EP3253243B1 - Stossdämpfende struktur und helm mit solch einer struktur - Google Patents

Stossdämpfende struktur und helm mit solch einer struktur Download PDF

Info

Publication number
EP3253243B1
EP3253243B1 EP16704280.3A EP16704280A EP3253243B1 EP 3253243 B1 EP3253243 B1 EP 3253243B1 EP 16704280 A EP16704280 A EP 16704280A EP 3253243 B1 EP3253243 B1 EP 3253243B1
Authority
EP
European Patent Office
Prior art keywords
impact
cells
impact absorbing
cell
absorbing structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16704280.3A
Other languages
English (en)
French (fr)
Other versions
EP3253243A1 (de
Inventor
James Cook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oxford University Innovation Ltd
Original Assignee
Oxford University Innovation Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52705737&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3253243(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Oxford University Innovation Ltd filed Critical Oxford University Innovation Ltd
Publication of EP3253243A1 publication Critical patent/EP3253243A1/de
Application granted granted Critical
Publication of EP3253243B1 publication Critical patent/EP3253243B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/10Linings
    • A42B3/12Cushioning devices
    • A42B3/124Cushioning devices with at least one corrugated or ribbed layer
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/10Linings
    • A42B3/12Cushioning devices
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/28Ventilating arrangements
    • A42B3/281Air ducting systems
    • A42B3/283Air inlets or outlets, with or without closure shutters

