EP3256726B1 - Procédé d'arrêt d'un compresseur hermétique de réfrigérant et son système de commande - Google Patents

Procédé d'arrêt d'un compresseur hermétique de réfrigérant et son système de commande Download PDF

Info

Publication number
EP3256726B1
EP3256726B1 EP16703334.9A EP16703334A EP3256726B1 EP 3256726 B1 EP3256726 B1 EP 3256726B1 EP 16703334 A EP16703334 A EP 16703334A EP 3256726 B1 EP3256726 B1 EP 3256726B1
Authority
EP
European Patent Office
Prior art keywords
crankshaft
braking torque
reciprocating piston
refrigerant compressor
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP16703334.9A
Other languages
German (de)
English (en)
Other versions
EP3256726A1 (fr
Inventor
Per Tranekjer Petersen
Ulrich Gries
Fabian Brune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Secop GmbH
Original Assignee
Nidec Global Appliance Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52464255&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3256726(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nidec Global Appliance Germany GmbH filed Critical Nidec Global Appliance Germany GmbH
Publication of EP3256726A1 publication Critical patent/EP3256726A1/fr
Application granted granted Critical
Publication of EP3256726B1 publication Critical patent/EP3256726B1/fr
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • F04B49/103Responsive to speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/127Braking parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0204Frequency of the electric current

