 50 ppm par rapport au poids de la charge. The heavy hydrocarbon feed treated in the process may contain, among other things, sulfur impurities. The sulfur content can be at least 0.1% by weight, at least 0.5% by weight, preferably at least 1.0% by weight, more preferably at least 2.0% by weight relative to the weight of the load. The heavy hydrocarbon feed treated in the process may contain, inter alia, metals. The nickel and vanadium content may be at least 20 ppm, preferably at least 50 ppm based on the weight of the feed.
La charge hydrocarbonée lourde traitée dans le procédé peut contenir entre autre du carbone Conradson. La teneur en carbone Conradson peut être d’au moins 2,0% poids, de préférence d’au moins 5,0% poids par rapport au poids de la charge. The heavy hydrocarbon feed treated in the process may contain, inter alia, Conradson carbon. The Conradson carbon content can be at least 2.0% by weight, preferably at least 5.0% by weight based on the weight of the filler.
Ces charges peuvent avantageusement être utilisées telles quelles. Alternativement, lesdites charges peuvent être mélangées avec au moins une co-charge. These fillers can advantageously be used as they are. Alternatively, said charges can be mixed with at least one co-charge.
De préférence plusieurs co-charges peuvent être utilisées à différentes étapes du procédé selon l’invention afin de moduler la viscosité de la charge introduite à chacune des étapes. Une co-charge peut être introduite en amont d’au moins un réacteur de l’étape a) d’hydroconversion. Cette co-charge peut être une fraction hydrocarbonée ou un mélange de fractions hydrocarbonées plus légères, pouvant être de préférence choisies parmi les produits issus d’un procédé de craquage catalytique en lit fluide (FCC ou « Fluid Catalytic Cracking » selon la terminologie anglo-saxonne), notamment une coupe légère (LCO ou « light cycle oil » selon la terminologie anglo-saxonne), une coupe lourde (FICO ou « heavy cycle oil » selon la terminologie anglo-saxonne), une huile décantée, un résidu de FCC. Cette co-charge peut également être une fraction gazole atmosphérique ou une fraction gazole sous vide obtenue par distillation atmosphérique ou sous vide d’un pétrole brut ou d’un effluent d’un procédé de conversion tel la cokéfaction ou la viscoréduction ou issue du des étapes c) et/ou e) de séparation. Cette co-charge ne représente pas plus de 20% en poids de la charge hydrocarbonée lourde 1 . Preferably, several co-fillers can be used at different stages of the process according to the invention in order to modulate the viscosity of the charge introduced at each of the stages. A co-charge can be introduced upstream of at least one reactor of hydroconversion stage a). This co-charge can be a hydrocarbon fraction or a mixture of lighter hydrocarbon fractions, which can preferably be chosen from the products resulting from a fluid bed catalytic cracking process (FCC or “Fluid Catalytic Cracking” according to the English terminology). Saxon), in particular a light cut (LCO or "light cycle oil" according to Anglo-Saxon terminology), a heavy cut (FICO or "heavy cycle oil" according to Anglo-Saxon terminology), a decanted oil, a residue of FCC . This co-charge can also be an atmospheric gas oil fraction or a vacuum gas oil fraction obtained by atmospheric or vacuum distillation of a crude oil or of an effluent from a conversion process such as coking or visbreaking or resulting from stages c) and / or e) of separation. This co-charge does not represent more than 20% by weight of the heavy hydrocarbon feed 1.
Conformément à l’invention, une étape a) d’hydroconversion est réalisée dans un réacteur en lit bouillonnant dans lequel la charge hydrocarbonée lourde 1 ou le mélange de charges, en présence d’hydrogène sont mis en contact avec un catalyseur d’hydroconversion. Avantageusement, la charge ou le mélange de charges est introduit à l’étape a) en présence d’une co-charge. In accordance with the invention, a hydroconversion step a) is carried out in an ebullating bed reactor in which the heavy hydrocarbon feed 1 or the feed mixture, in the presence of hydrogen, are brought into contact with a hydroconversion catalyst. Advantageously, the load or the mixture of loads is introduced in step a) in the presence of a co-load.
Par hydroconversion on entend l’ensemble des réactions mises en oeuvre permettant de diminuer la taille des molécules, principalement par coupure des liaisons carbone-carbone, par action d’hydrogène en présence d’un catalyseur. Lors de l’étape d’hydroconversion, il se produit notamment des réactions d’hydrotraitement et d’hydrocraquage. By hydroconversion is meant all the reactions carried out making it possible to reduce the size of the molecules, mainly by cleavage of carbon-carbon bonds, by the action of hydrogen in the presence of a catalyst. During the hydroconversion step, hydrotreatment and hydrocracking reactions take place in particular.
De préférence, l’étape d’hydroconversion comprend un ou plusieurs réacteurs triphasiques à courant ascendant de liquide et de gaz contenant au moins un catalyseur d'hydroconversion, les réacteurs en lit bouillonnant pouvant être disposés en série et/ou en parallèle, fonctionnant typiquement à l'aide de la technologie et dans les conditions du procédé H-Oil™ tel que décrit par exemple dans les brevets US 4,521 ,295 ou US 4,495,060 ou US 4,457,831 ou US 4,354,852, ou dans l'article AlChE, March 19-23, 1995, Houston, Texas, paper number 46d, "Second génération ebullated bed technology", ou dans le chapitre 3.5 "Hydroprocessing and Hydroconversion of Residue Fractions" de l’ouvrage "Catalysis by Transition Métal Sulphides", édité par les Éditions Technip en 2013. Chaque réacteur comporte avantageusement une pompe de recirculation permettant le maintien du catalyseur en lit bouillonnant par recyclage continu d'au moins une partie d'une fraction liquide avantageusement soutirée en tête du réacteur et réinjectée en bas du réacteur. Preferably, the hydroconversion stage comprises one or more three-phase reactors with an upward flow of liquid and gas containing at least one hydroconversion catalyst, the ebullating bed reactors possibly being arranged in series and / or in parallel, typically operating using the technology and under the conditions of the H-Oil ™ process as described for example in US Patents 4,521, 295 or US 4,495,060 or US 4,457,831 or US 4,354,852, or in the article AlChE, March 19-23 , 1995, Houston, Texas, paper number 46d, "Second generation ebullated bed technology", or in chapter 3.5 "Hydroprocessing and Hydroconversion of Residue Fractions" of the book "Catalysis by Transition Métal Sulphides", edited by Éditions Technip in 2013. Each reactor advantageously comprises a recirculation pump allowing the catalyst to be maintained in an ebullating bed by continuous recycling of at least part of a liquid fraction advantageously withdrawn at the head of the re actor and reinjected at the bottom of the reactor.
L’étape d’hydroconversion a) est réalisée dans des conditions permettant d'obtenir un effluent liquide à teneur réduite en soufre, en carbone Conradson, en métaux, et en azote. The hydroconversion step a) is carried out under conditions making it possible to obtain a liquid effluent with a reduced content of sulfur, Conradson carbon, metals, and nitrogen.
Avantageusement, l’étape a) est opérée de préférence sous une pression absolue comprise entre 2 MPa et 38 MPa, plus préférentiellement entre 5 MPa et 25 MPa et de manière encore plus préférée, entre 6 MPa et 20 MPa, à une température comprise entre 300°C et 550°C, plus préférentiellement comprise entre 350°C et 500°C et d'une manière préférée comprise entre 370°C et 450°C. La vitesse spatiale horaire (WH) par rapport au volume de chaque réacteur triphasique est de préférence comprise entre 0,05 h 1 et 10 h 1. Selon une mise en oeuvre préférée, la WH est comprise entre 0,1 h 1 et 10 h 1 , plus préférentiellement entre 0,1 h 1 et 5,0 h 1 et de manière encore plus préférée comprise entre 0,15 h 1 et 2,0 h 1. Selon une autre mise en oeuvre, la WH est comprise entre 0,05 h 1 et 0,09 h 1. La quantité d'hydrogène mélangée à la charge est de préférence comprise entre 50 et 5000 normaux mètres cube (Nm3) par mètre cube (m3) de charge liquide, de manière préférée entre 100 et 2000 Nm3/m3 et de manière très préférée entre 200 et 1000 Nm3/m3. Advantageously, step a) is preferably carried out under an absolute pressure of between 2 MPa and 38 MPa, more preferably between 5 MPa and 25 MPa and even more preferably between 6 MPa and 20 MPa, at a temperature of between 300 ° C and 550 ° C, more preferably between 350 ° C and 500 ° C and in a preferred manner between 370 ° C and 450 ° C. The hourly space velocity (WH) relative to the volume of each three-phase reactor is preferably between 0.05 h 1 and 10 h 1 . According to a preferred implementation, the WH is between 0.1 h 1 and 10 h 1 , more preferably between 0.1 h 1 and 5.0 h 1 and even more preferably between 0.15 h 1 and 2.0 hrs 1 . According to another implementation, the WH is between 0.05 h 1 and 0.09 h 1 . The quantity of hydrogen mixed with the feed is preferably between 50 and 5000 normal cubic meters (Nm 3 ) per cubic meter (m 3 ) of liquid feed, preferably between 100 and 2000 Nm 3 / m 3 and preferably very preferred between 200 and 1000 Nm 3 / m 3 .
Le catalyseur d'hydroconversion utilisé dans l’étape d'hydroconversion a) du procédé selon l'invention peut contenir un ou plusieurs éléments des groupes 4 à 12 du tableau périodique des éléments, qui peuvent être déposé sur un support ou pas. On peut avantageusement utiliser un catalyseur comprenant un support, de préférence amorphe, tels que de la silice, de l'alumine, de la silice-alumine, du dioxyde de titane ou des combinaisons de ces structures, et de manière très préférée de l'alumine. The hydroconversion catalyst used in the hydroconversion step a) of the process according to the invention may contain one or more elements from groups 4 to 12 of the periodic table of the elements, which may or may not be deposited on a support. One can advantageously use a catalyst comprising a support, preferably amorphous, such as silica, alumina, silica-alumina, titanium dioxide or combinations of these structures, and very preferably alumina.
Le catalyseur peut contenir au moins un métal du groupe VIII non-noble choisi parmi le nickel et le cobalt, et de préférence le nickel, ledit élément du groupe VIII étant de préférence utilisé en association avec au moins un métal du groupe VIB choisi parmi le molybdène et le tungstène, et de préférence le métal du groupe VIB est le molybdène. The catalyst may contain at least one non-noble group VIII metal chosen from nickel and cobalt, and preferably nickel, said group VIII element being preferably used in combination with at least one group VIB metal chosen from group VIII. molybdenum and tungsten, and preferably the group VIB metal is molybdenum.
Dans la présente description, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81 ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC. In the present description, the groups of chemical elements are given according to the CAS classification (CRC Handbook of Chemistry and Physics, editor CRC press, editor-in-chief D.R. Lide, 81 st edition, 2000-2001). For example, group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
Avantageusement, le catalyseur d'hydroconversion utilisé dans l’étape d'hydroconversion a) comprend un support alumine et au moins un métal du groupe VIII choisi parmi le nickel et le cobalt, de préférence le nickel, et au moins un métal du groupe VIB choisi parmi le molybdène et le tungstène, de préférence le molybdène. De préférence, le catalyseur d'hydroconversion comprend le nickel en tant qu'élément du groupe VIII et le molybdène en tant qu'élément du groupe VIB. Advantageously, the hydroconversion catalyst used in the hydroconversion step a) comprises an alumina support and at least one metal from group VIII chosen from nickel and cobalt, preferably nickel, and at least one metal from group VIB chosen from molybdenum and tungsten, preferably molybdenum. Preferably, the hydroconversion catalyst comprises nickel as a group VIII element and molybdenum as a group VIB element.
