EP3246374B1 - Liquid-crystal medium - Google Patents

Liquid-crystal medium Download PDF

Info

Publication number
EP3246374B1
EP3246374B1 EP17171223.5A EP17171223A EP3246374B1 EP 3246374 B1 EP3246374 B1 EP 3246374B1 EP 17171223 A EP17171223 A EP 17171223A EP 3246374 B1 EP3246374 B1 EP 3246374B1
Authority
EP
European Patent Office
Prior art keywords
compounds
formula
atoms
ppm
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17171223.5A
Other languages
German (de)
French (fr)
Other versions
EP3246374A3 (en
EP3246374A2 (en
Inventor
Gavin Hung
Lawrence Huang
Max NIEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP3246374A2 publication Critical patent/EP3246374A2/en
Publication of EP3246374A3 publication Critical patent/EP3246374A3/en
Application granted granted Critical
Publication of EP3246374B1 publication Critical patent/EP3246374B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/46Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/062Non-steroidal liquid crystal compounds containing one non-condensed benzene ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3098Unsaturated non-aromatic rings, e.g. cyclohexene rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/345Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing two nitrogen atoms
    • C09K19/3472Pyrimidine condensed or bridged with another ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0466Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2O- chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/124Ph-Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3024Ph-Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3025Cy-Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3027Compounds comprising 1,4-cyclohexylene and 2,3-difluoro-1,4-phenylene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • C09K2019/3078Cy-Cy-COO-Ph-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring
    • C09K2019/3425Six-membered ring with oxygen(s) in fused, bridged or spiro ring systems

Definitions

  • the invention relates to a liquid-crystalline medium, in particular based on a mixture of polar compounds, and to the use thereof for an active-matrix display, in particular based on the VA, PSA, PS-VA, PA-VA, PALC, FFS, PS-FFS, IPS or PS-IPS effect.
  • Media of this type can be used, in particular, for electro-optical displays having active-matrix addressing based on the ECB effect and for IPS (in-plane switching) displays or FFS (fringe field switching) displays.
  • IPS in-plane switching
  • FFS far field switching
  • VAN v ertically a capitad n ematic
  • MVA m ulti-domain v ertical a lignment
  • PVA patterned vertical alignment, for example: Kim, Sang Soo, paper 15.4: “Super PVA Sets New State-of-the-Art for LCD-TV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book II, pp. 760 to 763 ), ASV (advanced super view, for example: Shigeta, Mitzuhiro and Fukuoka, Hirofumi, paper 15.2: "Development of High Quality LCDTV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book II, pp.
  • LC phases which have to satisfy a multiplicity of requirements.
  • Particularly important here are chemical resistance to moisture, air and physical influences, such as heat, infrared, visible and ultraviolet radiation and direct and alternating electric fields.
  • LC phases are required to have a liquid-crystalline mesophase in a suitable temperature range and low viscosity.
  • None of the hitherto-disclosed series of compounds having a liquid-crystalline mesophase includes a single compound which meets all these requirements.
  • Matrix liquid-crystal displays are known.
  • Non-linear elements which can be used for individual switching of the individual pixels are, for example, active elements (i.e. transistors).
  • active matrix is then used, where a distinction can be made between two types:
  • the electro-optical effect used is usually dynamic scattering or the guest-host effect.
  • the use of single-crystal silicon as substrate material restricts the display size, since even modular assembly of various part-displays results in problems at the joints.
  • the electro-optical effect used is usually the TN effect.
  • TFTs comprising compound semiconductors, such as, for example, CdSe, or TFTs based on polycrystalline or amorphous silicon.
  • CdSe compound semiconductors
  • TFTs based on polycrystalline or amorphous silicon The latter technology is being worked on intensively worldwide.
  • the TFT matrix is applied to the inside of one glass plate of the display, while the other glass plate carries the transparent counterelectrode on its inside. Compared with the size of the pixel electrode, the TFT is very small and has virtually no adverse effect on the image.
  • This technology can also be extended to fully colour-capable displays, in which a mosaic of red, green and blue filters is arranged in such a way that a filter element is opposite each switchable pixel.
  • MLC displays of this type are particularly suitable for TV applications (for example pocket TVs) or for high-information displays in automobile or aircraft construction.
  • TV applications for example pocket TVs
  • high-information displays in automobile or aircraft construction Besides problems regarding the angle dependence of the contrast and the response times, difficulties also arise in MLC displays due to insufficiently high specific resistance of the liquid-crystal mixtures [ TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, pp. 141 ff., Par is; STROMER, M., Proc.
  • VA displays have significantly better viewing-angle dependencies and are therefore principally used for televisions and monitors.
  • frame rates image change frequency/repetition rates
  • the properties such as, for example, the low-temperature stability, must not be impaired.
  • the invention is based on the object of providing liquid-crystal mixtures, in particular for monitor and TV applications, which are based on the ECB effect or on the IPS or FFS effect, which do not have the above-mentioned disadvantages or only do so to a reduced extent.
  • it must be ensured for monitors and televisions that they also operate at extremely high and extremely low temperatures and at the same time have short response times and at the same time have improved reliability behaviour, in particular have no or significantly reduced image sticking after long operating times.
  • a stabiliser in a liquid-crystalline medium as shown for example in EP 2 990 460 A1 in which a liquid-crystalline medium with negative dielectric anisotropy is stabilised.
  • Known stabilisers are e.g. hindered amines (HALS) as proposed in EP 2 993 216 A1 or antioxidants of the sterically hindered phenol type as shown in EP 2 883 938 A1 .
  • HALS hindered amines
  • antioxidants of the sterically hindered phenol type as shown in EP 2 883 938 A1 .
  • mixtures of both types can be used, as for example shown in WO 2016/146245 A1 , EP 3 127 991 A1 and EP 3 081 621 A2 .
  • the LC media according to the present invention also solve the problem of low reliability due to free radicals which are generated for example on the surface of the polyimide alignment layer, especially in LC media with negative dielectric anisotropy. This can lead to reduced VHR values and low reliability when the LC medium is exposed to extenral stress, especially during the LC display manufacturing process, for example in processs steps like ODF (one drop filling), sealant curing, heat alignment and/or cell assembly.
  • ODF one drop filling
  • sealant curing heat alignment and//or cell assembly.
  • the invention relates to a liquid crystal (LC) medium with positive dielectric anisotropy comprising one or more compounds selected from formulae Y, CY, PY and LY, and one or more compounds of formula S1 and one or more compounds of formula S2 wherein the individual radicals, independently of each other and on each occurrence identically or differently, have the following meanings: with at least one ring F being cyclohexenylene,
  • the invention furthermore relates to an LC medium as described above and below, which additionally comprises one or more polymerisable compounds.
  • the invention furthermore relates to an LC medium or LC display as described above and below, wherein the polymerisable compounds are polymerised.
  • the invention furthermore relates to a process for preparing an LC medium as described above and below, comprising the steps of mixing one or more compounds of formula CY and/or with one or more compounds of formula S1 and one or more compounds of formula S2, and optionally with further LC compounds and/or additives.
  • the invention further relates to the use of LC medium in LC displays.
  • the invention furthermore relates to an LC display comprising one or more compounds of formula I or an LC medium according to the invention, in particular a VA, PS-VA, PA-VA, IPS, PS-IPS, PS-FFS or FFS display, in particular an UB-FFS display, comprising an LC medium as described above and below.
  • the mixtures according to the invention preferably exhibit very broad nematic phase ranges having clearing points ⁇ 70°C, preferably ⁇ 75°C, in particular ⁇ 80°C, very favourable values for the capacitive threshold, relatively high values for the holding ratio and at the same time very good low-temperature stabilities at -20°C and -30°C, as well as very low rotational viscosities and short response times.
  • the mixtures according to the invention are furthermore distinguished by the fact that, in addition to the improvement in the rotational viscosity ⁇ 1 , high reliability and high VHR values, even after UV exposure, can be achieved.
  • the mixtures according to the invention are furthermore distinguished by the fact that, in addition to the improvement in the rotational viscosity ⁇ 1 , relatively high values of the elastic constant K 3 for improving the response times can be observed.
  • the mixtures according to the invention have a particularly low value for the ratio ⁇ 1 /K 3 of rotational viscosity ⁇ 1 and elastic constant K 3 , which is an indicator of a fast response time.
  • Preferred compounds of formula S1 are selected from the following subformulae wherein n1 is an integer from 2 to 12 and wherein one or more H-atoms in the radical (CH 2 ) n1 are optionally replaced by a methyl, ethyl, propyl, butyl, pentyl or hexyl group.
  • the compounds of formula S1 are selected from those wherein X is H or CH 3 , preferably H.
  • Preferred compounds of this first preferred embodiment are those of formula S1-1 and S1-4, and subformulae S1-1a, S1-1b and S1-4a above.
  • the compounds of formula S are selected from those wherein X is O• or OH, preferably O•.
  • Preferred compounds of this second preferred embodiment are those of formula S1-2 and S1-3, preferably S1-2, and subformulae S1-2a, S1-2b, S1-2c and S1-3a above.
  • Particular preferred are compounds of formula S1-2a, S1-2b, S1-2c, most preferred those of formula S1-2a.
  • the compounds of formula S1 are selected from those wherein A is branched alkylene with 2 to 20 C atoms which is optionally substituted by one or more groups L A , wherein these substituents L A are selected from F, and straight-chain or branched alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy and alkoxycarbonyloxy, each having 1 to 12 C atoms and in which one or more H atoms may optionally be replaced by F or Cl.
  • Preferred compounds of this third preferred embodiment are those of formula S1-5 below and those of subformulae S1-1b and S1-2c above. wherein
  • Preferred compounds of formula S1-5 are those of subformulae S1-1b and S1-2c above.
  • Preferred compounds of formula S2 are selected from the following subformula
  • the proportion of compounds of formula S1 or its subformulae in the LC medium is from 10 to 1000 ppm,very preferably from 50 to 1000 ppm.
  • the proportion of compounds of formula S2 or its subformulae in the LC medium is from 10 to 1000 ppm,very preferably from 50 to 1000 ppm.
  • the LC medium contains 2 to 5, very preferably 2 or 3, most preferably 2 compounds selected from formula S1 and S2 or their subformulae.
  • the LC medium contains one or more compounds of formula S1 and one or more compounds of formula S2.
  • the compounds of formula S1 are especially suitable as light stabilizer to protect the LC medium in the display against UV stress.
  • the compounds of formula S2 are especially suitable as heat stabilizer to protect the LC medium in the display cell against high temperature stress.
  • the LC media according to this preferred embodiment combines both stabilizers, resulting in higher VHR and higher reliabiity compared to LC media containing only one stabilizer.
  • the LC medium according to this preferred embodiment contains a compound of formula S1-1 or S1-2 and a compound of formulae S2-1, most preferably a compound of formula S1-1a or S1-2a and a compound of formula S2-1a.
  • the LC medium contains two or more compounds of formula S1.
  • the LC medium according to this preferred embodiment contains a compound of formula S1-1 and a compound of formula S1-2, most preferably a compound of formula S1-1a and a compound of formula S1-2a.
  • both radicals L 1 and L 2 denote F.
  • the compounds of the formula Y are preferably selected from the group consisting of the following sub-formulae: in which, Alkyl and Alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1-6 C atoms, Alkoxy denotes a straight-chain alkoxy radical having 1-6 C atoms, Alkenyl and Alkenyl* each, independently of one another, denote a straight-chain alkenyl radical having 2-6 C atoms.
  • Particularly preferred compounds of the formula Y are selected from the group consisting of the following sub-formulae: wherein Alkoxy preferably denotes straight-chain alkoxy with 3, 4, or 5 C atoms.
  • Very preferred compounds of formula Y are those of formula Y6A1
  • both L 1 and L 2 denote F or one of L 1 and L 2 denotes F and the other denotes Cl. Very preferably both L 1 and L 2 denote F.
  • the compounds of the formula CY are preferably selected from the group consisting of the following sub-formulae: in which a denotes 1 or 2, alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1-6 C atoms, and alkenyl denotes a straight-chain alkenyl radical having 2-6 C atoms, and (O) denotes an oxygen atom or a single bond.
  • both L 1 and L 2 denote F or one of L 1 and L 2 denotes F and the other denotes Cl
  • both L 3 and L 4 denote F or one of L 3 and L 4 denotes F and the other denotes Cl.
  • the compounds of the formula PY are preferably selected from the group consisting of the following sub-formulae: in which alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1-6 C atoms, and alkenyl denotes a straight-chain alkenyl radical having 2-6 C atoms, and (O) denotes an oxygen atom or a single bond.
  • both L 1 and L 2 denote F or one of L 1 and L 2 denotes F and the other denotes Cl. Very preferably both L 1 and L 2 denote F.
  • the compounds of the formula LY are preferably selected from the group consisting of the following sub-formulae: in which R 1 has the meaning indicated above, alkyl denotes a straight-chain alkyl radical having 1-6 C atoms, (O) denotes an oxygen atom or a single bond, and v denotes an integer from 1 to 6.
  • the LC medium although containing one or more compounds of formula CY, PY, LY and/or Y, has positive dielectric anisotropy (so-called “hybrid mixtures").
  • Such LC media are especially suitable for use in IPS, FFS, PS-IPS and PS-FFS displays.
  • Preferred LC media with positive dielectric anisotropy contain one or more, preferably only one, compound of formula CY or its subformulae.
  • LC media with positive dielectric anisotropy contain one or more, preferably only one, compound of formula PY or its subformulae.
  • LC media with positive dielectric anisotropy contain one or more, preferably only one, compound of formula Y or its subformulae.
  • LC media with positive dielectric anisotropy contain one or more, preferably only one, compound of formula LY or its subformulae.
  • the concentration of compounds of formula Y, CY, PY and LY or their subformulae is preferably from 1 to 20% by weight, very preferably from 2 to 15% by weight.
  • the individual radicals, on each occurrence identically or differently, and each, independently of one another, have the following meaning:
  • Preferred compounds of formula AN and AY are those wherein R A2 is selected from ethenyl, propenyl, butenyl, pentenyl, hexenyl and heptenyl.
  • the LC medium comprises one or more compounds of formula AN selected from the following sub-formulae: in which alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1-6 C atoms, and alkenyl and alkenyl* each, independently of one another, denote a straight-chain alkenyl radical having 2-7 C atoms.
  • the LC medium comprises one or more compounds selected from formulae AN1, AN2 AN3 and AN6, very preferably one or more compounds of formula AN1 and/or AN6.
  • the LC medium comprises one or more compounds of formula AN selected from the following sub-formulae: in which m denotes 1, 2, 3, 4, 5 or 6, i denotes 0, 1, 2 or 3, and R b1 denotes H, CH 3 or C 2 H 5 .
  • the LC medium comprises one or more compounds of formula AY selected from the following sub-formulae: in which alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1-6 C atoms, "(O)" denotes an O-atom or a single bond, and alkenyl and alkenyl* each, independently of one another, denote a straight-chain alkenyl radical having 2-7 C atoms.
  • the proportion of compounds of formula AN and AY in the LC medium is from 2 to 70% by weight, very preferably from 5 to 60% by weight, most preferably from 10 to 50% by weight.
  • the LC medium contains 1 to 5, preferably 1, 2 or 3 compounds selected from formulae AN and AY.
  • the LC medium comprises one or more compounds of formula AY14, very preferably of AY14a.
  • the proportion of compounds of formula AY14 or AY14a in the LC medium is preferably 3 to 20% by weight.
  • alkenyl compounds of formula AN and/or AY enables a reduction of the viscosity and response time of the LC medium.
  • Preferred LC media having positive dielectric anisotropy are selected from the preferred embodiments below, including any combinations thereof.
  • the LC medium additionally comprises one or more polymerisable compounds.
  • the polymerisable compounds are preferably selected from formula M R a -B 1 -(Z b -B 2 ) m -R b M in which the individual radicals, on each occurrence identically or differently, and each, independently of one another, have the following meaning:
  • Particularly preferred compounds of the formula I are those in which B 1 and B 2 each, independently of one another, denote 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-2,6-diyl, phenanthrene-2,7-diyl, 9,10-dihydro-phenanthrene-2,7-diyl, anthracene-2,7-diyl, fluorene-2,7-diyl, coumarine, flavone, where, in addition, one or more CH groups in these groups may be replaced by N, cyclohexane-1,4-diyl, in which, in addition, one or more non-adjacent CH 2 groups may be replaced by O and/or S, 1,4-cyclohexenylene, bicycle[1.1.1]pentane-1,3-diyl, bicyclo[2.2.2]octane-1,4-diyl,
  • Particularly preferred compounds of the formula M are those in which B 1 and B 2 each, independently of one another, denote 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl or naphthalene-2,6-diyl,
  • Very preferred compounds of formula M are selected from the following formulae: in which the individual radicals, on each occurrence identically or differently, and each, independently of one another, have the following meaning:
  • trireactive compounds M15 to M31 in particular M17, M18, M19, M22, M23, M24, M25, M30 and M31.
  • the group is preferably wherein L on each occurrence, identically or differently, has one of the meanings given above or below, and is preferably F, Cl, CN, NO 2 , CH 3 , C 2 H 5 , C(CH 3 ) 3 , CH(CH 3 ) 2 , CH 2 CH(CH 3 )C 2 H 5 , OCH 3 , OC 2 H 5 , COCH 3 , COC 2 H 5 , COOCH 3 , COOC 2 H 5 , CF 3 , OCF 3 , OCHF 2 , OC 2 F 5 or P-Sp-, very preferably F, Cl, CN, CH 3 , C 2 H 5 , OCH 3 , COCH 3 , OCF 3 or P-Sp-, more preferably F, Cl, CH 3 , OCH 3 , COCH 3 oder OCF 3 , especially F or CH 3 .
  • Preferred compounds of formulae M1 to M31 are those wherein P 1 , P 2 and P 3 denote an acrylate, methacrylate, oxetane or epoxy group, very preferably an acrylate or methacrylate group.
  • Further preferred compounds of formulae M1 to M31 are those wherein one of Sp 1 , Sp 2 and Sp 3 is a single bond and another one of Sp 1 , Sp 2 and Sp 3 is different from a single bond.
  • Further preferred compounds of formulae M1 to M31 are those wherein those groups Sp 1 , Sp 2 and Sp 3 that are different from a single bond denote -(CH 2 ) s1 -X"-, wherein s1 is an integer from 1 to 6, preferably 2, 3, 4 or 5, and X" is X" is the linkage to the benzene ring and is -O-, -O-CO-, -CO-O-, -O-CO-O- or a single bond.
  • polymerisable compounds of formulae M1 to M31 are those selected from Table D below.
  • LC media comprising one, two or three polymerisable compounds of formula M, preferably selected from formulae M1 to M31.
  • the proportion of polymerisable compounds of formula M in the LC medium is from 0.01 to 5%, very preferably from 0.05 to 1%, most preferably from 0.1 to 0.5%.
  • Such an LC medium is especially suitable for use in PSA displays where it shows low image sticking, a quick and complete polymerisation, the quick generation of a low pretilt angle which is stable after UV exposure, a high reliability, high VHR value after UV exposure, and a high birefringence.
  • the polymerisable compounds it is possible to increase the absorption of the LC medium at longer UV wavelengths, so that it is possible to use such longer UV wavelengths for polymerisation, which is advantageous for the display manufacturing process.
  • the polymerisable group P is a group which is suitable for a polymerisation reaction, such as, for example, free-radical or ionic chain polymerisation, polyaddition or polycondensation, or for a polymer-analogous reaction, for example addition or condensation onto a main polymer chain.
  • a polymerisation reaction such as, for example, free-radical or ionic chain polymerisation, polyaddition or polycondensation, or for a polymer-analogous reaction, for example addition or condensation onto a main polymer chain.
  • groups which are suitable for polymerisation with ring opening such as, for example, oxetane or epoxide groups.
  • polymerisable groups P are selected from the group consisting of vinyloxy, acrylate, methacrylate, fluoroacrylate, chloroacrylate, oxetane and epoxide, most preferably from acrylate and methacrylate.
  • Sp is different from a single bond, it is preferably of the formula Sp"-X", so that the respective radical P-Sp- conforms to the formula P-Sp"-X"-, wherein
  • X" is preferably -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-NR 0 -, -NR 0 -CO-, -NR 0 -CO-NR 00 - or a single bond.
  • Typical spacer groups Sp and -Sp"-X"- are, for example, -(CH 2 ) p1 -, - (CH 2 CH 2 O) q1 -CH 2 CH 2 -, -CH 2 CH 2 -S-CH 2 CH 2 -, -CH 2 CH 2 -NH-CH 2 CH 2 - or - (SiR 0 R 00 -O) p1 -, in which p1 is an integer from 1 to 12, q1 is an integer from 1 to 3, and R 0 and R 00 have the meanings indicated above.
  • Particularly preferred groups Sp and -Sp"-X"- are -(CH 2 ) p1 -, -(CH 2 ) p1 -O-, -(CH 2 ) p1 -O-CO-, -(CH 2 ) p1 -CO-O-, -(CH 2 ) p1 -O-CO-O-, in which p1 and q1 have the meanings indicated above.
  • Particularly preferred groups Sp" are, in each case straight-chain, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene, dodecylene, octadecylene, ethyleneoxyethylene, methyleneoxybutylene, ethylenethioethylene, ethylene-N-methylimino-ethylene, 1-methylalkylene, ethenylene, propenylene and butenylene.
  • the polymerisable compounds contained in the LC medium are polymerised or crosslinked (if one compound contains two or more polymerisable groups) by in-situ polymerisation in the LC medium between the substrates of the LC display, optionally while a voltage is applied to the electrodes.
  • the structure of the PSA displays according to the invention corresponds to the usual geometry for PSA displays, as described in the prior art cited at the outset. Geometries without protrusions are preferred, in particular those in which, in addition, the electrode on the colour filter side is unstructured and only the electrode on the TFT side has slots. Particularly suitable and preferred electrode structures for PS-VA displays are described, for example, in US 2006/0066793 A1 .
  • LC media containing polymerisable compounds allows the rapid establishment of a particularly low pretilt angle in PSA displays.
  • the LC media exhibit significantly shortened response times, in particular also the grey-shade response times, in PSA displays compared with the media from the prior art.
  • the LC media of the present invention preferably have a nematic phase range ⁇ 80 K, very preferably ⁇ 100 K, and preferably a rotational viscosity ⁇ 250 mPa ⁇ s, very preferably ⁇ 200 mPa ⁇ s, at 20°C.
  • the molecules in the layer of the LC medium in the switched-off state are aligned perpendicular to the electrode surfaces (homeotropically) or have a a tilted homeotropic alignment.
  • a realignment of the LC molecules takes place with the longitudinal molecular axes parallel to the electrode surfaces.
  • LC media according to the invention in particular for use in displays of the IPS and FFS type, preferably have a positive dielectric anisotropy ⁇ from +2 to +30, very preferably from +3 to +20, at 20°C and 1 kHz.
  • the birefringence ⁇ n in LC media according to the invention for use in displays of the IPS or FFS is preferably from 0.07 to 0.15, particularly preferably from 0.08 to 0.13.
  • the LC media according to the invention may also comprise further additives which are known to the person skilled in the art and are described in the literature, such as, for example, polymerisation initiators, inhibitors, stabilizers, surface-active substances or chiral dopants. These may be polymerisable or non-polymerisable.
  • the LC media contain one or more chiral dopants, preferably in a concentration from 0.01 to 1% by weight, very preferably from 0.05 to 0.5% by weight.
  • the chiral dopants are preferably selected from the group consisting of compounds from Table B below, very preferably from the group consisting of R- or S-1011, R- or S-2011, R- or S-3011, R- or S-4011, and R- or S-5011.
  • the LC media contain a racemate of one or more chiral dopants, which are preferably selected from the chiral dopants mentioned in the previous paragraph.
  • LC media for example, 0 to 15% by weight of pleochroic dyes, furthermore nanoparticles, conductive salts, preferably ethyldimethyldodecylammonium 4-hexoxybenzoate, tetrabutylammonium tetraphenylborate or complex salts of crown ethers (cf., for example, Haller et al., Mol. Cryst. Liq. Cryst. 24, 249-258 (1973 )), for improving the conductivity, or substances for modifying the dielectric anisotropy, the viscosity and/or the alignment of the nematic phases. Substances of this type are described, for example, in DE-A 22 09 127 , 22 40 864 , 23 21 632 , 23 38 281 , 24 50 088 , 26 37 430 and 28 53 728 .
  • conductive salts preferably ethyldimethyldodecylammonium 4-hexoxybenz
  • the LC media which can be used in accordance with the invention are prepared in a manner conventional per se, for example by mixing one or more of the above-mentioned compounds with one or more polymerisable compounds as defined above, and optionally with further liquid-crystalline compounds and/or additives.
  • the desired amount of the components used in lesser amount is dissolved in the components making up the principal constituent, advantageously at elevated temperature. It is also possible to mix solutions of the components in an organic solvent, for example in acetone, chloroform or methanol, and to remove the solvent again, for example by distillation, after thorough mixing.
  • the invention furthermore relates to the process for the preparation of the LC media according to the invention.
  • the LC media according to the invention may also comprise compounds in which, for example, H, N, O, Cl, F have been replaced by the corresponding isotopes like deuterium etc.
  • 1,4-cyclohexylene rings and 1,4-phenylene rings are represented as follows:
  • the cyclohexylene rings are trans-1,4-cyclohexylene rings.
  • Tables A1 and A2 Preferred mixture components are shown in Tables A1 and A2 below.
  • Table A1 In Table A1, R 1* denotes a group selected from the left-hand side chains and R 2* denotes a group selected from the right-hand side chains listed in Table III, L 1* and L 2* are independently of each other H or F, m and n are independently of each other an integer from 1 to 12, preferably 1, 2, 3, 4, 5 or 6, k is 0, 1, 2, 3, 4, 5 or 6, and (O)C m H 2m+1 means C m H 2m+1 or OC m H 2m+1 .
  • the LC media according to the invention comprise one or more compounds selected from the group consisting of compounds from Table A1.
  • the LC media according to the invention comprise one or more compounds selected from the group consisting of compounds from Table A2.
  • Table B shows possible chiral dopants which can be added to the LC media according to the invention.
  • the LC media preferably comprise 0 to 10% by weight, in particular 0.01 to 5% by weight, particularly preferably 0.1 to 3% by weight, of dopants.
  • the LC media preferably comprise one or more dopants selected from the group consisting of compounds from Table B.
  • Table C Table C shows possible stabilisers which can be added to the LC media according to the invention.
  • n denotes an integer from 1 to 12, preferably 1, 2, 3, 4, 5, 6, 7 or 8, and terminal methyl groups are not shown.
  • the LC media preferably comprise 0 to 10% by weight, in particular 1 ppm to 5% by weight, particularly preferably 1 ppm to 1% by weight, of stabilisers.
  • the LC media preferably comprise one or more stabilisers selected from the group consisting of compounds from Table C.
  • Table D Table D shows illustrative reactive mesogenic compounds which can be used in the LC media in accordance with the present invention.
  • the mixtures according to the invention comprise one or more polymerisable compounds, preferably selected from the polymerisable compounds of the formulae RM-1 to RM-131.
  • polymerisable compounds preferably selected from the polymerisable compounds of the formulae RM-1 to RM-131.
  • compounds RM-1, RM-4, RM-8, RM-17, RM-19, RM-35, RM-37, RM-43, RM-47, RM-49, RM-51, RM-59, RM-69, RM-71, RM-83, RM-97, RM-98, RM-104, RM-112, RM-115 and RM-116 are particularly preferred.
  • threshold voltage for the present invention relates to the capacitive threshold (V 0 ), also known as the Freedericks threshold, unless
  • An LC mixture with negative dielectric anisotropy is formulated as follows. CC-3-V 29.00% cl.p. 80.1 °C CCY-3-O1 8.00% ⁇ n 0.1052 CCY-3-O2 6.00% ⁇ -4.7 CCY-4-O2 2.00% ⁇ ⁇ 3.9 CLY-3-O2 8.50% K 3 /K 1 1.10 CLY-3-O3 7.50% ⁇ 1 125 mPa s CPY-2-O2 10.00% CPY-3-O2 7.50% CY-3-O2 6.50% PY-3-O2 10.00% Y-4O-O4 5.00%
  • An LC mixture with negative dielectric anisotropy is formulated as follows. CC-3-V 23.00% cl.p. 79.6 °C CC-3-V1 5.00% ⁇ n 0.1156 CCY-3-O1 5.00% ⁇ -4.7 CCY-3-O2 1.00% ⁇ ⁇ 3.9 CCY-4-O2 2.50% K 3 /K 1 1.12 CLY-3-O2 8.00% ⁇ 1 133 mPa s CLY-3-O3 7.00% CPY-2-O2 10.00% CPY-3-O2 11.00% CY-3-O2 11.00% PY-3-O2 16.50%
  • An LC mixture with negative dielectric anisotropy is formulated as follows. CC-3-V 22.00% cl.p. 90.6 °C CC-3-V1 5.00% ⁇ n 0.1063 CCPC-33 3.00% ⁇ -4.6 CCY-3-O1 6.00% ⁇ ⁇ 3.7 CCY-3-O2 9.50% K 3 /K 1 1.18 CCY-4-O2 9.00% ⁇ 1 160 mPa s CPY-2-O2 10.00% CPY-3-O2 10.00% CY-3-O2 10.00% CY-5-O2 6.50% PY-3-O2 9.00%
  • An LC mixture with negative dielectric anisotropy is formulated as follows. BCH-32 2.00% cl.p. 80.1 °C CC-3-V 29.00% ⁇ n 0.1051 CCY-3-O1 7.00% ⁇ -4.5 CCY-3-O3 6.00% ⁇ ⁇ 4.0 CCY-4-O2 8.00% K 3 /K 1 1.13 CLY-3-O2 6.00% ⁇ 1 123 mPa s CPY-2-O2 10.00% CPY-3-O2 11.00% CY-3-O2 7.00% PY-3-O2 9.00% Y-4O-O4 5.00%
  • An LC mixture with negative dielectric anisotropy is formulated as follows. CC-3-V 29.50% cl.p. 84.7 °C CC-3-V1 4.00% ⁇ n 0.0966 CCY-3-O2 7.00% ⁇ -3.6 CCY-3-O3 5.00% ⁇ ⁇ 3.6 CCY-4-O2 6.00% K 3 /K 1 1.13 CCY-5-O2 7.00% ⁇ 1 128 mPa s CPY-3-O2 9.00% CPY-2-O2 8.50% CY-3-O4 10.00% CY-5-O2 10.00% PGIGI-3-F 4.00%
  • An LC mixture with negative dielectric anisotropy is formulated as follows. CC-3-V 33.00% cl.p. 80.8 °C CCY-3-O1 6.00% ⁇ n 0.1066 CCY-3-O2 6.00% ⁇ -4.0 CCY-4-O2 8.00% ⁇ ⁇ 3.7 CCY-5-O2 3.00% K 3 /K 1 1.13 CPY-2-O2 9.00% ⁇ 1 116 mPa s CPY-3-O2 9.00% CY-3-O2 9.00% CY-5-O2 3.00% PY-3-O2 9.00% PYP-2-3 5.00%
  • An LC mixture with negative dielectric anisotropy is formulated as follows. BCH-32 6.50% cl.p. 74.9 °C CC-3-V 33.00% ⁇ n 0.1009 CCY-3-O1 4.00% ⁇ -3.7 CCY-3-O2 4.50% ⁇ ⁇ 3.8 CCY-3-O3 6.00% K 3 /K 1 1.11 CCY-4-O2 6.00% ⁇ 1 10mPas CPY-2-O2 9.00% CPY-3-O2 10.00% CY-3-O2 9.00% PY-3-O2 7.00% Y-4O-O4 5.00%
  • An LC mixture with negative dielectric anisotropy is formulated as follows. BCH-32 2.00% cl.p. 80.3 °C CC-3-V 29.00% ⁇ n 0.1042 CCY-3-O1 7.00% ⁇ -4.3 CCY-3-O3 7.00% ⁇ ⁇ 4.0 CCY-4-O2 8.00% K 3 /K 1 1.11 CLY-3-O2 6.00% ⁇ 1 118 mPas CPY-2-O2 9.00% CPY-3-O2 11.00% CY-3-O2 7.00% PY-3-O2 9.00% Y-4O-O4 5.00%
  • An LC mixture with negative dielectric anisotropy is formulated as follows. CC-3-V 32.00% cl.p. 85.3 °C CCY-3-O1 6.50% ⁇ n 0.1112 CCY-3-O2 6.00% ⁇ -4.0 CCY-4-O2 6.00% ⁇ ⁇ 3.8 CLY-3-O3 13.00% K 3 /K 1 1.07 CPY-2-O2 9.00% ⁇ 1 128 mPa s CPY-3-O2 7.50% PP-1-2V1 2.50% PY-1-O4 9.00% PY-3-O2 8.50%
  • An LC mixture with positive dielectric anisotropy is formulated as follows.
  • PGP-2-2V 4.50%
  • An LC mixture with positive dielectric anisotropy is formulated as follows. APUQU-2-F 5.50% cl.p. 80.3 °C CC-3-V 38.50% ⁇ n 0.1124 CCP-V-1 12.50% ⁇ 10.1 CCP-V2-1 4.50% ⁇ ⁇ 14.4 CDUQU-3-F 2.50% K 3 /K 1 1.13 DGUQU-4-F 5.50% ⁇ 1 77 mPa s DPGU-4-F 4.50% PGP-2-2V 6.00% PGUQU-3-F 7.00% PGUQU-4-F 6.50% PPGU-3-F 1.00% Y-4O-O4 6.00%
  • An LC mixture with positive dielectric anisotropy is formulated as follows. APUQU-2-F 5.50% cl.p. 80.3 °C CC-3-V 38.50% ⁇ n 0.1124 CCP-V-1 12.50% ⁇ 10.1 CCP-V2-1 4.50% ⁇ ⁇ 14.4 CDUQU-3-F 2.50% K 3 /K 1 1.13 DGUQU-4-F 5.50% ⁇ 1 77 mPa s DPGU-4-F 4.50% PGP-2-2V 6.00% PGUQU-3-F 7.00% PGUQU-4-F 6.50% PPGU-3-F 1.00% Y-4O-O4 6.00%
  • An LC mixture with positive dielectric anisotropy is formulated as follows. BCH-3F.F.F 10.00% cl.p. 85.4 °C CC-3-V 23.50% ⁇ n 0.1071 CC-3-V1 7.00% ⁇ 6.8 CCGU-3-F 5.00% ⁇ ⁇ 10.3 CCP-30CF3 9.00% K 3 /K 1 1.10 CCP-3-F.F.F 8.00% ⁇ 1 83 mPa s CCP-V-1 11.00% CCP-V2-1 3.00% DPGU-4-F 3.00% PGP-2-2V 3.00% PPGU-3-F 1.00% PUQU-3-F 10.50% PY-3-O2 6.00%
  • An LC mixture with positive dielectric anisotropy is formulated as follows.
  • CCP-V2-1 6.00%
  • An LC mixture with positive dielectric anisotropy is formulated as follows. APUQU-2-F 3.00% cl.p. 80.7 °C CC-3-V 37.50% ⁇ n 0.1103 CCP-3-1 3.00% ⁇ 9.5 CCP-30CF3 3.00% CCP-V-1 15.00% CDUQU-3-F 5.50% CPGU-3-OT 1.50% DPGU-4-F 5.00% PGU-2-F 6.00% PGU-3-F 6.00% PGUQU-3-F 5.00% PGUQU-4-F 5.00% PPGU-3-F 0.50% Y-4O-O4 4.00%
  • the LC medium M1 formulated as in Example 1 is filled into VHR test cells as described above.
  • test cells are subjected to thermal stress (100°C).
  • the VHR is measured as described above after various time intervals.
  • reference LC medium MC which is formulated as in Example 1 except that it only contains stabilizer S1-2a but does not contain stabilizer S2a.
  • VHR values are shown in Table 1 below.
  • Table 1 MC M10 Heat load time / h VHR / % 0 95.1 96.5 24 90.4 93.3 48 89.2 92.6 120 86.4 91.7
  • LC medium M1 wich contains both stabilizers S1-2a and S2a, shows signifcantly lower decrease of the VHR after long heat exposure compared to LC medium MC, which only contains stabilizer S1-2a but does not contain stabilizer S2a.
  • LC medium M10 wich contains both stabilizers S1-2a and S2a, shows signifcantly lower decrease of the VHR after long heat exposure compared to LC medium MC, which only contains stabilizer S1-2a but does not contain stabilizer S2a.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Description

