EP3246536A1 - Procede de synchronisation d'une turbine au reseau electrique - Google Patents

Procede de synchronisation d'une turbine au reseau electrique Download PDF

Info

Publication number
EP3246536A1
EP3246536A1 EP16169924.4A EP16169924A EP3246536A1 EP 3246536 A1 EP3246536 A1 EP 3246536A1 EP 16169924 A EP16169924 A EP 16169924A EP 3246536 A1 EP3246536 A1 EP 3246536A1
Authority
EP
European Patent Office
Prior art keywords
turbine
frequency
acceleration
network
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16169924.4A
Other languages
German (de)
English (en)
Inventor
Marc Borowski
Michael Winkel
Gerta Zimmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP16169924.4A priority Critical patent/EP3246536A1/fr
Publication of EP3246536A1 publication Critical patent/EP3246536A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting

Definitions

  • the invention relates to a method for synchronizing a turbine with a power grid and an associated control device.
  • the object of the present invention is to provide a method for improved synchronization of a turbine with an AC network.
  • the solution to this problem can be found in particular in the independent claims.
  • the subclaims indicate embodiments. Further details can be found in the description.
  • Step B) is necessary because without a detection of the differential angle is also not clear how the differential angle is to change targeted.
  • the differential angle between the turbine and the grid is about the differential angle of the voltage in front of and behind the switch between the grid and the generator.
  • the differential speed is to be detected in step C).
  • step D) With a matching speed of the turbine and the AC network, a target angle position between the turbine and the AC network that is suitable for a synchronous feed is to be achieved. If this is not done by chance, the difference angle and the difference speed must be recorded in order to be able to regulate optimally.
  • the correct acceleration is selected, so that at a matching speed of the turbine and AC network, a suitable synchronous feed target position between the turbine and AC network is achieved.
  • a difference angle of zero is desired as the target angular position.
  • phase difference is also used synonymously. It can also be spoken of the desired phase position instead of the target angular position.
  • the present method allows a much faster synchronization than the procedure described above. This is very important as there may be situations where it is crucial to be able to quickly start feeding before instabilities occur in the grid.
  • the acceleration can not be abruptly changed at a certain time or under a certain condition.
  • the acceleration can therefore not follow a discontinuous change of an acceleration setpoint. Therefore, in the present case, the acceleration target value is continuously changed. This can largely follow the acceleration of the turbine.
  • step D By accelerating or decelerating according to step D), that is to say following a setpoint trajectory, the setpoint acceleration is continuously adjusted. Specifically, the position of the valve for supplying steam is constantly changed, as a rule, the steam supply is reduced continuously.
  • a deceleration of the turbine is required - if at all - only to a very small extent. Since there are always some frictional losses, there is a delay due solely to the fact that no more steam is supplied. In order to keep the turbine speed constant, even if the generator is not running, a low steam supply is required. Of course, if necessary, the turbine can be delayed beyond the already occurring friction losses.
  • the mains frequency may change due to fluctuations in the network.
  • steps B) and C) ie detection of the differential angle and the differential speed, a changing network frequency is taken into account.
  • a changing network frequency is taken into account.
  • the desired trajectory is selected such that the acceleration should be zero when the target angular position is reached. It is clear that the acceleration does not have to be exactly zero. However, it makes sense to choose such a desired trajectory in which the acceleration should be zero when reaching the target angular position. This allows the synchronization to be stable.
  • the desired acceleration is converted to a desired speed, which is transferred to a turbine control unit.
  • the task of the turbine control unit is to control the valve position for the steam supply and thus the turbine. In the usual turbine control units, this is done inter alia depending on a target speed. Therefore, the conversion of the target acceleration takes place in a target speed. This can be done by integration.
  • the turbine control unit of course, ultimately ensures acceleration.
  • steps B), C) and D) are made repeatedly or continuously. It has already been mentioned above that the target acceleration should be adjusted as continuously as possible. This is the better, the more frequently steps B) and C) are carried out and, as a consequence, step D).
  • the output frequency is about 2.5 Hz below the line frequency. This results in a sufficient distance from the mains frequency, so that is started in time with a controlled acceleration. Excessive distance between the output frequency and the mains frequency is of no use, since the differential angle and differential speed are still changing too much.
  • step A) takes place with a selected acceleration without consideration of the differential angle and the differential speed.
  • the acceleration up to the output speed can be done easily and as usual in the art.
