EP3247976A1 - Détermination de la position d'un véhicule - Google Patents

Détermination de la position d'un véhicule

Info

Publication number
EP3247976A1
EP3247976A1 EP16713353.7A EP16713353A EP3247976A1 EP 3247976 A1 EP3247976 A1 EP 3247976A1 EP 16713353 A EP16713353 A EP 16713353A EP 3247976 A1 EP3247976 A1 EP 3247976A1
Authority
EP
European Patent Office
Prior art keywords
measured values
sensors
vehicle
sensor device
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16713353.7A
Other languages
German (de)
English (en)
Inventor
Steffen SCHÄFER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Mobility GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3247976A1 publication Critical patent/EP3247976A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/166Mechanical, construction or arrangement details of inertial navigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • B61L15/0027Radio-based, e.g. using GSM-R
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/026Relative localisation, e.g. using odometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • B61L2205/02Global system for mobile communication - railways [GSM-R]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • B61L2205/04Satellite based navigation systems, e.g. global positioning system [GPS]

Definitions

  • the invention relates to a sensor device for determining the position of a vehicle, which runs on a predetermined route, in particular a rail vehicle. Further, the invention applies ⁇ be a vehicle, a use and a method.
  • beacons In modern mass transportation such as subways, trams and trains, it is often difficult to determine the exact position of each vehicle.
  • GPS receivers are used, which can be combined with wei ⁇ cal sensors.
  • Beacons for example, can be placed along a train route. In order to keep the costs for the installation of beacons low, the distances of the beacons are chosen so large that the number of beacons can be kept low. However, this leads to a less accurate position determination based on the beacon.
  • triangulation based on mobile radio signals. Trains, especially high-speed trains, also travel at speeds that are so high that an exact position determination by means of GPS or triangulation is not possible.
  • radio signals emanating for example from stationary beacons be blocked by obstacles and tunnels.
  • DE 195 32 104 C1 discloses a device for determining the position of a track-guided vehicle.
  • DE 101 04 946 A1 shows a method for determining and monitoring the planned position of an object.
  • DE 10 2013 013 156 AI discloses a method in which an additional transmitter is integrated into a navigation system.
  • the senor device has a number
  • the sensors can detect the movement directly or indirectly. This means that the sensors can provide a Positionsinfor ⁇ mation, for example, directly or the position can be derived from the sensor values, for example, by integration or differentiation. As physical variables, for example, all variables can be detected that enable a recognition of a position.
  • the sensors have at least magnetic field sensors for detecting an orientation and / or pressure sensors and / or real-time clocks.
  • the sensor device furthermore has a data memory which is designed to store reference measured values for the sensors at predetermined positions on the given route.
  • the predefined positions can be defined on the given route, for example at intervals which correspond to the desired spatial resolution.
  • the predefined positions consequently result in the predefined route strung together.
  • the corresponding reference measured values can be stored in the data memory, which are used for comparison with the measured values recorded by the sensors.
  • the sensor device has a computing device which is coupled to the sensors and compares the measured values output by the sensors with the stored reference measured values. If the measured values output by the sensors coincide with the reference measured values, the computing device outputs the position corresponding to the respective reference measured values as the current position of the sensor device or of the vehicle.
  • Intervals or maximum deviations can be specified for comparing the measured values output by the sensors with the reference measured values. If the measured values output by the sensors lie within one of the reference measured values within the respective interval or the maximum deviation, the comparison can be regarded as positive or true or it can be assumed that a match exists.
  • the invention uses reference measured values for the position determination, which identify, for example, local conditions of the respective positions. The invention further exploits the insight that such local conditions are usually different for each Po ⁇ sition on a predetermined route.