  • The invention relates to a liquid-crystalline medium, in particular based on a mixture of polar compounds, and to the use thereof for an active-matrix display, in particular based on the VA, PSA, PS-VA, PA-VA, PALC, FFS, PS-FFS, IPS or PS-IPS effect.
  • Media of this type can be used, in particular, for electro-optical displays having active-matrix addressing based on the ECB effect and for IPS (in-plane switching) displays or FFS (fringe field switching) displays.
  • The principle of electrically controlled birefringence, the ECB effect or also DAP (deformation of aligned phases) effect, was described for the first time in 1971 (M.F. Schieckel and K. Fahrenschon, "Deformation of nematic liquid crystals with vertical orientation in electrical fields", Appl. Phys. Lett. 19 (1971), 3912). This was followed by papers by J.F. Kahn (Appl. Phys. Lett. 20 (1972), 1193) and G. Labrunie and J. Robert (J. Appl. Phys. 44 (1973), 4869).
  • The papers by J. Robert and F. Clerc (SID 80 Digest Techn. Papers (1980), 30), J. Duchene (Displays 7 (1986), 3) and H. Schad (SID 82 Digest Techn. Papers (1982), 244) showed that liquid-crystalline phases must have high values for the ratio of the elastic constants K3/K1, high values for the optical anisotropy Δn and values for the dielectric anisotropy of Δε ≤ -0.5 in order to be suitable for use in high-information display elements based on the ECB effect. Electro-optical display elements based on the ECB effect have a homeotropic edge alignment (VA technology = vertically aligned). Dielectrically negative liquid-crystal media can also be used in displays which use the so-called IPS or FFS effect.
  • Displays which use the ECB effect, as so-called VAN (vertically aligned nematic) displays, for example in the MVA (multi-domain vertical alignment, for example: Yoshide, H. et al., paper 3.1: "MVA LCD for Notebook or Mobile PCs ...", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book I, pp. 6 to 9, and Liu, C.T. et al., paper 15.1: "A 46-inch TFT-LCD HDTV Technology ...", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book II, pp. 750 to 753), PVA (patterned vertical alignment, for example: Kim, Sang Soo, paper 15.4: "Super PVA Sets New State-of-the-Art for LCD-TV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book II, pp. 760 to 763), ASV (advanced super view, for example: Shigeta, Mitzuhiro and Fukuoka, Hirofumi, paper 15.2: "Development of High Quality LCDTV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book II, pp. 754 to 757) modes, have established themselves as one of the three more recent types of liquid-crystal display that are currently the most important, in particular for television applications, besides IPS (in-plane switching) displays (for example: Yeo, S.D., paper 15.3: "An LC Display for the TV Application", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book II, pp. 758 & 759) and the long-known TN (twisted nematic) displays. The technologies are compared in general form, for example, in Souk, Jun, SID Seminar 2004, seminar M-6: "Recent Advances in LCD Technology", Seminar Lecture Notes, M-6/1 to M-6/26, and Miller, Ian, SID Seminar 2004, seminar M-7: "LCD-Television", Seminar Lecture Notes, M-7/1 to M-7/32. Although the response times of modern ECB displays have already been significantly improved by addressing methods with overdrive, for example: Kim, Hyeon Kyeong et al., paper 9.1: "A 57-in. Wide UXGA TFT-LCD for HDTV Application", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Book I, pp. 106 to 109, the achievement of video-compatible response times, in particular on switching of grey shades, is still a problem which has not yet been satisfactorily solved.
  • Industrial application of this effect in electro-optical display elements requires LC phases, which have to satisfy a multiplicity of requirements. Particularly important here are chemical resistance to moisture, air and physical influences, such as heat, infrared, visible and ultraviolet radiation and direct and alternating electric fields.
  • Furthermore, industrially usable LC phases are required to have a liquid-crystalline mesophase in a suitable temperature range and low viscosity.
  • None of the hitherto-disclosed series of compounds having a liquid-crystalline mesophase includes a single compound which meets all these requirements.
  • Mixtures of two to 25, preferably three to 18, compounds are therefore generally prepared in order to obtain substances which can be used as LC phases. However, it has not been possible to prepare optimum phases easily in this way since no liquid-crystal materials having significantly negative dielectric anisotropy and adequate long-term stability were hitherto available.
  • Matrix liquid-crystal displays (MLC displays) are known. Non-linear elements which can be used for individual switching of the individual pixels are, for example, active elements (i.e. transistors). The term "active matrix" is then used, where a distinction can be made between two types:
    1. 1. MOS (metal oxide semiconductor) transistors on a silicon wafer as substrate
    2. 2. thin-film transistors (TFTs) on a glass plate as substrate.
  • In the case of type 1, the electro-optical effect used is usually dynamic scattering or the guest-host effect. The use of single-crystal silicon as substrate material restricts the display size, since even modular assembly of various part-displays results in problems at the joints.
  • In the case of the more promising type 2, which is preferred, the electro-optical effect used is usually the TN effect.
  • A distinction is made between two technologies: TFTs comprising compound semiconductors, such as, for example, CdSe, or TFTs based on polycrystalline or amorphous silicon. The latter technology is being worked on intensively worldwide.
  • The TFT matrix is applied to the inside of one glass plate of the display, while the other glass plate carries the transparent counterelectrode on its inside. Compared with the size of the pixel electrode, the TFT is very small and has virtually no adverse effect on the image. This technology can also be extended to fully colour-capable displays, in which a mosaic of red, green and blue filters is arranged in such a way that a filter element is opposite each switchable pixel.
  • The term MLC displays here covers any matrix display with integrated non-linear elements, i.e. besides the active matrix, also displays with passive elements, such as varistors or diodes (MIM = metal-insulator-metal).
  • MLC displays of this type are particularly suitable for TV applications (for example pocket TVs) or for high-information displays in automobile or aircraft construction. Besides problems regarding the angle dependence of the contrast and the response times, difficulties also arise in MLC displays due to insufficiently high specific resistance of the liquid-crystal mixtures [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, pp. 141 ff., Paris; STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Addressing of Television Liquid Crystal Displays, pp. 145 ff., Paris]. With decreasing resistance, the contrast of an MLC display deteriorates. Since the specific resistance of the liquid-crystal mixture generally drops over the life of an MLC display owing to interaction with the inside surfaces of the display, a high (initial) resistance is very important for displays that have to have acceptable resistance values over a long operating period.
  • There thus continues to be a great demand for MLC displays having very high specific resistance at the same time as a large working-temperature range, short response times and a low threshold voltage with the aid of which various grey shades can be produced.
  • The disadvantage of the frequently-used MLC-TN displays is due to their comparatively low contrast, the relatively high viewing-angle dependence and the difficulty of generating grey shades in these displays.
  • VA displays have significantly better viewing-angle dependencies and are therefore principally used for televisions and monitors. However, there continues to be a need here to improve the response times, in particular with respect to the use of televisions having frame rates (image change frequency/repetition rates) of greater than 60 Hz. At the same time, however, the properties, such as, for example, the low-temperature stability, must not be impaired.
  • The invention is based on the object of providing liquid-crystal mixtures, in particular for monitor and TV applications, which are based on the ECB effect or on the IPS or FFS effect, which do not have the above-mentioned disadvantages or only do so to a reduced extent. In particular, it must be ensured for monitors and televisions that they also operate at extremely high and extremely low temperatures and at the same time have short response times and at the same time have improved reliability behaviour, in particular have no or significantly reduced image sticking after long operating times.
  • It was surprisingly that it is possible to improve the rotational viscosities, and the ratio of rotational viscosity and elastic constants, and thus the response times, while maintaining a high reliability and high VHR values, when using a liquid-crystal mixture as disclosed and claimed hereinafter, which contains a stabilizer of formula S1 and a stabilizer of formula S2, and further contains one or more compounds having negative dielectric anisotropy.
  • It is basically known to use a stabiliser in a liquid-crystalline medium as shown for example in EP 2 990 460 A1 in which a liquid-crystalline medium with negative dielectric anisotropy is stabilised. Known stabilisers are e.g. hindered amines (HALS) as proposed in EP 2 993 216 A1 or antioxidants of the sterically hindered phenol type as shown in EP 2 883 938 A1 . Also mixtures of both types can be used, as for example shown in WO 2016/146245 A1 , EP 3 127 991 A1 and EP 3 081 621 A2 .
  • The LC media according to the present invention also solve the problem of low reliability due to free radicals which are generated for example on the surface of the polyimide alignment layer, especially in LC media with negative dielectric anisotropy. This can lead to reduced VHR values and low reliability when the LC medium is exposed to extenral stress, especially during the LC display manufacturing process, for example in processs steps like ODF (one drop filling), sealant curing, heat alignment and//or cell assembly.
  • The use of an LC mixture as disclosed and claimed hereinafter having negative dielectric anisotropy surprisingly results in very low rotational viscosities and in a reduction in the ratio of rotational viscosity and elastic constants, while maintianing ahigh reliability and high VHR values also after UV exposure. Liquid-crystal mixtures, preferably VA, PS (= polymer stabilised)-VA, PA (= photo alignment)-VA, IPS, PS-IPS, PS-FFS, FFS mixtures, in particular UB-FFS (ultra brightness fringe field switching) mixtures, which have short response times, at the same time good phase properties and good low-temperature behaviour can therefore be prepared.
  • Summary of the Invention
  • The invention relates to a liquid crystal (LC) medium with positive dielectric anisotropy comprising one or more compounds selected from formulae Y, CY, PY and LY, and one or more compounds of formula S1 and one or more compounds of formula S2
    Figure imgb0001
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
    wherein the individual radicals, independently of each other and on each occurrence identically or differently, have the following meanings:
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    with at least one ring F being cyclohexenylene,
  • R1 and R2
    alkyl having 1 to 12 C atoms, where, in addition, one or two non-adjacent CH2 groups may be replaced by -O-, -CH=CH-, -CO-,-OCO- or -COO- in such a way that O atoms are not linked directly to one another, preferably alkyl or alkoxy having 1 to 6 C atoms,
    Zx and Zy
    -CH2CH2-, -CH=CH-, -CF2O-, -OCF2-, -CH2O-, -OCH2-, -CO-O-, -O-CO-, -C2F4-, -CF=CF-, -CH=CH-CH2O- or a single bond, preferably a single bond,
    L1-4
    F, Cl, OCF3, CF3, CH3, CH2F, CHF2,
    Ra-d
    straight chain or branched alkyl with 1 to 10 C atoms, preferably with 1 to 6 C atoms, very preferably with 1 to 4 C atoms, most preferably methyl,
    X
    H, CH3, OH or O•,
    A
    straight-chain, branched or cyclic alkylene with 1 to 20 C-atoms which is optionally substituted,
    a
    1 or 2,
    b
    0 or 1,
    f
    1 or 2,
    n
    an integer from 1 to 6, preferably 3,
    with the proviso that the media having the following compositions are excluded:
    1) a medium having the following composition:
    APUQU-2-F 2.50 %
    CC-3-2V1 5.00 %
    CC-3-V 24.50 %
    CC-3-V1 5.00 %
    CCP-3OCF3 3.00 %
    CCP-V-1 9.00 %
    CCP-V2-1 8.00 %
    CLP-3-T 7.00 %
    CPGP-4-3 2.00 %
    DGUQU-4-F 5.00 %
    DPGU-4-F 5.50 %
    PGP-2-2V 2.00 %
    PGUQU-3-F 6.00 %
    PGUQU-4-F 6.00 %
    PPGU-3-F 0.50 %
    Y-4O-O4 9.00 %
    which is additionally stabilised with 0.04% of the compound of the formula S2-1a
    Figure imgb0011
    and with 0.02% of the compound of the formula S1-2a
    Figure imgb0012