Definitions

  • the present invention relates to an impact absorbing structure. More particularly, the present invention relates to a hollow-cell impact absorbing structure. Even more particularly, the present invention relates to an impact absorbing structure formed as a stretch-dominated hollow-cell structure. The present invention also relates to impact absorbing structures where the impact surface is curved, such as a sports helmet or aerospace nose bumpers, at least part of the structure formed from a hollow-cell impact absorbing structure, and even more particularly a stretch-dominated hollow-cell impact absorbing structure
  • Impact protection is particularly important for preventing head injury.
  • a blow to the head can result in severe traumatic brain injury (TBI). It is common for brain trauma to occur as a consequence of either a focal impact upon the head, or by a sudden acceleration/deceleration within the cranium, or from a combination of both impact and movement. Traumatic brain injury can cause long-term issues, and there are limited treatment options.
  • head injury is participation in sports. For example, a fall from a bicycle when riding may result in the head striking against a solid unyielding object or surface such as a road surface or similar.
  • helmet usage is customary or mandatory in many sports such as bicycle, motorcycle and horse riding, rock climbing, American football and also winter or ice sports such as skating, ice hockey, and skiing.
  • Another common cause of head injury is an impact caused by a falling object on a building or construction site.
  • Sports helmets and safety helmets are individually designed so as to be particularly suited to their particular use.
  • most or all of the helmets have common design elements such as a hard outer shell (formed from a stiff thermoplastic or composite) and a lining/liner, softer than the outer shell, but still stiff enough to retain it's shape when unsupported.
  • the shell and liner act to absorb the force of an impact and to help prevent this force being transmitted to the head and brain.
  • Virtually all helmets use expanded polystyrene as the energy absorbing liner.
  • the expanded polystyrene is formed as a unitary structure (that is, without gaps) in the required shape.
  • US3,447,163 describes and shows a safety or crash helmet intended for use by motorcyclists and/or racing motorists.
  • the helmet has an outer shell formed as a double-skinned member, the two skins of the shell joined to one another around the periphery of the shell by a gently curved peripheral portion that has no sharp edges, and the space between the skins contains a layer of a honeycomb type of material, the cells of the honeycomb layer filled with an energy-absorbing foamed material.
  • US7,089,602 describes and shows an impact absorbing, modular helmet having layers on the outer side of a hard casing that increase the time of impact with the intention of reducing the intensity of the impact forces.
  • the layers are made up of a uniformly consistent impact absorbing polymer material, a polymer layer filled with air or a polymer structure.
  • These impact-absorbing layers can also be made and used as an independent, detachable, external protective cover that can be attached over a hard casing helmet.
  • US6,247,186 describes and shows a helmet having a housing, an inner impact resistant layer shaped to the head of rider, a protective covering spaced above and formed integrally with the housing, and a chamber enclosed by the housing and protective covering that is open in the front for ventilation.
  • the chamber has a net strap in the front side for preventing foreign objects from entering and one or more inner channels in communication with the inner space of helmet through a passageway. In use, fresh air flows through the passageway and into the impact resistant layer.
  • EP 2 525 187 discloses a helmet liner comprising a three-dimensional lattice structure formed of fused powder material, wherein the lattice is in the form of an arrangement of interconnected box-like frames.
  • Sports helmets and safety helmets often have to be worn for extended periods, and the weight of the helmet is an important design consideration.
  • the overall weight (and shape and size) of the helmet and the impact-absorbing properties.
  • Increasing the amount of impact-absorbing material will increase the overall weight of the helmet, and may also result in an increase in the external dimensions, which can in turn make wearing the helmet relatively more unwieldy and uncomfortable to wear, especially where aerodynamic considerations may also be important.
  • impact protection can be compromised if the helmet has too little impact-absorbing material.
  • Foams such as the foams used in helmets are typically excellent energy absorbers because they are characterised by a long plateau stress, and in most impacts the area is constant so the stress can be directly converted to force, providing a long plateau force. This means all the energy can be absorbed whilst maintaining a low peak force and acceleration, optimal in reducing brain damage.
  • the area when crushing is not constant.
  • the present invention may broadly be said to consist in an impact absorbing structure, comprising a unitary material formed as a stretch-dominated hollow cell structure as defined in claim 1.
  • At least a plurality of the cells are configured to tessellate with a cell axis normal to the surface or out-of-plane.
  • At least a plurality of the cells are hexagonal.
  • At least a plurality of the cells are triangular.
  • At least a plurality of the cells are square.
  • At least a plurality of the cells are a combination of octagons and squares co-located in a tessellating pattern.
  • the unitary material is formed to have a relative density substantially between 0.05 and 0.15.
  • the wall has a maximum thickness of substantially 1mm.
  • the unitary material is a polymer material.
  • the unitary material is an elastomer.
  • the unitary material is elastic-plastic and elastic-brittle. In an embodiment, the unitary material is Nylon 11.
  • the present invention may broadly be said to consist in a helmet, comprising an inner impact resistant liner at least partly formed form an impact absorbing structure as claimed in any one of the preceding statements.
  • the liner foam is entirely responsible for dissipating the impact energy.
  • the reaction force is determined by the compressive strength of the foam.
  • a foam lattice is assumed to have a flat plateau compressive strength over its densification strain.
  • the foam only provides an ideal force-displacement curve if the compressed region is uniform in area.
  • the impact area or crush area is not constant, or planar: the contact area increases with displacement. This causes the reaction force to also increase.
  • the force-displacement gradient will be further reduced.
  • a foam liner needs to be thicker in order to provide adequate energy absorption by maintaining the peak acceleration below the safety legislation.
  • the consistent plateau stress of foam limits it's effectiveness as an energy absorbing structure when used as a curved structure (such as for example in a helmet) due to the inherent curved contact surface.
  • the other assumption is that the liner is formed as a unitary structure (that is, without gaps).