  • the acceleration according to desired trajectory can be done from the output speed.
  • the invention also relates to a control device for a turbine, which is set up to control a turbine according to a method described above.
  • a control device often differs only marginally from the control devices known in the prior art. Essentially, another programming of known devices is sufficient.
  • the synchronization devices described above can also detect the differential angle and differential speed of turbine and AC network. There is a lack of appropriate programming.
  • a turbine control unit is provided to control the turbine depending on a target speed transmitted to the turbine control unit, by controlling the position of a valve for steam supply to the turbine.
  • Such turbine control units are known and already described above. It is advantageous that they can be used unchanged. As far as the target acceleration is converted into a desired speed, no modification of the turbine control unit is required.
  • FIG. 1 is the time value in seconds on the right value axis and the frequency in hertz on the high-value axis. Shown is a timeline beginning 40 seconds before the scheduled grid frequency is reached. The dotted line at 50 hertz indicates the grid frequency. Up to the frequency of 47.5 hertz, the turbine is constantly accelerated with an acceleration of 1/6 Hz / s. This frequency can be considered as the output frequency, from which a regulated acceleration takes place.
  • the dashed ascending line indicates the frequency that the turbine would reach if the acceleration continued to occur after reaching the 47.5 Hz with the constant 1/6 Hz / s.
  • the solid line indicates the turbine frequency that would result if the turbine were accelerated according to a desired trajectory.
  • the setpoint trajectory specifies the target acceleration that is to be present as a function of the differential angle and the differential speed, so that a target angular position between the turbine and the AC network that is suitable for synchronous feed is achieved at the same turbine and AC network speed.
  • Fig. 2 The real conditions are Fig. 2 refer to.
  • Fig. 2 is again on the right value axis, the time in seconds and the high-frequency axis, the frequency in Hertz indicated.
  • the dashed line shows the course of the turbine frequency which would result according to the above-described desired trajectory.
  • the adjacent line with asterisks shows the actual resulting course of the turbine frequency.
  • the dotted line shows the turbine frequency, which is idealized after the usual target acceleration.
  • the adjacent solid line shows the previous real history of the turbine frequency.
  • Fig. 3 is the time value in seconds on the right value axis and the frequency in Hertz on the high value axis.
  • the dashed line indicates the increasing in this case network frequency.
  • the dotted line shows the desired trajectory adapted thereto, in other words the turbine frequency would result in the ideal following of the desired trajectory.
  • the solid line shows the real progression of the turbine frequency. Again, the turbine reaches the grid frequency very quickly. Overshoot is avoided.
  • the present method is therefore also suitable for drifting network frequency
  • Fig. 4 the time value in seconds is indicated on the right value axis and the differential angle on the high value axis.
  • the values can exceed 360 °. This is due to the fact that several revolutions occur until synchronization.
  • the desired target angular position is 0 ° and is shown by the dashed line.
  • the solid line shows the difference angle reached.
  • the speedy achievement of the target angular position is achieved by accelerating the turbine according to the desired trajectory.
  • Fig. 4 sets to the difference angle and the target angular position.
  • the separated figures are only due to the representability.
  • FIG. 5 is a section of FIG. 4 to represent the particularly interesting conditions at small difference angles.
  • the time value is shown in seconds on the right axis and the acceleration in hertz per second on the high value axis.
  • the curve shows the target acceleration, ie the acceleration that is desired.
  • the nominal acceleration has no jumps, it drops rather linearly.
  • the advantage of the invention is clear: The present linearly varying with time target acceleration is almost achievable, while the in the Technique provided jumps can not be achieved because the position of a valve can not follow a jump.
  • Fig. 7 is the differential value in degrees on the right-hand value axis and the differential speed in Hertz on the high-value axis.
  • the curve indicates the target trajectory resulting from the in Fig. 6 shown target acceleration results, so the dependence on the differential angle to be reached differential speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
EP16169924.4A 2016-05-17 2016-05-17 Procede de synchronisation d'une turbine au reseau electrique Withdrawn EP3246536A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16169924.4A EP3246536A1 (fr) 2016-05-17 2016-05-17 Procede de synchronisation d'une turbine au reseau electrique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16169924.4A EP3246536A1 (fr) 2016-05-17 2016-05-17 Procede de synchronisation d'une turbine au reseau electrique

Publications (1)

Publication Number Publication Date
EP3246536A1 true EP3246536A1 (fr) 2017-11-22

Family

ID=56203090

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16169924.4A Withdrawn EP3246536A1 (fr) 2016-05-17 2016-05-17 Procede de synchronisation d'une turbine au reseau electrique

Country Status (1)