    2) a medium having the following composition:
    CC-3-V 49.00 %
    CC-3-V1 12.00 %
    CCP-V-1 10.00 %
    CLP-V-1 7.00 %
    PGP-2-2V 5.50 %
    CLP-3-T 4.00 %
    PGUQU-3-F 3.00 %
    APUQU-2-F 6.00 %
    PP-1-2V1 3.00 %
    PPGU-3-F 0.50 %
    which is additionally stabilised with the compound of formula S2-1a and, in addition,
    with the compound S1-1a
    Figure imgb0013
    or with the compound S1-2a shown above in the amounts given in the following table:
    S2-1a S1-1a S1-2a
    400 ppm 100 ppm -
    400 ppm 500 ppm -
    400 ppm 1000 ppm -
    400 ppm - 100 ppm
    400 ppm - 500 ppm
    400 ppm - 1000 ppm.
  • The invention furthermore relates to an LC medium as described above and below, which additionally comprises one or more polymerisable compounds.
  • The invention furthermore relates to an LC medium or LC display as described above and below, wherein the polymerisable compounds are polymerised.
  • The invention furthermore relates to a process for preparing an LC medium as described above and below, comprising the steps of mixing one or more compounds of formula CY and/or with one or more compounds of formula S1 and one or more compounds of formula S2, and optionally with further LC compounds and/or additives.
  • The invention further relates to the use of LC medium in LC displays.
  • The invention furthermore relates to an LC display comprising one or more compounds of formula I or an LC medium according to the invention, in particular a VA, PS-VA, PA-VA, IPS, PS-IPS, PS-FFS or FFS display, in particular an UB-FFS display, comprising an LC medium as described above and below.
  • The mixtures according to the invention preferably exhibit very broad nematic phase ranges having clearing points ≥ 70°C, preferably ≥ 75°C, in particular ≥ 80°C, very favourable values for the capacitive threshold, relatively high values for the holding ratio and at the same time very good low-temperature stabilities at -20°C and -30°C, as well as very low rotational viscosities and short response times.
  • The mixtures according to the invention are furthermore distinguished by the fact that, in addition to the improvement in the rotational viscosity γ1, high reliability and high VHR values, even after UV exposure, can be achieved.
  • The mixtures according to the invention are furthermore distinguished by the fact that, in addition to the improvement in the rotational viscosity γ1, relatively high values of the elastic constant K3 for improving the response times can be observed. In particular, the mixtures according to the invention have a particularly low value for the ratio γ1/K3 of rotational viscosity γ1 and elastic constant K3, which is an indicator of a fast response time.
  • Preferred compounds of formula S1 are selected from the following subformulae
    Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
    wherein n1 is an integer from 2 to 12 and wherein one or more H-atoms in the radical (CH2)n1 are optionally replaced by a methyl, ethyl, propyl, butyl, pentyl or hexyl group.
  • Very preferred compounds of formula S1 are selected from the following subformulae
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    Figure imgb0024
  • In a first preferred embodiment of the present invention, the compounds of formula S1 are selected from those wherein X is H or CH3, preferably H. Preferred compounds of this first preferred embodiment are those of formula S1-1 and S1-4, and subformulae S1-1a, S1-1b and S1-4a above.
  • In a second preferred embodiment of the present invention, the compounds of formula S are selected from those wherein X is O• or OH, preferably O•. Preferred compounds of this second preferred embodiment are those of formula S1-2 and S1-3, preferably S1-2, and subformulae S1-2a, S1-2b, S1-2c and S1-3a above. Especially preferred are compounds of formula S1-2a, S1-2b, S1-2c, most preferred those of formula S1-2a.
  • In a third preferred embodiment of the present invention, the compounds of formula S1 are selected from those wherein A is branched alkylene with 2 to 20 C atoms which is optionally substituted by one or more groups LA, wherein these substituents LA are selected from F, and straight-chain or branched alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy and alkoxycarbonyloxy, each having 1 to 12 C atoms and in which one or more H atoms may optionally be replaced by F or Cl.
  • Preferred compounds of this third preferred embodiment are those of formula S1-5 below and those of subformulae S1-1b and S1-2c above.
    Figure imgb0025
    wherein
  • X
    is H, CH3, OH or O•, preferably H or O•,
    RA
    is methyl, ethyl, propyl, butyl, pentyl or hexyl,
    n2
    is 0 or an integer from 1 to 12, preferably 0,
    n3
    is or an integer from 1 to 12.
  • Preferred compounds of formula S1-5 are those of subformulae S1-1b and S1-2c above.
  • Preferred compounds of formula S2 are selected from the following subformula
    Figure imgb0026
  • Very preferred compounds of formula S2 are selected from the following subformulae
    Figure imgb0027
    Figure imgb0028
    Figure imgb0029
  • Very preferred are compounds of formula S2-1a.
  • Preferably the proportion of compounds of formula S1 or its subformulae in the LC medium is from 10 to 1000 ppm,very preferably from 50 to 1000 ppm.
  • Preferably the proportion of compounds of formula S2 or its subformulae in the LC medium is from 10 to 1000 ppm,very preferably from 50 to 1000 ppm.
  • Preferably the LC medium contains 2 to 5, very preferably 2 or 3, most preferably 2 compounds selected from formula S1 and S2 or their subformulae.
  • In a preferred embodiment of the present invention the LC medium contains one or more compounds of formula S1 and one or more compounds of formula S2. The compounds of formula S1 are especially suitable as light stabilizer to protect the LC medium in the display against UV stress. The compounds of formula S2 are especially suitable as heat stabilizer to protect the LC medium in the display cell against high temperature stress. The LC media according to this preferred embodiment combines both stabilizers, resulting in higher VHR and higher reliabiity compared to LC media containing only one stabilizer. Very preferably the LC medium according to this preferred embodiment contains a compound of formula S1-1 or S1-2 and a compound of formulae S2-1, most preferably a compound of formula S1-1a or S1-2a and a compound of formula S2-1a.
  • In another preferred embodiment of the present invention the LC medium contains two or more compounds of formula S1. Very preferably the LC medium according to this preferred embodiment contains a compound of formula S1-1 and a compound of formula S1-2, most preferably a compound of formula S1-1a and a compound of formula S1-2a.
  • In the compounds of formula Y, preferably both radicals L1 and L2 denote F.
  • The compounds of the formula Y are preferably selected from the group consisting of the following sub-formulae:
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
    Figure imgb0033
    Figure imgb0034
    Figure imgb0035
    Figure imgb0036
    Figure imgb0037
    Figure imgb0038
    Figure imgb0039
    in which, Alkyl and Alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1-6 C atoms, Alkoxy denotes a straight-chain alkoxy radical having 1-6 C atoms, Alkenyl and Alkenyl* each, independently of one another, denote a straight-chain alkenyl radical having 2-6 C atoms. Alkenyl and Alkenyl* preferably denote CH2=CH-, CH2=CHCH2CH2-, CH3-CH=CH-, CH3-CH2-CH=CH-, CH3-(CH2)2-CH=CH-, CH3-(CH2)3-CH=CH- or CH3-CH=CH-(CH2)2-.
  • Particularly preferred compounds of the formula Y are selected from the group consisting of the following sub-formulae:
    Figure imgb0040
    Figure imgb0041
    wherein Alkoxy preferably denotes straight-chain alkoxy with 3, 4, or 5 C atoms.
  • Very preferred compounds of formula Y are those of formula Y6A1
    Figure imgb0042
  • In the compounds of formula CY, preferably both L1 and L2 denote F or one of L1 and L2 denotes F and the other denotes Cl. Very preferably both L1 and L2 denote F.
  • The compounds of the formula CY are preferably selected from the group consisting of the following sub-formulae:
    Figure imgb0043
    Figure imgb0044
    Figure imgb0045
    Figure imgb0046
    Figure imgb0047
    Figure imgb0048
    Figure imgb0049
    Figure imgb0050
    Figure imgb0051
    Figure imgb0052
    Figure imgb0053
    Figure imgb0054
    Figure imgb0055
    Figure imgb0056
    Figure imgb0057
    Figure imgb0058
    Figure imgb0059
    Figure imgb0060
    Figure imgb0061
    Figure imgb0062
    Figure imgb0063
    Figure imgb0064
    Figure imgb0065
    Figure imgb0066
    Figure imgb0067
    Figure imgb0068
    Figure imgb0069
    Figure imgb0070
    Figure imgb0071
    Figure imgb0072
    Figure imgb0073
    Figure imgb0074
    Figure imgb0075
    in which a denotes 1 or 2, alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1-6 C atoms, and alkenyl denotes a straight-chain alkenyl radical having 2-6 C atoms, and (O) denotes an oxygen atom or a single bond. Alkenyl preferably denotes CH2=CH-, CH2=CHCH2CH2-, CH3-CH=CH-, CH3-CH2-CH=CH-, CH3-(CH2)2-CH=CH-, CH3-(CH2)3-CH=CH- or CH3-CH=CH-(CH2)2-.
  • Especially preferred are compounds selected from formulae CY1, CY2, CY9 and CY10.
  • In the compounds of formula PY, preferably both L1 and L2 denote F or one of L1 and L2 denotes F and the other denotes Cl, or both L3 and L4 denote F or one of L3 and L4 denotes F and the other denotes Cl. Very preferably all of L1-L4 denote F.
  • The compounds of the formula PY are preferably selected from the group consisting of the following sub-formulae:
    Figure imgb0076
    Figure imgb0077
    Figure imgb0078
    Figure imgb0079
    Figure imgb0080
    Figure imgb0081
    Figure imgb0082
    Figure imgb0083
    Figure imgb0084
    Figure imgb0085
    Figure imgb0086
    Figure imgb0087
    Figure imgb0088
    Figure imgb0089
    Figure imgb0090
    Figure imgb0091
    Figure imgb0092
    Figure imgb0093
    Figure imgb0094
    Figure imgb0095
    in which alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1-6 C atoms, and alkenyl denotes a straight-chain alkenyl radical having 2-6 C atoms, and (O) denotes an oxygen atom or a single bond. Alkenyl preferably denotes CH2=CH-, CH2=CHCH2CH2-, CH3-CH=CH-, CH3-CH2-CH=CH-, CH3-(CH2)2-CH=CH-, CH3-(CH2)3-CH=CH- or CH3-CH=CH-(CH2)2-.
  • Especially preferred are compounds selected from formulae PY1, PY2, PY9 and PY10.
  • In the compounds of formula LY, preferably both L1 and L2 denote F or one of L1 and L2 denotes F and the other denotes Cl. Very preferably both L1 and L2 denote F.
  • The compounds of the formula LY are preferably selected from the group consisting of the following sub-formulae:
    Figure imgb0096
    Figure imgb0097
    Figure imgb0098
    Figure imgb0099
    Figure imgb0100
    Figure imgb0101
    Figure imgb0102
    Figure imgb0103
    Figure imgb0104
    Figure imgb0105
    Figure imgb0106
    Figure imgb0107
    Figure imgb0108
    Figure imgb0109
    Figure imgb0110
    Figure imgb0111
    Figure imgb0112
    Figure imgb0113
    Figure imgb0114
    Figure imgb0115
    Figure imgb0116
    Figure imgb0117
    Figure imgb0118
    Figure imgb0119
    in which R1 has the meaning indicated above, alkyl denotes a straight-chain alkyl radical having 1-6 C atoms, (O) denotes an oxygen atom or a single bond, and v denotes an integer from 1 to 6. R1 preferably denotes straight-chain alkyl having 1 to 6 C atoms or straight-chain alkenyl having 2 to 6 C atoms, in particular CH3, C2H5, n-C3H7, n-C4H9, n-C5H11, CH2=CH-, CH2=CHCH2CH2-, CH3-CH=CH-, CH3-CH2-CH=CH-, CH3-(CH2)2-CH=CH-, CH3-(CH2)3-CH=CH- or CH3-CH=CH-(CH2)2-. Very preferred are compounds of formula LY10.
  • The LC medium, although containing one or more compounds of formula CY, PY, LY and/or Y, has positive dielectric anisotropy (so-called "hybrid mixtures"). Such LC media are especially suitable for use in IPS, FFS, PS-IPS and PS-FFS displays.
  • Preferred LC media with positive dielectric anisotropy contain one or more, preferably only one, compound of formula CY or its subformulae.
  • Further preferred LC media with positive dielectric anisotropy contain one or more, preferably only one, compound of formula PY or its subformulae.
  • Further preferred LC media with positive dielectric anisotropy contain one or more, preferably only one, compound of formula Y or its subformulae.
  • Further preferred LC media with positive dielectric anisotropy contain one or more, preferably only one, compound of formula LY or its subformulae.
  • The concentration of compounds of formula Y, CY, PY and LY or their subformulae is preferably from 1 to 20% by weight, very preferably from 2 to 15% by weight.
    Figure imgb0120
    in which the individual radicals, on each occurrence identically or differently, and each, independently of one another, have the following meaning:
    Figure imgb0121
    Figure imgb0122
    Figure imgb0123
    Figure imgb0124
    Figure imgb0125
    Figure imgb0126
  • RA1
    alkenyl having 2 to 9 C atoms or, if at least one of the rings X, Y and Z denotes cyclohexenyl, also one of the meanings of RA2,
    RA2
    alkyl having 1 to 12 C atoms, in which, in addition, one or two non-adjacent CH2 groups may be replaced by -O-, -CH=CH-, -CO-, -OCO- or -COO- in such a way that O atoms are not linked directly to one another,
    Zx
    -CH2CH2-, -CH=CH-, -CF2O-, -OCF2-, -CH2O-, -OCH2-, -CO-O-, -O-CO-, -C2F4-, -CF=CF-, -CH=CH-CH2O-, or a single bond, preferably a single bond,
    L1,2
    H, F, Cl, OCF3, CF3, CH3, CH2F or CF2H, preferably H, F or Cl,
    x
    1 or 2,
    z
    0 or 1.
  • Preferred compounds of formula AN and AY are those wherein RA2 is selected from ethenyl, propenyl, butenyl, pentenyl, hexenyl and heptenyl.
  • In a preferred embodiment the LC medium comprises one or more compounds of formula AN selected from the following sub-formulae:
    Figure imgb0127
    Figure imgb0128
    Figure imgb0129
    Figure imgb0130
    Figure imgb0131
    Figure imgb0132
    Figure imgb0133
    Figure imgb0134
    Figure imgb0135
    Figure imgb0136
    Figure imgb0137
    Figure imgb0138
    in which alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1-6 C atoms, and alkenyl and alkenyl* each, independently of one another, denote a straight-chain alkenyl radical having 2-7 C atoms. Alkenyl and alkenyl* preferably denote CH2=CH-, CH2=CHCH2CH2-, CH3-CH=CH-, CH3-CH2-CH=CH-, CH3-(CH2)2-CH=CH-, CH3-(CH2)3-CH=CH- or CH3-CH=CH-(CH2)2-.
  • Preferably the LC medium comprises one or more compounds selected from formulae AN1, AN2 AN3 and AN6, very preferably one or more compounds of formula AN1 and/or AN6.
  • In another preferred embodiment the LC medium comprises one or more compounds of formula AN selected from the following sub-formulae:
    Figure imgb0139
    Figure imgb0140
    Figure imgb0141
    in which m denotes 1, 2, 3, 4, 5 or 6, i denotes 0, 1, 2 or 3, and Rb1 denotes H, CH3 or C2H5.
  • In another preferred embodiment the LC medium comprises one or more compounds selected from the following sub-formulae:
    Figure imgb0142
    Figure imgb0143
    Figure imgb0144
    Figure imgb0145
    Figure imgb0146
    Figure imgb0147
    Figure imgb0148
  • Most preferred are compounds of formula AN1a2, AN1a5, AN6a1 and AN6a2.
  • In another preferred embodiment the LC medium comprises one or more compounds of formula AY selected from the following sub-formulae:
    Figure imgb0149
    Figure imgb0150
    Figure imgb0151
    Figure imgb0152
    Figure imgb0153
    Figure imgb0154
    Figure imgb0155
    Figure imgb0156
    Figure imgb0157
    Figure imgb0158
    Figure imgb0159
    Figure imgb0160
    Figure imgb0161
    Figure imgb0162
    Figure imgb0163
    Figure imgb0164
    Figure imgb0165
    Figure imgb0166
    Figure imgb0167
    Figure imgb0168
    Figure imgb0169
    Figure imgb0170
    Figure imgb0171
    Figure imgb0172
    Figure imgb0173
    Figure imgb0174
    Figure imgb0175
    Figure imgb0176
    Figure imgb0177
    Figure imgb0178
    Figure imgb0179
    in which alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1-6 C atoms, "(O)" denotes an O-atom or a single bond, and alkenyl and alkenyl* each, independently of one another, denote a straight-chain alkenyl radical having 2-7 C atoms. Alkenyl and alkenyl* preferably denote CH2=CH-, CH2=CHCH2CH2-, CH3-CH=CH-, CH3-CH2-CH=CH-, CH3-(CH2)2-CH=CH-, CH3-(CH2)3-CH=CH- or CH3-CH=CH-(CH2)2-.
  • In another preferred embodiment the LC medium comprises one or more compounds of formula AY selected from the following sub-formulae:
    Figure imgb0180
    Figure imgb0181
    Figure imgb0182
    Figure imgb0183
    Figure imgb0184
    Figure imgb0185
    in which m and n each, independently of one another, denote 1, 2, 3, 4, 5 or 6, and alkenyl denotes CH2=CH-, CH2=CHCH2CH2-, CH3-CH=CH-, CH3-CH2-CH=CH-, CH3-(CH2)2-CH=CH-, CH3-(CH2)3-CH=CH- or CH3-CH=CH-(CH2)2-.
  • Preferably the proportion of compounds of formula AN and AY in the LC medium is from 2 to 70% by weight, very preferably from 5 to 60% by weight, most preferably from 10 to 50% by weight.
  • Preferably the LC medium contains 1 to 5, preferably 1, 2 or 3 compounds selected from formulae AN and AY.
  • In another preferred embodiment of the present invention the LC medium comprises one or more compounds of formula AY14, very preferably of AY14a. The proportion of compounds of formula AY14 or AY14a in the LC medium is preferably 3 to 20% by weight.
  • The addition of alkenyl compounds of formula AN and/or AY enables a reduction of the viscosity and response time of the LC medium.
    • b) LC medium which additionally comprises one or more compounds of the following formula:
      Figure imgb0186
      in which the individual radicals have the following meanings:
      Figure imgb0187
      Figure imgb0188
      Figure imgb0189
      R3 and R4
      each, independently of one another, denote alkyl having 1 to 12 C atoms, in which, in addition, one or two non-adjacent CH2 groups may be replaced by -O-, -CH=CH-, -CO-, -O-CO- or -CO-O- in such a way that O atoms are not linked directly to one another,
      Zy
      denotes -CH2CH2-, -CH=CH-, -CF2O-, -OCF2-, -CH2O-, -OCH2-, -CO-O-, -O-CO-, -C2F4-, -CF=CF-, -CH=CH-CH2O- or a single bond, preferably a single bond.