  • the impact-absorbing structure is formed as a hollow-cell structure which is stretch-dominated, such as for example a micro-truss lattice or out-of-plane honeycomb.
  • ⁇ d 1 ⁇ ⁇ ⁇ s / ⁇ crit ⁇ s
  • is the density of the structure and ⁇ s that of the bulk material
  • ⁇ crit / ⁇ s is the relative density (or volume fraction solid) at which the structure locks up.
  • the post-yield softening counteracts the area increase of a oval shaped helmet dissipating energy at a more uniform plateau force.
  • the relative density of a stretch-dominated structure can be much lower providing a greater densification strain and therefore increasing the potential energy dissipated over the same displacement.
  • stretch-dominated structure is a cellular solid.
  • a cellular solid is one made up of an interconnected network of solid struts or plates that form the edges and faces of cells.
  • the mechanical behaviour of cellular solids can be distinguished by bending- ( foam ) and stretch -(lattice) dominated mechanisms.
  • the Maxwell stability criterion is used to distinguish between bending- and stretch -dominated structures.
  • Cellular solids can be thought of as joints j , joined by struts s, which surround faces that enclose cells, as shown in figure 1 .
  • the structure carries self-stress, which means the struts carry stress even though the structure carries no external load (this is prevalent in figure 1c ). For example if the vertical strut is shortened, it pulls the other struts into compression.
  • stretch-dominated structures as impact absorbing structures are as follows: firstly, the post-yield softening counteracts the area increase of a oval shaped helmet dissipating energy at a more uniform plateau force, and; secondly, for a given yield stress, the relative density of a stretch-dominated structure can be much lower providing a greater densification strain and therefore increasing the potential energy dissipated over the same displacement. This is discussed in detail in Appendix E.
  • the impact absorbing structure is formed as a lattice - i.e. from interconnected hollow cells.
  • a periodic lattice i.e. the cells are regularly shaped and sized. Hexagonal cells were used as this shape has the largest number of side and which will still regularly tessellate - i.e. without requiring a second shape to fill gaps (for example, if a regular octagon lattice was chosen, a regular square shape would be inherent). Hexagonal honeycomb cells have the highest number of cell walls for each cell, and therefore the lowest connectivity. which has been shown to be effective in high specific strength.
  • lattice structure described above can be generally described as 2D hollow cell structures. Where these are referred to in this specification, this indicates a three-dimensional structure, with the cells of the structure formed in such a way as to have depth, but so that when viewed at a certain angle the cells will have a uniform or identical cross-section at any position perpendicular to the view angle. That is, a cross section taken at any position would be identical to one taken at any other position.
  • a honeycomb cell structure viewed in plan or from directly above will provide a uniform cross-section at any depth through the cells. This can be translated to curved shapes such as the ovoid shape necessary to form a helmet, for example. When viewed at any particular point looking inwards towards the centre of the interior, the cells will appear identical to those viewed from another point also looking inwards towards the centre of the interior.
  • stretch dominated structures will also provide the same advantages.
  • 3-D stretch-dominated structures such as a truss structure or a structure similar to a crystal lattice structure can also be formed, which will provide the same impact absorption benefits.
  • the hollow cell stretch dominated structure 1 used in a first embodiment of the present invention is a unitary material formed into a honeycomb structure. It is preferred that the cells are hexagonal, as hexagonal cells 2 such as those used in the hollow cell structure 1 tessellate and so form a structure where each cell wall is common with an adjacent cell.
  • a grid formed from hexagonal cells also provides a balance between overall grid density (the total amount of material), and the layout/location of the cell wall material and the empty space which the cell walls encompass. That is, tessellation is achieved with the cell walls distributed over a given planar or curved surface as evenly as possible, with no overloaded focal areas, or over-large uncovered areas.
  • Figure 4 shows a section of a periodic lattice of hexagonal cells, showing the positions of the joints j and struts s for this stretch-dominated structure.
  • the honeycomb structure In practical use, and when experiencing an impact, the honeycomb structure will experience both in-plane and out-of-plane loading.
  • Stretch-dominated structures such as the hexagonal hollow cell structure 1 are generally used in a planar or sheet form, either flat or curved, and the impacts received by the hollow cell structure have a primary force component directed into the plane perpendicular to the point of impact. That is, in the opposite direction to out-of-plane arrow 3 in figure 1 .
  • a force component at an angle to this and the theory behind this is discussed in detail in Appendix C.
  • the impact absorption properties of a stretch-dominated structure such as the hollow cell structure 1 are determined by the material used to form the structure, and the specific geometry of the structure: i.e. cell size, cell wall thickness, cell width and cell length as shown in figure 4 .
  • the lattice is designed so that the axial part of the cell is always perpendicular to the surface of the head. This is important as the crush strength of honeycomb significantly diminishes as the impact angle increases away from perpendicular to the axial part of the cell.
  • h is assigned a value of 1
  • has a value of 30 (degrees)
  • the ratio of cell wall thickness ( t ) to cell length ( t ) is significantly small.
  • the material used to create the hollow cell structure 1 in this embodiment is Nylon 11 and ST Elastomer. This is a readily available material, which is lightweight, easily formed and malleable, and is therefore suitable or at least analogous to the type of material that would be used for mass-manufactured helmets.
  • the hollow cell structure 1 was manufactured by additive manufacturing. The process is briefly described in Appendix B.
  • Tests were carried out as detailed in Appendix A, and Appendix D, with the objective of determining how varying the relative density of the honeycomb hollow cell structure 1 (this type of structure also known as 'out-of-plane honeycomb') would affect the hollow cell structure 1 when subjected to impact testing.
  • the relative density was varied between 0.1 and 0.33 by changing the cell size ( s ) from between a minimum of 6mm and a maximum of 20mm, with the wall thickness maintained at a constant 1mm.
  • results indicate that an acceptable range of optimum relative densities lies between 0.125 and 0.175 for this material and for the particular cell/lattice size and shape used during testing, for the reasons outlined in the 'Results from Impact Testing' section of Appendix A, and Appendix D.