La teneur en métal du groupe VIII non-noble, en particulier en nickel, est avantageusement comprise entre 0,5 % à 10,0 % exprimée en poids d'oxyde de métal (en particulier de NiO), et de préférence entre 1 ,0 % à 6,0 % poids, et la teneur en métal du groupe VIB, en particulier en molybdène, est avantageusement comprise entre 1 ,0 % et 30 % exprimée en poids d’oxyde du métal (en particulier de trioxyde de molybdène Mo03), et de préférence entre 4 % et 20 % poids. Les teneurs en métaux sont exprimées en pourcentage poids d'oxyde de métal par rapport au poids du catalyseur. The content of non-noble group VIII metal, in particular nickel, is advantageously between 0.5% to 10.0% expressed by weight of metal oxide (in particular of NiO), and preferably between 1, 0% to 6.0% by weight, and the content of metal from group VIB, in particular molybdenum, is advantageously between 1.0% and 30% expressed by weight of metal oxide (in particular of molybdenum trioxide Mo0 3 ), and preferably between 4% and 20% by weight. The metal contents are expressed as a percentage by weight of metal oxide relative to the weight of the catalyst.
Ce catalyseur est avantageusement utilisé sous forme d'extrudés ou de billes. Les billes ont par exemple un diamètre compris entre 0,4 mm et 4,0 mm. Les extrudés ont par exemple une forme cylindrique d’un diamètre compris entre 0,5 et 4,0 mm et d’une longueur comprise entre 1 ,0 et 5,0 mm. Les extrudés peuvent également être des objets d’une forme différente tels que des trilobés, des tetralobes réguliers ou irréguliers, ou d’autres multilobes. Des catalyseurs d’autres formes peuvent également être utilisés. La taille de ces différentes formes de catalyseurs peut être caractérisée à l’aide du diamètre équivalent. Le diamètre équivalent est défini par 6 fois le ratio entre le volume de la particule et la surface externe de la particule. Le catalyseur utilisé sous forme d'extrudés, de billes ou d’autres formes a donc un diamètre équivalent compris entre 0,4 mm et 4,4 mm. Ces catalyseurs sont bien connus de l’homme du métier. This catalyst is advantageously used in the form of extrudates or beads. The balls have for example a diameter of between 0.4 mm and 4.0 mm. The extrudates have for example a cylindrical shape with a diameter of between 0.5 and 4.0 mm and a length of between 1.0 and 5.0 mm. The extrudates can also be objects of a different shape such as trilobes, regular or irregular tetralobes, or other multilobes. Catalysts of other forms can also be used. The size of these different forms of catalyst can be characterized using the equivalent diameter. The equivalent diameter is defined by 6 times the ratio between the volume of the particle and the outer surface of the particle. The catalyst used in the form of extrudates, beads or other forms therefore has an equivalent diameter of between 0.4 mm and 4.4 mm. These catalysts are well known to those skilled in the art.
Dans une des mises en oeuvre du procédé selon l'invention, il est utilisé un catalyseur d'hydroconversion différent dans chaque réacteur de cette étape initiale d'hydroconversion (a^, le catalyseur propose à chaque réacteur étant adapté à la charge envoyée dans ce réacteur. In one of the implementations of the process according to the invention, a different hydroconversion catalyst is used in each reactor of this initial hydroconversion stage (a ^, the catalyst offered to each reactor being adapted to the load sent to this reactor.
Dans une des mises en oeuvre du procédé selon l'invention, il est utilisé plusieurs types de catalyseur dans chaque réacteur. In one of the implementations of the process according to the invention, several types of catalyst are used in each reactor.
Dans une des mises en oeuvre du procédé selon l'invention, chaque réacteur contient un ou plusieurs catalyseurs adaptés à un fonctionnement en lit bouillonnant. In one of the implementations of the process according to the invention, each reactor contains one or more catalysts suitable for ebullating bed operation.
Comme cela est connu, et par exemple décrit dans le brevet FR 3 033 797, le catalyseur d'hydroconversion, lorsqu’il est usagé, peut être en partie remplacé par du catalyseur frais, et/ou du catalyseur usagé mais d’activité catalytique supérieure au catalyseur usagé à remplacer, et/ou du catalyseur régénéré, et/ou du catalyseur réjuvéné (catalyseur issu d’une zone de réjuvénation dans laquelle on élimine la majeure partie des métaux déposés, avant d'envoyer le catalyseur usé et réjuvéné dans une zone de régénération dans laquelle on élimine le carbone et le soufre qu'il renferme augmentant ainsi l’activité du catalyseur), par soutirage du catalyseur usagé de préférence en bas du réacteur, et par introduction du catalyseur de remplacement soit en haut, soit en bas du réacteur. Ce remplacement de catalyseur usagé est réalisé de préférence à intervalle de temps régulier, et de manière préférée par bouffée ou de façon quasi continue. Le remplacement de catalyseur usagé peut être fait tout ou en partie par du catalyseur usagé et/ou régénéré et/ou réjuvéné issu du même réacteur et/ou d'un autre réacteur de n'importe quelle étape d'hydroconversion. Le catalyseur peut être ajouté avec les métaux sous forme d'oxydes de métaux, avec les métaux sous forme de sulfures de métaux, ou après un préconditionnement. Pour chaque réacteur, le taux de remplacement du catalyseur d'hydroconversion usé par du catalyseur frais est avantageusement compris entre 0,01 kg et 10 kg par mètre cube de charge traitée, et de préférence entre 0,1 kg et 3 kg par mètre cube de charge traitée. Ce soutirage et ce remplacement sont effectués à l'aide de dispositifs permettant avantageusement le fonctionnement continu de cette étape d'hydroconversion. As is known, and for example described in patent FR 3 033 797, the hydroconversion catalyst, when it is used, can be partly replaced by fresh catalyst, and / or used catalyst but with catalytic activity. greater than the used catalyst to be replaced, and / or regenerated catalyst, and / or rejuvenated catalyst (catalyst from a rejuvenation zone in which most of the deposited metals are removed, before sending the spent and rejuvenated catalyst to a regeneration zone in which the carbon and sulfur which it contains are removed, thus increasing the activity of the catalyst), by withdrawing the used catalyst preferably at the bottom of the reactor, and by introducing the replacement catalyst either at the top or at the bottom of the reactor. This replacement of used catalyst is preferably carried out at regular time intervals, and preferably by puff or almost continuously. The replacement of spent catalyst can be done in whole or in part with used and / or regenerated and / or rejuvenated catalyst obtained from the same reactor and / or from another reactor of any hydroconversion stage. The catalyst can be added with the metals in the form of metal oxides, with the metals in the form of metal sulfides, or after preconditioning. For each reactor, the rate of replacement of the spent hydroconversion catalyst with fresh catalyst is advantageously between 0.01 kg and 10 kg per cubic meter of feed treated, and preferably between 0.1 kg and 3 kg per cubic meter. load processed. This racking and this replacement are carried out using devices advantageously allowing the continuous operation of this hydroconversion step.
En ce qui concerne le remplacement au moins en partie par du catalyseur régénéré, il est possible d'envoyer le catalyseur usé soutiré du réacteur dans une zone de régénération dans laquelle on élimine le carbone et le soufre qu'il renferme puis de renvoyer ce catalyseur régénéré dans l'étape d'hydroconversion. En ce qui concerne le remplacement au moins en partie par du catalyseur réjuvéné, il est possible d'envoyer le catalyseur usé soutiré du réacteur dans une zone de réjuvénation dans laquelle on élimine la majeure partie des métaux déposés, avant d'envoyer le catalyseur usé et réjuvéné dans une zone de régénération dans laquelle on élimine le carbone et le soufre qu'il renferme puis de renvoyer ce catalyseur régénéré dans l'étape a) d'hydroconversion. As regards the replacement at least in part by regenerated catalyst, it is possible to send the spent catalyst withdrawn from the reactor to a regeneration zone in which the carbon and sulfur which it contains are removed, then this catalyst can be returned. regenerated in the hydroconversion step. With regard to the replacement at least in part by rejuvenated catalyst, it is possible to send the spent catalyst withdrawn from the reactor to a rejuvenation zone in which most of the deposited metals are removed, before sending the spent catalyst. and rejuvenated in a regeneration zone in which the carbon and sulfur which it contains are removed, and then this regenerated catalyst is returned to hydroconversion stage a).
L’étape a) d’hydroconversion se caractérise par un taux de conversion des composés bouillants au-delà de 540°C supérieur à 50% en masse, de préférence supérieur à 70% en masse. Hydroconversion step a) is characterized by a degree of conversion of the compounds boiling above 540 ° C greater than 50% by mass, preferably greater than 70% by mass.
L’effluent 3 obtenu à l’issue de l’étape a) d’hydroconversion comprend au moins une fraction liquide lourde 5 encore appelé fraction liquide résidu et une fraction gazeuse 4 contenant les gaz, notamment H2, H2S, NH3, et des hydrocarbures en C C4 (c’est-à-dire comprenant de 1 à 4 atomes de carbone). The effluent 3 obtained at the end of hydroconversion step a) comprises at least one heavy liquid fraction 5 also called the residue liquid fraction and a gaseous fraction 4 containing the gases, in particular H 2 , H 2 S, NH 3 , and hydrocarbons in CC 4 (that is to say comprising from 1 to 4 carbon atoms).
Conformément à l’invention, le procédé comprend une étape b) de séparation de l’effluent 3 issu de l’étape a) d’hydroconversion en une fraction gazeuse 4, une fraction 1 1 comprenant des composés ayant un point d’ébullition compris entre 350 et 540° et au moins une fraction liquide résidu 5 comprenant des composés ayant un point d’ébullition d’au moins 540°C. In accordance with the invention, the process comprises a step b) of separation of the effluent 3 resulting from the hydroconversion step a) into a gas fraction 4, a fraction 1 1 comprising compounds having a boiling point included between 350 and 540 ° C and at least one residual liquid fraction comprising compounds having a boiling point of at least 540 ° C.
La fraction gazeuse 4 peut être séparée de l’effluent 3 à l’aide des dispositifs de séparation bien connus de l’homme du métier, notamment à l’aide d’un ou plusieurs ballons séparateurs pouvant opérer à différentes pressions et températures, éventuellement associés à un moyen de stripage à la vapeur ou à l’hydrogène et à une ou plusieurs colonnes de distillation. Après un éventuel refroidissement, cette fraction gazeuse 4 est de préférence traitée dans un moyen de purification d’hydrogène de façon à récupérer l’hydrogène non consommé lors des réactions d’hydroconversion. L’hydrogène purifié peut alors avantageusement être recyclé dans le procédé selon l’invention. L’hydrogène peut être recyclé en entrée et/ou à différents endroits de l’étape a) d’hydroconversion et/ou de l’étape d) d’hydrocraquage en lit bouillonnant. The gas fraction 4 can be separated from the effluent 3 using separation devices well known to those skilled in the art, in particular using one or more separator flasks which can operate at different pressures and temperatures, optionally. associated with a steam or hydrogen stripping means and one or more distillation columns. After optional cooling, this gas fraction 4 is preferably treated in a means for purifying hydrogen so as to recover the hydrogen not consumed during the hydroconversion reactions. The purified hydrogen can then advantageously be recycled in the process according to the invention. The hydrogen can be recycled to the inlet and / or to different places of stage a) of hydroconversion and / or of stage d) of hydrocracking in an ebullating bed.