      The compounds of the formula ZK are preferably selected from the group consisting of the following sub-formulae:
      Figure imgb0190
      Figure imgb0191
      Figure imgb0192
      Figure imgb0193
      Figure imgb0194
      Figure imgb0195
      Figure imgb0196
      Figure imgb0197
      Figure imgb0198
      Figure imgb0199
      in which alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1-6 C atoms, and alkenyl denotes a straight-chain alkenyl radical having 2-6 C atoms. Alkenyl preferably denotes CH2=CH-, CH2=CHCH2CH2-, CH3-CH=CH-, CH3-CH2-CH=CH-, CH3-(CH2)2-CH=CH-, CH3-(CH2)3-CH=CH- or CH3-CH=CH-(CH2)2-.
      Especially preferred are compounds of formula ZK1.
      Particularly preferred compounds of formula ZK are selected from the following sub-formulae:
      Figure imgb0200
      Figure imgb0201
      Figure imgb0202
      wherein the propyl, butyl and pentyl groups are straight-chain groups.
      Most preferred are compounds of formula ZK1a.
    • c) LC medium which additionally comprises one or more compounds of the following formula:
      Figure imgb0203
      in which the individual radicals on each occurrence, identically or differently, have the following meanings:
      R5 and R6
      each, independently of one another, denote alkyl having 1 to 12 C atoms, where, in addition, one or two non-adjacent CH2 groups may be replaced by -O-, -CH=CH-, -CO-, -OCO- or -COO- in such a way that O atoms are not linked directly to one another, preferably alkyl or alkoxy having 1 to 6 C atoms,
      Figure imgb0204
      denotes
      Figure imgb0205
      Figure imgb0206
      denotes
      Figure imgb0207
      and
      e
      denotes 1 or 2.

      The compounds of the formula DK are preferably selected from the group consisting of the following sub-formulae:
      Figure imgb0208
      Figure imgb0209
      Figure imgb0210
      Figure imgb0211
      Figure imgb0212
      Figure imgb0213
      Figure imgb0214
      Figure imgb0215
      Figure imgb0216
      Figure imgb0217
      Figure imgb0218
      Figure imgb0219
      in which alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1-6 C atoms, and alkenyl denotes a straight-chain alkenyl radical having 2-6 C atoms. Alkenyl preferably denotes CH2=CH-, CH2=CHCH2CH2-, CH3-CH=CH-, CH3-CH2-CH=CH-, CH3-(CH2)2-CH=CH-, CH3-(CH2)3-CH=CH- or CH3-CH=CH-(CH2)2-.
    • d) LC medium which additionally comprises one or more compounds selected from the group consisting of the following formulae:
      Figure imgb0220
      Figure imgb0221
      Figure imgb0222
      Figure imgb0223
      in which alkyl denotes C1-6-alkyl, Lx denotes H or F, and X denotes F, Cl, OCF3, OCHF2 or OCH=CF2. Particular preference is given to compounds of the formula G1 in which X denotes F.
    • e) LC medium which additionally comprises one or more compounds selected from the group consisting of the following formulae:
      Figure imgb0224
      Figure imgb0225
      Figure imgb0226
      Figure imgb0227
      Figure imgb0228
      Figure imgb0229
      Figure imgb0230
      Figure imgb0231
      Figure imgb0232
      Figure imgb0233
      Figure imgb0234
      Figure imgb0235
      Figure imgb0236
      Figure imgb0237
      Figure imgb0238
      Figure imgb0239
      in which R5 has one of the meanings indicated above, alkyl denotes C1-6-alkyl, d denotes 0 or 1, and z and m each, independently of one another, denote an integer from 1 to 6. R5 in these compounds is particularly preferably C1-6-alkyl or -alkoxy or C2-6-alkenyl, d is preferably 1. The LC medium according to the invention preferably comprises one or more compounds of the above-mentioned formulae in amounts of ≥ 5% by weight.
    • f) LC medium which additionally comprises one or more biphenyl compounds selected from the group consisting of the following formulae:
      Figure imgb0240
      Figure imgb0241
      Figure imgb0242
      in which alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1-6 C atoms, and alkenyl and alkenyl* each, independently of one another, denote a straight-chain alkenyl radical having 2-6 C atoms. Alkenyl and alkenyl* preferably denote CH2=CH-, CH2=CHCH2CH2-, CH3-CH=CH-, CH3-CH2-CH=CH-, CH3-(CH2)2-CH=CH-, CH3-(CH2)3-CH=CH- or CH3-CH=CH-(CH2)2-.
      The proportion of the biphenyls of the formulae B1 to B3 in the LC mixture is preferably at least 3% by weight, in particular ≥ 5% by weight.
      The compounds of the formula B2 are particularly preferred.
      The compounds of the formulae B1 to B3 are preferably selected from the group consisting of the following sub-formulae:
      Figure imgb0243
      Figure imgb0244
      Figure imgb0245
      Figure imgb0246
      in which alkyl* denotes an alkyl radical having 1-6 C atoms. The medium according to the invention particularly preferably comprises one or more compounds of the formulae B1a and/or B2c.
    • g) LC medium which additionally comprises one or more terphenyl compounds of the following formula:
      Figure imgb0247
      in which R5 and R6 each, independently of one another, have one of the meanings indicated above, and
      Figure imgb0248
      each, independently of one another, denote
      Figure imgb0249
      in which L5 denotes F or Cl, preferably F, and L6 denotes F, Cl, OCF3, CF3, CH3, CH2F or CHF2, preferably F.
      The compounds of the formula T are preferably selected from the group consisting of the following sub-formulae:
      Figure imgb0250
      Figure imgb0251
      Figure imgb0252
      Figure imgb0253
      Figure imgb0254
      Figure imgb0255
      Figure imgb0256
      Figure imgb0257
      Figure imgb0258
      Figure imgb0259
      Figure imgb0260
      Figure imgb0261
      Figure imgb0262
      Figure imgb0263
      Figure imgb0264
      Figure imgb0265
      Figure imgb0266
      Figure imgb0267
      Figure imgb0268
      Figure imgb0269
      Figure imgb0270
      Figure imgb0271
      Figure imgb0272
      Figure imgb0273
      in which R denotes a straight-chain alkyl or alkoxy radical having 1-7 C atoms, R* denotes a straight-chain alkenyl radical having 2-7 C atoms, (O) denotes an oxygen atom or a single bond, and m denotes an integer from 1 to 6. R* preferably denotes CH2=CH-, CH2=CHCH2CH2-, CH3-CH=CH-, CH3-CH2-CH=CH-, CH3-(CH2)2-CH=CH-, CH3-(CH2)3-CH=CH- or CH3-CH=CH-(CH2)2-.
      R preferably denotes methyl, ethyl, propyl, butyl, pentyl, hexyl, methoxy, ethoxy, propoxy, butoxy or pentoxy.
      Particular preference is given to compounds of the formulae T1, T2, T3 and T21. In these compounds, R preferably denotes alkyl, furthermore alkoxy, each having 1-5 C atoms.
      Preferably the LC component B) of the LC medium does not contain more than 20% of a terphenyl compound of formula T or any other compound with a terphenyl group.
    • h) LC medium which additionally comprises one or more quaterphenyl compounds selected from the group consisting of the following formulae:
      Figure imgb0274
      wherein
      RQ
      is alkyl, alkoxy, oxaalkyl or alkoxyalkyl having 1 to 9 C atoms or alkenyl or alkenyloxy having 2 to 9 C atoms, all of which are optionally fluorinated,
      XQ
      is F, Cl, halogenated alkyl or alkoxy having 1 to 6 C atoms or halogenated alkenyl or alkenyloxy having 2 to 6 C atoms,
      LQ1 to LQ6
      independently of each other are H or F, with at least one of LQ1 to LQ6 being F.

      Preferred compounds of formula Q are those wherein RQ denotes straight-chain alkyl with 2 to 6 C-atoms, very preferably ethyl, n-propyl or n-butyl.
      Preferred compounds of formula Q are those wherein LQ3 and LQ4 are F. Further preferred compounds of formula Q are those wherein LQ3, LQ4 and one or two of LQ1 and LQ2 are F.
      Preferred compounds of formula Q are those wherein XQ denotes F or OCF3, very preferably F.
      The compounds of formula Q are preferably selected from the following subformulae
      Figure imgb0275
      Figure imgb0276
      wherein RQ has one of the meanings of formula Q or one of its preferred meanings given above and below, and is preferably ethyl, n-propyl or n-butyl.
      Especially preferred are compounds of formula Q1, in particular those wherein RQ is n-propyl.
      Preferably the proportion of compounds of formula Q in the LC medium is from >0 to ≤5% by weight, very preferably from 0.1 to 2% by weight, most preferably from 0.2 to 1.5% by weight.
      Preferably the LC medium contains 1 to 5, preferably 1 or 2 compounds of formula Q.
      The addition of quaterphenyl compounds of formula Q to the LC medium mixture enables to reduce ODF mura, whilst maintaining high UV absorption, enabling quick and complete polymerisation, enabling strong and quick tilt angle generation, and increasing the UV stability of the LC medium.
      Besides. the addition of compounds of formula Q, which have positive dielectric anisotropy, to the LC medium with negative dielectric anisotropy allows a better control of the values of the dielectric constants ε∥ and ε⊥, and in particular enables to achieve a high value of the dielectric constant ε∥ while keeping the dielectric anisotropy Δε constant, thereby reducing the kick-back voltage and reducing image sticking.
    • i) LC medium which additionally comprises one or more compounds selected from the group consisting of the following formulae:
      Figure imgb0277
      Figure imgb0278
      Figure imgb0279
      Figure imgb0280
      Figure imgb0281
      Figure imgb0282
      Figure imgb0283
      Figure imgb0284
      Figure imgb0285
      Figure imgb0286
      Figure imgb0287
      in which R1 and R2 have the meanings indicated above and preferably each, independently of one another, denote straight-chain alkyl having 1 to 6 C atoms or straight-chain alkenyl having 2 to 6 C atoms.
      Preferred media comprise one or more compounds selected from the formulae O1, O3 and O4.
    • k) LC medium which additionally comprises one or more compounds of the following formula:
      Figure imgb0288
      in which
      Figure imgb0289
      denotes
      Figure imgb0290
      Figure imgb0291
      Figure imgb0292