Definitions

  • the present invention relates to methods for stopping a hermetically sealed refrigerant compressor with a hermetically sealed housing, arranged therein a crankshaft comprising a reciprocating cylinder unit and a crankshaft driving electric motor, and a control unit controlling the electric motor, wherein the control unit, the electric motor in the presence of a Operating signal, preferably a frequency signal operates.
  • the present invention relates to a hermetically sealed refrigerant compressor having a control system with an electronic control unit.
  • Hermetically sealed refrigerant compressors which are used in cooling circuits of various systems and devices, especially in household appliances such as refrigerators and compress refrigerant by means of a reciprocating cylinder unit, are known.
  • the reciprocating cylinder unit comprises a crankshaft which is driven by an electric motor to periodically suck gaseous refrigerant into a cylinder of the reciprocating cylinder unit by means of a reciprocating piston of the reciprocating cylinder unit to compress and eject again from the cylinder. Due to the periodic compression processes, there is a reaction torque of the reciprocating cylinder unit, which has peaks according to the maximum occurring compressions. Correspondingly accompanied mechanical vibrations and noise, which are typically attenuated by suspension of the reciprocating cylinder unit to springs in a (hermetically sealed) housing of the refrigerant compressor.
  • the first group While the first group is switched on reaching a triggering temperature in the volume to be cooled (for example, the refrigerator of a refrigerator) and turned off again when the desired target temperature is reached, in the second group better control is possible because of the different speeds provided different cooling capacities can be.
  • a triggering temperature in the volume to be cooled for example, the refrigerator of a refrigerator
  • variable-speed refrigerant compressors are operated by means of an electronic control unit which controls the refrigerant compressor, specifically the electric motor, as a function of an operating signal.
  • the operating signal is usually generated by a device that is in operative connection with the refrigerant compressor, such as a refrigerator or a freezer. In principle, this can be any signal, with a frequency signal very often being used in practice.
  • the existence of the operating signal is used to signal the electronic control unit that cooling capacity is requested, the electric motor of the refrigerant compressor must be activated.
  • the height of the frequency serves as a measure of the required speed. It represents, as it were, a setpoint for the speed that is generated as a function of the target temperature.
  • the operating signal is detected by the electronic control unit, which controls the electric motor according to this specification.
  • variable-speed refrigerant compressors The problem with such variable-speed refrigerant compressors is usually the stopping process. Such is initiated, for example, when the volume to be cooled has reached its target temperature. It is initiated by first no longer generating an operating signal from the device, ie. the existing operating signal goes out. This process is detected by the electronic control unit and initiated the stopping process, with the aim of stopping the refrigerant compressor, ie. to bring the crankshaft to a standstill.
  • the stalling process is a critical process in terms of noise and mechanical damage to the compressor.
  • the reciprocating cylinder units including crankshaft and electric motor are mounted within the hermetically sealed housing by means of springs, as already described above, in order to compensate for vibrations occurring during operation can.
  • oscillating system is designed so that in normal operation is driven supercritical, ie. the natural frequency of the system, which can lead to leading to the destruction of the refrigerant compressor vibrations must be traversed both at startup, but especially when stopping.
  • the reciprocating cylinder unit continues to run due to the inertia and the kinetic energy for some time, which usually continues to compression processes that contribute significantly to the successive reduction of kinetic energy. Accordingly, the speed and thus the frequency of the compression processes decrease, which in turn can be connected in the housing particularly large deflections of the reciprocating cylinder unit, which can even lead to a striking of the piston-cylinder unit on the housing. Finally, leakage will eventually result in insufficient kinetic energy to complete the compression process.
  • the pressure of the compressed gas in the cylinder then causes a sudden reversal of the rotational movement of the crankshaft, which results in a particularly strong deflection of the piston-cylinder unit is connected in the housing and can also lead to striking the piston-cylinder unit on the housing. Overall, this results in a particularly large noise, with even mechanical damage can occur.
  • the piston-cylinder unit can be selectively braked by the crankshaft is subjected to a braking torque.
  • Different methods are known.
  • the rotational speed of the crankshaft has to be continuously measured and evaluated, i. be compared with a predetermined value. Since the speed measurement system and cost can only be done with a relatively inaccurate resolution (depending on the number of poles of the electric motor), an exact vote of the system with this solution is not possible. In addition, the method described there does not make it possible to take into account other parameters which may be relevant for the moment of application of the braking torque.