  • the present invention thus makes it possible to determine the position of a vehicle on a given route with very simple means and is not dependent on external signals.
  • the sensor device may have a wireless communication interface.
  • a Bluetooth interface For example, a WLAN interface, a GSM interface or the like may be provided.
  • a GSM interface When using a GSM interface or any other
  • the current position can also be forwarded, for example, to a control center or control center.
  • a control center or control center For example, if passengers have an exact location, for example, of the train they are currently in, they can retrieve information about places of interest around their current location via a smartphone. Furthermore, the passengers can be displayed, for example in a subway, the exact position of their train or of the train on which they are waiting. Furthermore, with knowledge of the train in which a passenger is located, the passenger can be shown, for example, detailed information about the current timetable, delays of the train and the like.
  • the sensors can have acceleration sensors and / or yaw rate sensors.
  • the computing device may be configured to calculate a movement of the sensor device based on the measured values output by the acceleration sensors and / or yaw rate sensors. This makes it possible, in addition to a comparison of the measured values recorded, e.g. also an inertial navigation or a dead-reckoning navigation. As a result, in addition to the comparison of the measured values with the reference measured values, a movement of the vehicle can be calculated precisely and compared with the stored predetermined positions.
  • an orientation of the vehicle can be determined with a magnetic field sensor, eg a compass.
  • a pressure sensor With a pressure sensor, the height of the vehicle can be determined, and with a satellite ⁇ based position sensor, such as a GPS sensor, an approximate position of the vehicle can be determined.
  • the position of the vehicle which is determined by it inaccurately can be used to restrict the considered sets of reference measured values for comparison by the computing device. For example, the comparison may be limited to those sets of reference measurements that relate to positions within a given perimeter around the inaccurately determined position. As a result, the computing load of the computing device can be reduced.
  • the data store may include reference measurements for a plurality of predetermined routes.
  • the computing device may be forms based on the measured values output by the sensors on which of the predetermined routes the vehicle is moving. For example, reference measured values for a plurality of subway lines can be stored in the data memory, which can intersect, partially parallel to one another or one above the other, or the like.
  • the computing device may, for example, store the acquired measured values over a predetermined period of time and, based on a temporal projection or temporal consideration of the measured values and the reference measured values, not only determine the current position but also the respective route from the multiplicity of routes.
  • the sensor device can have at least three wireless communication interfaces, which can be designed, for example, as Bluetooth interfaces. If three wireless communication interfaces are provided, these can be used as so-called "iBeacons", whereby a particularly simple transmission of the current position becomes possible.
  • the computing device can, for example via each of the wireless Ltdunikationsfilstel ⁇ len len the communication interfaces common predetermined unique identifier and for each current position output a unique primary identifier and a unique secondary identifier. each combination of egg ⁇ ner unique primary identifier and a unique secondary identifier identifying a respective position on the route.
  • the sensor device can also be used in vehicles traveling a route for which no reference measurement ⁇ values are stored in the data memory. This may include re ⁇ chen Nurreg in a reference run on the route specified differently surrounded the readings issued by the sensors in the data storage than the Ref Save erenzmesshong together with the current position of the sensor device. So it is possible to include the reference ⁇ readings for any route.
  • the computing device can be designed to query the respectively current position of a reference sensor. For example, a calibrated by a user satellite-based sensor, such as a high-precision GPS sensor can be used. Any other kind of highly accurate positioning can also be used. Elaborate, high-precision measuring equipment can be removed from the vehicle after reference travel and reused in other applications.