      R9 denotes H, CH3, C2H5 or n-C3H7, (F) denotes an optional fluorine substituent, and q denotes 1, 2 or 3, and R7 has one of the meanings indicated for R1, preferably in amounts of > 3% by weight, in particular ≥ 5% by weight and very particularly preferably 5-30% by weight.
      Particularly preferred compounds of the formula FI are selected from the group consisting of the following sub-formulae:
      Figure imgb0293
      Figure imgb0294
      Figure imgb0295
      Figure imgb0296
      Figure imgb0297
      Figure imgb0298
      Figure imgb0299
      Figure imgb0300
      in which R7 preferably denotes straight-chain alkyl, and R9 denotes CH3, C2H5 or n-C3H7. Particular preference is given to the compounds of the formulae FI1, FI2 and FI3.
    • I) LC medium which additionally comprises one or more compounds selected from the group consisting of the following formulae:
      Figure imgb0301
      Figure imgb0302
      Figure imgb0303
      Figure imgb0304
      in which R8 has the meaning indicated for R1, and alkyl denotes a straight-chain alkyl radical having 1-6 C atoms.
    • m) LC medium which additionally comprises one or more compounds which contain a tetrahydronaphthyl or naphthyl unit, such as, for example, the compounds selected from the group consisting of the following formulae:
      Figure imgb0305
      Figure imgb0306
      Figure imgb0307
      Figure imgb0308
      Figure imgb0309
      Figure imgb0310
      Figure imgb0311
      Figure imgb0312
      Figure imgb0313
      Figure imgb0314
      in which
      R10 and R11
      each, independently of one another, denote alkyl having 1 to 12 C atoms, where, in addition, one or two non-adjacent CH2 groups may be replaced by -O-, -CH=CH-, -CO-, -OCO- or -COO- in such a way that O atoms are not linked directly to one another, preferably alkyl or alkoxy having 1 to 6 C atoms,
      and R10 and R11 preferably denote straight-chain alkyl or alkoxy having 1 to 6 C atoms or straight-chain alkenyl having 2 to 6 C atoms, and
      Z1 and Z2
      each, independently of one another, denote -C2H4-, -CH=CH-, -(CH2)4-, -(CH2)3O-, -O(CH2)3-, -CH=CH-CH2CH2-, -CH2CH2CH=CH-, -CH2O-, -OCH2-, -CO-O-, -O-CO-, -C2F4-, -CF=CF-, -CF=CH-, -CH=CF-, -CH2- or a single bond.
    • n) LC medium which additionally comprises one or more difluorodibenzo-chromans and/or chromans of the following formulae:
      Figure imgb0315
      Figure imgb0316
      Figure imgb0317
      in which
      R11 and R12
      each, independently of one another, have one of the meanings indicated above for R11,
      ring M
      is trans-1,4-cyclohexylene or 1,4-phenylene,
      Zm
      -C2H4-, -CH2O-, -OCH2-, -CO-O- or -O-CO-,
      c
      is 0, 1 or 2,
      preferably in amounts of 3 to 20% by weight, in particular in amounts of 3 to 15% by weight.
      Particularly preferred compounds of the formulae BC, CR and RC are selected from the group consisting of the following sub-formulae:
      Figure imgb0318
      Figure imgb0319
      Figure imgb0320
      Figure imgb0321
      Figure imgb0322
      Figure imgb0323
      Figure imgb0324
      Figure imgb0325
      Figure imgb0326
      Figure imgb0327
      Figure imgb0328
      Figure imgb0329
      Figure imgb0330
      Figure imgb0331
      Figure imgb0332
      Figure imgb0333
      Figure imgb0334
      Figure imgb0335
      Figure imgb0336
      in which alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1-6 C atoms, (O) denotes an oxygen atom or a single bond, c is 1 or 2, and alkenyl and alkenyl* each, independently of one another, denote a straight-chain alkenyl radical having 2-6 C atoms. Alkenyl and alkenyl* preferably denote CH2=CH-, CH2=CHCH2CH2-, CH3-CH=CH-, CH3-CH2-CH=CH-, CH3-(CH2)2-CH=CH-, CH3-(CH2)3-CH=CH- or CH3-CH=CH-(CH2)2-.
      Very particular preference is given to mixtures comprising one, two or three compounds of the formula BC-2.
    • o) LC medium which additionally comprises one or more fluorinated phenanthrenes and/or dibenzofurans of the following formulae:
      Figure imgb0337
      Figure imgb0338
      in which R11 and R12 each, independently of one another, have one of the meanings indicated above for R11, b denotes 0 or 1, L denotes F, and r denotes 1, 2 or 3.
      Particularly preferred compounds of the formulae PH and BF are selected from the group consisting of the following sub-formulae:
      Figure imgb0339
      Figure imgb0340
      Figure imgb0341
      Figure imgb0342
      in which R and R' each, independently of one another, denote a straight-chain alkyl or alkoxy radical having 1-7 C atoms.
    • p) LC medium which comprises one or more compounds selected from formula AN as defined above or its preferred subformulae, preferably selected from formulae AN1-AN12, more preferably selected from formulae AN1a, AN3a and AN6a, most preferably selected from formulae AN1a2, AN1a5, AN6a1 and AN6a2. Preferably the LC medium contains 1 to 5, preferably 1, 2 or 3 compounds selected from these formulae. The proportion of these compounds in the LC medium is preferably from 2 to 60% by weight, very preferably from 5 to 45% by weight, most preferably from 10 to 40% by weight.
    • q) LC medium which comprises 1 to 5, preferably 1, 2 or 3, polymerisable compounds, preferably selected from polymerisable compounds of formula M or sub-formulae thereof. The proportion of polymerisable compounds, in particular of the formula M or sub-formulae thereof, in the mixture as a whole is 0.05 to 5%, preferably 0.1 to 1%.
    • r) LC medium which comprises 1 to 8, preferably 1 to 5, compounds of the formulae CY1, CY2, PY1 and/or PY2. The proportion of these compounds in the mixture as a whole is preferably 5 to 60%, particularly preferably 10 to 35%. The content of these individual compounds is preferably in each case 2 to 20%.
    • s) LC medium which comprises 1 to 8, preferably 1 to 5, compounds of the formulae CY9, CY10, PY9 and/or PY10. The proportion of these compounds in the mixture as a whole is preferably 5 to 60%, particularly preferably 10 to 35%. The content of these individual compounds is preferably in each case 2 to 20%.
    • t) LC medium which comprises 1 to 10, preferably 1 to 8, compounds of the formula ZK, in particular compounds of the formulae ZK1, ZK2 and/or ZK6. The proportion of these compounds in the mixture as a whole is preferably 3 to 25%, particularly preferably 5 to 45%. The content of these individual compounds is preferably in each case 2 to 20%.
    • t) LC medium in which the proportion of compounds of the formulae CY, PY and ZK in the mixture as a whole is greater than 70%, preferably greater than 80%.
  • Preferred LC media having positive dielectric anisotropy are selected from the preferred embodiments below, including any combinations thereof.
    • aa) The LC medium additionally comprises one or more compounds selected from the group consisting of compounds of formula AA and BB
      Figure imgb0343
      Figure imgb0344
      in which the individual radicals have the following meanings:
      Figure imgb0345
      each, independently of one another, and on each occurrence, identically or differently
      Figure imgb0346
      Figure imgb0347
      R21, R31
      each, independently of one another, alkyl, alkoxy, oxaalkyl or alkoxyalkyl having 1 to 9 C atoms or alkenyl or alkenyloxy having 2 to 9 C atoms, all of which are optionally fluorinated,
      X0
      F, Cl, halogenated alkyl or alkoxy having 1 to 6 C atoms or halogenated alkenyl or alkenyloxy having 2 to 6 C atoms,
      Z31
      -CH2CH2-, -CF2CF2-, -COO-, trans-CH=CH-, trans-CF=CF-, -CH2O- or a single bond, preferably -CH2CH2-,-COO-, trans-CH=CH- or a single bond, particularly preferably -COO-, trans-CH=CH- or a single bond,
      L21, L22, L31, L32
      H or F,
      g
      0, 1, 2 or 3.

      X0 is preferably F, Cl, CF3, CHF2, OCF3, OCHF2, OCFHCF3, OCFHCHF2, OCFHCHF2, OCF2CH3, OCF2CHF2, OCF2CHF2, OCF2CF2CHF2, OCF2CF2CHF2, OCFHCF2CF3, OCFHCF2CHF2, OCF2CF2CF3, OCF2CF2CClF2, OCClFCF2CF3 or CH=CF2, very preferably F or OCF3
      The compounds of formula AA are preferably selected from the group consisting of the following formulae:
      Figure imgb0348
      Figure imgb0349
      Figure imgb0350
      Figure imgb0351
      in which A21, R21, X0, L21 and L22 have the meanings given in formula AA, L23 and L24 each, independently of one another, are H or F, and X0 is preferably F. Particularly preferred are compounds of formulae AA1 and AA2.
      Particularly preferred compounds of formula AA1 are selected from the group consisting of the following subformulae:
      Figure imgb0352
      Figure imgb0353
      Figure imgb0354
      Figure imgb0355
      Figure imgb0356
      in which R21, X0, L21 and L22 have the meaning given in formula AA1, L23, L24, L25 and L26 are each, independently of one another, H or F, and X0 is preferably F.
      Very particularly preferred compounds of formula AA1 are selected from the group consisting of the following subformulae:
      Figure imgb0357
      Figure imgb0358
      Figure imgb0359
      Figure imgb0360
      Figure imgb0361

      In which R21 is as defined in formula AA1.
      Very preferred compounds of formula AA2 are selected from the group consisting of the following subformulae:
      Figure imgb0362
      Figure imgb0363
      Figure imgb0364
      Figure imgb0365
      Figure imgb0366
      Figure imgb0367
      Figure imgb0368
      Figure imgb0369
      Figure imgb0370
      Figure imgb0371
      Figure imgb0372
      in which R21, X0, L21 and L22 have the meaning given in formula AA2, L23, L24, L25 and L26 each, independently of one another, are H or F, and X0 is preferably F.
      Very particularly preferred compounds of formula AA2 are selected from the group consisting of the following subformulae:
      Figure imgb0373
      Figure imgb0374
      Figure imgb0375
      Figure imgb0376
      Figure imgb0377
      Figure imgb0378
      Figure imgb0379
      Figure imgb0380
      Figure imgb0381
      Figure imgb0382
      Figure imgb0383
      in which R21 and X0 are as defined in formula AA2.
      Particularly preferred compounds of formula AA3 are selected from the group consisting of the following subformulae:
      Figure imgb0384
      Figure imgb0385
      Figure imgb0386
      in which R21, X0, L21 and L22 have the meaning given in formula AA3, and X0 is preferably F.
      Particularly preferred compounds of formula AA4 are selected from the group consisting of the following subformulae:
      Figure imgb0387
      in which R21 is as defined in formula AA4.
      The compounds of formula BB are preferably selected from the group consisting of the following formulae:
      Figure imgb0388
      Figure imgb0389
      Figure imgb0390
      in which g, A31, A32, R31, X0, L31 and L32 have the meanings given in formula BB, and X0 is preferably F. Particularly preferred are compounds of formulae BB1 and BB2.
      Particularly preferred compounds of formula BB1 are selected from the group consisting of the following subformulae:
      Figure imgb0391
      Figure imgb0392
      in which R31, X0, L31 and L32 have the meaning given in formula BB1, and X0 is preferably F.
      Very particularly preferred compounds of formula BB1a are selected from the group consisting of the following subformulae:
      Figure imgb0393
      Figure imgb0394
      Figure imgb0395
      Figure imgb0396
      Figure imgb0397
      Figure imgb0398
      in which R31 is as defined in formula BB1.
      Very particularly preferred compounds of formula BB1b are selected from the group consisting of the following subformulae:
      Figure imgb0399
      Figure imgb0400
      Figure imgb0401
      Figure imgb0402
      in which R31 is as defined in formula BB1.
      Particularly preferred compounds of formula BB2 are selected from the group consisting of the following subformulae:
      Figure imgb0403
      Figure imgb0404
      Figure imgb0405
      Figure imgb0406
      Figure imgb0407
      Figure imgb0408
      Figure imgb0409
      Figure imgb0410
      Figure imgb0411
      Figure imgb0412
      Figure imgb0413
      in which R31, X0, L31 and L32 have the meaning given in formula BB2, L33, L34, L35 and L36 are each, independently of one another, H or F, and X0 is preferably F.
      Very particularly preferred compounds of formula BB2 are selected from the group consisting of the following subformulae:
      Figure imgb0414
      Figure imgb0415
      Figure imgb0416
      Figure imgb0417
      Figure imgb0418
      in which R31 is as defined in formula BB2.
      Very particularly preferred compounds of formula BB2b are selected from the group consisting of the following subformulae
      Figure imgb0419
      Figure imgb0420
      Figure imgb0421
      Figure imgb0422
      in which R31 is as defined in formula BB2.
      Very particularly preferred compounds of formula BB2c are selected from the group consisting of the following subformulae:
      Figure imgb0423
      Figure imgb0424
      Figure imgb0425
      Figure imgb0426
      Figure imgb0427
      in which R31 is as defined in formula BB2.
      Very particularly preferred compounds of formula BB2d and BB2e are selected from the group consisting of the following subformulae:
      Figure imgb0428
      Figure imgb0429
      in which R31 is as defined in formula BB2.
      Very particularly preferred compounds of formula BB2f are selected from the group consisting of the following subformulae:
      Figure imgb0430
      Figure imgb0431
      Figure imgb0432
      Figure imgb0433
      Figure imgb0434
      in which R31 is as defined in formula BB2.
      Very particularly preferred compounds of formula BB2g are selected from the group consisting of the following subformulae:
      Figure imgb0435
      Figure imgb0436
      Figure imgb0437
      Figure imgb0438
      Figure imgb0439
      in which R31 is as defined in formula BB2.
      Very particularly preferred compounds of formula BB2h are selected from the group consisting of the following subformulae:
      Figure imgb0440
      Figure imgb0441
      Figure imgb0442
      in which R31 and X0 are as defined in formula BB2.
      Very particularly preferred compounds of formula BB2i are selected from the group consisting of the following subformulae:
      Figure imgb0443
      Figure imgb0444
      in which R31 and X0 are as defined in formula BB2.
      Very particularly preferred compounds of formula BB2k are selected from the group consisting of the following subformulae:
      Figure imgb0445
      Figure imgb0446
      in which R31 and X0 are as defined in formula BB2.
      Very particularly preferred compounds of formula BB2I are selected from the group consisting of the following subformulae:
      Figure imgb0447
      Figure imgb0448
      in which R31 and X0 are as defined in formula BB2.
      Alternatively to, or in addition to, the compounds of formula BB1 and/or BB2 the LC media may also comprise one or more compounds of formula BB3 as defined above.
      Particularly preferred compounds of formula BB3 are selected from the group consisting of the following subformulae:
      Figure imgb0449
      Figure imgb0450
      in which R31 is as defined in formula BB3.
    • bb) The LC medium additionally comprises one or more compounds selected from formula CC
      Figure imgb0451
      in which the individual radicals have the following meanings:
      Figure imgb0452
      each, independently of one another, and on each occurrence, identically or differently
      Figure imgb0453
      Figure imgb0454
      Figure imgb0455
      R41, R42
      each, independently of one another, alkyl, alkoxy, oxaalkyl or alkoxyalkyl having 1 to 9 C atoms or alkenyl or alkenyloxy having 2 to 9 C atoms, all of which are optionally fluorinated,
      Z41, Z42
      -CH2CH2-, -COO-, trans-CH=CH-, trans-CF=CF-, -CH2O-, -CF2O-, -C=C- or a single bond, preferably a single bond,
      h
      0, 1, 2 or 3.

      Particularly preferred compounds of formula CC are selected from the group consisting of the following subformulae:
      Figure imgb0456
      Figure imgb0457
      Figure imgb0458
      Figure imgb0459
      Figure imgb0460
      Figure imgb0461
      Figure imgb0462
      Figure imgb0463
      Figure imgb0464
      Figure imgb0465
      Figure imgb0466
      Figure imgb0467
      Figure imgb0468
      Figure imgb0469

      In which R41 and R42 have the meanings given in formula CC, and preferably denote each, independently of one another, alkyl, alkoxy, fluorinated alkyl or fluorinated alkoxy with 1 to 7 C atoms, or alkenyl, alkenyloxy, alkoxyalkyl or fluorinated alkenyl with 2 to 7 C atoms, and L4 is H or F.
    • cc) The LC medium additionally comprises one or more compounds selected from formula DD
      Figure imgb0470

      In which A41, A42, Z41, Z42, R41, R42 and h have the meanings given in formula CC.
      Particularly preferred compounds of formula DD are selected from the group consisting of the following subformulae:
      Figure imgb0471
      Figure imgb0472
      in which R41 and R42 have the meanings given in formula DD and R41 preferably denotes alkyl bedeutet, and in formula DD1 R42 preferably denotes alkenyl, particularly preferably -(CH2)2-CH=CH-CH3, and in formula DD2 R42 preferably denotes alkyl, -(CH2)2-CH=CH2 or -(CH2)2-CH=CH-CH3.
    • dd) The proportion of the compounds of formula AA and BB in the LC medium is from 2 to 60% by weight, more preferably from 3 to 35% by weight, and very particularly preferably from 4 to 30% by weight in the mixture as a whole.
    • ee) The proportion of the compounds of formula CC and DD in the LC medium is from 2 to 70% by weight, more preferably from 5 to 65% by weight, even more preferably from 10 to 60% by weight, and very particularly preferably from10%, preferably 15%, to 55% by weight in the mixture as a whole.
    • ff) The LC medium additionally comprises one or more compounds selected from formula AN or its preferred subformulae below, preferably selected from formulae AN1-AN12, more preferably selected from formulae AN1a, AN3a and AN6a, most preferably selected from formulae AN1a2, AN1a5, AN6a1 and AN6a2,
      Figure imgb0473
      in which the individual radicals, on each occurrence identically or differently, and each, independently of one another, have the following meaning:
      Figure imgb0474
      Figure imgb0475
      Figure imgb0476
      Figure imgb0477
      Figure imgb0478
      Figure imgb0479
      RA1
      alkenyl having 2 to 9 C atoms or, if at least one of the rings X, Y and Z denotes cyclohexenyl, also one of the meanings of RA2,
      RA2
      alkyl having 1 to 12 C atoms, in which, in addition, one or two non-adjacent CH2 groups may be replaced by -O-, -CH=CH-, -CO-, -OCO- or -COO- in such a way that O atoms are not linked directly to one another,
      Zx
      -CH2CH2-, -CH=CH-, -CF2O-, -OCF2-, -CH2O-, -OCH2-, -CO-O-, -O-CO-, -C2F4-, -CF=CF-, -CH=CH-CH2O-, or a single bond, preferably a single bond,
      L1,2
      H, F, Cl, OCF3, CF3, CH3, CH2F or CF2H, preferably H, F or Cl,
      x
      1 or 2,
      z
      0 or 1.

      Preferred compounds of formula AN and AY are those wherein RA2 is selected from ethenyl, propenyl, butenyl, pentenyl, hexenyl and heptenyl.
      In a preferred embodiment the LC medium comprises one or more compounds of formula AN selected from the following sub-formulae:
      Figure imgb0480
      Figure imgb0481
      Figure imgb0482
      Figure imgb0483
      Figure imgb0484
      Figure imgb0485
      Figure imgb0486
      Figure imgb0487
      Figure imgb0488
      Figure imgb0489
      Figure imgb0490
      Figure imgb0491
      in which alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1-6 C atoms, and alkenyl and alkenyl* each, independently of one another, denote a straight-chain alkenyl radical having 2-7 C atoms. Alkenyl and alkenyl* preferably denote CH2=CH-, CH2=CHCH2CH2-, CH3-CH=CH-, CH3-CH2-CH=CH-, CH3-(CH2)2-CH=CH-, CH3-(CH2)3-CH=CH- or CH3-CH=CH-(CH2)2-.
      Preferably the LC medium comprises one or more compounds selected from formulae AN1, AN2 AN3 and AN6, very preferably one or more compounds of formula AN1 and/or AN6.
      In another preferred embodiment the LC medium comprises one or more compounds of formula AN selected from the following sub-formulae:
      Figure imgb0492
      Figure imgb0493
      Figure imgb0494
      in which m denotes 1, 2, 3, 4, 5 or 6, i denotes 0, 1, 2 or 3, and Rb1 denotes H, CH3 or C2H5.
      In another preferred embodiment the LC medium comprises one or more compounds selected from the following sub-formulae:
      Figure imgb0495
      Figure imgb0496
      Figure imgb0497
      Figure imgb0498
      Figure imgb0499
      Figure imgb0500
      Figure imgb0501

      Most preferred are compounds of formula AN1a2, AN1a5, AN6a1 and AN6a2.
      Preferably the LC medium contains 1 to 5, preferably 1, 2 or 3 compounds selected from compounds of formula AN. The proportion of these compounds in the LC medium is preferably from 2 to 60% by weight, very preferably from 5 to 45% by weight, most preferably from 10 to 40% by weight.
    • gg) The LC medium comprises 1, 2 or 3 , preferably 1, compounds selected from formulae CY, PY, LY and Y or their subformulae. The proportion of these compounds in the LC medium is preferably 1 to 20%, particularly preferably 2 to 15%. The content of these individual compounds is preferably in each case 1 to 20%.
    • hh) The LC medium comprises 1 to 5, preferably 1, 2 or 3, polymerisable compounds, preferably selected from polymerisable compounds of formula M or sub-formulae thereof. The proportion of the polymerisable compounds, in particular of the formula M or sub-formulae thereof, in the LC medium is 0.05 to 5%, preferably 0.1 to 1%.
  • In some preferred embodiments of the present invention the LC medium additionally comprises one or more polymerisable compounds. The polymerisable compounds are preferably selected from formula M