L’étape b) de séparation comprend une distillation sous vide dans laquelle l’effluent 3 issue de l’étape a) est fractionné par distillation sous vide en au moins une fraction distillât sous vide 1 1 et au moins une fraction résidu sous vide 5. La fraction distillât sous vide 1 1 comprend des fractions de type gazole sous vide, c’est-à-dire des composés ayant une température d’ébullition entre 350 et 540°C. La fraction liquide lourde 5 est de préférence une fraction liquide hydrocarbonée contenant au moins 80% de composés ayant un point d’ébullition supérieur ou égale à 540°C. Step b) of separation comprises a vacuum distillation in which the effluent 3 from step a) is fractionated by vacuum distillation into at least one vacuum distillate fraction 1 1 and at least one vacuum residue fraction 5 The vacuum distillate fraction 1 1 comprises fractions of the vacuum gas oil type, that is to say compounds having a boiling point between 350 and 540 ° C. The heavy liquid fraction 5 is preferably a liquid hydrocarbon fraction containing at least 80% of compounds having a boiling point greater than or equal to 540 ° C.
De manière préférée, l’étape b) de séparation comprend tout d’abord une distillation atmosphérique, c’est-à-dire en amont de la distillation sous vide, dans laquelle la ou les fraction(s) hydrocarbonée(s) liquide(s) obtenue(s) après séparation est (sont) fractionnée(s) par distillation atmosphérique en au moins une fraction distillât atmosphérique et au moins une fraction résidu atmosphérique, puis une distillation sous vide dans laquelle la fraction résidu atmosphérique obtenue après distillation atmosphérique est fractionnée par distillation sous vide en au moins une fraction distillât sous vide 1 1 et au moins une fraction résidu sous vide 5. Preferably, step b) of separation firstly comprises atmospheric distillation, that is to say upstream of vacuum distillation, in which the liquid hydrocarbon fraction (s) ( s) obtained after separation is (are) fractionated by atmospheric distillation into at least one atmospheric distillate fraction and at least one atmospheric residue fraction, then vacuum distillation in which the atmospheric residue fraction obtained after atmospheric distillation is fractionated by vacuum distillation into at least one vacuum distillate fraction 1 1 and at least one vacuum residue fraction 5.
Avantageusement, l’étape de séparation b) comprend en outre au moins une distillation atmosphérique en amont de la distillation sous vide, dans laquelle l’effluent 3 est fractionné par distillation atmosphérique en au moins une fraction distillât contenant du naphta, c’est-à- dire comprenant des composés ayant une température d’ébullition comprise entre 80 et 180°C, et une fraction distillât contenant du diesel, c’est-à-dire comprenant des composés ayant une température d’ébullition comprise entre 180 et 350°C. Advantageously, the separation step b) further comprises at least one atmospheric distillation upstream from the vacuum distillation, in which the effluent 3 is fractionated by atmospheric distillation into at least one distillate fraction containing naphtha, that is - ie comprising compounds having a boiling point between 80 and 180 ° C, and a distillate fraction containing diesel, ie comprising compounds having a boiling point between 180 and 350 ° vs.
Avantageusement, la fraction distillât contenant du naphta est au moins en partie et de préférence en totalité envoyée à l’étape g) de vapocraquage. La fraction distillât contenant du diesel peut être au moins en partie et de préférence en totalité envoyée à l’étape d) d’extraction. La fraction distillât contenant du diesel peut de manière optionnelle être envoyée en partie à l’étape e) d’hydrocraquage. Advantageously, the distillate fraction containing naphtha is at least partially and preferably entirely sent to step g) of steam cracking. The diesel-containing distillate fraction can be at least in part and preferably in full sent to step d) of extraction. The diesel-containing distillate fraction can optionally be sent in part to hydrocracking step e).
Au moins une partie, et de préférence la totalité, de la fraction résidu sous vide 5 est envoyée à l’étape c) de désasphaltage. Au moins une partie, et de préférence la totalité, de la fraction distillât sous vide 1 1 est envoyée à l’étape d) d’extraction des aromatiques. At least part, and preferably all, of the vacuum residue fraction 5 is sent to deasphalting step c). At least part, and preferably all, of the vacuum distillate fraction 11 is sent to step d) for extracting the aromatics.
Conformément à l’invention, le procédé comprend une étape c) de désasphaltage par extraction liquide-liquide de la fraction résidu 5 issue de l’étape b) de séparation. Ladite étape c) est mise en oeuvre par extraction liquide-liquide au moyen d’un solvant ou d’un mélange de solvants 6 permettant d’obtenir d’une part une fraction 7 comprenant de l’asphalte, et d’autre part une fraction huile désasphaltée (DAO) 8. According to the invention, the process comprises a step c) of deasphalting by liquid-liquid extraction of the residue fraction 5 from step b) of separation. Said step c) is carried out by liquid-liquid extraction using a solvent or a mixture of solvents 6 making it possible to obtain on the one hand a fraction 7 comprising asphalt, and on the other hand a deasphalted oil fraction (DAO) 8.
L’étape c) de désasphaltage est réalisée de préférence dans des conditions spécifiques permettant d'obtenir une DAO 8 de qualité, de préférence à faible teneur en asphaltènes. Step c) of deasphalting is preferably carried out under specific conditions making it possible to obtain a quality DAO 8, preferably with a low asphaltene content.
L'étape c) de désasphaltage est de préférence réalisée en une seule étape au moyen d’un solvant apolaire ou d’un mélange de solvants apolaires . Step c) of deasphalting is preferably carried out in a single step using an apolar solvent or a mixture of apolar solvents.
L'étape c) peut être réalisée dans une colonne d'extraction ou extracteur, ou dans un mélangeur-décanteur. L’étape c) est de préférence réalisée dans une colonne d’extraction contenant des contacteurs liquide-liquide (éléments de garnissage et/ou plateaux, etc.) placés dans une ou plusieurs zones. De préférence, le solvant ou le mélange de solvants 6 est introduit dans la colonne d'extraction à deux niveaux différents. De préférence, la charge de désasphaltage est introduite dans une colonne d'extraction à un seul niveau d'introduction, généralement en mélange avec au moins une partie du solvant ou du mélange de solvants 6 et généralement en dessous d’une première zone de contacteurs liquide-liquide. De préférence, l’autre partie du solvant ou mélange de solvants 6 est injectée plus bas que la charge de désasphaltage, généralement en dessous d’une seconde zone de contacteurs liquide-liquide, la charge de désasphaltage étant injectée au-dessus de cette seconde zone de contacteurs. Step c) can be carried out in an extraction column or extractor, or in a mixer-settler. Step c) is preferably carried out in an extraction column containing liquid-liquid contactors (packing elements and / or trays, etc.) placed in one or more zones. Preferably, the solvent or the mixture of solvents 6 is introduced into the extraction column at two different levels. Preferably, the deasphalting feedstock is introduced into an extraction column at a single introduction level, generally mixed with at least part of the solvent or mixture of solvents 6 and generally below a first contactor zone. liquid-liquid. Preferably, the other part of the solvent or mixture of solvents 6 is injected lower than the deasphalting charge, generally below a second zone of liquid-liquid contactors, the deasphalting charge being injected above this second. contactors area.
L'étape c) est mise en oeuvre en conditions subcritiques, c’est-à-dire en dessous du point critique, pour ledit solvant ou mélange de solvants 6. L'étape c) est mise en oeuvre à une température avantageusement comprise entre 50 et 350°C, de préférence entre 80 et 320°C, de manière plus préférée entre 120 et 310°C, de manière encore plus préférée entre 150 et 300°C, et à une pression avantageusement comprise entre 0,1 et 6 MPa, de préférence entre 1 et 6 MPa, de manière plus préférée entre 2 et 5 MPa. Le rapport de volume du solvant ou du mélange de solvants 6 sur la masse de fraction résidu 5 issue de l’étape b) est généralement compris entre 1/1 et 12/1 , de préférence entre 2/1 à 9/1 exprimé en litres par kilogrammes. Ce rapport inclut la totalité du solvant ou mélange de solvants pouvant être divisé en plusieurs points d’injection. Step c) is carried out under subcritical conditions, that is to say below the critical point, for said solvent or mixture of solvents 6. Step c) is carried out at a temperature advantageously between 50 and 350 ° C, preferably between 80 and 320 ° C, more preferably between 120 and 310 ° C, even more preferably between 150 and 300 ° C, and at a pressure advantageously between 0.1 and 6 MPa, preferably between 1 and 6 MPa, more preferably between 2 and 5 MPa. The volume ratio of the solvent or of the mixture of solvents 6 to the mass of residue fraction 5 resulting from step b) is generally between 1/1 and 12/1, preferably between 2/1 and 9/1 expressed in liters per kilograms. This ratio includes all of the solvent or mixture of solvents which can be divided into several injection points.
Le solvant apolaire utilisé est de préférence un solvant composé d'hydrocarbure(s) saturé(s) comprenant un nombre de carbones supérieur ou égal à 3, de préférence compris entre 3 et 5. Ces solvants peuvent être par exemple le propane, le butane ou le pentane. Ces solvants sont utilisés purs ou en mélange. The apolar solvent used is preferably a solvent composed of saturated hydrocarbon (s) comprising a number of carbons greater than or equal to 3, preferably between 3 and 5. These solvents can be for example propane, butane. or pentane. These solvents are used pure or as a mixture.
De manière préférée, le solvant 6 utilisé à l’étape c) est un solvant apolaire composé à au moins 80% en volume d'hydrocarbure(s) saturé(s) comprenant un nombre de carbones comprise entre 3 et 7, de préférence compris entre 4 et 5, ceci de manière à maximiser le rendement en fraction DAO 8. Preferably, the solvent 6 used in step c) is an apolar solvent composed of at least 80% by volume of saturated hydrocarbon (s) comprising a number of carbons of between 3 and 7, preferably of between between 4 and 5, so as to maximize the yield of DAO fraction 8.
Le choix des conditions de température et de pression de l'extraction combiné au choix de la nature des solvants 6 dans l'étape c) de désasphaltage permettent d'ajuster les performances d'extraction. L'étape c) peut permettre, grâce à ces conditions de désasphaltage spécifiques, de précipiter dans la fraction 7 asphalte une quantité ajustée de structures polaires de type résines lourdes et asphaltènes, ce qui permet d’obtenir une fraction 7 asphalte avec un rendement modéré, généralement inférieur à 40%, voire inférieur à 30% par rapport à la quantité de composés ayant une température d’ébullition supérieure à 540°C en entrée de l’étape c) de désasphaltage. Le rendement élevé en DAO 8 permet d’obtenir davantage de produits craqués en sortie de l’étape g) de vapocraquage. La fraction DAO 8 obtenue comprends moins de 2000 ppm d’asphaltènes C7, généralement moins de 1000 ppm d’asphaltènes C7, voire moins de 500 ppm d’asphaltènes C7. The choice of the temperature and pressure conditions of the extraction combined with the choice of the nature of the solvents 6 in deasphalting step c) make it possible to adjust the extraction performance. Step c) can make it possible, thanks to these specific deasphalting conditions, to precipitate in the asphalt fraction 7 an adjusted amount of polar structures of heavy resin and asphaltene type, which makes it possible to obtain an asphalt fraction 7 with a moderate yield. , generally less than 40%, or even less than 30% relative to the amount of compounds having a boiling point greater than 540 ° C. at the inlet of deasphalting step c). The high yield of DAO 8 makes it possible to obtain more cracked products at the outlet of step g) of steam cracking. The DAO 8 fraction obtained comprises less than 2000 ppm of C7 asphaltenes, generally less than 1000 ppm of C7 asphaltenes, or even less than 500 ppm of C7 asphaltenes.
En tête de la colonne d'extraction ou du mélangeur-décanteur, de préférence au-dessus de la zone de contacteur(s) liquide-liquide située à la position la plus haute, on récupère une fraction qui comprend la DAO 8 et une partie du solvant ou du mélange de solvants. At the head of the extraction column or of the mixer-settler, preferably above the liquid-liquid contactor (s) zone located at the highest position, a fraction is recovered which comprises the DAO 8 and a part solvent or mixture of solvents.