  • FIG. 1 shows a block diagram of an embodiment of a sensor device according to the invention
  • FIG. 2 shows a representation of an embodiment of a vehicle according to the invention
  • FIG. 3 shows a flow chart of an embodiment of a method according to the invention
  • FIG. 1 shows a sensor device 1-1, which has a sensor 4. Further possible sensors are indicated by three points.
  • the sensor 4 delivers measured values 5 to a movement of the sensor device 1-1 or to physical variables of an environment of the sensor device 1-1 to the computing device 9-1.
  • the computing device 9-1 is coupled to a data memory 6, which has reference measurements 7-1 to 7-n on predefined positions 8-1 to 8-n on a route 3, which are shown in tabular form in FIG.
  • the number of reference values 7-1 to 7-n or the specified positio ⁇ NEN 8-1 to 8-n on the route 3 is determined here in an embodiment with reference to the length of the route and the desired th spatial resolution.
  • the distance between the individual positions 8-1 to 8-n corresponds to a maximum of the desired spatial resolution.
  • the computing device 9-1 can determine which of the predetermined positions 8-1 - 8-n correspond to the measured values 5 and these as ak ⁇ tuelle position 10 spend.
  • the computing device 9-1 can use predetermined intervals around the reference measured values 7-1 to 7-n. If a measured value ⁇ 5 within the predetermined interval to the jeweili ⁇ gen reference measured value 7-1 to 7-n, this can be interpreted as conformity.
  • the predetermined intervals can be specified, for example, as a percentage or absolute deviation from the reference measured value 7-1 to 7-n.
  • the senor 4 can be designed as an acceleration sensor and / or yaw rate sensor. This makes it possible to detect a size (see FIG 2) on which the sensor device is arranged 1-1, directly depends on the Be ⁇ movement of the sensor device 1-1 or a vehicle 2. For example, generates a curve having a predetermined radius and is traversed by a subway at a predetermined speed, for example, a characteristic lateral acceleration and a characteristic ⁇ yaw rate, which depends on the radius of the curve and the Ge ⁇ speed of the subway are.
  • the vehicle 2 receives information about the current speed of the vehicle 2. This makes it possible for the computing device 9-1 to normalize the measured values 5 based on the current speed or to adapt the reference measured values 7-1 to 7-n to the current speed.
  • Magnetic field sensors can be used, for example, as a compass and detect an orientation of the vehicle 2. This makes it possible, for example, to identify at intersecting subway lines on the basis of the orientation of the vehicle 2 on which of the subway lines the vehicle 2 moves. It can also be using a pressure sensor such as a height of the vehicle 2 ⁇ be true.
  • Satellite-based position sensors can e.g. are used to perform an inaccurate detection of the position of the vehicle 2.
  • the possible candidates for the current position 10 in the data memory 6 can be restricted and the computing device only has to compare the current measured values 5 with a limited data set. This speeds up the calculation of the current position. It can e.g. a radius can be specified around the inaccurately detected position. For comparison, only those reference measured values 7-1 to 7-n are then used, which relate to positions which lie within the predefined radius around the inaccurately detected position.
  • the data memory 6 in one embodiment may have reference measured values 8-1 to 8-n for a plurality of routes 3.
  • the computing device 9-1 can compare the measured values 5 with the reference measured values 8-1 to 8-n of the different routes 3 and in this way determine on which route 3 the vehicle 2 is moving.
  • the computing device can, for example 9-1 also make a time derivative or integration of readings 5 or a transformation of the measured values in the 5 Fri ⁇ frequency range or the like.
  • the reference measurement values 8-1 to 8-n may be stored in a corresponding form.
  • Figure 2 designed as a train car 2 is 2 Darge ⁇ is having an embodiment of a sensor device according to the invention 1-2. For clarity and to avoid repetition, only those components of the sensor device 1-2 are shown in FIG 2, which were not yet explained in detail to FIG 1.
  • the sensor device 1-2 of FIG. 2 has three wireless communication interfaces 12-1 to 12-3, which serve to output the current position 10 of the train 2 wirelessly. This information can for example be detected by a smartphone of an occupant of the train 2 and displayed to the occupant. In ei ⁇ ner embodiment, a wireless communication interface can also only be provided 12-1 to 12-3. If three wireless communication interfaces 12-1 to 12- 3 or more wireless communication interfaces are provided, the current position 10 can be transmitted, for example, to smartphones according to the iBeacon standard. In such an The wireless communication interfaces 12-1 to 12-3 are designed as Bluetooth interfaces 12-1 to 12-3. The iBeacon standard provides that a predetermined unique identifier is output over each of the wireless communication interfaces 12-1 through 12-3. This is the same for each of the wireless communication interfaces 12-1 to 12-3 and identifies, for example, the provider of the transport service or the like.