  • the results indicate that the cell size, cell wall thickness, cell width and cell length can be freely varied relative to one another, and as long as the relative density lies between 0.03 and 0.17, then the structure will provide optimised impact absorption properties.
  • helmet design is generally a trade-off between the overall weight of a helmet, and the impact-absorbing properties.
  • a helmet such as helmet 5 shown in figures 3 and 4 , constructed using a structure the same as or similar to the inner impact resistant liner 7 (formed as a hexagonal hollow-cell stretch-dominated structure) covered by an outer shell 6, formed from nylon 12 or a similar material, will provide a lightweight structure capable of meeting and exceeding the relevant standards for impact absorption, in particular BS EN 1078.
  • the test results indicate the elastic-plastic honeycomb has a 3x greater EPV than a typical expanded polystyrene helmet. This is clearly shown by the plots of the experimental results shown in figures 13 and 14 . The reasons can be summarised as follows:
  • 2D hollow cells are referred to in this specification, this indicates a three-dimensional structure, with the cells of the structure formed in such a way as to have depth, but so that when viewed at a certain angle the cells will have a uniform or identical cross-section at any position perpendicular to the view angle. That is, a cross section taken at any position would be identical to one taken at any other position.
  • a honeycomb cell structure viewed in plan or from directly above will provide a uniform cross-section at any depth through the cells.
  • 'stretch-dominated' this is according to the Maxwell criterion as outlined herein.
  • the phrases 'relative density' and 'volume fraction solid' essentially have the same meaning and are used interchangeably within this specification.
  • a range of hollow cell structures were manufactured from nylon 12 by Selective Laser Sintering. Each sample had a cross-sectional area of 100cm 2 , and a depth of 10cm.
  • a single axis accelerometer was placed in the head form, at the Centre of Mass.
  • the sampling rate was set to 1000Hz in LabView.
  • HIC Head Injury Criterion
  • a kerbstone shape was used as the impacting projectile in a drop weight system.
  • the geometric parameters of the honeycomb was varied in each impact: cell width, cell wall thickness, cell height and cell liner.
  • Each honeycomb sample had a constant cross sectional area of 100 mm ⁇ 100 mm, and was placed so the cell walls were always axial to the z direction shown in the test rig schematic.
  • Polycarbonate sheets of 0.375 mm, 0.5 mm, 1 mm and 2 mm thickness were laid on top of the sample to represent the shell.
  • a helmet was sectioned into nine parts, each having a surface area approximately the same as the honeycomb structures. As the EPS sections were not flat, a hard Polyfiller was moulded to provide a curved support.
  • the impact speed for the kerbstone anvil is 4.57 ⁇ 0.1 ms- 1 with a mass of 5 kg.
  • a drop tower was used to replicate the 1078 standard shock absorption test.
  • High speed photography at 2000 frames per second was used to trace the impact of the anvil and film the response of the honeycomb structure.
  • the high speed camera was triggered using a light gauge 15 mm before impact.
  • the impactor anvil was connected to a rod that is suspended in a rigid cage, ensuring that it can only travel in the z axis. When the anvil and rod impact, the rigid cage continues to move freely until contact is made with dampers.
  • head injury criterion is a measurement of magnitude and duration of deceleration, above 750 - 1000 s ⁇ g 2.5 represents a 16% risk of severe injury.
  • the table above lists the HIC values for EPS foam, Elastomer honeycomb and elastic-plastic (PA11) honeycomb for 2, 5 and 10 ms. The three variations showed an unusually low HIC value with PA11 delivering the lowest HIC value at 44. A higher HIC value is predicted when the helmet is conditioned to +50°C and -20°C given in the safety legislation.
  • the relationship between magnitude of acceleration and duration has been shown to be significant in causing brain damage.
  • the Wayne State Tolerance curve (WSTC) was used to plot magnitude against duration for an impact, a threshold curve in red describes the fatal tolerance limit of the brain. Standard impact profiles for Elastomer, PA11 honeycomb and EPS foam are plotted on the WSTC. All curves are below the fatal threshold.
  • EPS is consistently the furthest away from the threshold, suggesting that a slowly graduating force displacement curve could be more effective in preventing brain damage.
  • its duration of acceleration is nearly double compared to PA11.
  • the Energy absorbed Per Volume is the amount of kinetic energy lost from the projectile across the maximum displaced volume of the structure, this was measured using digital image correlation. At a higher EPV, the structure dissipates or stores more kinetic energy over the same volume. This is also equivalent to the integral of the stress-strain curve used by Gibson and Ashby to create a continuous energy absorption diagram.
  • the optimal peak acceleration is more than 60% lower, highlighting the suitability of this type of structure and material for a helmet. It is clear that above 0.15 relative density the elastic-plastic (Nylon 11) honeycomb structure was too stiff and responded with extremely high peak accelerations, for example at 0.33 density, a peak acceleration of 650 g was obtained. However, at around 0.1 density (in blue) the peak acceleration was similar to EPS but with a three times greater EPV. The response of Nylon 11 honeycomb was both plastic buckling and fracturing of the cell walls.
  • Laser sintered PA 12 showed both strain rate and temperature dependence, confirming that the polymer was amorphous. Above energy density 0.37 J/mm2 the mechanical properties worsened at low, medium and high strain rate. /3 transition could be found at approximately 1000 s -1 and -50° C, between the T g and /3 there is a natural temperature dependence.
  • Elastomer and elastic-plastic material was produced as a honeycomb through Additive Manufacturing as outlined in Appendix B.
  • the structure was impacted in the out-of-plane under safety legislation impact conditions and compared with sections of expanded polystyrene cut from a bicycle helmet.
  • the elastomer honeycomb showed elastic buckling deformation, whilst the elastic-plastic honeycomb saw plastic buckling through localised plastic hinges and fracture of the cell wall.
  • the elastomer honeycomb and EPS foam showed very similar force-displacement curves, where force is proportional to displacement.
  • the elastic-plastic honeycomb attained a higher initial force that was maintained across the sample, which meant that the impact energy was dissipated at a lower peak load over a shorter duration.
  • Additive Manufacturing provides a fast process for creating complex geometries that would be impossible or highly expensive compared to conventional subtractive/formative methods.
  • Additive Manufacturing works by directly building computer aided designs by depositing material in a layer by layer process.
  • Laser Sintering is a form of Additive Manufacturing whereby a thin layer of powder is deposited onto a preheated build area, a CO 2 laser is then used to selectively consolidate the powder.