            Ra-B1-(Zb-B2)m-Rb     M

    in which the individual radicals, on each occurrence identically or differently, and each, independently of one another, have the following meaning:
  • Ra and Rb
    P, P-Sp-, H, F, Cl, Br, I, -CN, -NO2, -NCO, -NCS, -OCN, -SCN, SF5 or straight-chain or branched alkyl having 1 to 25 C atoms, in which, in addition, one or more non-adjacent CH2 groups may each be replaced, independently of one another, by -C(R0)=C(R00)-, -C≡C-, -N(R00)-, -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- in such a way that O and/or S atoms are not linked directly to one another, and in which, in addition, one or more H atoms may be replaced by F, Cl, Br, I, CN, P or P-Sp-, where, if B1 and/or B2 contain a saturated C atom, Ra and/or Rb may also denote a radical which is spiro-linked to this saturated C atom,
    wherein at least one of the radicals Ra and Rb denotes or contains a group P or P-Sp-,
    P
    a polymerisable group,
    Sp
    a spacer group or a single bond,
    B1 and B2
    an aromatic, heteroaromatic, alicyclic or heterocyclic group, preferably having 4 to 25 ring atoms, which may also contain fused rings, and which is unsubstituted, or mono- or polysubstituted by L,
    Zb
    -O-, -S-, -CO-, -CO-O-, -OCO-, -O-CO-O-, -OCH2-, -CH2O-, -SCH2-, -CH2S-, -CF2O-, -OCF2-, -CF2S-, -SCF2-, -(CH2)n1-, -CF2CH2-, -CH2CF2-, -(CF2)n1-, -CH=CH-, -CF=CF-, -C≡C-, -CH=CH-COO-, -OCO-CH=CH-, CR0R00 or a single bond,
    R0 and R00
    each, independently of one another, denote H or alkyl having 1 to 12 C atoms,
    m
    denotes 0, 1, 2, 3 or 4,
    n1
    denotes 1, 2, 3 or 4,
    L
    P, P-Sp-, OH, CH2OH, F, Cl, Br, I, -CN, -NO2, -NCO, -NCS, -OCN, -SCN, -C(=O)N(Rx)2, -C(=O)Y1, -C(=O)Rx, -N(Rx)2, optionally substituted silyl, optionally substituted aryl having 6 to 20 C atoms, or straight-chain or branched alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxy-carbonyloxy having 1 to 25 C atoms, in which, in addition, one or more H atoms may be replaced by F, CI, P or P-Sp-,
    P and Sp
    have the meanings indicated above,
    Y1
    denotes halogen,
    Rx
    denotes P, P-Sp-, H, halogen, straight-chain, branched or cyclic alkyl having 1 to 25 C atoms, in which, in addition, one or more non-adjacent CH2 groups may be replaced by -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- in such a way that O and/or S atoms are not linked directly to one another, and in which, in addition, one or more H atoms may be replaced by F, CI, P or P-Sp-, an optionally substituted aryl or aryloxy group having 6 to 40 C atoms, or an optionally substituted heteroaryl or hetero-aryloxy group having 2 to 40 C atoms.
  • Particularly preferred compounds of the formula I are those in which B1 and B2each, independently of one another, denote 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl, naphthalene-2,6-diyl, phenanthrene-2,7-diyl, 9,10-dihydro-phenanthrene-2,7-diyl, anthracene-2,7-diyl, fluorene-2,7-diyl, coumarine, flavone, where, in addition, one or more CH groups in these groups may be replaced by N, cyclohexane-1,4-diyl, in which, in addition, one or more non-adjacent CH2 groups may be replaced by O and/or S, 1,4-cyclohexenylene, bicycle[1.1.1]pentane-1,3-diyl, bicyclo[2.2.2]octane-1,4-diyl, spiro[3.3]heptane-2,6-diyl, piperidine-1,4-diyl, decahydronaphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, indane-2,5-diyl or octahydro-4,7-methanoindane-2,5-diyl, where all these groups may be unsubstituted or mono- or polysubstituted by L as defined above.
  • Particularly preferred compounds of the formula M are those in which B1 and B2 each, independently of one another, denote 1,4-phenylene, 1,3-phenylene, naphthalene-1,4-diyl or naphthalene-2,6-diyl,
  • Very preferred compounds of formula M are selected from the following formulae:
    Figure imgb0502
    Figure imgb0503
    Figure imgb0504
    Figure imgb0505
    Figure imgb0506
    Figure imgb0507
    Figure imgb0508
    Figure imgb0509
    Figure imgb0510
    Figure imgb0511
    Figure imgb0512
    Figure imgb0513
    Figure imgb0514
    Figure imgb0515
    Figure imgb0516
    Figure imgb0517
    Figure imgb0518
    Figure imgb0519
    Figure imgb0520
    Figure imgb0521
    Figure imgb0522
    Figure imgb0523
    Figure imgb0524
    Figure imgb0525
    Figure imgb0526
    Figure imgb0527
    Figure imgb0528
    Figure imgb0529
    Figure imgb0530
    Figure imgb0531
    Figure imgb0532
    in which the individual radicals, on each occurrence identically or differently, and each, independently of one another, have the following meaning:
  • P1, P2, P3
    a polymerisable group, preferably selected from vinyloxy, acrylate, methacrylate, fluoroacrylate, chloroacrylate, oxetane and epoxy,
    Sp1, Sp2, Sp3
    a single bond or a spacer group where, in addition, one or more of the radicals P1-Sp1-, P1-Sp2- and P3-Sp3- may denote Raa, with the proviso that at least one of the radicals P1-Sp1-, P2-Sp2 and P3-Sp3- present is different from Raa, preferably -(CH2)p1-, -(CH2)p1-O-, -(CH2)p1-CO-O- or -(CH2)p1-O-CO-O- bedeuten, wherein p1 is an integer from 1 to 12,
    Raa
    H, F, Cl, CN or straight-chain or branched alkyl having 1 to 25 C atoms, in which, in addition, one or more non-adjacent CH2 groups may each be replaced, independently of one another, by -C(R0)=C(R00)-, -C≡C-, -N(R0)-, -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O- in such a way that O and/or S atoms are not linked directly to one another, and in which, in addition, one or more H atoms may be replaced by F, Cl, CN or P1-Sp1-, particularly preferably straight-chain or branched, optionally mono- or polyfluorinated alkyl, alkoxy, alkenyl, alkynyl, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy having 1 to 12 C atoms (where the alkenyl and alkynyl radicals have at least two C atoms and the branched radicals have at least three C atoms),
    R0, R00
    H or alkyl having 1 to 12 C atoms,
    Ry and Rz
    H, F, CH3 or CF3,
    X1, X2, X3
    -CO-O-, -O-CO- or a single bond,
    ZM1
    -O-, -CO-, -C(RyRz)- or -CF2CF2-,
    ZM2, ZM3
    -CO-O-, -O-CO-, -CH2O-, -OCH2-, -CF2O-, -OCF2- or -(CH2)n-, where n is 2, 3 or 4,
    L
    F, Cl, CN or straight-chain or branched, optionally mono- or polyfluorinated alkyl, alkoxy, alkenyl, alkynyl, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy or alkoxycarbonyloxy having 1 to 12 C atoms,
    L', L"
    H, For Cl,
    r
    0, 1, 2, 3 or 4,
    s
    0, 1, 2 or 3,
    t
    0, 1 or 2,
    x
    0 or 1.
  • Especially preferred are compounds of formulae M2 and M13.
  • Further preferred are trireactive compounds M15 to M31, in particular M17, M18, M19, M22, M23, M24, M25, M30 and M31.
  • In the compounds of formulae M1 to M31 the group
    Figure imgb0533
    is preferably
    Figure imgb0534
    Figure imgb0535
    wherein L on each occurrence, identically or differently, has one of the meanings given above or below, and is preferably F, Cl, CN, NO2, CH3, C2H5, C(CH3)3, CH(CH3)2, CH2CH(CH3)C2H5, OCH3, OC2H5, COCH3, COC2H5, COOCH3, COOC2H5, CF3, OCF3, OCHF2, OC2F5 or P-Sp-, very preferably F, Cl, CN, CH3, C2H5, OCH3, COCH3, OCF3 or P-Sp-, more preferably F, Cl, CH3, OCH3, COCH3 oder OCF3, especially F or CH3.
  • Preferred compounds of formulae M1 to M31 are those wherein P1, P2 and P3 denote an acrylate, methacrylate, oxetane or epoxy group, very preferably an acrylate or methacrylate group.
  • Further preferred compounds of formulae M1 to M31 are those wherein Sp1, Sp2 and Sp3 are a single bond.
  • Further preferred compounds of formulae M1 to M31 are those wherein one of Sp1, Sp2 and Sp3 is a single bond and another one of Sp1, Sp2 and Sp3 is different from a single bond.
  • Further preferred compounds of formulae M1 to M31 are those wherein those groups Sp1, Sp2 and Sp3 that are different from a single bond denote -(CH2)s1-X"-, wherein s1 is an integer from 1 to 6, preferably 2, 3, 4 or 5, and X" is X" is the linkage to the benzene ring and is -O-, -O-CO-, -CO-O-, -O-CO-O- or a single bond.
  • Further preferred polymerisable compounds of formulae M1 to M31 are those selected from Table D below.
  • Particular preference is given to LC media comprising one, two or three polymerisable compounds of formula M, preferably selected from formulae M1 to M31.
  • Preferably the proportion of polymerisable compounds of formula M in the LC medium is from 0.01 to 5%, very preferably from 0.05 to 1%, most preferably from 0.1 to 0.5%.
  • It was observed that the addition of one or more polymerisable compounds of formula M to the LC medium leads to advantageous properties like fast response times. Such an LC medium is especially suitable for use in PSA displays where it shows low image sticking, a quick and complete polymerisation, the quick generation of a low pretilt angle which is stable after UV exposure, a high reliability, high VHR value after UV exposure, and a high birefringence. By appropriate selection of the polymerisable compounds it is possible to increase the absorption of the LC medium at longer UV wavelengths, so that it is possible to use such longer UV wavelengths for polymerisation, which is advantageous for the display manufacturing process.
  • The polymerisable group P is a group which is suitable for a polymerisation reaction, such as, for example, free-radical or ionic chain polymerisation, polyaddition or polycondensation, or for a polymer-analogous reaction, for example addition or condensation onto a main polymer chain. Particular preference is given to groups for chain polymerisation, in particular those containing a C=C double bond or -C≡C- triple bond, and groups which are suitable for polymerisation with ring opening, such as, for example, oxetane or epoxide groups.
  • Preferred groups P are selected from the group consisting of CH2=CW1-COO-, CH2=CW1-CO-,
    Figure imgb0536
    Figure imgb0537
    CH2=CW2-(O)k3-, CW1=CH-CO-(O)k3-, CW1=CH-CO-NH- , CH2=CW1-CO-NH-, CH3-CH=CH-O-, (CH2=CH)2CH-OCO-, (CH2=CH-CH2)2CH-OCO-, (CH2=CH)2CH-O-, (CH2=CH-CH2)2N-, (CH2=CH-CH2)2N-CO-, HO-CW2W3-, HS-CW2W3-, HW2N-, HO-CW2W3-NH-, CH2=CW1-CO-NH-, CH2=CH-(COO)k1-Phe-(O)k2-, CH2=CH-(CO)k1-Phe-(O)k2-, Phe-CH=CH- , HOOC-, OCN- and W4W5W6Si-, in which W1 denotes H, F, Cl, CN, CF3, phenyl or alkyl having 1 to 5 C atoms, in particular H, F, Cl or CH3, W2 and W3 each, independently of one another, denote H or alkyl having 1 to 5 C atoms, in particular H, methyl, ethyl or n-propyl, W4, W5 and W6 each, independently of one another, denote Cl, oxaalkyl or oxacarbonylalkyl having 1 to 5 C atoms, W7 and W8 each, independently of one another, denote H, Cl or alkyl having 1 to 5 C atoms, Phe denotes 1,4-phenylene, which is optionally substituted by one or more radicals L as defined above which are other than P-Sp-, k1, k2 and k3 each, independently of one another, denote 0 or 1, k3 preferably denotes 1, and k4 denotes an integer from 1 to 10.
  • Very preferred groups P are selected from the group consisting of CH2=CW1-CO-O-, CH2=CW1-CO-,
    Figure imgb0538
    Figure imgb0539
    CH2=CW2-O-, CH2=CW2-, CW1=CH-CO-(O)k3-, CW1=CH-CO-NH-, CH2=CW1-CO-NH-, (CH2=CH)2CH-OCO-, (CH2=CH-CH2)2CH-OCO-, (CH2=CH)2CH-O-, (CH2=CH-CH2)2N-, (CH2=CH-CH2)2N-CO-, CH2=CW1-CO-NH-, CH2=CH-(COO)k1-Phe-(O)k2-, CH2=CH-(CO)k1-Phe-(O)k2-, Phe-CH=CH- and W4W5W6Si-, in which W1 denotes H, F, Cl, CN, CF3, phenyl or alkyl having 1 to 5 C atoms, in particular H, F, Cl or CH3, W2 and W3 each, independently of one another, denote H or alkyl having 1 to 5 C atoms, in particular H, methyl, ethyl or n-propyl, W4, W5 and W6 each, independently of one another, denote Cl, oxaalkyl or oxacarbonylalkyl having 1 to 5 C atoms, W7 and W8 each, independently of one another, denote H, Cl or alkyl having 1 to 5 C atoms, Phe denotes 1,4-phenylene, k1, k2 and k3 each, independently of one another, denote 0 or 1, k3 preferably denotes 1, and k4 denotes an integer from 1 to 10.
  • Very particularly preferred groups P are selected from the group consisting of CH2=CW1-CO-O-, in particular CH2=CH-CO-O-, CH2=C(CH3)-CO-O- and CH2=CF-CO-O-, furthermore CH2=CH-O-, (CH2=CH)2CH-O-CO-, (CH2=CH)2CH-O-,
    Figure imgb0540
  • Further preferred polymerisable groups P are selected from the group consisting of vinyloxy, acrylate, methacrylate, fluoroacrylate, chloroacrylate, oxetane and epoxide, most preferably from acrylate and methacrylate.
  • If Sp is different from a single bond, it is preferably of the formula Sp"-X", so that the respective radical P-Sp- conforms to the formula P-Sp"-X"-, wherein
  • Sp"
    denotes alkylene having 1 to 20, preferably 1 to 12, C atoms, which is optionally mono- or polysubstituted by F, Cl, Br, I or CN and in which, in addition, one or more non-adjacent CH2 groups may each be replaced, independently of one another, by -O-, -S-, -NH-, -N(R0)-, -Si(R0R00)-, -CO-, -CO-O-, -O-CO-, -O-CO-O-, -S-CO-, -CO-S-, -N(R00)-CO-O-, -O-CO-N(R0)-, -N(R0)-CO-N(R00)-, -CH=CH- or -C≡C- in such a way that O and/or S atoms are not linked directly to one another,
    X"
    denotes -O-, -S-, -CO-, -CO-O-, -O-CO-, -O-CO-O-, -CO-N(R0)-, -N(R0)-CO-, -N(R0)-CO-N(R00)-, -OCH2-, -CH2O-, -SCH2-, -CH2S-, -CF2O-, -OCF2-, -CF2S-, -SCF2-, -CF2CH2-, -CH2CF2-, -CF2CF2-, -CH=N-, -N=CH-, -N=N-, -CH=CR0-, -CY2=CY3-, -C≡C-, -CH=CH-CO-O-, -O-CO-CH=CH- or a single bond,
    R0 and R00
    each, independently of one another, denote H or alkyl having 1 to 20 C atoms, and
    Y2 and Y3
    each, independently of one another, denote H, F, Cl or CN.
  • X" is preferably -O-, -S-, -CO-, -COO-, -OCO-, -O-COO-, -CO-NR0-, -NR0-CO-, -NR0-CO-NR00- or a single bond.
  • Typical spacer groups Sp and -Sp"-X"- are, for example, -(CH2)p1-, - (CH2CH2O)q1-CH2CH2-, -CH2CH2-S-CH2CH2-, -CH2CH2-NH-CH2CH2- or - (SiR0R00-O)p1-, in which p1 is an integer from 1 to 12, q1 is an integer from 1 to 3, and R0 and R00 have the meanings indicated above.
  • Particularly preferred groups Sp and -Sp"-X"- are -(CH2)p1-, -(CH2)p1-O-, -(CH2)p1-O-CO-, -(CH2)p1-CO-O-, -(CH2)p1-O-CO-O-, in which p1 and q1 have the meanings indicated above.
  • Particularly preferred groups Sp" are, in each case straight-chain, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene, dodecylene, octadecylene, ethyleneoxyethylene, methyleneoxybutylene, ethylenethioethylene, ethylene-N-methylimino-ethylene, 1-methylalkylene, ethenylene, propenylene and butenylene.
  • For the production of PSA displays, the polymerisable compounds contained in the LC medium are polymerised or crosslinked (if one compound contains two or more polymerisable groups) by in-situ polymerisation in the LC medium between the substrates of the LC display, optionally while a voltage is applied to the electrodes.
  • The structure of the PSA displays according to the invention corresponds to the usual geometry for PSA displays, as described in the prior art cited at the outset. Geometries without protrusions are preferred, in particular those in which, in addition, the electrode on the colour filter side is unstructured and only the electrode on the TFT side has slots. Particularly suitable and preferred electrode structures for PS-VA displays are described, for example, in US 2006/0066793 A1 .
  • The combination of compounds of the preferred embodiments mentioned above with the polymerised compounds described above causes low threshold voltages, low rotational viscosities and very good low-temperature stabilities in the LC media according to the invention at the same time as constantly high clearing points and high VHR values.
  • The use of LC media containing polymerisable compounds allows the rapid establishment of a particularly low pretilt angle in PSA displays. In particular, the LC media exhibit significantly shortened response times, in particular also the grey-shade response times, in PSA displays compared with the media from the prior art.
  • Preference is generally given to LC media which have a nematic LC phase, and preferably have no chiral liquid crystal phase.
  • The LC media of the present invention preferably have a nematic phase range ≥ 80 K, very preferably ≥ 100 K, and preferably a rotational viscosity ≤ 250 mPa·s, very preferably ≤ 200 mPa·s, at 20°C.
  • In the VA-type displays according to the invention, the molecules in the layer of the LC medium in the switched-off state are aligned perpendicular to the electrode surfaces (homeotropically) or have a a tilted homeotropic alignment. On application of an electrical voltage to the electrodes, a realignment of the LC molecules takes place with the longitudinal molecular axes parallel to the electrode surfaces.
  • LC media according to the invention, in particular for use in displays of the IPS and FFS type, preferably have a positive dielectric anisotropy Δε from +2 to +30, very preferably from +3 to +20, at 20°C and 1 kHz.
  • The birefringence Δn in LC media according to the invention for use in displays of the IPS or FFS is preferably from 0.07 to 0.15, particularly preferably from 0.08 to 0.13.
  • The LC media according to the invention may also comprise further additives which are known to the person skilled in the art and are described in the literature, such as, for example, polymerisation initiators, inhibitors, stabilizers, surface-active substances or chiral dopants. These may be polymerisable or non-polymerisable.
  • In a preferred embodiment the LC media contain one or more chiral dopants, preferably in a concentration from 0.01 to 1% by weight, very preferably from 0.05 to 0.5% by weight. The chiral dopants are preferably selected from the group consisting of compounds from Table B below, very preferably from the group consisting of R- or S-1011, R- or S-2011, R- or S-3011, R- or S-4011, and R- or S-5011.
  • In another preferred embodiment the LC media contain a racemate of one or more chiral dopants, which are preferably selected from the chiral dopants mentioned in the previous paragraph.
  • Furthermore, it is possible to add to the LC media, for example, 0 to 15% by weight of pleochroic dyes, furthermore nanoparticles, conductive salts, preferably ethyldimethyldodecylammonium 4-hexoxybenzoate, tetrabutylammonium tetraphenylborate or complex salts of crown ethers (cf., for example, Haller et al., Mol. Cryst. Liq. Cryst. 24, 249-258 (1973)), for improving the conductivity, or substances for modifying the dielectric anisotropy, the viscosity and/or the alignment of the nematic phases. Substances of this type are described, for example, in DE-A 22 09 127 , 22 40 864 , 23 21 632 , 23 38 281 , 24 50 088 , 26 37 430 and 28 53 728 .
  • The LC media which can be used in accordance with the invention are prepared in a manner conventional per se, for example by mixing one or more of the above-mentioned compounds with one or more polymerisable compounds as defined above, and optionally with further liquid-crystalline compounds and/or additives. In general, the desired amount of the components used in lesser amount is dissolved in the components making up the principal constituent, advantageously at elevated temperature. It is also possible to mix solutions of the components in an organic solvent, for example in acetone, chloroform or methanol, and to remove the solvent again, for example by distillation, after thorough mixing. The invention furthermore relates to the process for the preparation of the LC media according to the invention.
  • It goes without saying to the person skilled in the art that the LC media according to the invention may also comprise compounds in which, for example, H, N, O, Cl, F have been replaced by the corresponding isotopes like deuterium etc.
  • The following examples explain the present invention without restricting it. However, they show the person skilled in the art preferred mixture concepts with compounds preferably to be employed and the respective concentrations thereof and combinations thereof with one another. In addition, the examples illustrate which properties and property combinations are accessible.
  • Throughout the patent application, 1,4-cyclohexylene rings and 1,4-phenylene rings are represented as follows:
    Figure imgb0541
    Figure imgb0542
  • The cyclohexylene rings are trans-1,4-cyclohexylene rings.
  • Throughout the patent application and in the working examples, the structures of the liquid-crystal compounds are indicated by means of acronyms. Unless indicated otherwise, the transformation into chemical formulae takes place in accordance with Tables I-III. All radicals CnH2n+1, CmH2m+1, CnH2n, CmH2m and CkH2k are straight-chain alkyl radicals or alkenyl radicals respectively, in each case having n, m or k C atoms; n and m each, independently of one another, denote 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12, preferably 1, 2, 3, 4, 5 or 6, and k is 0, 1, 2, 3, 4, 5 or 6. In Table I the ring elements of the respective compound are coded, in Table II the bridging members are listed and in Table III the meanings of the symbols for the left-hand and right-hand side chains of the compounds are indicated.
    Figure imgb0543
    Figure imgb0544
    Figure imgb0545
    Table II: Bridging members
    E -CH2CH2-
    V -CH=CH-
    T -C≡C-
    W -CF2CF2-
    Z -COO- ZI -OCO-
    O -CH2O- OI -OCH2-
    Q -CF2O- QI -OCF2-
    Table III: Side chains
    Left-hand side chain Right-hand side chain
    n- CnH2n+1- -n -CnH2n+1
    nO- CnH2n+1-O- -On -O-CnH2n+1
    V- CH2=CH- -V -CH=CH2
    nV- CnH2n+1-CH=CH- -nV -CnH2n-CH=CH2
    Vn- CH2=CH-CnH2n- -Vn -CH=CH-CnH2n+1
    nVm- CnH2n+1-CH=CH-CmH2m- -nVm -CnH2n-CH=CH-CmH2m+1
    N- N≡C- -N -C≡N
    F- F- -F -F
    Cl- Cl- -Cl -Cl
    M- CFH2- -M -CFH2
    D- CF2H- -D -CF2H
    T- CF3- -T -CF3
    MO- CFH2O- -OM -OCFH2
    DO- CF2HO- -OD -OCF2H
    TO- CF3O- -OT -OCF3
    T- CF3- -T -CF3
    A- H-C≡C- -A -C≡C-H
    FXO- CF2=CHO- -OXF -OCH=CF2
  • Preferred mixture components are shown in Tables A1 and A2 below. Table A1
    In Table A1, R1* denotes a group selected from the left-hand side chains and R2* denotes a group selected from the right-hand side chains listed in Table III, L1* and L2* are independently of each other H or F, m and n are independently of each other an integer from 1 to 12, preferably 1, 2, 3, 4, 5 or 6, k is 0, 1, 2, 3, 4, 5 or 6, and (O)CmH2m+1 means CmH2m+1 or OCmH2m+1.
    Figure imgb0546
    Figure imgb0547
    Figure imgb0548
    Figure imgb0549
    Figure imgb0550
    Figure imgb0551
    Figure imgb0552