En fond de la colonne d'extraction ou du mélangeur-décanteur, de préférence en dessous de la zone de contacteur(s) située à la position la plus basse, on récupère une fraction 7 qui comprend de l’asphalte et une partie du solvant ou mélange de solvants. At the bottom of the extraction column or of the mixer-settler, preferably below the contactor zone (s) located at the lowest position, a fraction 7 is recovered which comprises asphalt and part of the solvent. or mixture of solvents.
Le solvant ou mélange de solvants 6 peut être constitué d’un appoint et/ou d’une partie recyclée lors d’étapes de séparation. Ces appoints permettent avantageusement de compenser les pertes de solvant dans la fraction asphalte 7 et/ou dans la fraction DAO 8, dues aux étapes de séparation. The solvent or mixture of solvents 6 may consist of an makeup and / or a part recycled during separation steps. These additions advantageously allow compensate for the losses of solvent in the asphalt fraction 7 and / or in the DAO fraction 8, due to the separation steps.
L’étape c) de désasphaltage comprend une sous étape intégrée de séparation de la fraction 8 comprenant la DAO et du solvant ou du mélange de solvants. Le solvant ou le mélange de solvants récupéré peut être recyclé dans l’étape c) de désasphaltage. Cette sous étape de séparation intégrée permettant de séparer la DAO 8 et le solvant ou le mélange de solvants peut mettre en oeuvre tous les équipements nécessaires connus de l’homme du métier (ballons séparateurs, colonnes de distillation ou de stripage, échangeurs de chaleur, fours, pompes, compresseurs, etc.). Au moins une partie, et de préférence la totalité, de la DAO 8 est envoyée vers l’étape d) d’extraction des aromatiques. Step c) of deasphalting comprises an integrated sub-step of separation of fraction 8 comprising the DAO and the solvent or mixture of solvents. The solvent or mixture of solvents recovered can be recycled in step c) of deasphalting. This integrated separation sub-step making it possible to separate the DAO 8 and the solvent or the mixture of solvents can use all the necessary equipment known to those skilled in the art (separator flasks, distillation or stripping columns, heat exchangers, etc. furnaces, pumps, compressors, etc.). At least part, and preferably all, of the DAO 8 is sent to step d) of extracting aromatics.
Etape d) d’extraction des aromatiques Step d) of extracting the aromatics
Conformément à l’invention, le procédé comprend une étape d) d’extraction des aromatiques d’au moins une partie de la fraction huile désasphaltée 8 issue de l’étape c) de désasphaltage. Ladite étape permettant l’obtention d’une fraction extrait 13 et une fraction raffinât 10. According to the invention, the process comprises a step d) of extracting the aromatics from at least a part of the deasphalted oil fraction 8 from step c) of deasphalting. Said step making it possible to obtain an extract fraction 13 and a raffinate fraction 10.
Avantageusement, au moins une partie, de préférence la totalité, de la fraction distillât comprenant des composés ayant une température d’ébullition comprise entre 180 et 350°C issue de l’étape b) de séparation, est également introduite à l’étape d) d’extraction des aromatiques. Advantageously, at least part, preferably all, of the distillate fraction comprising compounds having a boiling point of between 180 and 350 ° C resulting from stage b) of separation, is also introduced in stage d ) extraction of aromatics.
De manière optionnelle, une partie de la fraction 1 1 issue de l’étape b) de séparation et comprenant des composés ayant une température d’ébullition comprise entre 350 et 540°C peut être introduite à l’étape d) d’extraction. Optionally, part of fraction 11 from step b) of separation and comprising compounds having a boiling point of between 350 and 540 ° C can be introduced in step d) of extraction.
L’étape d’extraction des aromatiques a pour objectif d’extraire au moins en partie les composés aromatiques, par extraction liquide-liquide à l'aide d'un solvant polaire 9 ainsi que les résines contenues dans la fraction DAO 8. The objective of the aromatics extraction step is to extract at least part of the aromatic compounds, by liquid-liquid extraction using a polar solvent 9, as well as the resins contained in the DAO fraction 8.
De préférence l'extraction des aromatiques est réalisée sur des fractions ayant une température d’ébullition supérieure à 180°C et de préférence supérieure à 350°C, afin d'éviter des pertes de rendement de fractions légères lors de la récupération du solvant après extraction. Preferably, the extraction of the aromatics is carried out on fractions having a boiling point higher than 180 ° C and preferably higher than 350 ° C, in order to avoid losses of yield of light fractions during the recovery of the solvent after extraction.
Les composés extraits lors de l’étape d) ont préférentiellement un point d'ébullition supérieur au point d'ébullition du solvant, ce qui permet avantageusement de maximiser le rendement lors de la séparation du solvant du raffinât après l'extraction. De plus, la récupération du solvant est également plus efficace et économique. The compounds extracted during step d) preferably have a boiling point greater than the boiling point of the solvent, which advantageously makes it possible to maximize the yield during the separation of the solvent from the raffinate after the extraction. In addition, the recovery of the solvent is also more efficient and economical.
Comme solvant, on peut utiliser le furfural, la N-méthyl-2-pyrrolidone (NMP), le sulfolane, le diméthylformamide (DMF), le diméthylsulfoxide (DMSO), le phénol, ou un mélange de ces solvants dans des proportions égales ou différentes. De préférence, le solvant est le furfural. Les conditions opératoires sont en général un ratio solvant / charge de l’étape d) de 1/2 à 6/1 , préférentiellement de 1/1 à 4/1 , un profil de température compris entre la température ambiante et 150°C, de préférence entre 50 et 150°C. La pression se situe entre la pression atmosphérique et 2,0 MPa, de préférence entre 0,1 et 1 ,0 MPa. As a solvent, furfural, N-methyl-2-pyrrolidone (NMP), sulfolane, dimethylformamide (DMF), dimethylsulfoxide (DMSO), phenol, or a mixture of these solvents in equal proportions or different. Preferably, the solvent is furfural. The operating conditions are generally a solvent / feed ratio of step d) of 1/2 to 6/1, preferably from 1/1 to 4/1, a temperature profile between ambient temperature and 150 ° C, preferably between 50 and 150 ° C. The pressure is between atmospheric pressure and 2.0 MPa, preferably between 0.1 and 1.0 MPa.
L’extraction liquide/liquide peut être réalisée généralement dans un mélangeur-décanteur ou dans une colonne d’extraction fonctionnant à contre-courant. De préférence, l’extraction est réalisée dans une colonne d’extraction. The liquid / liquid extraction can generally be carried out in a mixer-settler or in an extraction column operating in counter-current. Preferably, the extraction is carried out in an extraction column.
Le solvant choisi a un point d’ébullition suffisamment élevé afin de pouvoir fluidifier la charge de l’étape d) sans se vaporiser. The chosen solvent has a sufficiently high boiling point to be able to fluidify the charge of step d) without vaporizing.
Après contact du solvant, avec l’effluent introduit à l’étape d), deux fractions sont obtenues à l’issue de l’étape d), une fraction extrait 13, constitué des parties de la fraction lourde non solubles dans le solvant (et fortement concentrées en aromatiques) et une fraction raffinât 10, constituée du solvant et des parties solubles de la fraction lourde. Le solvant est séparé par distillation des parties solubles et recyclées en interne au procédé d’extraction liquide/liquide. La séparation de l’extrait et du raffinât et la récupération du solvant sont réalisées dans une sous étape de séparation intégrée à l’étape d) d’extraction des aromatiques. After contact of the solvent, with the effluent introduced in step d), two fractions are obtained at the end of step d), an extract fraction 13, consisting of parts of the heavy fraction not soluble in the solvent ( and highly concentrated in aromatics) and a raffinate fraction 10, consisting of the solvent and the soluble parts of the heavy fraction. The solvent is separated from the soluble parts by distillation and recycled internally to the liquid / liquid extraction process. The separation of the extract and the raffinate and the recovery of the solvent are carried out in a separation sub-step integrated in step d) of extracting the aromatics.
Etape e) d’hvdrocraquaqe en lit fixe Stage e) of hvdrocraquaqe in a fixed bed
Conformément à l'invention, le procédé comprend une étape e) d’hydrocraquage en lit fixe d’au moins une partie de la fraction 1 1 issue de l’étape b) de séparation et d’au moins une partie de la fraction extrait 13 issue de l’étape d’extraction d) en présence d’un catalyseur d’hydrocraquage. According to the invention, the process comprises a stage e) of hydrocracking in a fixed bed of at least part of the fraction 11 resulting from stage b) of separation and at least one part of the extracted fraction 13 from extraction step d) in the presence of a hydrocracking catalyst.
De l’hydrogène 12 peut également être injecté en amont des différents lits catalytiques composant le(s) réacteur(s) d’hydrocraquage. Parallèlement aux réactions d’hydrocraquage désirées dans cette étape, il se produit également tout type de réaction d’hydrotraitement (HDM, HDS, HDN, etc...). Des réactions d’hydrocraquage conduisant à la formation de distillais atmosphériques ont lieu avec un taux de conversion du distillât sous vide en distillât atmosphérique qui est généralement supérieur à 30%, typiquement entre 30 et 50% pour un hydrocraquage doux et supérieur à 80% pour un hydrocraquage poussé. Des conditions spécifiques, de température notamment, et/ou l’utilisation d’un ou plusieurs catalyseurs spécifiques, permettent de favoriser les réactions d’hydrocraquage désirées. Hydrogen 12 can also be injected upstream of the various catalytic beds making up the hydrocracking reactor (s). Along with the hydrocracking reactions desired in this step, any type of hydrotreatment reaction (HDM, HDS, HDN, etc.) also occurs. Hydrocracking reactions leading to the formation of atmospheric distillates take place with a degree of conversion of the vacuum distillate to atmospheric distillate which is generally greater than 30%, typically between 30 and 50% for mild hydrocracking and greater than 80% for extensive hydrocracking. Specific conditions, particularly temperature, and / or the use of one or more specific catalysts, promote the desired hydrocracking reactions.
L’étape e) d’hydrocraquage selon l’invention est mise en oeuvre dans des conditions d’hydrocraquage. Elle peut avantageusement être mise en oeuvre à une température comprise entre 340 et 480°C, de préférence entre 350 et 430°C et sous une pression absolue comprise entre 5 et 25 MPa, de préférence entre 8 et 20 MPa, de manière préférée entre 10 et 18 MPa. La température est habituellement ajustée en fonction du niveau souhaité d’hydrotraitement et de la durée du traitement visée. Le plus souvent, la vitesse spatiale de la charge hydrocarbonée, couramment appelée WH, et qui se définit comme étant le débit volumétrique de la charge divisé par le volume total du catalyseur, peut être comprise dans une gamme allant de 0,1 à 3,0 h 1, préférentiellement de 0,2 à 2,0 h 1, et plus préférentiellement de 0,25 à 1 ,0 h 1. La quantité d’hydrogène mélangée à la charge peut être comprise entre 100 et 5000 normaux mètres cube (Nm3) par mètre cube (m3) de charge liquide, préférentiellement entre 200 et 2000 Nm3/m3, et plus préférentiellement entre 300 et 1500 Nm3/m3. L’étape e) d’hydrocraquage peut être effectuée industriellement dans au moins un réacteur à courant descendant de liquide. Hydrocracking step e) according to the invention is carried out under hydrocracking conditions. It can advantageously be carried out at a temperature between 340 and 480 ° C, preferably between 350 and 430 ° C and under an absolute pressure between 5 and 25 MPa, preferably between 8 and 20 MPa, preferably between 10 and 18 MPa. The temperature is usually adjusted depending on the desired level of hydrotreatment and the duration of the intended treatment. Most often, the space velocity of the hydrocarbon feed, commonly called WH, and which is defined as being the volumetric flow rate of the feed divided by the total volume of the catalyst, can be in a range from 0.1 to 3, 0 h 1 , preferably from 0.2 to 2.0 h 1 , and more preferably from 0.25 to 1.0 h 1 . The quantity of hydrogen mixed with the feed can be between 100 and 5000 normal cubic meters (Nm 3 ) per cubic meter (m 3 ) of liquid feed, preferably between 200 and 2000 Nm 3 / m 3 , and more preferably between 300 and 1500 Nm 3 / m 3 . Hydrocracking step e) can be carried out industrially in at least one reactor with a downward flow of liquid.