  • a unique primary identifier and a unique secondary identifier can also be specified for each of the predefined positions 8-1 to 8-n.
  • the sensor device 1-2 of FIG. 2 furthermore has a reference sensor 11, which may be, for example, a calibrated or manually calibrated GPS sensor 11.
  • a reference sensor 11 which may be, for example, a calibrated or manually calibrated GPS sensor 11.
  • the controller 9-2 may be placed in a detection mode. In this mode, the vehicle 2 can perform a re ⁇ reference travel on a predetermined route.
  • the control device 9-2 can transmit the measured values 5 output by the sensors 4 in the data memory 6 as reference measured values 7 -1 to 7-n together with the current position 10, which can be detected by the GPS sensor 11, store. In this way, the sensor device 1-2 can also be used to detect the current position 10 of a vehicle 2 on a route 3 not yet stored in the data memory 6.
  • the method illustrated in FIG. 3 can be used to determine the current position 10 of a vehicle 2.
  • measured values 5 of a movement of the vehicle 2 and / or physical variables of an environment of the vehicle 2 are detected, SI.
  • the acquired measured values 5 are then compared with stored reference ge ⁇ measured values 7-1 to 7-n, to each of which a predetermined position is stored 8-1 to 8-n, S2.
  • Corresponding to the respective reference measurement values 7-1 to 7-n corresponding position 8-1 to 8-n is in an over ⁇ conformity of the detected measurement values 5 with the reference measuring values ⁇ 7-1 to 7-n as the current position 10 of the vehicle 2 issued, S3.
  • measured values 5 are detected within the scope of the method, they may have an acceleration, a rotation rate or the like of the vehicle 2.
  • a movement of the vehicle can also be calculated from these measured values 5.
  • magnetic fields, pressures, satellite-based position data, a time or the like can also be detected.
  • the current position 10 may be over a wireless communication interface 12-1 to 12-3.
  • a wireless communication interface 12-1 to 12-3. are given. This allows the simple transfer of the current position 10, for example, to smart phones, tablet PCs or notebooks, the occupant of the vehicle 2.
  • WLAN interface a GSM interface or the like may be formed.
  • reference measured values 7-1 to 7-n can be stored for a plurality of predetermined routes 3. Based on the detected measured values 5 can then be determined on which of the predetermined routes 3, the vehicle 2 moves.
  • the respectively current position 10 can be read by a reference sensor 11, e.g. a calibrated by a user satellite-based sensor 11, are queried.
  • 4 shows a route 3, on which predetermined positions
  • the route 3 may e.g. be the route 3 of a subway line.
  • the five positions 8-2 through 8-6 are shown.
  • the number of positions 8-2 to 8-6 may depend on the length of the route 3 and the desired spatial resolution. For example, if a spatial resolution of a maximum of five meters is desired, you can Route 3 every five meters corresponding positions 8-2 to 8-6 be provided.
  • the computing device 9-1, 9-2 may be configured to interpolate the reference measured values 7-1 to 7-n between two positions 8-1 to 8-n. This makes it possible to increase the spatial resolution of having to hinterle ⁇ gen without further re ⁇ ference readings 7-1 to 7-n in the data memory. 6
  • the curve at which position 8-3 is located will be reflected in reference measurements 7-3, for example characteristic acceleration values and yaw rates which are reproduced by the sensors 4 and the measured values 5 during a travel through this curve.
  • reference measurements 7-3 for example characteristic acceleration values and yaw rates which are reproduced by the sensors 4 and the measured values 5 during a travel through this curve.
  • the reference measurements 7-1 to 7-n may be e.g. also have SSIDs and corresponding signal strengths of WLAN networks or the like.
  • Vibration sensors may e.g. also detect characteristic vibrations, e.g. be generated in a certain section of the route 3.
  • certain routes 3 may also be excluded in one embodiment, since e.g. no vehicle on the corresponding route 3 or corresponding positions 8-1 to 8-n of the respective route at the respective time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Navigation (AREA)