    Figure imgb0553
    Figure imgb0554
    Figure imgb0555
    Figure imgb0556
    Figure imgb0557
    Figure imgb0558
    Figure imgb0559
    Figure imgb0560
    Figure imgb0561
    Figure imgb0562
    Figure imgb0563
    Figure imgb0564
    Figure imgb0565
    Figure imgb0566
    Figure imgb0567
    Figure imgb0568
    Figure imgb0569
    Figure imgb0570
    Figure imgb0571
    Figure imgb0572
    Figure imgb0573
    Figure imgb0574
    Figure imgb0575
    Figure imgb0576
    Figure imgb0577
    Figure imgb0578
    Figure imgb0579
    Figure imgb0580
    Figure imgb0581
    Figure imgb0582
    Figure imgb0583
    Figure imgb0584
    Figure imgb0585
    Figure imgb0586
    Figure imgb0587
    Figure imgb0588
    Figure imgb0589
    Figure imgb0590
    Figure imgb0591
    Figure imgb0592
    Figure imgb0593
    Figure imgb0594
    Figure imgb0595
    Figure imgb0596
    Figure imgb0597
    Figure imgb0598
    Figure imgb0599
    Figure imgb0600
    Figure imgb0601
    Figure imgb0602
    Figure imgb0603
    Figure imgb0604
    Figure imgb0605
    Figure imgb0606
    Figure imgb0607
    Figure imgb0608
    Figure imgb0609
    Figure imgb0610
    Figure imgb0611
    Figure imgb0612
    Figure imgb0613
    Figure imgb0614
    Figure imgb0615
    Figure imgb0616
    Figure imgb0617
    Figure imgb0618
    Figure imgb0619
    Figure imgb0620
    Figure imgb0621
    Figure imgb0622
    Figure imgb0623
    Figure imgb0624
    Figure imgb0625
    Figure imgb0626
    Figure imgb0627
    Figure imgb0628
    Figure imgb0629
    Figure imgb0630
    Figure imgb0631
    Figure imgb0632
    Figure imgb0633
    Figure imgb0634
    Figure imgb0635
    Figure imgb0636
    Figure imgb0637
    Figure imgb0638
    Figure imgb0639
    Figure imgb0640
    Figure imgb0641
    Figure imgb0642
    Figure imgb0643
    Figure imgb0644
    Figure imgb0645
    Figure imgb0646
    Figure imgb0647
    Figure imgb0648
    Figure imgb0649
    Figure imgb0650
    Figure imgb0651
    Figure imgb0652
    Figure imgb0653
    Figure imgb0654
    Figure imgb0655
    Figure imgb0656
    Figure imgb0657
    Figure imgb0658
    Figure imgb0659
    Figure imgb0660
    Figure imgb0661
    Figure imgb0662
    Figure imgb0663
    Figure imgb0664
    Figure imgb0665
    Table A2
    In the formulae below m and n are independently of each other an integer from 1 to 12, preferably 1, 2, 3, 4, 5 or 6, k is 0, 1, 2, 3, 4, 5 or 6 and (O)CmH2m+1 means CmH2m+1 or OCmH2m+1.
    Figure imgb0666
    Figure imgb0667
    Figure imgb0668
    Figure imgb0669
    Figure imgb0670
    Figure imgb0671
    Figure imgb0672
    Figure imgb0673
    Figure imgb0674
    Figure imgb0675
    Figure imgb0676
    Figure imgb0677
    Figure imgb0678
    Figure imgb0679
    Figure imgb0680
    Figure imgb0681
    Figure imgb0682
    Figure imgb0683
    Figure imgb0684
    Figure imgb0685
    Figure imgb0686
    Figure imgb0687
    Figure imgb0688
    Figure imgb0689
    Figure imgb0690
    Figure imgb0691
    Figure imgb0692
    Figure imgb0693
    Figure imgb0694
    Figure imgb0695
    Figure imgb0696
    Figure imgb0697
    Figure imgb0698
    Figure imgb0699
    Figure imgb0700
    Figure imgb0701
    Figure imgb0702
    Figure imgb0703
    Figure imgb0704
    Figure imgb0705
    Figure imgb0706
    Figure imgb0707
    Figure imgb0708
    Figure imgb0709
    Figure imgb0710
    Figure imgb0711
    Figure imgb0712
    Figure imgb0713
    Figure imgb0714
    Figure imgb0715
    Figure imgb0716
    Figure imgb0717
    Figure imgb0718
    Figure imgb0719
    Figure imgb0720
    Figure imgb0721
    Figure imgb0722
    Figure imgb0723
    Figure imgb0724
    Figure imgb0725
    Figure imgb0726
    Figure imgb0727
    Figure imgb0728
    Figure imgb0729
    Figure imgb0730
    Figure imgb0731
    Figure imgb0732
    Figure imgb0733
    Figure imgb0734
    Figure imgb0735
    Figure imgb0736
    Figure imgb0737
    Figure imgb0738
    Figure imgb0739
    Figure imgb0740
    Figure imgb0741
    Figure imgb0742
    Figure imgb0743
    Figure imgb0744
    Figure imgb0745
    Figure imgb0746
    Figure imgb0747
    Figure imgb0748
    Figure imgb0749
    Figure imgb0750
    Figure imgb0751
    Figure imgb0752
    Figure imgb0753
    Figure imgb0754
    Figure imgb0755
    Figure imgb0756
    Figure imgb0757
    Figure imgb0758
    Figure imgb0759
    Figure imgb0760
    Figure imgb0761
    Figure imgb0762
    Figure imgb0763
    Figure imgb0764
    Figure imgb0765
    Figure imgb0766
    Figure imgb0767
    Figure imgb0768
    Figure imgb0769
    Figure imgb0770
    Figure imgb0771
    Figure imgb0772
    Figure imgb0773
    Figure imgb0774
    Figure imgb0775
    Figure imgb0776
    Figure imgb0777
    Figure imgb0778
    Figure imgb0779
    Figure imgb0780
    Figure imgb0781
    Figure imgb0782
    Figure imgb0783
    Figure imgb0784
    Figure imgb0785
    Figure imgb0786
    Figure imgb0787
    Figure imgb0788
    Figure imgb0789
    Figure imgb0790
    Figure imgb0791
    Figure imgb0792
    Figure imgb0793
    Figure imgb0794
    Figure imgb0795
    Figure imgb0796
    Figure imgb0797
  • In a first preferred embodiment of the present invention, the LC media according to the invention, especially those with positive dielectric anisotropy, comprise one or more compounds selected from the group consisting of compounds from Table A1.
  • In a second preferred embodiment of the present invention, the LC media according to the invention, especially those with negaitve dielectric anisotropy, comprise one or more compounds selected from the group consisting of compounds from Table A2. Table B
    Table B shows possible chiral dopants which can be added to the LC media according to the invention.
    Figure imgb0798
    Figure imgb0799
    Figure imgb0800
    Figure imgb0801
    Figure imgb0802
    Figure imgb0803
    Figure imgb0804
    Figure imgb0805
    Figure imgb0806
    Figure imgb0807
    Figure imgb0808
    Figure imgb0809
    Figure imgb0810
  • The LC media preferably comprise 0 to 10% by weight, in particular 0.01 to 5% by weight, particularly preferably 0.1 to 3% by weight, of dopants. The LC media preferably comprise one or more dopants selected from the group consisting of compounds from Table B. Table C
    Table C shows possible stabilisers which can be added to the LC media according to the invention. Therein n denotes an integer from 1 to 12, preferably 1, 2, 3, 4, 5, 6, 7 or 8, and terminal methyl groups are not shown.
    Figure imgb0811
    Figure imgb0812
    Figure imgb0813
    Figure imgb0814
    Figure imgb0815
    Figure imgb0816
    Figure imgb0817
    Figure imgb0818
    Figure imgb0819
    Figure imgb0820
    Figure imgb0821
    Figure imgb0822
    Figure imgb0823
    Figure imgb0824
    Figure imgb0825
    Figure imgb0826
    Figure imgb0827
    Figure imgb0828
    Figure imgb0829
    Figure imgb0830
    Figure imgb0831
    Figure imgb0832
    Figure imgb0833
    Figure imgb0834
    Figure imgb0835
    Figure imgb0836
    Figure imgb0837
    Figure imgb0838
    Figure imgb0839
    Figure imgb0840
    Figure imgb0841
    Figure imgb0842
    Figure imgb0843
    Figure imgb0844
    Figure imgb0845
    Figure imgb0846
    Figure imgb0847
    Figure imgb0848
    Figure imgb0849
    Figure imgb0850
    Figure imgb0851
    Figure imgb0852
    Figure imgb0853
    Figure imgb0854
    Figure imgb0855
    Figure imgb0856
    Figure imgb0857
    Figure imgb0858
  • The LC media preferably comprise 0 to 10% by weight, in particular 1 ppm to 5% by weight, particularly preferably 1 ppm to 1% by weight, of stabilisers. The LC media preferably comprise one or more stabilisers selected from the group consisting of compounds from Table C. Table D
    Table D shows illustrative reactive mesogenic compounds which can be used in the LC media in accordance with the present invention.
    Figure imgb0859
    RM-1
    Figure imgb0860
    RM-2
    Figure imgb0861
    RM-3
    Figure imgb0862
    RM-4
    Figure imgb0863
    RM-5
    Figure imgb0864
    RM-6
    Figure imgb0865
    RM-7
    Figure imgb0866
    RM-8
    Figure imgb0867
    RM-9
    Figure imgb0868
    RM-10
    Figure imgb0869
    RM-11
    Figure imgb0870
    RM-12
    Figure imgb0871
    RM-13
    Figure imgb0872
    RM-14
    Figure imgb0873
    RM-15
    Figure imgb0874
    RM-16
    Figure imgb0875
    RM-17
    Figure imgb0876
    RM-18
    Figure imgb0877
    RM-19
    Figure imgb0878
    RM-20
    Figure imgb0879
    RM-21
    Figure imgb0880
    RM-22
    Figure imgb0881
    RM-23
    Figure imgb0882
    RM-24
    Figure imgb0883
    RM-25
    Figure imgb0884
    RM-26
    Figure imgb0885
    RM-27
    Figure imgb0886
    RM-28
    Figure imgb0887
    RM-29
    Figure imgb0888
    RM-30
    Figure imgb0889
    RM-31
    Figure imgb0890
    RM-32
    Figure imgb0891
    RM-33
    Figure imgb0892
    RM-34
    Figure imgb0893
    RM-35
    Figure imgb0894
    RM-36
    Figure imgb0895
    RM-37
    Figure imgb0896
    RM-38
    Figure imgb0897
    RM-39
    Figure imgb0898
    RM-40
    Figure imgb0899
    RM-41
    Figure imgb0900
    RM-42
    Figure imgb0901
    RM-43
    Figure imgb0902
    RM-44
    Figure imgb0903
    RM-45
    Figure imgb0904
    RM-46
    Figure imgb0905
    RM-47
    Figure imgb0906
    RM-48
    Figure imgb0907
    RM-49
    Figure imgb0908
    RM-50
    Figure imgb0909
    RM-51
    Figure imgb0910
    RM-52
    Figure imgb0911
    RM-53
    Figure imgb0912
    RM-54
    Figure imgb0913
    RM-55
    Figure imgb0914
    RM-56
    Figure imgb0915
    RM-57
    Figure imgb0916
    RM-58
    Figure imgb0917
    RM-59
    Figure imgb0918
    RM-60
    Figure imgb0919
    RM-61
    Figure imgb0920
    RM-62
    Figure imgb0921
    RM-63
    Figure imgb0922
    RM-64
    Figure imgb0923
    RM-65
    Figure imgb0924
    RM-66
    Figure imgb0925
    RM-67
    Figure imgb0926
    RM-68
    Figure imgb0927
    RM-69
    Figure imgb0928
    RM-70
    Figure imgb0929
    RM-71
    Figure imgb0930
    RM-72
    Figure imgb0931
    RM-73
    Figure imgb0932
    RM-74
    Figure imgb0933
    RM-75
    Figure imgb0934
    RM-76
    Figure imgb0935
    RM-77
    Figure imgb0936
    RM-78
    Figure imgb0937
    RM-79
    Figure imgb0938
    RM-80
    Figure imgb0939
    RM-81
    Figure imgb0940
    RM-82
    Figure imgb0941
    RM-83
    Figure imgb0942
    RM-84
    Figure imgb0943
    RM-85
    Figure imgb0944
    RM-86
    Figure imgb0945
    RM-87
    Figure imgb0946
    RM-88
    Figure imgb0947
    RM-89
    Figure imgb0948
    RM-90
    Figure imgb0949
    RM-91
    Figure imgb0950
    RM-92
    Figure imgb0951
    RM-93
    Figure imgb0952
    RM-94
    Figure imgb0953
    RM-95
    Figure imgb0954
    RM-96
    Figure imgb0955
    RM-97
    Figure imgb0956
    RM-98
    Figure imgb0957
    RM-99
    Figure imgb0958
    RM-100
    Figure imgb0959
    RM-101
    Figure imgb0960
    RM-102
    Figure imgb0961
    RM-103
    Figure imgb0962
    RM-104
    Figure imgb0963
    RM-105
    Figure imgb0964
    RM-106
    Figure imgb0965
    RM-107
    Figure imgb0966
    RM-108
    Figure imgb0967
    RM-109
    Figure imgb0968
    RM-110
    Figure imgb0969
    RM-111
    Figure imgb0970
    RM-112
    Figure imgb0971
    RM-113
    Figure imgb0972
    RM-114
    Figure imgb0973
    RM-115
    Figure imgb0974
    RM-116
    Figure imgb0975
    RM-117
    Figure imgb0976
    RM-118
    Figure imgb0977
    RM-119
    Figure imgb0978
    RM-120
    Figure imgb0979
    RM-121
    Figure imgb0980
    RM-122
    Figure imgb0981
    RM-123
    Figure imgb0982
    RM-124
    Figure imgb0983
    RM-125
    Figure imgb0984
    RM-126
    Figure imgb0985
    RM-127
    Figure imgb0986
    RM-128
    Figure imgb0987
    RM-129
    Figure imgb0988
    RM-130
    Figure imgb0989
    RM-131
  • In a preferred embodiment, the mixtures according to the invention comprise one or more polymerisable compounds, preferably selected from the polymerisable compounds of the formulae RM-1 to RM-131. Of these, compounds RM-1, RM-4, RM-8, RM-17, RM-19, RM-35, RM-37, RM-43, RM-47, RM-49, RM-51, RM-59, RM-69, RM-71, RM-83, RM-97, RM-98, RM-104, RM-112, RM-115 and RM-116 are particularly preferred.
  • In addition, the following abbreviations and symbols are used:
  • V0
    threshold voltage, capacitive [V] at 20°C,
    ne
    extraordinary refractive index at 20°C and 589 nm,
    no
    ordinary refractive index at 20°C and 589 nm,
    Δn
    optical anisotropy at 20°C and 589 nm,
    ε
    dielectric permittivity perpendicular to the director at 20°C and 1 kHz,
    ε
    dielectric permittivity parallel to the director at 20°C and 1 kHz,
    Δε
    dielectric anisotropy at 20°C and 1 kHz,
    cl.p., T(N,I)
    clearing point [°C],
    γ1
    rotational viscosity at 20°C [mPa·s],
    K1
    elastic constant, "splay" deformation at 20°C [pN],
    K2
    elastic constant, "twist" deformation at 20°C [pN],
    K3
    elastic constant, "bend" deformation at 20°C [pN].
  • Unless explicitly noted otherwise, all concentrations in the present application are quoted in per cent by weight and relate to the corresponding mixture as a whole, comprising all solid or liquid-crystalline components, without solvents.
  • Unless explicitly noted otherwise, all temperature values indicated in the present application, such as, for example, for the melting point T(C,N), the transition from the smectic (S) to the nematic (N) phase T(S,N) and the clearing point T(N,I), are quoted in degrees Celsius (°C). M.p. denotes melting point, cl.p. = clearing point. Furthermore, C = crystalline state, N = nematic phase, S = smectic phase and I = isotropic phase. The data between these symbols represent the transition temperatures.
  • All physical properties are and have been determined in accordance with "Merck Liquid Crystals, Physical Properties of Liquid Crystals", Status Nov. 1997, Merck KGaA, Germany, and apply for a temperature of 20°C, and Δn is determined at 589 nm and Δε at 1 kHz, unless explicitly indicated otherwise in each case.
  • The term "threshold voltage" for the present invention relates to the capacitive threshold (V0), also known as the Freedericks threshold, unless
  • Reference Example 1
  • An LC mixture with negative dielectric anisotropy is formulated as follows.
    CC-3-V 29.00% cl.p. 80.1 °C
    CCY-3-O1 8.00% Δn 0.1052
    CCY-3-O2 6.00% Δε -4.7
    CCY-4-O2 2.00% ε 3.9
    CLY-3-O2 8.50% K3/K1 1.10
    CLY-3-O3 7.50% γ1 125 mPa s
    CPY-2-O2 10.00%
    CPY-3-O2 7.50%
    CY-3-O2 6.50%
    PY-3-O2 10.00%
    Y-4O-O4 5.00%
  • To the above mixture are added 200 ppm of stabilizer S1-2a and 400ppm of stabilizer S2a.
    Figure imgb0990
    Figure imgb0991
  • Reference Example 2
  • An LC mixture with negative dielectric anisotropy is formulated as follows.
    CC-3-V 23.00% cl.p. 79.6 °C
    CC-3-V1 5.00% Δn 0.1156
    CCY-3-O1 5.00% Δε -4.7
    CCY-3-O2 1.00% ε 3.9
    CCY-4-O2 2.50% K3/K1 1.12
    CLY-3-O2 8.00% γ1 133 mPa s
    CLY-3-O3 7.00%
    CPY-2-O2 10.00%
    CPY-3-O2 11.00%
    CY-3-O2 11.00%
    PY-3-O2 16.50%
  • To the above mixture are added 200 ppm of stabilizer S1-2a and 400ppm of stabilizer S2a.
  • Reference Example 3
  • An LC mixture with negative dielectric anisotropy is formulated as follows.
    CC-3-V 22.00% cl.p. 90.6 °C
    CC-3-V1 5.00% Δn 0.1063
    CCPC-33 3.00% Δε -4.6
    CCY-3-O1 6.00% ε 3.7
    CCY-3-O2 9.50% K3/K1 1.18
    CCY-4-O2 9.00% γ1 160 mPa s
    CPY-2-O2 10.00%
    CPY-3-O2 10.00%
    CY-3-O2 10.00%
    CY-5-O2 6.50%
    PY-3-O2 9.00%
  • To the above mixture are added 200 ppm of stabilizer S1-2a and 400ppm of stabilizer S2a.
  • Reference Example 4
  • An LC mixture with negative dielectric anisotropy is formulated as follows.
    BCH-32 2.00% cl.p. 80.1 °C
    CC-3-V 29.00% Δn 0.1051
    CCY-3-O1 7.00% Δε -4.5
    CCY-3-O3 6.00% ε 4.0
    CCY-4-O2 8.00% K3/K1 1.13
    CLY-3-O2 6.00% γ1 123 mPa s
    CPY-2-O2 10.00%
    CPY-3-O2 11.00%
    CY-3-O2 7.00%
    PY-3-O2 9.00%
    Y-4O-O4 5.00%
  • To the above mixture are added 150 ppm of stabilizer S1-2a and 400ppm of stabilizer S2a.
  • Reference Example 5
  • An LC mixture with negative dielectric anisotropy is formulated as follows.
    CC-3-V 29.50% cl.p. 84.7 °C
    CC-3-V1 4.00% Δn 0.0966
    CCY-3-O2 7.00% Δε -3.6
    CCY-3-O3 5.00% ε 3.6
    CCY-4-O2 6.00% K3/K1 1.13
    CCY-5-O2 7.00% γ1 128 mPa s
    CPY-3-O2 9.00%
    CPY-2-O2 8.50%
    CY-3-O4 10.00%
    CY-5-O2 10.00%
    PGIGI-3-F 4.00%
  • To the above mixture are added 100 ppm of stabilizer S1-2a and 400ppm of stabilizer S2a.
  • Reference Example 6
  • An LC mixture with negative dielectric anisotropy is formulated as follows.
    CC-3-V 33.00% cl.p. 80.8 °C
    CCY-3-O1 6.00% Δn 0.1066
    CCY-3-O2 6.00% Δε -4.0
    CCY-4-O2 8.00% ε 3.7
    CCY-5-O2 3.00% K3/K1 1.13
    CPY-2-O2 9.00% γ1 116 mPa s
    CPY-3-O2 9.00%
    CY-3-O2 9.00%
    CY-5-O2 3.00%
    PY-3-O2 9.00%
    PYP-2-3 5.00%
  • To the above mixture are added 150 ppm of stabilizer S1-2a and 400ppm of stabilizer S2a.
  • Reference Example 7
  • An LC mixture with negative dielectric anisotropy is formulated as follows.
    BCH-32 6.50% cl.p. 74.9 °C
    CC-3-V 33.00% Δn 0.1009
    CCY-3-O1 4.00% Δε -3.7
    CCY-3-O2 4.50% ε 3.8
    CCY-3-O3 6.00% K3/K1 1.11
    CCY-4-O2 6.00% γ1 10mPas
    CPY-2-O2 9.00%
    CPY-3-O2 10.00%
    CY-3-O2 9.00%
    PY-3-O2 7.00%
    Y-4O-O4 5.00%
  • To the above mixture are added 100 ppm of stabilizer S1-2a and 400ppm of stabilizer S2a.
  • Reference Example 8
  • An LC mixture with negative dielectric anisotropy is formulated as follows.
    BCH-32 2.00% cl.p. 80.3 °C
    CC-3-V 29.00% Δn 0.1042
    CCY-3-O1 7.00% Δε -4.3
    CCY-3-O3 7.00% ε 4.0
    CCY-4-O2 8.00% K3/K1 1.11
    CLY-3-O2 6.00% γ1 118 mPas
    CPY-2-O2 9.00%
    CPY-3-O2 11.00%
    CY-3-O2 7.00%
    PY-3-O2 9.00%
    Y-4O-O4 5.00%
  • To the above mixture are added 100 ppm of stabilizer S1-2a and 400ppm of stabilizer S2a.
  • Reference Example 9
  • An LC mixture with negative dielectric anisotropy is formulated as follows.
    CC-3-V 32.00% cl.p. 85.3 °C
    CCY-3-O1 6.50% Δn 0.1112
    CCY-3-O2 6.00% Δε -4.0
    CCY-4-O2 6.00% ε 3.8
    CLY-3-O3 13.00% K3/K1 1.07
    CPY-2-O2 9.00% γ1 128 mPa s
    CPY-3-O2 7.50%
    PP-1-2V1 2.50%
    PY-1-O4 9.00%
    PY-3-O2 8.50%
  • To the above mixture are added 200 ppm of stabilizer S1-2a and 400ppm of stabilizer S2a.
  • Example 1
  • An LC mixture with positive dielectric anisotropy is formulated as follows.
    APUQU-2-F 4.00% cl.p. 85.0 °C
    CC-3-V 39.00% Δn 0.1011
    CC-3-V1 5.50% Δε 5.9
    CCP-30CF3 6.00% ε 9.3
    CCP-V-1 14.00% K3/K1 1.12
    CPGU-3-OT 3.00% γ1 66 mPa s
    PGP-2-2V 4.50%
    DPGU-4-F 3.00%
    PPGU-3-F 1.00%
    PUQU-3-F 14.00%
    CCY-3-O2 6.00%
  • To the above mixture are added 100 ppm of stabilizer S1-2a and 300ppm of stabilizer S2a.
  • Example 2
  • An LC mixture with positive dielectric anisotropy is formulated as follows.
    APUQU-2-F 5.50% cl.p. 80.3 °C
    CC-3-V 38.50% Δn 0.1124
    CCP-V-1 12.50% Δε 10.1
    CCP-V2-1 4.50% ε 14.4
    CDUQU-3-F 2.50% K3/K1 1.13
    DGUQU-4-F 5.50% γ1 77 mPa s
    DPGU-4-F 4.50%
    PGP-2-2V 6.00%
    PGUQU-3-F 7.00%
    PGUQU-4-F 6.50%
    PPGU-3-F 1.00%
    Y-4O-O4 6.00%
  • To the above mixture are added 150 ppm of stabilizer S1-2a and 300ppm of stabilizer S2a.
  • Example 3
  • An LC mixture with positive dielectric anisotropy is formulated as follows.
    APUQU-2-F 5.50% cl.p. 80.3 °C
    CC-3-V 38.50% Δn 0.1124
    CCP-V-1 12.50% Δε 10.1
    CCP-V2-1 4.50% ε 14.4
    CDUQU-3-F 2.50% K3/K1 1.13
    DGUQU-4-F 5.50% γ1 77 mPa s
    DPGU-4-F 4.50%
    PGP-2-2V 6.00%
    PGUQU-3-F 7.00%
    PGUQU-4-F 6.50%
    PPGU-3-F 1.00%
    Y-4O-O4 6.00%
  • To the above mixture are added 100 ppm of stabilizer S1-1a and 400ppm of stabilizer S2a.
    Figure imgb0992
  • Example 4
  • An LC mixture with positive dielectric anisotropy is formulated as follows.
    BCH-3F.F.F 10.00% cl.p. 85.4 °C
    CC-3-V 23.50% Δn 0.1071
    CC-3-V1 7.00% Δε 6.8
    CCGU-3-F 5.00% ε 10.3
    CCP-30CF3 9.00% K3/K1 1.10
    CCP-3-F.F.F 8.00% γ1 83 mPa s
    CCP-V-1 11.00%
    CCP-V2-1 3.00%
    DPGU-4-F 3.00%
    PGP-2-2V 3.00%
    PPGU-3-F 1.00%
    PUQU-3-F 10.50%
    PY-3-O2 6.00%
  • To the above mixture are added 100 ppm of stabilizer S1-2a and 400ppm of stabilizer S2a.
  • Example 5
  • An LC mixture with positive dielectric anisotropy is formulated as follows.
    BCH-3F.F.F 7.00% cl.p. 100.0 °C
    CBC-33 3.00% Δn 0.1009
    CC-3-V 25.00% Δε 4.5
    CCGU-3-F 6.00% ε 8.3
    CCP-3-1 4.50% K3/K1 1.17
    CCP-30CF3 8.00% γ1 125 mPa s
    CCP-V-1 13.50%
    CCP-V2-1 6.00%
    CCQU-3-F 8.00%
    CPGP-5-2 3.00%
    DPGU-4-F 2.50%
    PPGU-3-F 1.00%
    PUQU-3-F 4.50%
    Y-4O-O4 8.00%
  • To the above mixture are added 100 ppm of stabilizer S1-2a and 400ppm of stabilizer S2a.
  • Example 6
  • An LC mixture with positive dielectric anisotropy is formulated as follows.
    APUQU-2-F 3.00% cl.p. 80.7 °C
    CC-3-V 37.50% Δn 0.1103
    CCP-3-1 3.00% Δε 9.5
    CCP-30CF3 3.00%
    CCP-V-1 15.00%
    CDUQU-3-F 5.50%
    CPGU-3-OT 1.50%
    DPGU-4-F 5.00%
    PGU-2-F 6.00%
    PGU-3-F 6.00%
    PGUQU-3-F 5.00%
    PGUQU-4-F 5.00%
    PPGU-3-F 0.50%
    Y-4O-O4 4.00%
  • To the above mixture are added 100 ppm of stabilizer S1-1a and 400ppm of stabilizer S2a.
  • Use Examples
  • The LC medium M1 formulated as in Example 1 is filled into VHR test cells as described above.
  • The test cells are subjected to thermal stress (100°C). The VHR is measured as described above after various time intervals.
  • For comparison purpose the measurement is repeated with reference LC medium MC, which is formulated as in Example 1 except that it only contains stabilizer S1-2a but does not contain stabilizer S2a.
  • The VHR values are shown in Table 1 below. Table 1
    MC M10
    Heat load time / h VHR / %
    0 95.1 96.5
    24 90.4 93.3
    48 89.2 92.6
    120 86.4 91.7
  • It can be seen that LC medium M1, wich contains both stabilizers S1-2a and S2a, shows signifcantly lower decrease of the VHR after long heat exposure compared to LC medium MC, which only contains stabilizer S1-2a but does not contain stabilizer S2a.
  • It can be seen that LC medium M10, wich contains both stabilizers S1-2a and S2a, shows signifcantly lower decrease of the VHR after long heat exposure compared to LC medium MC, which only contains stabilizer S1-2a but does not contain stabilizer S2a.