L’étape e) d’hydrocraquage comprend de préférence deux sections catalytiques en série, avec une section catalytique amont d’hydrotraitement de manière à limiter la désactivation de la section catalytique aval d’hydrocraquage. Cette section d’hydrotraitement vise notamment à réduire significativement la teneur en azote de la charge, l’azote étant un inhibiteur de la fonction acide des catalyseurs bi fonctionnels de la section catalytique d’hydrocraquage. L’étape e) d’hydrocraquage peut également comprendre une deuxième section catalytique d’hydrocraquage traitant au moins une coupe lourde issue d’une étape de séparation. Les catalyseurs dans l’étape e) d’hydrocraquage utilisés peuvent être des catalyseurs d’hydrotraitement et d’hydrocraquage. Hydrocracking stage e) preferably comprises two catalytic sections in series, with an upstream hydrotreatment catalytic section so as to limit the deactivation of the downstream hydrocracking catalytic section. This hydrotreatment section aims in particular to significantly reduce the nitrogen content of the feed, the nitrogen being an inhibitor of the acid function of the bifunctional catalysts of the hydrocracking catalytic section. Hydrocracking stage e) can also comprise a second catalytic hydrocracking section treating at least one heavy cut resulting from a separation stage. The catalysts in hydrocracking step e) used can be hydrotreatment and hydrocracking catalysts.
Les catalyseurs d’hydrotraitement utilisés peuvent être des catalyseurs d’hydrotraitement constitués d’un support de type oxyde inorganique (de préférence une alumine) et d’une phase active comprenant des éléments chimiques issues des groupe VIII (Ni, Co, etc.) et groupe VI (Mo, etc.). The hydrotreatment catalysts used can be hydrotreatment catalysts consisting of a support of inorganic oxide type (preferably an alumina) and of an active phase comprising chemical elements from group VIII (Ni, Co, etc.) and group VI (Mo, etc.).
Les catalyseurs d’hydrocraquage peuvent être de manière avantageuse des catalyseurs bifonctionnels, ayant une phase hydrogénante afin de pouvoir hydrogéner les aromatiques et réaliser l'équilibre entre les composés saturés et les oléfines correspondantes et une phase acide qui permet de promouvoir les réactions d'hydroisomérisation et d'hydrocraquage. La fonction acide est avantageusement apportée par des supports de grandes surfaces (généralement 100 à 800 m2.g 1) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les combinaisons d'oxydes de bore et d'aluminium, les silice-alumines amorphes et les zéolithes. La fonction hydrogénante est avantageusement apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, tels que le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium, le osmium, le iridium et le platine, soit par une association d'au moins un métal du groupe VIB de la classification périodique tels que molybdène et tungstène et au moins un métal non noble du groupe VIII (tels que le nickel et le cobalt). De préférence, le catalyseur bifonctionnel utilisé comprend au moins un métal choisi dans le groupe formé par les métaux des groupes VIII et VIB, pris seuls ou en mélange, et un support comprenant 10 à 90% poids d'une zéolithe et 90 à 10% poids d'oxydes inorganiques. Le métal du groupe VIB utilisé est de préférence choisi parmi le tungstène et le molybdène et le métal du groupe VIII est de préférence choisi parmi le nickel et le cobalt. Selon une autre variante préférée, des catalyseurs monofonctionnels et des catalyseurs bi-fonctionnel de type alumine, silice- alumine amorphe ou zéolitique peuvent être utilisés en mélange ou en couches successives. The hydrocracking catalysts can advantageously be bifunctional catalysts, having a hydrogenating phase in order to be able to hydrogenate the aromatics and to achieve the equilibrium between the saturated compounds and the corresponding olefins and an acid phase which makes it possible to promote the hydroisomerization reactions. and hydrocracking. The acid function is advantageously provided by supports with large surfaces (generally 100 to 800 m 2 .g 1 ) having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), combinations of oxides of boron and of aluminum, amorphous silica-aluminas and zeolites. The hydrogenating function is advantageously provided either by one or more metals from group VIII of the periodic table of the elements, such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum , or by a combination of at least one metal from group VIB of the periodic table, such as molybdenum and tungsten, and at least one non-noble metal from group VIII (such as nickel and cobalt). Preferably, the bifunctional catalyst used comprises at least one metal chosen from the group formed by the metals of groups VIII and VIB, taken alone or as a mixture, and a support comprising 10 to 90% by weight of a zeolite and 90 to 10% weight of inorganic oxides. The metal from group VIB used is preferably chosen from tungsten and molybdenum and the metal from group VIII is preferably chosen from nickel and cobalt. According to another preferred variant, monofunctional catalysts and bifunctional catalysts of the alumina, silica-amorphous or zeolitic alumina type can be used as a mixture or in successive layers.
De préférence, le volume catalytique mis en oeuvre lors de la seconde étape e) d’hydrocraquage est constitué d’au moins 30% de catalyseurs d’hydrocraquage de type bi fonctionnel. Preferably, the catalytic volume used during the second stage e) of hydrocracking consists of at least 30% of hydrocracking catalysts of the bifunctional type.
De manière optionnelle, une co-charge (non représentée) peut être injectée en amont de n’importe quel lit catalytique de la section d) d’hydrocraquage. Cette co-charge est typiquement un distillât sous vide issu de distillation directe ou issu d’un procédé de conversion, ou une huile désasphaltée. Optionally, a co-feed (not shown) can be injected upstream of any catalytic bed of hydrocracking section d). This co-charge is typically a vacuum distillate resulting from direct distillation or resulting from a conversion process, or a deasphalted oil.
De préférence, l’étape e) d’hydrocraquage est opérée en mode « maxi naphta », c’est-à-dire qu’elle permet d’obtenir un rendement en composés liquides ayant une température d’ébullition inférieure à 220°C supérieur à 50% en poids de la charge en entrée de l’étape e) d’hydrocraquage. Preferably, hydrocracking step e) is carried out in "maxi naphtha" mode, that is to say it makes it possible to obtain a yield of liquid compounds having a boiling point of less than 220 ° C. greater than 50% by weight of the feedstock at the inlet of hydrocracking stage e).
L’effluent 14 issu de l’étape e) d’hydrocraquage en lit fixe est envoyé dans une étape f) de séparation. The effluent 14 from step e) of fixed bed hydrocracking is sent to a separation step f).
Etape f) de séparation de l’effluent d’hydrocraquaqe en lit fixe Step f) separation of the hydrocraquaqe effluent in a fixed bed
Conformément à l’invention, le procédé comprend en outre une étape f) de séparation de l’effluent 14 issu de l’étape e) d’hydrocraquage en lit fixe en au moins une fraction gazeuse 15 et au moins une fraction liquide 16. According to the invention, the process further comprises a step f) of separating the effluent 14 from step e) of fixed bed hydrocracking into at least one gas fraction 15 and at least one liquid fraction 16.
Ledit effluent 14 est avantageusement séparé dans au moins un ballon séparateur en au moins une fraction gazeuse 15 et au moins une fraction liquide 16. L’étape de séparation dudit effluent 14 peut être réalisée à l’aide de tous dispositifs de séparation connus de l’homme du métier, tel que un ou plusieurs ballons séparateurs pouvant opérer à différentes pressions et températures, éventuellement associés à un moyen de stripage à la vapeur ou à l’hydrogène et à une ou plusieurs colonnes de distillation. Ces séparateurs peuvent par exemple être des séparateurs haute pression haute température (HPHT) et/ou des séparateurs haute pression basse température (HPBT). Said effluent 14 is advantageously separated in at least one separating flask into at least one gaseous fraction 15 and at least one liquid fraction 16. The step of separating said effluent 14 can be carried out using any known separation devices of the invention. a person skilled in the art, such as one or more separator flasks which can operate at different pressures and temperatures, optionally associated with a means for stripping with steam or with hydrogen and with one or more distillation columns. These separators can for example be high pressure high temperature (HPHT) separators and / or high pressure low temperature (HPBT) separators.
La fraction gazeuse 15 obtenue à l’issu de l’étape e) de séparation comprend des gaz, tel que H2, H2S, NH3, et des hydrocarbures en C1 -C4 (tel que le méthane, éthane, propane, butane). Avantageusement, l’hydrogène contenu dans la fraction gazeuse 15 est purifié et recyclé dans l’une quelconque des étapes a) d’hydroconversion en lit bouillonnant et/ou e) d’hydrocraquage en lit fixe. Dans un mode de réalisation particulier, la purification de l’hydrogène contenu dans la fraction gazeuse 15 peut être réalisé simultanément aux traitements des fractions gazeuses issues de la séparation des effluents des étapes a) d’hydroconversion en lit bouillonnant et e) d’hydrocraquage en lit fixe. La purification de l’hydrogène peut être effectuée par un lavage aux amines, une membrane, un système de type PSA (Pressure Swing Adsorption selon la terminologie anglo-saxonne), ou plusieurs de ces moyens disposés en série. Dans un mode de réalisation préféré, l’étape de séparation f) comprend en outre de la séparation gaz-liquide ou de la succession de dispositifs de séparation, au moins une distillation atmosphérique, dans laquelle la ou les fraction(s) hydrocarbonée(s) liquide(s) obtenue(s) après séparation est (sont) fractionnée(s) par distillation atmosphérique en au moins une fraction distillât atmosphérique 16 comportant des composés ayant une température d’ébullition inférieure à 350°C et optionnellement une fraction liquide comprenant du distillât sous vide comportant des composés ayant une température d’ébullition supérieure à 350°C. Au moins une partie, et de préférence la totalité, de la fraction distillât atmosphérique 16 et optionnellement de la fraction comprenant du distillât sous vide est avantageusement envoyée vers l’étape g) de vapocraquage. The gas fraction 15 obtained at the end of stage e) of separation comprises gases, such as H 2 , H 2 S, NH 3 , and C1 -C4 hydrocarbons (such as methane, ethane, propane, etc. butane). Advantageously, the hydrogen contained in the gas fraction 15 is purified and recycled in any one of the steps a) of hydroconversion in an ebullating bed and / or e) of hydrocracking in a fixed bed. In a particular embodiment, the purification of the hydrogen contained in the gaseous fraction 15 can be carried out simultaneously with the treatments of the gaseous fractions resulting from the separation of the effluents from stages a) of hydroconversion in an ebullating bed and e) of hydrocracking. in a fixed bed. The purification of the hydrogen can be carried out by washing with amines, a membrane, a PSA (Pressure Swing Adsorption) type system, or several of these means arranged in series. In a preferred embodiment, the separation step f) further comprises gas-liquid separation or the succession of separation devices, at least one atmospheric distillation, in which the hydrocarbon fraction (s) ) liquid (s) obtained after separation is (are) fractionated by atmospheric distillation into at least one atmospheric distillate fraction 16 comprising compounds having a boiling point of less than 350 ° C and optionally a liquid fraction comprising vacuum distillate comprising compounds having a boiling point greater than 350 ° C. At least a part, and preferably all, of the atmospheric distillate fraction 16 and optionally of the fraction comprising vacuum distillate is advantageously sent to step g) of steam cracking.