Abstract

L'invention concerne un dispositif de détection pour un véhicule se déplaçant le long d'un itinéraire prédéfini, notamment un véhicule ferroviaire, comportant une pluralité de détecteurs conçus pour détecter un mouvement du dispositif de détection et/ou des grandeurs physiques d'un environnement du dispositif de détection et fournir des valeurs de mesure correspondantes, les détecteurs présentant des détecteurs de champ magnétique pour détecter une orientation et/ou des détecteurs de pression et/ou des horloges en temps réel; une mémoire de données conçue pour enregistrer des valeurs de mesure de référence pour les détecteurs associées à des positions prédéfinies pour l'itinéraire prédéfini; et un dispositif de calcul conçu pour comparer les valeurs de mesure fournies par les détecteurs aux valeurs de mesure de référence enregistrées et, en cas de correspondance des valeurs de mesure fournies par les détecteurs et des valeurs de mesure de référence respectives, fournir la position correspondant aux valeurs de mesure de référence respectives en tant que position réelle du dispositif de détection. L'invention concerne également un véhicule correspondant et un procédé correspondant.
EP16713353.7A 2015-03-26 2016-03-22 Détermination de la position d'un véhicule Withdrawn EP3247976A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015205535.3A DE102015205535A1 (de) 2015-03-26 2015-03-26 Bestimmen der Position eines Fahrzeugs
PCT/EP2016/056234 WO2016150949A1 (fr) 2015-03-26 2016-03-22 Détermination de la position d'un véhicule

Publications (1)

Publication Number Publication Date
EP3247976A1 true EP3247976A1 (fr) 2017-11-29

Family

ID=55646556

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16713353.7A Withdrawn EP3247976A1 (fr) 2015-03-26 2016-03-22 Détermination de la position d'un véhicule

Country Status (4)

Country Link
US (1) US20180095157A1 (fr)
EP (1) EP3247976A1 (fr)
DE (1) DE102015205535A1 (fr)
WO (1) WO2016150949A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017114696A1 (de) * 2017-06-30 2019-01-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Bewertung der Genauigkeit eines zu testenden Systems zur Positionsbestimmung eines Schienenfahrzeuges
DE102018115373A1 (de) 2017-06-30 2019-01-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur infrastrukturlosen Detektion einer Überfahrt eines Gleisabschnitts durch ein Schienenfahrzeug
DE102018202080A1 (de) * 2018-02-09 2019-08-14 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren zum Bestimmen der Position eines Fahrzeugs in einem für satellitengestützte Ortungssysteme nicht erfassbaren Streckenabschnitt
JP7234022B2 (ja) * 2019-04-18 2023-03-07 株式会社日立製作所 情報収集システムおよび情報収集方法
EP3828505A1 (fr) * 2019-11-27 2021-06-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Procédé d'étalonnage d'un magnétomètre agencé sur un véhicule

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532104C1 (de) * 1995-08-30 1997-01-16 Daimler Benz Ag Verfahren und Vorrichtung zur Bestimmung der Position wenigstens einer Stelle eines spurgeführten Fahrzeugs
DE10104946B4 (de) * 2001-01-27 2005-11-24 Peter Pohlmann Verfahren und Vorrichtung zur Bestimmung der aktuellen Position und zur Überwachung des geplanten Weges eines Objektes
DE102009020428A1 (de) * 2008-11-19 2010-05-20 Eureka Navigation Solutions Ag Vorrichtung und Verfahren für ein Schienenfahrzeug
KR101462058B1 (ko) * 2010-10-22 2014-11-19 에스케이 텔레콤주식회사 로그 데이터를 이용한 ap 위치 추정 방법과 그를 위한 장치 및 단말기
US20130339489A1 (en) * 2011-11-30 2013-12-19 Sailesh Katara Mobile computing application for roadway pavement data
US9194706B2 (en) * 2012-03-27 2015-11-24 General Electric Company Method and system for identifying a directional heading of a vehicle
EP2883072A1 (fr) * 2012-08-10 2015-06-17 Peiker acustic GmbH & Co. KG Procédé de navigation et procédé pour incorporer au moins un émetteur supplémentaire dans un système de navigation
US9182240B2 (en) * 2012-09-26 2015-11-10 Intel Corporation Method, apparatus and system for mapping a course of a mobile device
DE102012219111A1 (de) * 2012-10-19 2014-04-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Lokalisierung eines Schienenfahrzeugs innerhalb eines Schienennetzes
CA2900522C (fr) * 2013-03-13 2019-10-29 Wabtec Holding Corp. Systeme et procede de gestion de reseau ferroviaire
US8989985B2 (en) * 2013-08-14 2015-03-24 Thales Canada Inc. Vehicle-based positioning system and method of using the same
US9327743B2 (en) * 2013-12-19 2016-05-03 Thales Canada Inc Guideway mounted vehicle localization system