  • a stopping method of a refrigerant compressor is known that is intended to prevent breakage of pipes due to vibration.
  • the refrigerant compressor is first decelerated to a first speed V1, which is smaller than Vp, and then to zero speed after a certain period of time.
  • the stopping process is triggered by the detection of a stop signal.
  • the speed of the crankshaft during the stopping process is therefore no longer a relevant parameter for the stopping process itself. Rather, the refrigerant compressor, specifically, the reciprocating cylinder unit is actively controlled during the period, thus driven by the electric motor and therefore the time duration and the reduction rate can be chosen such that it does not cause the refrigeration compressor to accelerate when passing through the critical speeds associated with noise and wear and tear disadvantages.
  • the operating signal is a desired value for the rotational speed of the crankshaft or that a desired value for the rotational speed of the crankshaft can be generated from the operating signal.
  • the rotational speed of the crankshaft is known on the basis of the last operating signal before initiating the stopping process or it is assumed that the electronic control unit controls the electric motor in accordance with this desired value, so that a further measurement of the rotational speed of the crankshaft during the stopping process is no longer necessary according to the invention.
  • the time period can therefore be selected in the case of this preferred embodiment depending on the last known setpoint speed before the stopping process.
  • the determination of the time duration takes place either by calculation or by selection from at least one table, preferably stored in a memory of the control unit.
  • the electronic control unit can calculate an optimal period of time by using an algorithm adapted to the respective refrigerant compressor type or access values already determined in advance, for example in the laboratory.
  • At least one further operating parameter is taken into account in the calculation of the time duration or that the at least one table from which the selection of the time duration takes contains values at least during its generation another operating parameter was taken into account.
  • the at least one further operating parameter can be, for example, the temperature of the refrigerant compressor inside the housing and / or the gas pressure of the refrigerant on the suction side and / or pressure side and / or the outside temperature and / or the total operating hours of the refrigerant compressor.
  • the time duration can be determined more precisely and the stopping process can be optimized in terms of noise and wear technology.
  • the total operating hours can also be taken into account, as a result of which aging processes of the springs and concomitant changes in the spring constants can also influence the duration of time.
  • a braking torque is additionally applied to the crankshaft. Independent of Speed is thus used as the triggering event for the application of the braking torque to the crankshaft, the time elapsed since the operation signal was extinguished.
  • the position of the lifting piston is detected and the braking torque is applied in dependence on the position of the lifting piston of the reciprocating cylinder unit to the crankshaft.
  • the application of the braking torque is not (only) in function of the time duration but in dependence of the piston position after the expiration of the period.
  • the noise or the wear behavior could be further improved, in addition to the end of the period, the braking torque is applied to the crankshaft only when the reciprocating piston is in exactly that position at which was found by experiments that the accelerations / deflections of the housing during the further stopping operation during which the braking torque is applied are a minimum.
  • the position of the lifting piston, at which the braking torque is applied is around that position Position is, in which the reciprocating piston has the lowest speed relative to a complete revolution of the crankshaft.
  • the lowest speed is understood as the lowest measurable speed depending on the method of measurement. Since the piston speed is directly related to the speed of the crankshaft, in most cases the speed of the crankshaft will be measured to determine the position at which the piston has the lowest speed relative to a complete revolution of the crankshaft.
  • the velocity measurement provided in the poles of the stator of the electric motor by the rotation of the rotor connected to the crankshaft is provided as the speed measurement.
  • the accuracy of the speed measurement in this case is limited by the number of poles.
  • the smallest measurable speed (corresponding to the smallest measurable reciprocating piston speed) relative to a complete revolution of the crankshaft can be used as the triggering moment for the application of the braking torque.
  • the position at which the brake torque is applied may also be in a range that is within a crank angle of +/- 25 degrees measured from the position where the reciprocating piston has the lowest speed to a complete revolution of the crankshaft.
  • crankshaft is exposed to the braking torque for a certain period of time, which is preferably between 0.15 s and 0.45 s long. This can be ensured that the stopping process can be safely stopped or the critical speeds can be traversed braked.
  • the period of time can be selected according to a further preferred embodiment of the invention from a, preferably stored in the memory of the control unit table.