  • Laser Sintering was chosen as the process to manufacture the hexagon structures because of the comparatively higher mechanical properties.
  • Laser Sintering is still a relatively young manufacturing technique and requires a specific thermal window to consolidate, so only a selection of materials were available.
  • the microstructure can be varied by using a range of different processing conditions.
  • the mechanical properties of Laser Sintering can in part be attributed to the degree of particle melt (DPM), which defines the quantity variations in the consolidation of sintering.
  • DPM degree of particle melt
  • the cell walls In compression the cell walls initially compress axially, so that the Young's modulus varies linearly with the relative density and the Poisson's ratio is that of the solid. In elastomeric material the cell walls will buckle, once the elastomer is unloaded the honeycomb recover the buckling (typically there is a hysteresis effect as energy is loss through heat).
  • Ductile materials have a yield point, after which permanent deformation occurs through localised plastic hinges (buckling of cell wall). Ceramic material typically fail through fracture of cell walls.
  • the honeycomb material used to gather the test results was a laser sintered viscoelastic polyamide and elastomer.
  • the plasticity and fracture of polymers is dependent on temperature and strain rate. At lower temperatures (T ⁇ T g ) polymers are linear-elastic to fracture. At higher temperatures (T ⁇ 0.8T g ) the mode of failure changes from brittle to ductile, characterised by a yield point. Failure-mechanisms diagrams are used to summarize the plastic and fracture response in an amorphous polymer and elastomer respectively.
  • Wierzbicki found that in compression the lowest plastic collapse strength (and so most likely to occur) is due to plastic buckling. Plastic buckling dissipates energy by a permanent rotation of the cell wall. Wierzbicki derived an approximation based on an isolated cell wall. The plastic collapse stress for regular hexagons with uniform wall thickness t is where ⁇ ys is the yield stress.
  • Bending-dominated structures such as foam are analysed through energy-absorbing diagrams.
  • the energy absorbed per unit volume W is given by the area under the stress-strain curve in graph (a) below.
  • the failure mechanism is elastic buckling and so most of the energy is stored elastically.
  • the energy is stored elastically up to the yield point, after which energy is then dissipated through plastic bending or fracture of cell walls.
  • W peak stress
  • Optimal use of the foam's energy absorbing capabilities is achieved by exploiting the shoulder of this curve, i.e: absorb as much energy as possible for a given peak stress.
  • the envelope of shoulders for different foam densities is plotted in graph (b). The envelope describes a relationship between W and ⁇ p to pick the optimum relative density, at a particular strain rate and temperature.
  • ⁇ D is the densification stress, which for a bending-dominated structure is assumed to be at the same level as the plateau stress.
  • Wmax is the maximum energy that can be absorbed. The equation developed above show that W max E s depends only on ⁇ D E s and ⁇ D E s , that is the diagram describes all elastomeric foams of all densities and material properties.
  • honeycomb material The response of a honeycomb material is critical if used for energy absorbing applications as it can be subjected to various impact speeds and temperature conditions. An investigation was undertaken to understand the strain rate and temperature dependence across different Laser Sintered processing conditions. The material investigated was Polyamide 12 and all tests were in compression. ED1 ED2 ED3 ED4 Laser Power ( W ) 19 21 23 21 Scan Spacing ( mm ) 0.25 0.25 0.25 0.25 Scan Speed ( mm / s ) 2500 2500 2500 1500 ED ( J / mm 2 ) 0.03 0.034 0.037 0.056
  • Low rate compressions (0.001, 0.01 and 0.1 s- 1 ) was undertaken using an Instron testing machine. For these low strength materials machine compliance is not an issue, and true strain control from the cross head is used; however, an extensometer was also attached to the loading anvils close to the specimen to verify the specimen extension. The total resisting force on the specimen as a function of time was obtained from a 100 kN load cell with a stated precision of ⁇ 0.05 N. Medium strain rate (1 and 10 s- 1 ) was obtained through a custom built hydraulic load frame that was used to access strain rates between 1 and 50 s- 1 . A linear Variable Differential Transformer (LVDT) measured the displacement of the sample; the signal suffered no significant distortion from load cell ringing and other machine noise.
  • LVDT linear Variable Differential Transformer
  • High strain rate (>1000 s- 1 ) compression experiments were performed using a Split Hopkinson Pressure Bar (SHPB).
  • SHPB Split Hopkinson Pressure Bar
  • the input and output bars were made of silver steel.
  • the input bar is 1 m long, and gauged halfway along its length; the output bar was 500 mm long and gauged 50 mm from the bar-specimen interface. Reflected and transmitted gauge signals were used to derive the stress-strain relationship using the standard analysis. Petroleum jelly was used as the lubricant.
  • nitrogen gas and heated filaments were used to obtain the necessary chamber temperature. Each sample was pre heated/cooled for between 5-10 minutes at the testing temperature to ensure thermal equilibrium.
  • the high energy density samples were found to have a coarse surface area, showing large surface porosity. This porosity is likely to weaken the material since there is a lower volume fraction of solid.
  • a stretch-dominated structure is a micro-truss lattice or out-of-plane honeycomb, where the mechanism of deformation involves 'hard' modes such as compression and tension rather than bending.
  • the graph below shows a stress-strain curve of a stretch dominated structure with an elastic-plastic material. Yield stress occurs due to localised plastic buckling and brittle collapse of the struts. This is also known as the bifurcation point because the structure becomes unstable and a post yield softening regime ensues.
  • the stress rises steeply at the densification strain which can be calculated from the following equation.
  • the post-yield softening counteracts the area increase of the oval shaped helmet dissipating energy at a more uniform plateau force.
  • line x in the graph below is the post yield softening seen in the experimental results, whereas line y shows the area increase of a particular head shape.
  • the relative density of a stretch-dominated structure can be much lower. According to the equation below, the densification strain is inversely proportional relative density
  • stretch dominated structures require a lower relative density, and according to the equation above attain a greater densification strain. Because the amount of energy absorbed is the product of stress and strain, increasing strain would mean increasing the amount of energy absorbed (essentially stretch dominated structures require less material and so have longer displacement before the cell walls densify increasing potential energy absorbed.)