De manière optionnelle, au moins une partie de la fraction type distillât sous vide est recyclée vers l’étape e) d’hydrocraquage, et selon cette variante il peut être nécessaire de réaliser une purge constituée de fractions non converties de type distillât sous vide de manière à déconcentrer les espèces polyaromatiques et à limiter la désactivation du catalyseur d’hydrocraquage de l’étape e). Afin de limiter la purge et ainsi accroître la conversion globale, il peut être avantageux de réaliser de manière optionnelle cette purge en envoyant au moins une partie de la fraction non convertie de type distillât sous vide en entrée de l’étape c) de désasphaltage de manière à éliminer au moins en partie les espèces polyaromatiques dans la fraction asphalte 7. Optionally, at least part of the vacuum distillate type fraction is recycled to hydrocracking step e), and according to this variant it may be necessary to perform a purge consisting of unconverted fractions of the vacuum distillate type of so as to deconcentrate the polyaromatic species and to limit the deactivation of the hydrocracking catalyst of step e). In order to limit the purge and thus increase the overall conversion, it may be advantageous to optionally carry out this purge by sending at least part of the unconverted fraction of vacuum distillate type at the input of step c) of deasphalting of so as to at least partly eliminate the polyaromatic species in the asphalt fraction 7.
Conformément à l’invention, le procédé comprend une étape g) de vapocraquage de la fraction raffinât 10 issue de l’étape d) d’extraction et de la fraction liquide 16 issue de l’étape f) de séparation comportant des composés ayant une température d’ébullition inférieure à 350°C , et de préférence une fraction comprenant des composés ayant une température d’ébullition supérieure à 350°C issue de l’étape f) de séparation. According to the invention, the process comprises a step g) of steam cracking of the raffinate fraction 10 resulting from the extraction step d) and of the liquid fraction 16 resulting from the separation step f) comprising compounds having a boiling point lower than 350 ° C, and preferably a fraction comprising compounds having a boiling point higher than 350 ° C resulting from stage f) of separation.
Optionnellement, une partie de la fraction comprenant des composés ayant une température d’ébullition entre 80 de 180°C issue de l’étape b) de séparation peut être introduite à l’étape g) de vapocraquage. Optionally, part of the fraction comprising compounds having a boiling point between 80 and 180 ° C resulting from step b) of separation can be introduced in step g) of steam cracking.
L’étape g) de vapocraquage est avantageusement réalisée dans au moins un four de pyrolyse à une température comprise entre 700 et 900°C, de préférence entre 750 et 850°C, et sous une pression comprise entre 0,05 et 0,3 MPa relatif. Le temps de séjour des hydrocarbures est généralement inférieur ou égale à 1 ,0 seconde (noté s), de préférence compris entre 0,1 et 0,5 s. Avantageusement, de la vapeur d’eau est introduite en amont de l’étape g) de vapocraquage. La quantité d’eau introduite est comprise entre 0,3 et 3,0 kg d’eau par kg d’hydrocarbures en entrée de l’étape g). De préférence, l’étape g) est réalisée dans plusieurs fours de pyrolyse en parallèle de manière à adapter les conditions opératoires aux différents flux alimentant l’étape g) et issus des étapes b), e), f) et h), et aussi à gérer les temps de décokage des tubes. Un four comprend un ou plusieurs tubes disposés en parallèle. Un four peut également désigner un groupe de fours opérant en parallèle. Ainsi un four peut être dédié au craquage de fractions riches en éthane, un autre four dédié aux coupes riches en propane et butane, un autre four dédié aux coupes comprenant des composés ayant une température d’ébullition comprise entre 80 et 180°C, un autre four dédié aux coupes comprenant des composés ayant une température d’ébullition comprise entre 180 et 350°C, et un autre four dédié aux coupes comprenant des composés ayant une température d’ébullition supérieure à 350°C. Step g) of steam cracking is advantageously carried out in at least one pyrolysis furnace at a temperature between 700 and 900 ° C, preferably between 750 and 850 ° C, and under a pressure between 0.05 and 0.3 Relative MPa. The residence time of hydrocarbons is generally less than or equal to 1.0 seconds (denoted s), preferably between 0.1 and 0.5 s. Advantageously, water vapor is introduced upstream of steam cracking step g). The amount of water introduced is between 0.3 and 3.0 kg of water per kg of hydrocarbons entering step g). Preferably, step g) is carried out in several pyrolysis ovens in parallel so as to adapt the operating conditions to the different flows feeding step g) and resulting from steps b), e), f) and h), and also to manage the decoking times of the tubes. A furnace comprises one or more tubes arranged in parallel. A furnace can also refer to a group of furnaces operating in parallel. Thus one furnace can be dedicated to cracking fractions rich in ethane, another furnace dedicated to cuts rich in propane and butane, another furnace dedicated to cuts comprising compounds having a boiling point between 80 and 180 ° C, a another oven dedicated to cuts comprising compounds having a boiling point of between 180 and 350 ° C, and another oven dedicated to cuts comprising compounds having a boiling point greater than 350 ° C.
De préférence, le procédé comprend une étape h) de séparation de l’effluent 17 issu de l’étape g) de vapocraquage permettant l’obtention d’au moins une fraction 18 comprenant, de préférence constituée, de l’hydrogène, une fraction 19 comprenant, de préférence constituée, de l’éthylène, une fraction 20 comprenant, de préférence constituée, de propylène et une fraction 21 comprenant, de préférence constituée, et d’huile de pyrolyse. Optionnellement, l’étape h) de séparation permet de récupérer également une fraction comprenant, de préférence constituée, de butènes et une fraction comprenant, de préférence constituée, d’essence de pyrolyse. Preferably, the method comprises a step h) of separating the effluent 17 from steam cracking step g) making it possible to obtain at least one fraction 18 comprising, preferably consisting of, hydrogen, a fraction 19 comprising, preferably consisting of ethylene, a fraction 20 comprising, preferably consisting of, propylene and a fraction 21 comprising, preferably consisting, and pyrolysis oil. Optionally, step h) of separation also makes it possible to recover a fraction comprising, preferably consisting of butenes and a fraction comprising, preferably consisting of pyrolysis gasoline.
De préférence, les coupes riches en composés saturés issus des gaz légers ou de l’essence de pyrolyse issu de l’étape h) de séparation peuvent être recyclés vers l’étape g) de vapocraquage, notamment l’éthane et le propane, de manière à accroître le rendement en éthylène et en propylène. Preferably, the cuts rich in saturated compounds resulting from the light gases or from the pyrolysis gasoline resulting from the separation stage h) can be recycled to the steam cracking stage g), in particular ethane and propane, of so as to increase the yield of ethylene and propylene.
La fraction huile de pyrolyse 21 peut optionnellement être soumise à une étape additionnelle de séparation de manière à obtenir plusieurs fractions, par exemple une huile de pyrolyse légère comprenant des composés ayant une température d’ébullition inférieure à 350 °C et une huile de pyrolyse lourde comprenant des composés ayant une température d’ébullition supérieure à 350°C. L’huile de pyrolyse légère peut avantageusement être injectée en amont de l’étape d) d’hydrocraquage. L’huile de pyrolyse lourde peut avantageusement être injectée en amont de l’étape a) d’hydroconversion et/ou de l’étape c) de désasphaltage. Avantageusement, la séparation de la fraction 21 en deux fractions et leurs recyclages dans l’une des étapes a), c), ou e) du procédé permettant de maximiser la formation d’oléfines à partir de charges hydrocarbonées lourdes. The pyrolysis oil fraction 21 can optionally be subjected to an additional separation step so as to obtain several fractions, for example a light pyrolysis oil comprising compounds having a boiling point of less than 350 ° C. and a heavy pyrolysis oil. comprising compounds having a boiling point greater than 350 ° C. The light pyrolysis oil can advantageously be injected upstream of hydrocracking step d). The heavy pyrolysis oil can advantageously be injected upstream of stage a) of hydroconversion and / or of stage c) of deasphalting. Advantageously, the separation of fraction 21 into two fractions and their recycling in one of steps a), c) or e) of the process making it possible to maximize the formation of olefins from heavy hydrocarbon feedstocks.
EXEMPLE EXAMPLE
L’exemple ci-dessous illustre une mise en œuvre particulières du procédé selon l’invention sans en limiter la portée. The example below illustrates a particular implementation of the method according to the invention without limiting its scope.
La charge hydrocarbonée lourde 1 traitée dans le procédé est un résidu sous vide provenant du Moyen-Orient et ayant les propriétés indiquées dans le tableau 1. The heavy hydrocarbon feedstock 1 treated in the process is a vacuum residue originating from the Middle East and having the properties shown in Table 1.
Tableau 1 : propriétés de la charge Table 1: properties of the load
La charge est soumis à une étape a) d’hydroconversion dans deux réacteurs en lit bouillonnant en série et en présence d’un catalyseur d’hydroconversion en lit bouillonnant de type NiMo sur Alumine dans les conditions indiquées dans le tableau 2. The feed is subjected to a hydroconversion step a) in two ebullating bed reactors in series and in the presence of an ebullating bed hydroconversion catalyst of NiMo type on alumina under the conditions indicated in Table 2.
Tableau 2 : conditions de l’étape a) d’hydroconversion en lit bouillonnant Table 2: conditions of step a) of ebullated bed hydroconversion
L’effluent 3 issu de l’étape a) d’hydroconversion en lit bouillonnant est soumis à une étape b) de séparation comportant des ballons séparateurs ainsi qu’une colonne de distillation atmosphérique et une colonne de distillation sous vide. Les rendements des différentes fractions obtenues après séparation sont indiqués dans le tableau 3 (% masse par rapport à la charge en amont de l’étape a) d’hydrocraquage en lit bouillonnant, noté % m/m) : The effluent 3 from step a) of ebullated bed hydroconversion is subjected to a step b) of separation comprising separator flasks as well as an atmospheric distillation column and a vacuum distillation column. The yields of the different fractions obtained after separation are shown in Table 3 (% mass relative to the feed upstream of step a) of ebullating bed hydrocracking, noted% m / m):
Tableau 3 : rendements de l’étape a) d’hydroconversion après séparation à l’étape b) Table 3: Yields of hydroconversion step a) after separation in step b)
La fraction 5 (540°C+) de type résidu sous vide est envoyée vers une étape c) de désasphaltage réalisée dans une colonne d’extraction fonctionnant en continu dans les conditions présentées dans le tableau 4 : Fraction 5 (540 ° C +) of vacuum residue type is sent to a deasphalting step c) carried out in an extraction column operating continuously under the conditions presented in Table 4:
Tableau 4 : conditions de l’étape de désasphaltage Table 4: conditions of the deasphalting step
A l’issue de l’étape c) de désasphaltage, une fraction DAO 8 est obtenue avec un rendement de 62% et une fraction pitch est obtenue avec un rendement de 38% ; ces rendements sont rapportés à la charge de l’étape de désasphaltage correspondant à la fraction 5 (540°C+) issue de l’étape b) de séparation de l’effluent de l’étape a) d’hydrocraquage. At the end of deasphalting step c), a DAO 8 fraction is obtained with a yield of 62% and a pitch fraction is obtained with a yield of 38%; these yields are related to the charge of the deasphalting step corresponding to fraction 5 (540 ° C +) from step b) of separation of the effluent from step a) from hydrocracking.