  • a great variety of parameters can be stored for the stored time values, in particular operating parameters as above be considered, and so the stopping process to be optimized.
  • the crankshaft is exposed to the braking torque longer than the crankshaft would require at the time of triggering the braking torque for one revolution.
  • the electric motor To generate the braking torque can be used in a conventional manner, the electric motor.
  • the current direction can be reversed by windings of the electric motor compared to the normal operation.
  • the windings may be shorted so that the current generated or induced due to the rotational motion of the electric motor produces a torque opposite the prevailing rotational motion.
  • the latter method is sometimes referred to as "zero vector braking" and generates a dependent on the speed braking torque.
  • Fig. 1 schematically shows a hermetically sealed refrigerant compressor 1, as it is used for example in household appliances, such as refrigerators.
  • the refrigerant compressor 1 comprises a reciprocating cylinder unit 2 with a reciprocating piston 9, which can move up and down in a cylinder (not shown).
  • the reciprocating piston 9 is thereby moved via a crankshaft 3, which is driven by means of an electric motor 4.
  • gaseous refrigerant is sucked into the cylinder, compressed there by means of the reciprocating piston 9 and discharged again from the cylinder.
  • the inlet and outlet of the refrigerant is usually controlled by means of a valve plate mounted on a cylinder head of the cylinder with valves for the inlet and the outlet (not shown).
  • the electric motor 4 is controlled by means of a, preferably electronic control unit 5, which forms part of a control system for the refrigerant compressor 1.
  • the electronic control unit 5 obtains information about the currently desired cooling capacity from the apparatus (e.g., a refrigerator) in which the refrigerant compressor 2 is used.
  • the device preferably sends to the electronic control unit 5 an operating signal, particularly preferably in the form of a frequency signal, wherein in the latter case the required cooling power is proportional to the frequency. If no cooling capacity is required because, for example, a target temperature is reached in a volume to be cooled, no operating signal is generated. The absence of an operating signal is detected by the electronic control unit 5, whereupon it initiates the stopping process.
  • the control unit 5 is connected to a power supply 6, and supplies the electric motor 4 with electrical energy.
  • the power supply 6 is usually the low-voltage network to which the device, preferably household appliance is connected, in which device the refrigerant compressor 1 is used.
  • the reciprocating cylinder unit 2 is arranged in a hermetically sealed housing 7 of the refrigerant compressor 1 and stored therein by means of springs 8.
  • the springs 8 serve to dampen vibrations or deflections of the reciprocating cylinder unit 2 and thus to minimize noise development and to avoid mechanical damage.
  • the vibrations are caused in particular by the repetitive compression processes. Due to the periodic compression processes, there is a reaction torque M R of the reciprocating cylinder unit 2, which has peaks corresponding to the maximum occurring compressions.
  • a speed V of the crankshaft 3 by means of the electric motor 4 is reduced at a reduction rate, the duration ⁇ depending on the value of the last operating signal before Extinguishment is determined.
  • the speed V of the crankshaft 3 is reduced in a controlled manner by the electric motor 4 over the period of time ⁇ .
  • the reduction rate is achieved by a known per se control of the electric motor 4, for example by means of the control unit 5, the supply voltage of the electric motor 4 is reduced by means of a pulse width modulation method.
  • the last operating signal specifically from the value of the last operating signal
  • the current speed of the refrigerant compressor at the time of extinction of the operating signal is closed, i. closed at the initiation of the stopping process, without having to measure this speed.
  • the period of time ⁇ within which the refrigerant compressor controlled by the electric motor 4 with a predetermined reduction rate, which is preferably constant, but in principle can vary over the period of time ⁇ is shut down, can either be recalculated at each stop depending on the duration ⁇ , However, it is particularly preferably read as a function of the time duration ⁇ from a table which is stored in a memory of the electronic control unit.
  • operating parameters such as, for example, the temperature of the refrigerant compressor in the interior of the housing and / or the gas pressure of the refrigerant on the suction side and / or pressure side and / or the outside temperature and / or the total operating hours of the refrigerant compressor can additionally be taken into account in order to reduce noise and wear Optimization of the stopping process to achieve.
  • operating parameters such as, for example, the temperature of the refrigerant compressor in the interior of the housing and / or the gas pressure of the refrigerant on the suction side and / or pressure side and / or the outside temperature and / or the total operating hours of the refrigerant compressor can additionally be taken into account in order to reduce noise and wear Optimization of the stopping process to achieve.
  • values for the period of time ⁇ can be determined, which are then stored in the table.
  • a further optimization of the method according to the invention for stopping a hermetically sealed refrigerant compressor can be achieved by applying a braking torque after the time period ⁇ has elapsed and a defined position of the reciprocating piston 9 is detected.