Landscapes

  • Helmets And Other Head Coverings (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Claims (12)

  1. Stoßdämpfende Struktur, umfassend ein einheitliches Material, das als streckdominierte Hohlzellenstruktur ausgebildet ist, wobei zumindest eine Vielzahl von Zellen konfiguriert ist, um mit einer Zellachse senkrecht zu der Oberfläche oder außerhalb der Ebene zu tessellieren, und die Hohlzellenstruktur eine relative Dichte im Wesentlichen zwischen 0,05 und 0,15 aufweist, wobei die relative Dichte als ρ/ρs definiert ist, wobei ρ die Dichte der Hohlzellenstruktur ist und ρs die Dichte des einheitlichen Materials ist.
  2. Stoßdämpfende Struktur nach Anspruch 1, wobei im Wesentlichen alle der Zellen der Hohlzellenstruktur über die gesamte Tiefe der Zellen hinweg einen gleichförmigen Querschnitt aufweisen.
  3. Stoßdämpfende Struktur nach Anspruch 1, wobei die Zellen als ein periodisches Gitter gebildet sind.
  4. Stoßdämpfende Struktur nach Anspruch 1, wobei zumindest eine Vielzahl der Zellen sechseckig ist.
  5. Stoßdämpfende Struktur nach Anspruch 1, wobei zumindest eine Vielzahl der Zellen dreieckig ist.
  6. Stoßdämpfende Struktur nach Anspruch 1, wobei zumindest eine Vielzahl der Zellen quadratisch ist.
  7. Stoßdämpfende Struktur nach Anspruch 1, wobei zumindest eine Vielzahl der Zellen eine Kombination von Achtecken und Quadraten ist, die in einem tessellierenden Muster gemeinsam angeordnet sind.
  8. Stoßdämpfende Struktur nach Anspruch 1, wobei die Zellen Wände aufweisen, die eine maximale Dicke von im Wesentlichen 1 mm aufweisen.
  9. Stoßdämpfende Struktur nach einem der Ansprüche 1 bis 8, wobei das einheitliche Material ein Polymermaterial ist.
  10. Stoßdämpfende Struktur nach Anspruch 9, wobei das einheitliche Material ein Elastomer ist.
  11. Stoßdämpfende Struktur nach Anspruch 9, wobei einheitliche Material ein Nylon 11 ist.
  12. Helm, umfassend eine innere stoßfeste Auskleidung, die zumindest teilweise von einer stoßdämpfenden Struktur nach einem der Ansprüche 1 bis 11 gebildet ist, und vorzugsweise weiter umfassend eine äußere Schale, die gebildet ist, um im Wesentlichen die innere stoßfeste Auskleidung zu bedecken.
EP16704280.3A 2015-02-04 2016-02-04 Stossdämpfende struktur und helm mit solch einer struktur Active EP3253243B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB1501834.4A GB201501834D0 (en) 2015-02-04 2015-02-04 An impact absorbing structure
PCT/IB2016/050587 WO2016125105A1 (en) 2015-02-04 2016-02-04 An impact absorbing structure and a helmet comprising such a structure

Publications (2)

Publication Number Publication Date
EP3253243A1 EP3253243A1 (de) 2017-12-13
EP3253243B1 true EP3253243B1 (de) 2020-04-01

Family

ID=52705737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16704280.3A Active EP3253243B1 (de) 2015-02-04 2016-02-04 Stossdämpfende struktur und helm mit solch einer struktur

Country Status (5)

Country Link
US (1) US20180027914A1 (de)
EP (1) EP3253243B1 (de)
CN (1) CN107635424B (de)
GB (1) GB201501834D0 (de)
WO (1) WO2016125105A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11684104B2 (en) 2019-05-21 2023-06-27 Bauer Hockey Llc Helmets comprising additively-manufactured components
US11779821B2 (en) 2014-05-13 2023-10-10 Bauer Hockey Llc Sporting goods including microlattice structures

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10933609B2 (en) * 2016-03-31 2021-03-02 The Regents Of The University Of California Composite foam
CA3031567A1 (en) 2016-07-20 2018-01-25 Riddell, Inc. System and methods for designing and manufacturing a bespoke protective sports helmet
US11864617B2 (en) * 2016-09-13 2024-01-09 memBrain Safety Solutions, LLC Machine vendible expandable helmet and manufacture of same
EP3512370B1 (de) * 2016-09-13 2023-10-25 Membrain Safety Solutions, LLC Faltbarer fahrradhelm und verfahren zum schutz des kopfes
US11517063B2 (en) 2016-10-17 2022-12-06 9376-4058 Quebec Inc. Helmet, process for designing and manufacturing a helmet and helmet manufactured therefrom
GB2559807B (en) * 2017-02-21 2019-05-22 Pembroke Bow Ltd Helmet
TWI641325B (zh) * 2017-03-07 2018-11-21 瑞太科技股份有限公司 Omnidirectional anti-collision structure for safety helmet
US20180265023A1 (en) * 2017-03-20 2018-09-20 Ford Global Technologies, Llc. Additively manufactured lattice core for energy absorbers adaptable to different impact load cases
GB201803206D0 (en) * 2018-02-27 2018-04-11 Univ Oxford Innovation Ltd Impact mitigating structure
US11325206B2 (en) * 2018-04-20 2022-05-10 Ut-Battelle, Llc Additive manufactured interpenetrating phase composite
EP3566600B1 (de) * 2018-05-11 2023-11-22 Specialized Bicycle Components, Inc. Helm mit schaumschicht mit einer anordnung von löchern
WO2020005902A1 (en) * 2018-06-26 2020-01-02 Saint-Gobain Performance Plastics Corporation Compressible sheet
CN109008035B (zh) * 2018-07-25 2021-10-15 王晖 一种缓冲结构、头盔
WO2020037279A1 (en) 2018-08-16 2020-02-20 Riddell, Inc. System and method for designing and manufacturing a protective helmet
WO2020106934A1 (en) * 2018-11-21 2020-05-28 Xenith, Llc Multilayer lattice protective equipment
US11167198B2 (en) 2018-11-21 2021-11-09 Riddell, Inc. Football helmet with components additively manufactured to manage impact forces
USD927084S1 (en) 2018-11-22 2021-08-03 Riddell, Inc. Pad member of an internal padding assembly of a protective sports helmet
CA3137920C (en) * 2019-05-20 2023-08-22 Gentex Corporation Helmet impact attenuation liner
CN110450966B (zh) * 2019-07-02 2021-01-26 北京交通大学 一种多向承载的蜂窝结构缓冲吸能装置
EP3838042B1 (de) * 2019-12-18 2022-06-08 George TFE SCP Helm
EP3838043B1 (de) * 2019-12-18 2023-08-16 George TFE SCP Helm
CN113040463B (zh) * 2019-12-27 2023-01-17 株式会社爱世克私 鞋底以及鞋
WO2022051873A1 (en) * 2020-09-14 2022-03-17 Sport Maska Inc. Helmet with lattice liner
FR3134293A1 (fr) * 2022-04-07 2023-10-13 Thales Procédé d'adaptation d'un casque à la tête d'un utilisateur