La fraction DAO 8 issue de l’étape c) de désasphaltage, la fraction (180-350°C) et la fraction 1 1 (350-540°C) issues de l’étape b) de séparation sont envoyées vers une étape d) d’extraction des aromatiques réalisée dans un mélangeur décanteur dont les conditions sont présentées dans le tableau 5 : The DAO fraction 8 from step c) of deasphalting, the fraction (180-350 ° C) and the fraction 11 (350-540 ° C) from step b) of separation are sent to a step d ) extraction of aromatics carried out in a mixer-settler, the conditions of which are presented in Table 5:
Tableau 5 : conditions de l’étape d) d’extraction A l’issue de l’étape d’extraction des aromatiques, une fraction raffinât 10 appauvrie en aromatiques est obtenue avec un rendement de 56,2% et une fraction extrait 13 enrichie en aromatiques est obtenue avec un rendement de 43,8% ; ces rendements sont rapportés à la charge totale, c’est-à-dire l’ensemble des fractions introduites à l’étape d) d’extraction des aromatiques Table 5: conditions of extraction step d) At the end of the aromatics extraction step, a raffinate fraction 10 depleted in aromatics is obtained with a yield of 56.2% and an extract fraction 13 enriched in aromatics is obtained with a yield of 43.8%; these yields are related to the total charge, that is to say all the fractions introduced in stage d) of extraction of the aromatics
La fraction extrait 13 issue de l’étape d) d’extraction des aromatiques est envoyée vers une étape e) d’hydrocraquage en lit fixe réalisée dans les conditions présentées dans le tableau 6 : The extracted fraction 13 from step d) of extracting the aromatics is sent to a step e) of fixed bed hydrocracking carried out under the conditions presented in Table 6:
Tableau 6 : conditions de l’étape e) d’hydrocraquage en lit fixe Table 6: conditions of stage e) of fixed bed hydrocracking
L’effluent 14 issu de l’étape e) d’hydrocraquage en lit fixe est soumis à une étape de séparation comportant des ballons séparateurs ainsi qu’une colonne de distillation atmosphérique. Les rendements des différentes fractions obtenues après séparation sont indiqués dans le tableau 7 (% masse par rapport à la charge en amont de l’étape d’hydrocraquage en lit fixe, noté % m/m) : The effluent 14 resulting from fixed-bed hydrocracking stage e) is subjected to a separation stage comprising separator flasks and an atmospheric distillation column. The yields of the different fractions obtained after separation are shown in Table 7 (% mass relative to the feedstock upstream of the fixed bed hydrocracking stage, noted% m / m):
Tableau 7 : rendements de l’étape e) d’hydrocraquage en lit fixe Table 7: yields of fixed bed hydrocracking step e)
après séparation à l’étape f). after separation in step f).
Les fractions liquides PI-220°C, 220-350°C et 350°C+ issues de l’étape f) de séparation de l’effluent de l’étape d’hydrocraquage en lit fixe, la fraction PI-180°C issue de l’étape a) d’hydrocraquage en lit bouillonnant et la fraction raffinât 10 issue de l’étape d) d’extraction des aromatiques sont envoyées vers une étape g) de vapocraquage où chacune des fraction liquides est craquée dans des conditions différentes (tableau 8). The liquid fractions PI-220 ° C, 220-350 ° C and 350 ° C + from step f) of separation of the effluent from the fixed bed hydrocracking step, the PI-180 ° C fraction from of stage a) of hydrocracking in an ebullating bed and the raffinate fraction 10 resulting from stage d) of extraction of the aromatics are sent to a stage g) of steam cracking where each of the liquid fraction is cracked under different conditions ( table 8).
Tableau 8 : conditions de l’étape de vapocraquage Les effluents des différents fours de vapocraquage sont soumis à une étape de séparation permettant de recycler les composés saturés et d’obtenir les rendements présentés dans le tableau 9 (% masse par rapport à la charge totale en amont de l’étape g) de vapocraquage, noté % m/m). Table 8: conditions of the steam cracking step The effluents from the various steam cracking furnaces are subjected to a separation step making it possible to recycle the saturated compounds and to obtain the yields presented in Table 9 (% by mass relative to the total load upstream of step g) of steam cracking , noted% m / m).
Tableau 9 : rendements de l’étape de vapocraquage Table 9: yields of the steam cracking step
Le tableau 9 présente les rendements en produits de vapocraquage. Par rapport à la charge de type résidu atmosphérique introduite à l’étape a) d’hydroconversion, le procédé selon l’invention permet d’atteindre des rendements massiques en éthylène et en propylène de 29,4 % et 16,0 % respectivement. De plus, l’enchaînement spécifique d’étapes en amont de l’étape de vapocraquage permet de limiter la formation de coke. Table 9 shows the yields of steam cracking products. Compared to the atmospheric residue type feed introduced in hydroconversion step a), the process according to the invention makes it possible to achieve mass yields of ethylene and propylene of 29.4% and 16.0% respectively. In addition, the specific sequence of steps upstream of the steam cracking step helps limit the formation of coke.

Claims

REVENDICATIONS
1. Procédé de production d’oléfines à partir d’une charge (1 ) hydrocarbonée ayant une teneur en soufre d'au moins 0,1 % poids, une température initiale d'ébullition d'au moins1. Process for producing olefins from a hydrocarbon feed (1) having a sulfur content of at least 0.1% by weight, an initial boiling point of at least
180°C et une température finale d'ébullition d'au moins 600°C, ledit procédé comprenant les étapes suivantes : 180 ° C and a final boiling point of at least 600 ° C, said process comprising the following steps:
a) une étape d’hydroconversion réalisée dans un réacteur en lit bouillonnant dans lequel ladite charge hydrocarbonée lourde (1 ) en présence d’hydrogène (2) est mise en contact d’un catalyseur d’hydroconversion, ladite étape permettant l’obtention d’un effluent (3) ; a) a hydroconversion step carried out in an ebullating bed reactor in which said heavy hydrocarbon feed (1) in the presence of hydrogen (2) is brought into contact with a hydroconversion catalyst, said step making it possible to obtain d an effluent (3);
b) une étape de séparation de l’effluent (3) issu de l’étape a) d’hydroconversion en une fraction gazeuse (4), une fraction (1 1 ) comprenant des composés ayant une température d’ébullition compris entre 350 et 540°C et une fraction liquide résidu sous vide (5) comprenant des composés ayant une température d’ébullition d’au moins 540°C, b) a step of separating the effluent (3) from step a) hydroconversion into a gas fraction (4), a fraction (1 1) comprising compounds having a boiling point between 350 and 540 ° C and a residual liquid fraction under vacuum (5) comprising compounds having a boiling point of at least 540 ° C,
c) une étape de désasphaltage par extraction liquide-liquide de la fraction résidu sous vide (5) issue de l’étape b) de séparation, ladite étape c) étant mise en oeuvre au moyen d’un solvant (6) ou d’un mélange de solvants permettant d’obtenir d’une part une fraction (7) comprenant de l’asphalte, et d’autre part une fraction huile désasphaltée (8), c) a deasphalting step by liquid-liquid extraction of the residue fraction under vacuum (5) resulting from the separation step b), said step c) being carried out by means of a solvent (6) or of a mixture of solvents making it possible to obtain on the one hand a fraction (7) comprising asphalt, and on the other hand a deasphalted oil fraction (8),
d) une étape d’extraction des aromatiques d’au moins une partie de la fraction huile désasphaltée (8) issue de l’étape c) de désasphaltage et d’au moins une partie de la fraction (1 1 ) issue de l’étape b) de séparation, permettant l’obtention d’une fraction extrait (13) et une fraction raffinât (10), d) a step of extracting the aromatics from at least part of the deasphalted oil fraction (8) from step c) of deasphalting and at least part of the fraction (1 1) from the step b) of separation, making it possible to obtain an extract fraction (13) and a raffinate fraction (10),
e) une étape e) d’hydrocraquage en lit fixe d’au moins une partie de la fraction extrait (13) issue de l’étape d’extraction d) en présence d’hydrogène (12) d’un catalyseur d’hydrocraquage, permettant l’obtention d’un effluent (14), e) a step e) of hydrocracking in a fixed bed of at least part of the extracted fraction (13) resulting from the extraction step d) in the presence of hydrogen (12) of a hydrocracking catalyst , making it possible to obtain an effluent (14),
f) une étape de séparation de l’effluent (14) issu de l’étape e) d’hydrocraquage en lit fixe en au moins une fraction gazeuse (15) et au moins une fraction liquide (16), g) une étape de vapocraquage de la fraction raffinât (10) issue de l’étape d) d’extraction et de la fraction liquide (16) issue de l’étape f) de séparation comportant des composés à une température d’ébullition inférieure à 350°C, permettant l’obtention d’un effluent (17), h) une étape de séparation de l’effluent (17) issu de l’étape g) de vapocraquage permettant l’obtention d’au moins une fraction (18) comprenant de l’hydrogène, d’une fraction (19) comprenant de l’éthylène, d’une fraction (20) comprenant du propylène et d’une fraction (21 ) comprenant de l’huile de pyrolyse. f) a step of separating the effluent (14) from step e) of hydrocracking in a fixed bed into at least one gaseous fraction (15) and at least one liquid fraction (16), g) a step of steam cracking of the raffinate fraction (10) resulting from extraction step d) and of the liquid fraction (16) resulting from separation step f) comprising compounds at a boiling point below 350 ° C, allowing an effluent (17) to be obtained, h) a step of separating the effluent (17) from step g) of steam cracking making it possible to obtain at least one fraction (18) comprising hydrogen, from a fraction (19) comprising ethylene, a fraction (20) comprising propylene and a fraction (21) comprising pyrolysis oil.
2. Procédé selon la revendication 1 dans lequel l’étape b) de séparation comprend une distillation sous vide permettant l’obtention d’au moins une fraction distillât sous vide (1 1 ) et au moins une fraction résidu sous vide (5). 2. The method of claim 1 wherein step b) of separation comprises vacuum distillation to obtain at least one vacuum distillate fraction (1 1) and at least one vacuum residue fraction (5).
3. Procédé selon la revendication 2 dans lequel l’étape b) de séparation comprend en amont de la distillation sous vide, une distillation atmosphérique permettant l’obtention d’au moins une fraction distillât atmosphérique et au moins une fraction résidu atmosphérique, ladite fraction résidu atmosphérique étant envoyé dans ladite distillation sous vide permettant l’obtention d’au moins une fraction distillât sous vide (1 1 ) et au moins une fraction résidu sous vide (5). 3. The method of claim 2 wherein step b) of separation comprises upstream of the vacuum distillation, atmospheric distillation to obtain at least one atmospheric distillate fraction and at least one atmospheric residue fraction, said fraction. atmospheric residue being sent to said vacuum distillation making it possible to obtain at least one vacuum distillate fraction (1 1) and at least one vacuum residue fraction (5).
4. Procédé selon l’une quelconques des revendications précédentes dans lequel la totalité de la fraction résidu (5) issue de l’étape b) est envoyée à l’étape c) de désasphaltage. 4. Method according to any one of the preceding claims, in which all of the residue fraction (5) from step b) is sent to step c) for deasphalting.
5. Procédé selon l’une quelconques des revendications précédentes dans lequel le solvant (6) utilisé à l’étape c) est un solvant apolaire composé à au moins 80% en volume d'hydrocarbure(s) saturé(s) comprenant un nombre de carbone compris entre 3 et 7. 5. Method according to any one of the preceding claims wherein the solvent (6) used in step c) is an apolar solvent composed of at least 80% by volume of saturated hydrocarbon (s) comprising a number of carbon between 3 and 7.
6. Procédé selon la revendication 3 dans lequel au moins une partie d’une fraction distillât (1 1 ) issue de l’étape b) de séparation, est introduite à l’étape d) d’extraction des aromatiques. 6. The method of claim 3 wherein at least part of a distillate fraction (1 1) from step b) of separation, is introduced in step d) of extraction of aromatics.
7. Procédé selon l’une quelconques des revendications précédentes dans lequel l’étape d) d’extraction des aromatiques est réalisée sur des fractions (8, 1 1 ) ayant une température d’ébullition supérieure à 180°C. 7. Process according to any one of the preceding claims, in which step d) of extracting the aromatics is carried out on fractions (8, 1 1) having a boiling point greater than 180 ° C.
8. Procédé selon l’une quelconques des revendications précédentes dans lequel les composés extraits (10, 13) lors de l’étape d) ont un point d'ébullition supérieur au point d'ébullition du solvant (6) utilisé. 8. Process according to any one of the preceding claims, in which the compounds extracted (10, 13) in step d) have a boiling point higher than the boiling point of the solvent (6) used.