Also Published As

Publication number Publication date
WO2016150949A1 (fr) 2016-09-29
DE102015205535A1 (de) 2016-09-29
US20180095157A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
WO2016150949A1 (fr) Détermination de la position d'un véhicule
DE102012020297B4 (de) Verfahren zur Zuordnung eines Senders zu einem detektierten Objekt in der Kraftfahrzeug-zu-Kraftfahrzeug-Kommunikation und Kraftfahrzeug
EP2347279A1 (fr) Amélioration et validation d'une détermination de position
WO2018210468A1 (fr) Procédé, dispositif et système pour détecter un chantier routier
DE112015001150T5 (de) Verfahren, Vorrichtung und System zur Unterstützung von Platooning
EP2531391B1 (fr) Procédé et dispositif de contrôle de l'intégrité d'un train
DE102008012660A1 (de) Serverbasierte Warnung vor Gefahren
WO2009043644A1 (fr) Procédé de commande et système
EP2953111A1 (fr) Procédé et dispositif destinés à déterminer des aires de stationnement libres sur des parkings de camions et communication au conducteur de camion
EP3506234A1 (fr) Procédé de détermination de l'emplacement de stationnement d'un véhicule
EP0795454A1 (fr) Procédé de détermination de position d'un véhicule guidé sur rails et dispositif de mise en oeuvre du procédé
EP3313105B1 (fr) Procédé de contrôle d'une autorisation d'un dispositif de déverrouillage mobile ainsi qu'appareil de commande pour un véhicule
EP3131080A1 (fr) Vehicule de transport de personnes et aide a l'orientation
DE102018007960A1 (de) Verfahren zum Abgleich von Kartenmaterial mit einer erfassten Umgebung eines Fahrzeugs, Steuergerät, eingerichtet zum Ausführen eines solchen Verfahrens, sowie Fahrzeug mit einem solchen Steuergerät
WO2019086208A1 (fr) Localisation de véhicule ferroviaire
EP3221662B1 (fr) Dispositif et méthode pour déterminer au moins une position d'un dispositif terminal
EP1213202B1 (fr) Procédé pour représenter l'état de la voie et/ou les caractéristiques de fonctionnement mécaniques de véhicules sur rails
EP3446302A1 (fr) Procédé, dispositif et agencement de poursuite d'objets en mouvement
EP1972894B1 (fr) Procédé, dispositif assisté par ordinateur et système destinés à la détermination d'une distance parcourue
EP3495847A1 (fr) Agencement de tachygraphe et procédé de fonctionnement d'un agencement de tachygraphe
EP4031434A1 (fr) Véhicule, en particulier sur rails, et procédé pour déterminer si le véhicule a quitté un itinéraire prédéfini
DE102012224422B3 (de) Trägheitsnavigation mithilfe eines mobilen Geräts unter Verwendung stationärer Referenzpunkte
DE102006061811A1 (de) Verfahren zum Orten eines Fahrzeugs
DE102013202255B4 (de) Verfahren und Vorrichtung zur Bestimmung von Verkehrsstärken
DE102021209314A1 (de) Verfahren und System zur Bestimmung der Genauigkeit mindestens einer Infrastrukturkomponente eines Infrastruktursystems zur Fahrunterstützung von zumindest teilautomatisiert geführten Kraftfahrzeugen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS MOBILITY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190528