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA770336A (en) 1967-10-31 Government Of The United States Of America As Represented By The Secretary Of The Navy (The) Protective helmet
FR2346992A1 (fr) 1976-04-07 1977-11-04 Morin Claude Perfectionnement aux casques de protection
US4484364A (en) 1980-09-08 1984-11-27 A-T-O Inc. Shock attenuation system for headgear
FR2561877A3 (fr) 1984-03-27 1985-10-04 Miki Spa Casque, en particulier pour utilisations sportives
WO1994000031A1 (en) 1992-06-27 1994-01-06 Brine, Christopher, Andrew Safety helmets
US20040261157A1 (en) 2003-06-30 2004-12-30 Srikrishna Talluri Multi-layered, impact absorbing, modular helmet
US20070148409A1 (en) 2005-08-02 2007-06-28 Victor Rios Silicone compositions, methods of manufacture, and articles formed therefrom
WO2008002248A1 (en) 2006-06-26 2008-01-03 Piren Venture Ab Impact damping material. helmet and panel incorporating the same
EP1694152B1 (de) 2003-12-20 2008-06-25 Lloyd (Scotland) Limited Körperschutzvorrichtung
CN102407615A (zh) 2011-07-29 2012-04-11 同济大学 轻质强化泡沫板及其制备方法
US20120096630A1 (en) 2007-01-19 2012-04-26 James Riddell Ferguson Impact Shock Absorbing Material
GB2490894A (en) 2011-05-16 2012-11-21 Bae Systems Plc Personal protection equipment
WO2012177321A2 (en) 2011-04-29 2012-12-27 Nomaco Inc. Unitary composite/hybrid cushioning structures(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material (s) and related mothods
US20130305435A1 (en) 2010-05-26 2013-11-21 Anirudha Surabhi Helmet
CN203492851U (zh) * 2013-09-03 2014-03-26 李焕玲 安全头盔的强化结构
CN103660304A (zh) 2013-11-29 2014-03-26 航宇救生装备有限公司 个体防护头盔内部热塑性衬垫及其制作方法
CN204048217U (zh) 2014-07-15 2014-12-31 肇庆博涵体育用品有限公司 一种铝片头盔
EP2893824A1 (de) 2014-01-10 2015-07-15 John George Lloyd Körperschutz
US20150335079A1 (en) 2014-05-23 2015-11-26 Sam Lacey Protective padding layer

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3447163A (en) * 1966-02-16 1969-06-03 Peter W Bothwell Safety helmets
US6070271A (en) * 1996-07-26 2000-06-06 Williams; Gilbert J. Protective helmet
JP4299490B2 (ja) * 2002-04-11 2009-07-22 積水化成品工業株式会社 遺棄分解性の良好な軽量構造材、断熱材及びその製造方法
DE20216464U1 (de) * 2002-10-25 2003-01-23 Lolis Nikolaus Schutzplane
US7232605B2 (en) * 2003-07-17 2007-06-19 Board Of Trustees Of Michigan State University Hybrid natural-fiber composites with cellular skeletal structures
US20060059606A1 (en) * 2004-09-22 2006-03-23 Xenith Athletics, Inc. Multilayer air-cushion shell with energy-absorbing layer for use in the construction of protective headgear
US8356373B2 (en) * 2009-03-06 2013-01-22 Noel Group Llc Unitary composite/hybrid cushioning structure(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material(s)
WO2012020066A1 (en) * 2010-08-13 2012-02-16 Tiax Llc Energy absorption system
EP2525187B1 (de) * 2011-05-16 2017-09-06 BAE Systems PLC Personenschutzausrüstung
US9572390B1 (en) * 2012-10-05 2017-02-21 Elwood J. B. Simpson Football helmet having improved impact absorption
JP6333514B2 (ja) * 2013-03-01 2018-05-30 株式会社大野興業 頭蓋変形矯正ヘルメット及びこれを製造する方法
CN103251162A (zh) * 2013-05-10 2013-08-21 北京航空航天大学 一种具有新型微孔缓冲层结构的轻质安全头盔
CN103238975B (zh) * 2013-05-31 2015-09-02 北京航空航天大学 一种具有新型微结构外壳的安全头盔
US9839251B2 (en) * 2013-07-31 2017-12-12 Zymplr LC Football helmet liner to reduce concussions and traumatic brain injuries
DE102014113889A1 (de) * 2014-09-25 2016-03-31 Stefan Züll Schutzhelm