  • a braking torque after the time period ⁇ has elapsed and a defined position of the reciprocating piston 9 is detected.
  • the position of the reciprocating piston 9 at which the braking torque is applied is the position at which the housing 7 experiences the lowest acceleration values in the course of the further stopping operation in comparison to other reciprocating positions of a complete revolution of the crankshaft 3, in particular the acceleration values are parallel and perpendicular to the crankshaft axis for inferring the optimum reciprocating piston position. Low acceleration values of the housing during the further stopping process at this point cause a slight deflection of the same during the further stopping process.
  • This optimal position of the reciprocating piston 9 is in advance, for example on a prototype of a particular refrigerant compressor type determined by standardized measurement methods in which the acceleration and deflection of the housing, preferably parallel and perpendicular to the crankshaft axis from the time of application of the braking torque to the standstill of the crankshaft starting from different Hubkolbenpositionen a complete crankshaft revolution is measured. It should be noted that this optimum position is refrigerant type specific and may depend on a variety of operating parameters, but in any case can best be determined empirically according to the invention.
  • the optimum position of the reciprocating piston 9 determined from the tests can be stored in a memory of the electronic control unit 5 and the achievement of this position in operation serves as a triggering event for the application of the braking torque. It should be noted at this point that the position determination of the piston in variable speed refrigerant compressors is possible due to the structure of the electric motor 4 due to the voltages induced in the individual poles of the stator by the rotation of the rotor. In principle, however, other methods for determining the position of the reciprocating piston 9 in the cylinder are also suitable.
  • the optimal reciprocating piston position also corresponds to that position of the reciprocating piston 9, in which the reciprocating piston 9 has the lowest speed relative to a complete revolution of the crankshaft 3 or 25 ° before or after this position.
  • This embodiment has the advantage that the speed of the reciprocating piston 9 can be determined via the rotational speed of the crankshaft 3 during normal operation and thereby determines that position at which the reciprocating piston 9 the lowest speed relative to a complete revolution of the crankshaft 3 at any time can be.
  • Fig. 2 shows by way of example a time profile of the speed V of the crankshaft 3 when using the method according to the invention for stopping the refrigerant compressor 1.
  • the speed V is at a predetermined by the operating signal, corresponding to a required cooling power value v 1 (eg 4000 min -1 ), which corresponds to a certain operating state of the refrigerant compressor 1.
  • v 1 eg 4000 min -1
  • the speed V decreases over the entire time period ⁇ .
  • the period of time ⁇ is preferably selected from stored tables in order to take into account the operating state present until immediately before time t 0 .
  • the reduction rate is also preferably taken from stored tables, which have been obtained analogously to the tables for ⁇ , wherein the reduction rate over the time period ⁇ can also vary.
  • Duration ⁇ and the reduction rate are in any case so coordinated that a noise and wear technology optimal stopping process can be driven.
  • Period ⁇ and reduction rate are then coordinated so that it is ensured that the application of the braking torque takes place at a time in which Compressor is still operated in a supercritical state.
  • the operating parameters influencing this can be included in the time period ⁇ and / or in the reduction rate, as well as by the choice of the time duration ⁇ and / or the reduction rate or tuning of the same noise and wear optimization.
  • the application of the braking torque is carried out by driving the electric motor 4 by the electronic control unit 5 in a conventional manner, so that this ⁇ after the expiration of the time period generates a braking torque to which the crankshaft 3 is exposed.
  • the braking torque is applied over a certain period .DELTA.t.
  • the time period .DELTA.t is also selected from stored tables in order to take into account a wide variety of operating situations.
  • the period ⁇ t is sufficiently long, it can thus be guaranteed that after the expiry of the period .DELTA.t, the crankshaft 3 is no longer rotating.
  • the time .DELTA.t for this is in a range of 0.15 s to 0.45 s.
  • Figure 4 shows that particularly preferred variant of the invention, according to which after the time period ⁇ and before applying the braking torque within a time period ⁇ 1 nor the optimal piston position is detected.
  • the duration of this period depends on the Hubkolbenposition after the expiry of the time ⁇ and the required rotational angle of the crankshaft 3 until reaching the optimum piston position.
  • Fig.2 shows the solid line drawn over the period .DELTA.t the case that the crankshaft 3 comes to a standstill exactly at the expiration of the period .DELTA.t.
  • the dashed line over the period .DELTA.t illustrates the case that the crankshaft 3 is no longer rotating even before the expiration of the period .DELTA.t.
  • the dash-dotted line in Fig. 2 serves to Illustrating that - avoidable by a suitable choice of ⁇ t - If the crankshaft 3 continues to rotate even after the time span ⁇ t has elapsed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressor (AREA)