9. Procédé selon l’une quelconques des revendications précédentes dans lequel l’étape e) d’hydrocraquage est opérée de manière à obtenir un rendement en composés liquides ayant une température d’ébullition inférieure à 220°C supérieur à 50% en poids de la charge en entrée de l’étape e) d’hydrocraquage. 9. Process according to any one of the preceding claims, in which step e) of hydrocracking is carried out so as to obtain a yield of liquid compounds having a boiling point of less than 220 ° C greater than 50% by weight of the feedstock at the inlet of hydrocracking stage e).
10. Procédé selon l’une quelconques des revendications précédentes dans lequel l’étape de séparation f) comprend au moins une distillation atmosphérique permettant l’obtention d’au moins une fraction distillât atmosphérique (16) comportant des composés ayant une température d’ébullition inférieure à 350°C et une fraction liquide comprenant du distillât sous vide comportant des composés ayant une température d’ébullition supérieure à 350°C. 10. Process according to any one of the preceding claims, in which the separation step f) comprises at least one atmospheric distillation making it possible to obtain at least one atmospheric distillate fraction (16) comprising compounds having a boiling point. lower than 350 ° C and a liquid fraction comprising vacuum distillate comprising compounds having a boiling point higher than 350 ° C.
1 1. Procédé selon la revendication 10 dans lequel la fraction distillât atmosphérique (16) et la fraction comprenant du distillât sous vide sont envoyées vers l’étape g) de vapocraquage. 1 1. The method of claim 10 wherein the atmospheric distillate fraction (16) and the fraction comprising vacuum distillate are sent to step g) of steam cracking.
12. Procédé selon l’une quelconques des revendications précédentes dans lequel une partie d’une fraction comprenant des composés ayant une température d’ébullition entre 80 de 180°C issue de l’étape b) de séparation est introduite à l’étape g) de vapocraquage. 12. Process according to any one of the preceding claims, in which part of a fraction comprising compounds having a boiling point between 80 and 180 ° C resulting from step b) of separation is introduced in step g ) steam cracking.
13. Procédé selon l’une quelconques des revendications précédentes dans lequel l’étape g) de vapocraquage est réalisée dans au moins un four de pyrolyse à une température comprise entre 700 et 900°C, sous une pression comprise entre 0,05 et 0,3 MPa durant un temps de séjour inférieur ou égal à 1 ,0 seconde. 13. Process according to any one of the preceding claims, in which step g) of steam cracking is carried out in at least one pyrolysis furnace at a temperature of between 700 and 900 ° C, under a pressure of between 0.05 and 0 , 3 MPa during a residence time less than or equal to 1.0 seconds.
14. Procédé selon l’une quelconques des revendications précédentes dans lequel les coupes riches en composés saturés issus des gaz légers ou de l’essence de pyrolyse issu de l’étape h) de séparation sont recyclées vers l’étape g) de vapocraquage. 14. Process according to any one of the preceding claims, in which the cuts rich in saturated compounds originating from the light gases or from the pyrolysis gasoline obtained from stage h) of separation are recycled to stage g) of steam cracking.
15. Procédé selon l’une quelconques des revendications précédentes dans lequel la fraction huile de pyrolyse (21 ) est soumise à une étape additionnelle de séparation de manière à obtenir une huile de pyrolyse légère comprenant des composés ayant une température d’ébullition inférieure à 350 °C et une huile de pyrolyse lourde comprenant des composés ayant une température d’ébullition supérieure à 350°C, ladite huile de pyrolyse légère est injectée en amont de l’étape e) d’hydrocraquage, et ladite huile de pyrolyse lourde est injectée en amont de l’étape a) d’hydroconversion et/ou de l’étape c) de désasphaltage. 15. Process according to any one of the preceding claims, in which the pyrolysis oil fraction (21) is subjected to an additional separation step so as to obtain a light pyrolysis oil comprising compounds having a boiling point of less than 350. ° C and a heavy pyrolysis oil comprising compounds having a boiling point greater than 350 ° C, said light pyrolysis oil is injected upstream of hydrocracking step e), and said heavy pyrolysis oil is injected upstream of hydroconversion step a) and / or of deasphalting step c).
EP20735615.5A 2019-07-17 2020-07-06 Process for the preparation of olefins, comprising hydrotreatment, de-asphalting, hydrocracking and steam cracking Withdrawn EP3999613A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1908079A FR3098824B1 (en) 2019-07-17 2019-07-17 OLEFIN PRODUCTION PROCESS INCLUDING HYDROTREATMENT, DESASPHALTING, HYDROCRACKING AND VAPOCRAQUAGE
PCT/EP2020/069036 WO2021008924A1 (en) 2019-07-17 2020-07-06 Process for the preparation of olefins, comprising hydrotreatment, de-asphalting, hydrocracking and steam cracking

Publications (1)

Publication Number Publication Date
EP3999613A1 true EP3999613A1 (en) 2022-05-25

Family

ID=68733234

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20735615.5A Withdrawn EP3999613A1 (en) 2019-07-17 2020-07-06 Process for the preparation of olefins, comprising hydrotreatment, de-asphalting, hydrocracking and steam cracking

Country Status (5)

Country Link
EP (1) EP3999613A1 (en)
CN (1) CN114072483B (en)
FR (1) FR3098824B1 (en)
TW (1) TW202113048A (en)
WO (1) WO2021008924A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122264A1 (en) * 2021-12-22 2023-06-29 Saudi Arabian Oil Company Process scheme for maximum heavy oil conversion with stage asphaltene rejection

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4354852A (en) 1981-04-24 1982-10-19 Hydrocarbon Research, Inc. Phase separation of hydrocarbon liquids using liquid vortex
US4457831A (en) 1982-08-18 1984-07-03 Hri, Inc. Two-stage catalytic hydroconversion of hydrocarbon feedstocks using resid recycle
US4521295A (en) 1982-12-27 1985-06-04 Hri, Inc. Sustained high hydroconversion of petroleum residua feedstocks
US4495060A (en) 1982-12-27 1985-01-22 Hri, Inc. Quenching hydrocarbon effluent from catalytic reactor to avoid precipitation of asphaltene compounds
CN1043051C (en) * 1994-07-22 1999-04-21 国际壳牌研究有限公司 Process for producing a hydrowax
US8246811B2 (en) * 2009-05-26 2012-08-21 IFP Energies Nouvelles Process for the production of a hydrocarbon fraction with a high octane number and a low sulfur content
EP3110918B1 (en) * 2014-02-25 2018-10-03 Saudi Basic Industries Corporation Process for upgrading refinery heavy hydrocarbons to petrochemicals
FR3033797B1 (en) 2015-03-16 2018-12-07 IFP Energies Nouvelles IMPROVED PROCESS FOR CONVERTING HEAVY HYDROCARBON LOADS
FR3053047B1 (en) * 2016-06-23 2018-07-27 Axens IMPROVED METHOD OF DEEP HYDROCONVERSION USING EXTRACTION OF AROMATICS AND RESINS WITH VALORIZATION OF EXTRACT TO HYDROCONVERSION AND REFINEMENT TO DOWNSTREAM UNITS.
CA3045636A1 (en) * 2016-12-29 2018-07-05 Exxonmobil Research And Engineering Company Block processing with bulk catalysts for base stock production from deasphalted oil
WO2018187048A1 (en) * 2017-04-07 2018-10-11 Exxonmobil Research And Engineering Company Resid upgrading with reduced coke formation

Also Published As

Publication number Publication date
WO2021008924A1 (en) 2021-01-21
CN114072483A (en) 2022-02-18
FR3098824A1 (en) 2021-01-22
FR3098824B1 (en) 2021-09-03
TW202113048A (en) 2021-04-01
CN114072483B (en) 2023-11-28
US20220380690A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
EP3271441B1 (en) Improved method for converting heavy hydrocarbon feedstocks
EP3077483B1 (en) Method for converting a heavy hydrocarbon feedstock incorporating selective deasphalting in series with recycling of a deasphalted cut
EP3018188B1 (en) Process for converting petroleum feedstocks comprising a stage of fixed-bed hydrotreatment, a stage of ebullating-bed hydrocracking, a stage of maturation and a stage of separation of the sediments for the production of fuel oils with a low sediment content
EP3303523B1 (en) Method for converting feedstocks comprising a hydrotreatment step, a hydrocracking step, a precipitation step and a sediment separation step, in order to produce fuel oils
WO2015091033A1 (en) Novel integrated process for treating petroleum feedstocks for the production of fuel oils having a low content of sulphur and of sediments
FR2964387A1 (en) METHOD OF CONVERTING RESIDUE INTEGRATING A DISASPHALTAGE STEP AND A HYDROCONVERSION STEP WITH RECYCLE OF DESASPHALTEE OIL
EP3018189B1 (en) Process for converting petroleum feedstocks comprising a visbreaking stage, a maturation stage and a stage of separating the sediments for the production of fuel oils with a low sediment content
FR3050735A1 (en) CONVERSION PROCESS COMPRISING PERMANENT HYDRO-SETTING GUARD BEDS, A FIXED BED HYDROTREATMENT STEP AND A PERMUTABLE REACTOR HYDROCRACKING STEP
FR3098522A1 (en) Process for converting a feed containing pyrolysis oil
FR3053047A1 (en) IMPROVED METHOD OF DEEP HYDROCONVERSION USING EXTRACTION OF AROMATICS AND RESINS WITH VALORIZATION OF EXTRACT TO HYDROCONVERSION AND REFINEMENT TO DOWNSTREAM UNITS.
FR2964386A1 (en) METHOD FOR CONVERTING RESIDUE INTEGRATING A DESASHPHALTAGE STEP AND A HYDROCONVERSION STEP
FR3075808A1 (en) PROCESS FOR TREATING A HEAVY HYDROCARBON HEAVY
WO2014096591A1 (en) Method for converting a heavy hydrocarbon feedstock incorporating selective deasphalting with recycling of the deasphalted oil
FR3021326A1 (en) METHOD FOR CONVERTING A HEAVY HYDROCARBON LOAD INTEGRATING SELECTIVE DESASPHALTATION BEFORE THE CONVERSION STEP.
EP4041847A1 (en) Process for the preparation of olefins, involving de-asphalting, hydroconversion, hydrocracking and steam cracking
TW201516136A (en) Process for refining a hydrocarbon feedstock of the vacuum residue type using selective deasphalting, a hydrotreatment and a conversion of the vacuum residue for production of gasoline and light olefins
EP3999613A1 (en) Process for the preparation of olefins, comprising hydrotreatment, de-asphalting, hydrocracking and steam cracking
WO2021089477A1 (en) Process for the preparation of olefins, comprising de-asphalting, hydrocracking and steam cracking
FR3084371A1 (en) PROCESS FOR THE TREATMENT OF A HEAVY HYDROCARBON LOAD COMPRISING HYDROTREATMENT IN A FIXED BED, A DEASPHALTING AND A HYDROCRACKING IN A BOILING ASPHALT BED
FR3084372A1 (en) PROCESS FOR THE TREATMENT OF A HEAVY HYDROCARBON LOAD COMPRISING HYDROTREATMENT IN A FIXED BED, TWO DEASPHALTAGES AND A HYDROCRACKING IN A BOTTLE OF ASPHALT
WO2020249498A1 (en) Process for the production of olefins, comprising hydrotreatment, deasphalting, hydrocracking and steam cracking
WO2023241930A1 (en) Hydrocracking process with optimized management of the recycling for the production of naphtha
WO2016192893A1 (en) Method for converting feedstocks comprising a visbreaking step, a precipitation step and a sediment separation step, in order to produce fuel oils

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221130

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230412