Country Link
EP (1) EP3246536A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3511535A1 (fr) 2018-01-10 2019-07-17 Siemens Aktiengesellschaft Installation et procédé de fonctionnement d'une installation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914394A1 (fr) * 2006-10-12 2008-04-23 General Electric Company Procédés et appareil pour la stabilisation de la fréquence d'un réseau électrique
EP2813675A1 (fr) * 2013-06-14 2014-12-17 Siemens Aktiengesellschaft Procédé de couplage d'une turbine à vapeur et d'une turbine à gaz avec un angle différentiel souhaité
EP3012420A1 (fr) * 2014-10-24 2016-04-27 Siemens Aktiengesellschaft Procédé de synchronisation d'une turbine au réseau électrique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914394A1 (fr) * 2006-10-12 2008-04-23 General Electric Company Procédés et appareil pour la stabilisation de la fréquence d'un réseau électrique
EP2813675A1 (fr) * 2013-06-14 2014-12-17 Siemens Aktiengesellschaft Procédé de couplage d'une turbine à vapeur et d'une turbine à gaz avec un angle différentiel souhaité
EP3012420A1 (fr) * 2014-10-24 2016-04-27 Siemens Aktiengesellschaft Procédé de synchronisation d'une turbine au réseau électrique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3511535A1 (fr) 2018-01-10 2019-07-17 Siemens Aktiengesellschaft Installation et procédé de fonctionnement d'une installation

Similar Documents

Publication Publication Date Title
EP3095165B1 (fr) Procédé et dispositif de réglage et/ou commande pour faire fonctionner une éolienne et/ou un parc éolien et éolienne et parc éolien correspondants
EP1820963B1 (fr) Procédé de commande d'une éolienne
EP2093419B1 (fr) Procédé de régulation d'une éolienne et éolienne
EP3097623B1 (fr) Régulateur de puissance avec précommande pour parc èolien
DE3422210A1 (de) Verfahren und anordnung zum steuern einer turbine
CH702608A2 (de) Verfahren und System zum Steuern eines Hochfahrvorgangs einer Gasturbine.
EP1916416B1 (fr) Procédé de fonctionnement d'une éolienne
DE2363270A1 (de) Verfahren und vorrichtung zur regelung eines dampferzeugers
DE2811123A1 (de) Verfahren zum anfahren eines synchronmotors mit hilfe eines umrichters
EP3183435B1 (fr) Procédé de synchronisation d'une turbine au réseau électrique
EP2562414B1 (fr) Procédé de fonctionnement d'une éolienne lors de la survenue d'une erreur de réseau avec diminution de la tension ainsi qu'une telle éolienne
EP3246536A1 (fr) Procede de synchronisation d'une turbine au reseau electrique
EP3430244B1 (fr) Synchronisation d'une turbine a l'aide d'un reseau a courant alternatif selon une trajectoire theorique pour l'angle differentiel theorique
EP3776787A1 (fr) Procédé d'injection de puissance électrique dans un réseau d'alimentation électrique
EP3086429A1 (fr) Systeme de commande d'eolienne ou de parc eolien et procede de commande
EP3426897B1 (fr) Procede de couplage d'une turbine a vapeur et d'une turbine a gaz avec reglage de l'angle differentiel souhaite a l'aide d'une acceleration de consigne
WO2013139862A2 (fr) Procédé de synchronisation d'un générateur avec un réseau
DE102018115782B4 (de) Stromaggregat und Verfahren zum Einspeisen von insbesondere aus gasförmigen Brennstoffen wie Biogas gewonnener Energie in ein elektrisches Energieversorgungsnetz
EP0146726B1 (fr) Procédé et dispositif pour mettre en oeuvre une ligne de transmission à courant continu à haute tension avec commande d'angle d'avance de phase du convertisseur
WO2020148313A1 (fr) Éolienne servant à injecter de l'énergie électrique dans un réseau de distribution électrique
DE102015014296A1 (de) Verfahren und Steuerungssystem zum Steuern eines Anstellwinkels eines Rotorblatts sowie Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage
DE102014103027A1 (de) Nachführregler für eine U/f-gesteuerte Asynchronmaschine
EP3832130B1 (fr) Procédé de commande d'une éolienne et/ou d'un parc éolien
EP3382196B1 (fr) Éolienne dotée du transformateur d'installation à courant de court-circuit renforcé
EP3587763A1 (fr) Procédé de régulation d'une machine à énergie fluidique et dispositif de régulation, en particulier destiné à la mise en ouvre dudit procédé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180523