Claims (19)

  1. Procédé pour l'arrêt d'un compresseur de réfrigérant (1) encapsulé hermétiquement, avec un boîtier hermétique (7) dans lequel sont disposées une unité de piston et cylindre (2) comprenant un vilebrequin (3) et un moteur électrique (4) entraînant le vilebrequin (3) ainsi qu'une unité de commande (5) commandant le moteur électrique (4), dans lequel l'unité de commande (5) fait fonctionner le moteur électrique (4) si un signal de fonctionnement, de préférence un signal de fréquence, est présent, caractérisé en ce que l'unité de commande (5) détecte l'extinction du signal de fonctionnement et en ce qu'après la détection de l'extinction du signal de fonctionnement, une vitesse de rotation du vilebrequin est réduite sur une durée (τ) au moyen du moteur électrique selon un taux de réduction avec lequel l'unité de piston et cylindre est entraînée activement pendant la durée (τ) par le moteur électrique (4), la durée (τ) étant déterminée en fonction du dernier signal de fonctionnement avant l'extinction de celui-ci, la détermination de la durée (τ) étant effectuée soit par le calcul, soit par la sélection dans au moins un tableau, de préférence enregistré dans une mémoire de l'unité de commande (5).
  2. Procédé selon la revendication 1, caractérisé en ce que le signal de fonctionnement est une valeur de consigne pour la vitesse de rotation du vilebrequin ou en ce qu'une valeur de consigne pour la vitesse de rotation du vilebrequin peut être générée à partir du signal de fonctionnement.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'au moins un autre paramètre de fonctionnement est pris en compte lors du calcul de la durée (τ).
  4. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'au moins un tableau dans lequel la durée (τ) est sélectionnée contient des valeurs dont le calcul a tenu compte d'au moins un autre paramètre de fonctionnement.
  5. Procédé selon l'une des revendications 3 à 4, caractérisé en ce que l'au moins un autre paramètre de fonctionnement est la température du compresseur de réfrigérant à l'intérieur du boîtier et/ou la pression de gaz du réfrigérant du côté de l'aspiration et/ou du côté du refoulement et/ou la température extérieure et/ou le total des heures de fonctionnement du compresseur de réfrigérant.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'après l'écoulement de la durée (τ), un moment de freinage est appliqué sur le vilebrequin (3).
  7. Procédé selon l'une des revendications 1 bis 6, caractérisé en ce que la position du piston est détectée et le moment de freinage est appliqué sur le vilebrequin (3) en fonction de la position du piston de l'unité de piston et cylindre (2).
  8. Procédé selon la revendication 7, caractérisé en ce que la position du piston (9) dans laquelle le moment de freinage est appliqué est la position dans laquelle le boîtier (7) rencontre, au cours de la suite du processus d'arrêt les valeurs d'accélération, les plus faibles par rapport aux autres positions du piston sur un tour complet du vilebrequin (3), de préférence parallèlement et perpendiculairement à l'axe du vilebrequin.
  9. Procédé selon la revendication 7, caractérisé en ce que la position du piston (9) dans laquelle le moment de freinage est appliqué est une des positions dans lesquelles le boîtier (7) ne rencontre pas, au cours de la suite du processus d'arrêt, plus de 120 % des valeurs d'accélération les plus faibles par rapport aux autres positions du piston sur un tour complet du vilebrequin (3), de préférence parallèlement et perpendiculairement à l'axe du vilebrequin.
  10. Procédé selon la revendication 7, caractérisé en ce que la position du piston (9) dans laquelle le moment de freinage est appliqué est la position dans laquelle le piston (9) atteint la plus faible vitesse par rapport à un tour complet du vilebrequin (3).
  11. Procédé selon la revendication 7, caractérisé en ce que la position du piston (9) dans laquelle le moment de freinage est appliqué se situe dans une plage dans l'angle de rotation du vilebrequin de +/-25°, mesurés à partir de la position dans laquelle le piston (9) atteint la plus faible vitesse par rapport à un tour complet du vilebrequin (3).
  12. Procédé selon l'une des revendications 6 à 11, caractérisé en ce que le vilebrequin (3) est exposé au moment de freinage pendant un certain laps de temps (Δt) qui dure de préférence entre 0,15 s et 0,45 s.
  13. Procédé selon la revendication 12, caractérisé en ce que le laps de temps (Δt) est sélectionné dans des tableaux, de préférence enregistrés dans la mémoire de l'unité de commande.
  14. Procédé selon l'une des revendications 6 à 13, caractérisé en ce que le vilebrequin (3) est exposé au moment de freinage pendant un temps plus long que celui nécessaire pour qu'il fasse un tour au moment du déclenchement du moment de freinage.
  15. Procédé selon l'une des revendications 6 à 14, caractérisé en ce que le moment de freinage est produit au moyen du moteur électrique (4).
  16. Procédé selon l'une des revendications 1 à 15, caractérisé en ce que le taux de réduction est constant sur la durée (τ).
  17. Procédé selon l'une des revendications 1 à 16, caractérisé en ce que le signal de fonctionnement est produit par un appareil, de préférence un appareil ménager, qui est en liaison active avec le compresseur de réfrigérant.
  18. Compresseur de réfrigérant (1) encapsulé hermétiquement, avec un système de commande muni d'une unité de commande électronique (5), qui est conçu pour la mise en oeuvre d'un procédé selon l'une des revendications 1 à 17.
  19. Appareil, de préférence appareil ménager, de préférence réfrigérateur ou congélateur, comprenant un compresseur de réfrigérant (1) encapsulé hermétiquement selon la revendication 18.
EP16703334.9A 2015-02-09 2016-02-09 Procédé d'arrêt d'un compresseur hermétique de réfrigérant et son système de commande Revoked EP3256726B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15154373.3A EP3054158A1 (fr) 2015-02-09 2015-02-09 Procédé d'arrêt d'un compresseur hermétique de réfrigérant et son système de commande
PCT/EP2016/052736 WO2016128405A1 (fr) 2015-02-09 2016-02-09 Procédé d'arrêt d'un compresseur frigorifique enfermé hermétiquement et système de commande de celui-ci