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA770336A (en) 1967-10-31 Government Of The United States Of America As Represented By The Secretary Of The Navy (The) Protective helmet
FR2346992A1 (fr) 1976-04-07 1977-11-04 Morin Claude Perfectionnement aux casques de protection
US4484364A (en) 1980-09-08 1984-11-27 A-T-O Inc. Shock attenuation system for headgear
FR2561877A3 (fr) 1984-03-27 1985-10-04 Miki Spa Casque, en particulier pour utilisations sportives
WO1994000031A1 (en) 1992-06-27 1994-01-06 Brine, Christopher, Andrew Safety helmets
US20040261157A1 (en) 2003-06-30 2004-12-30 Srikrishna Talluri Multi-layered, impact absorbing, modular helmet
EP1694152B1 (de) 2003-12-20 2008-06-25 Lloyd (Scotland) Limited Körperschutzvorrichtung
US20070148409A1 (en) 2005-08-02 2007-06-28 Victor Rios Silicone compositions, methods of manufacture, and articles formed therefrom
WO2008002248A1 (en) 2006-06-26 2008-01-03 Piren Venture Ab Impact damping material. helmet and panel incorporating the same
US20120096630A1 (en) 2007-01-19 2012-04-26 James Riddell Ferguson Impact Shock Absorbing Material
US20130305435A1 (en) 2010-05-26 2013-11-21 Anirudha Surabhi Helmet
WO2012177321A2 (en) 2011-04-29 2012-12-27 Nomaco Inc. Unitary composite/hybrid cushioning structures(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material (s) and related mothods
GB2490894A (en) 2011-05-16 2012-11-21 Bae Systems Plc Personal protection equipment
CN102407615A (zh) 2011-07-29 2012-04-11 同济大学 轻质强化泡沫板及其制备方法
CN203492851U (zh) * 2013-09-03 2014-03-26 李焕玲 安全头盔的强化结构
CN103660304A (zh) 2013-11-29 2014-03-26 航宇救生装备有限公司 个体防护头盔内部热塑性衬垫及其制作方法
EP2893824A1 (de) 2014-01-10 2015-07-15 John George Lloyd Körperschutz
US20150335079A1 (en) 2014-05-23 2015-11-26 Sam Lacey Protective padding layer
CN204048217U (zh) 2014-07-15 2014-12-31 肇庆博涵体育用品有限公司 一种铝片头盔

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11779821B2 (en) 2014-05-13 2023-10-10 Bauer Hockey Llc Sporting goods including microlattice structures
US11794084B2 (en) 2014-05-13 2023-10-24 Bauer Hockey Llc Sporting goods including microlattice structures
US11844986B2 (en) 2014-05-13 2023-12-19 Bauer Hockey Llc Sporting goods including microlattice structures
US11684104B2 (en) 2019-05-21 2023-06-27 Bauer Hockey Llc Helmets comprising additively-manufactured components

Also Published As

Publication number Publication date
CN107635424A (zh) 2018-01-26
WO2016125105A1 (en) 2016-08-11
EP3253243A1 (de) 2017-12-13
US20180027914A1 (en) 2018-02-01
CN107635424B (zh) 2020-12-18
GB201501834D0 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
EP3253243B1 (de) Stossdämpfende struktur und helm mit solch einer struktur
Imbalzano et al. A numerical study of auxetic composite panels under blast loadings
Osman et al. Compressive behavior of stretched and composite microlattice metamaterial for energy absorption applications
Santos et al. Low velocity impact response of 3D printed structures formed by cellular metamaterials and stiffening plates: PLA vs. PETg
Bohara et al. Anti-blast and-impact performances of auxetic structures: A review of structures, materials, methods, and fabrications
US20210001560A1 (en) Impact mitigating structure
Li et al. Impact response of a novel sandwich structure with Kirigami modified corrugated core
Usta et al. Experimental and numerical investigation of impact behavior of nested tubes with and without honeycomb filler
Reyes et al. Quasi-static behaviour of crash components with steel skins and polymer foam cores
Reyes et al. Low velocity impact on crash components with steel skins and polymer foam cores
Mosleh et al. Smart material and design solutions for protective headgears in linear and oblique impacts: column/matrix composite liner to mitigate rotational accelerations
Mocian et al. Low velocity failure and integrity assessment of foam core sandwich panels
EP3478111B1 (de) Anisotrope verbundstruktur und auskleidung mit solch einer struktur sowie verwendung von und verfahren zur herstellung solch einer struktur
Zhang et al. Dynamic responses of sandwich beams with gradient-density aluminum foam cores
Zhou et al. A detachable chain tensile energy absorber inspired by mortise and tenon joint
Mahdavi et al. Experimental and numerical investigation on cutting deformation energy absorption in circular tubes under axial impact loading by damage criterions
Huang et al. Design and evaluation of shock-absorbing rubber tile for playground safety
WO2012020066A1 (en) Energy absorption system
Robinson Developing novel materials to enhance motorcyclist safety
Gürgen Shear Thickening Fluid: Case Studies in Engineering
Khoa et al. Novel hierarchical bioinspired cellular structures with enhanced energy absorption under uniaxial compression
Naderi et al. Crashworthiness Study of an Innovative Helmet Liner Composed of an Auxetic Lattice Structure and PU Foam
Jailani et al. Finite element modelling of polymeric foam-filled aluminium 2024-T4 alloy tube under dynamic axial loading
Li et al. Experimental evaluation on the mitigation performance of double-layered Kirigami corrugated cladding against impact load
Hui et al. Modelling of the effectiveness of bicycle helmets under impact

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180904

17Q First examination report despatched

Effective date: 20181106

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190912

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1250215

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016032968

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200401

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200702

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200801

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1250215

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602016032968

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: DRAEGER SAFETY AG & CO. KGAA

Effective date: 20201218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 602016032968

Country of ref document: DE

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

27C Opposition proceedings terminated

Effective date: 20220608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230217

Year of fee payment: 8

Ref country code: CH

Payment date: 20230307

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230126

Year of fee payment: 8

Ref country code: DE

Payment date: 20230216

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160204