Publications (2)

Publication Number Publication Date
EP3256726A1 EP3256726A1 (fr) 2017-12-20
EP3256726B1 true EP3256726B1 (fr) 2019-09-04

Family

ID=52464255

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15154373.3A Withdrawn EP3054158A1 (fr) 2015-02-09 2015-02-09 Procédé d'arrêt d'un compresseur hermétique de réfrigérant et son système de commande
EP16703334.9A Revoked EP3256726B1 (fr) 2015-02-09 2016-02-09 Procédé d'arrêt d'un compresseur hermétique de réfrigérant et son système de commande

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15154373.3A Withdrawn EP3054158A1 (fr) 2015-02-09 2015-02-09 Procédé d'arrêt d'un compresseur hermétique de réfrigérant et son système de commande

Country Status (2)

Country Link
EP (2) EP3054158A1 (fr)
WO (1) WO2016128405A1 (fr)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355959A (en) 1979-10-26 1982-10-26 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Rotation sensor of a swash-plate type compressor
JPH07167076A (ja) 1993-12-17 1995-07-04 Sanyo Electric Co Ltd 電動機駆動型圧縮装置
US5820349A (en) 1995-09-14 1998-10-13 Copeland Corporation Rotary compressor with reverse rotating braking
US6051952A (en) 1997-11-06 2000-04-18 Whirlpool Corporation Electric motor speed and direction controller and method
US6121739A (en) 1996-12-23 2000-09-19 Lang Apparatebau Gmbh Dosing pump and method for enhancing dosing precision
JP2000287485A (ja) 1999-03-30 2000-10-13 Toshiba Corp 空気調和機用コンプレッサモータ制御装置
DE69626073T2 (de) 1995-03-14 2004-02-05 Matsushita Refrigeration Co., Kusatsu Steuerungsvorrichtung für einen kühlschrank und kühlschrank mit einer solchen vorrichtung
JP2007092686A (ja) 2005-09-29 2007-04-12 Sharp Corp 圧縮機の駆動装置
US20090019835A1 (en) 2007-07-16 2009-01-22 Dingle Philip J G Fluid delivery system
US20100021313A1 (en) 2008-07-28 2010-01-28 Eaton Corporation Electronic control for a rotary fluid device
US20140072451A1 (en) 2011-01-26 2014-03-13 Whirlpool S.A. Control system and method for reciprocating compressors
EP2708835A1 (fr) 2011-05-09 2014-03-19 Panasonic Corporation Réfrigérateur
EP2759788A1 (fr) 2013-01-29 2014-07-30 LG Electronics, Inc. Dispositif pour réduire les vibrations dans un compresseur et son procédé de commande

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355959A (en) 1979-10-26 1982-10-26 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Rotation sensor of a swash-plate type compressor
JPH07167076A (ja) 1993-12-17 1995-07-04 Sanyo Electric Co Ltd 電動機駆動型圧縮装置
DE69626073T2 (de) 1995-03-14 2004-02-05 Matsushita Refrigeration Co., Kusatsu Steuerungsvorrichtung für einen kühlschrank und kühlschrank mit einer solchen vorrichtung
US5820349A (en) 1995-09-14 1998-10-13 Copeland Corporation Rotary compressor with reverse rotating braking
US6121739A (en) 1996-12-23 2000-09-19 Lang Apparatebau Gmbh Dosing pump and method for enhancing dosing precision
US6051952A (en) 1997-11-06 2000-04-18 Whirlpool Corporation Electric motor speed and direction controller and method
JP2000287485A (ja) 1999-03-30 2000-10-13 Toshiba Corp 空気調和機用コンプレッサモータ制御装置
JP2007092686A (ja) 2005-09-29 2007-04-12 Sharp Corp 圧縮機の駆動装置
US20090019835A1 (en) 2007-07-16 2009-01-22 Dingle Philip J G Fluid delivery system
US20100021313A1 (en) 2008-07-28 2010-01-28 Eaton Corporation Electronic control for a rotary fluid device
US20140072451A1 (en) 2011-01-26 2014-03-13 Whirlpool S.A. Control system and method for reciprocating compressors
EP2708835A1 (fr) 2011-05-09 2014-03-19 Panasonic Corporation Réfrigérateur
EP2759788A1 (fr) 2013-01-29 2014-07-30 LG Electronics, Inc. Dispositif pour réduire les vibrations dans un compresseur et son procédé de commande

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "XV CONTROLLERS ATTACHED ELECTRONIC UNIT OPERATING INSTRUCTIONS", SECOP, 1 November 2014 (2014-11-01), pages 1 - 36, XP055754667, Retrieved from the Internet <URL:https://www.secop.com/fileadmin/user_upload/technical-literature/operating-instructions/xv_attached_controller_101n05022_operating_instructions_11-2014_dess300h102.pdf> [retrieved on 20201127]
S. NAGATA: "Analysis of Dynamic Behavior of Suction Valve Using Strain Gauge in Reciprocating Compressor", INT. COMPRESSOR ENG. CONFERENCE AT PURDUE, JULY 12-15, 2010, 1 January 2010 (2010-01-01), pages 1 - 10, XP055647436

Also Published As

Publication number Publication date
EP3256726A1 (fr) 2017-12-20
WO2016128405A1 (fr) 2016-08-18
EP3054158A1 (fr) 2016-08-10

Similar Documents

Publication Publication Date Title
EP1992056B1 (fr) Procede de regulation predictive d&#39;un entraînement lineaire ou compresseur lineaire a regulation predictive, et un entraînement lineaire ou compresseur lineaire a regulation predictive
EP3449132B1 (fr) Procédé de détection d&#39;un état de fonctionnement anormal d&#39;un groupe de pompage
DE112004002954B4 (de) Linearkompressor
DE102014217005A1 (de) Verfahren zum Bremsen eines Verdichters und Verdichter eines Kältegerätes, Klimageräts oder einer Wärmepumpe sowie Kältegerätes, Klimageräts oder Wärmepumpe damit
WO2013120604A2 (fr) Centrifugeuse comportant un dispositif de refroidissement à compresseur et procédé de commande d&#39;un dispositif de refroidissement à compresseur d&#39;une centrifugeuse
EP2912309B1 (fr) Procédé et dispositif pour commander une machine hydraulique à commutation électrique
EP2412864A2 (fr) Appareil de traitement du linge
EP1662143B1 (fr) Procédé de démarrage pour un compresseur à piston.
EP3256726B1 (fr) Procédé d&#39;arrêt d&#39;un compresseur hermétique de réfrigérant et son système de commande
EP3338038A1 (fr) Appareil de froid ménager avec un circuit d&#39;agent réfrigérant et procédé de fonctionnement d&#39;un appareil de froid ménager avec un circuit d&#39;agent réfrigérant
EP3336351A1 (fr) Pompe à chambre et procédé de fonctionnement d&#39;une pompe à chambre
EP3428553B1 (fr) Appareil électroménager frigorifique pourvu d&#39;un circuit d&#39;agent réfrigérant et procédé de fonctionnement d&#39;un appareil électroménager frigorifique pourvu d&#39;un circuit d&#39;agent réfrigérant
DE102020104384A1 (de) Verfahren zum Starten eines Elektromotors
EP3555474B1 (fr) Dispositif de commande et procédé pour faire fonctionner un compresseur de fluide frigorigène
EP2667117A1 (fr) Procédé de commande et de réglage d&#39;installations de refroidissement et de pompes à chaleur avec évaporateur à air
DE102012006495A1 (de) Verfahren zum Starten einer Pumpe bei nicht konstantem Momentverlauf
WO2017162439A1 (fr) Procédé de détection de position de rotor d&#39;un moteur bldc d&#39;un compresseur à pistons alternatifs, commande de compresseur pour l&#39;exécution du procédé et appareil frigorifique pourvu de cette dernière
WO2005010257A1 (fr) Dispositif d&#39;entrainement generant un mouvement de va-et-vient d&#39;un composant entraine, en particulier dans une machine a tisser
EP2053249B1 (fr) Agencement doté d&#39;une pompe à vide et procédé
EP2459848A2 (fr) Dispositif de conversion d&#39;énergie
DE102004004943B4 (de) Verfahren und Vorrichtung zur Betriebssteuerung eines Kolbenverdichters
EP3921541B1 (fr) Procédé de fonctionnement d&#39;un compresseur de moteur linéaire et compresseur de moteur linéaire
WO2018114978A1 (fr) Dispositif de commande et procédé pour faire fonctionner un compresseur de fluide frigorigène
WO2017009307A1 (fr) Compresseur et procédé de commande de sa vitesse de rotation
EP3252547B1 (fr) Procédé de commande du mouvement d&#39;un élément mobile d&#39;un système mécanique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170727

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRUNE, FABIAN

Inventor name: GRIES, ULRICH

Inventor name: PETERSEN, PER TRANEKJER

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NIDEC GLOBAL APPLIANCE GERMANY GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180619

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190520

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1175704

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016006417

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SECOP GMBH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190904

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191205

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200106

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 33412

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502016006417

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: EMBRACO INDUSTRIA DE COMPRESSORES E SOLUCOES EM REFRIGERACAO LTDA.

Effective date: 20200604

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016006417

Country of ref document: DE

Representative=s name: KUHNEN & WACKER PATENT- UND RECHTSANWALTSBUERO, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016006417

Country of ref document: DE

Owner name: SECOP GMBH, DE

Free format text: FORMER OWNER: NIDEC GLOBAL APPLIANCE GERMANY GMBH, 24939 FLENSBURG, DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200209

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200209

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210223

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20210127

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210329

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502016006417

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502016006417

Country of ref document: DE

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20211013

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1175704

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210209

REG Reference to a national code

Ref country code: SK

Ref legal event code: MC4A

Ref document number: E 33412

Country of ref document: SK

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 1175704

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904