Claims (9)

  1. A liquid crystal (LC) medium with positive dielectric anisotropy comprising one or more compounds selected from formulae Y, CY, PY and LY, and one or more compounds of formula S1 and one or more compounds of formula S2
    Figure imgb0993
    Figure imgb0994
    Figure imgb0995
    Figure imgb0996
    Figure imgb0997
    Figure imgb0998
    wherein the individual radicals, independently of each other and on each occurrence identically or differently, have the following meanings:
    Figure imgb0999
    Figure imgb1000
    Figure imgb1001
    Figure imgb1002
    with at least one ring F being cyclohexenylene,
    R1, R2 alkyl having 1 to 12 C atoms, where, in addition, one or two non-adjacent CH2 groups may be replaced by -O-,-CH=CH-, -CO-, -OCO- or -COO- in such a way that O atoms are not linked directly to one another,
    Zx, Zy -CH2CH2-, -CH=CH-, -CF2O-, -OCF2-, -CH2O-, -OCH2-,-CO-O-, -O-CO-, -C2F4-, -CF=CF-, -CH=CH-CH2O- or a single bond,
    L1-4 F, Cl, OCF3, CF3, CH3, CH2F, CHF2,
    Ra-d straight chain or branched alkyl with 1 to 10 C atoms,
    X H, CH3, OH or O•,
    A straight-chain, branched or cyclic alkylene with 1 to 20 C-atoms which is optionally substituted,
    a 1 or 2,
    b 0 or1 ,
    f 1 or 2,
    n an integer from 1 to 6,
    with the proviso that the media having the following compositions are excluded:
    1) a medium having the following composition: APUQU-2-F 2.50 % CC-3-2V1 5.00 % CC-3-V 24.50 % CC-3-V1 5.00 % CCP-3OCF3 3.00 % CCP-V-1 9.00 % CCP-V2-1 8.00 % CLP-3-T 7.00 % CPGP-4-3 2.00 % DGUQU-4-F 5.00 % DPGU-4-F 5.50 % PGP-2-2V 2.00 % PGUQU-3-F 6.00 % PGUQU-4-F 6.00 % PPGU-3-F 0.50 % Y-4O-O4 9.00 %
    which is additionally stabilised with 0.04% of the compound of the formula S2-1a
    Figure imgb1003
    and with 0.02% of the compound of the formula S1-2a
    Figure imgb1004
    2) a medium having the following composition: CC-3-V 49.00 % CC-3-V1 12.00 % CCP-V-1 10.00 % CLP-V-1 7.00 % PGP-2-2V 5.50 % CLP-3-T 4.00 % PGUQU-3-F 3.00 % APUQU-2-F 6.00 % PP-1-2V1 3.00 % PPGU-3-F 0.50 %
    which is additionally stabilised with the compound of formula S2-1a and, in addition,
    with the compound S1-1a
    Figure imgb1005
    or with the compound S1-2a shown above in the amounts given in the following table: S2-1a S1-1a S1-2a 400 ppm 100 ppm - 400 ppm 500 ppm - 400 ppm 1000 ppm - 400 ppm - 100 ppm 400 ppm - 500 ppm 400 ppm - 1000 ppm
  2. The LC medium according to Claim 1, characterized in that the compounds of formula S1 are selected from the following subformulae
    Figure imgb1006
    Figure imgb1007
    Figure imgb1008
    Figure imgb1009
    wherein n1 is an integer from 2 to 12 and wherein one or more H-atoms in the radical (CH2)n1 are optionally replaced by a methyl, ethyl, propyl, butyl, pentyl or hexyl group.
  3. The LC medium according to Claim 2, characterized in that the compounds of formula S1 are selected from the following subformulae
    Figure imgb1010
    Figure imgb1011
    Figure imgb1012
    Figure imgb1013
    Figure imgb1014
    Figure imgb1015
    Figure imgb1016
  4. The LC medium according to one or more of Claims 1 to 3, characterized in that in the compounds of formula S2 are selected from the following subformulae
    Figure imgb1017
    Figure imgb1018
    Figure imgb1019
  5. The LC medium according to one or more of claims 1 to 4, characterized in that it additionally comprises one or more compounds selected from formulae AA and BB:
    Figure imgb1020
    Figure imgb1021
    in which the individual radicals have the following meanings:
    Figure imgb1022
    each, independently of one another, and on each occurrence, identically or differently
    Figure imgb1023
    Figure imgb1024
    R21, R31, each, independently of one another, denote alkyl, alkoxy, oxaalkyl or alkoxyalkyl having 1 to 9 C atoms or alkenyl or alkenyloxy having 2 to 9 C atoms, all of which are optionally fluorinated,
    X0 F, Cl, halogenated alkyl or alkoxy having 1 to 6 C atoms or halogenated alkenyl or alkenyloxy having 2 to 6 C atoms,
    Z31 -CH2CH2-, -CF2CF2-, -COO-, trans-CH=CH-, trans-CF=CF-, -CH2O- or a single bond,
    L21, L22, L31, L32 H or F,
    g 0, 1, 2 or 3,
  6. The LC medium according to one or more of claims 1 to 5, characterized in that it additionally comprises one or more compounds selected from formula CC:
    Figure imgb1025
    in which the individual radicals have the following meanings:
    Figure imgb1026
    each, independently of one another, and on each occurrence, identically or differently
    Figure imgb1027
    Figure imgb1028
    Figure imgb1029
    R41, R42 each, independently of one another, alkyl, alkoxy, oxaalkyl or alkoxyalkyl having 1 to 9 C atoms or alkenyl or alkenyloxy having 2 to 9 C atoms, all of which are optionally fluorinated,
    Z41, Z42 -CH2CH2-, -COO-, trans-CH=CH-, trans-CF=CF-, -CH2O-, -CF2O-, -C=C- or a single bond, h 0, 1, 2 or 3.
  7. The LC medium according to one or more of Claims 1 to 6, characterized in that it additionally comprises one or more compounds selected from formulae AN and AY:
    Figure imgb1030
    Figure imgb1031
    in which the individual radicals, on each occurrence identically or differently, and each, independently of one another, have the following meaning:
    Figure imgb1032
    Figure imgb1033
    Figure imgb1034
    Figure imgb1035
    Figure imgb1036
    Figure imgb1037
    RA1 alkenyl having 2 to 9 C atoms or, if at least one of the rings X, Y and Z denotes cyclohexenyl, also one of the meanings of RA2,
    RA2 alkyl having 1 to 12 C atoms, in which, in addition, one or two non-adjacent CH2 groups may be replaced by -O-, -CH=CH-, -CO-, -OCO- or -COO- in such a way that O atoms are not linked directly to one another,
    Zx -CH2CH2-, -CH=CH-, -CF2O-, -OCF2-, -CH2O-, -OCH2-, -CO-O-, -O-CO-, -C2F4-, -CF=CF-, -CH=CH-CH2O-, or a single bond, preferably a single bond,
    L1,2 H, F, Cl, OCF3, CF3, CH3, CH2F or CHF2H, preferably H, F or Cl,
    x 1 or 2,
    z 0 or 1.
  8. An LC display comprising an LC medium as defined in one or more of Claims 1 to 7.
  9. The LC display according to Claim 8, which is VA, PSA, PS-VA, PA-VA, PALC, FFS, PS-FFS, IPS or PS-IPS display.
EP17171223.5A 2016-05-19 2017-05-16 Liquid-crystal medium Active EP3246374B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16170390 2016-05-19

Publications (3)

Publication Number Publication Date
EP3246374A2 EP3246374A2 (en) 2017-11-22
EP3246374A3 EP3246374A3 (en) 2018-01-24
EP3246374B1 true EP3246374B1 (en) 2019-08-14

Family

ID=56024187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17171223.5A Active EP3246374B1 (en) 2016-05-19 2017-05-16 Liquid-crystal medium

Country Status (5)

Country Link
US (1) US10301544B2 (en)
EP (1) EP3246374B1 (en)
JP (1) JP7065571B2 (en)
KR (1) KR102353427B1 (en)
CN (1) CN107400521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11739267B2 (en) 2019-06-28 2023-08-29 Merck Patent Gmbh LC medium

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975308B2 (en) * 2015-05-22 2021-04-13 Merck Patent Gmbh Liquid-crystalline medium
EP3375842A1 (en) * 2017-03-16 2018-09-19 Merck Patent GmbH Liquid-crystalline medium
WO2018235713A1 (en) * 2017-06-23 2018-12-27 Dic株式会社 Liquid crystal composition and liquid crystal display element using same
EP3617293B1 (en) * 2018-08-28 2023-03-29 Merck Patent GmbH Liquid-crystalline medium and liquid-crystal display
EP3891249A1 (en) 2018-12-07 2021-10-13 Merck Patent GmbH Liquid-crystal medium comprising polymerisable compounds and the use thereof in liquid-crystal displays
CN111484857B (en) * 2019-01-29 2023-08-08 石家庄诚志永华显示材料有限公司 Liquid crystal composition, liquid crystal display element and liquid crystal display
WO2021037877A1 (en) * 2019-08-30 2021-03-04 Merck Patent Gmbh Lc medium
CN113004908A (en) * 2019-12-20 2021-06-22 默克专利股份有限公司 Liquid crystal medium and liquid crystal display comprising same
JP2023165655A (en) * 2022-05-06 2023-11-16 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング liquid crystal medium

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE795849A (en) 1972-02-26 1973-08-23 Merck Patent Gmbh MODIFIED NEMATIC PHASES
US3814700A (en) 1972-08-03 1974-06-04 Ibm Method for controllably varying the electrical properties of nematic liquids and dopants therefor
DE2450088A1 (en) 1974-10-22 1976-04-29 Merck Patent Gmbh Liquid crystalline dielectrics for electronic components - contg biphenylyl carboxylic acid phenyl ester or benzoic acid biphenylyl ester components
DE2637430A1 (en) 1976-08-20 1978-02-23 Merck Patent Gmbh Heterocyclic diaza cpd. in liquid crystalline dielectric - for electrooptical registration devices, giving stable orientation parallel to electrode surfaces
DE2636684C3 (en) 1976-08-14 1980-06-19 Merck Patent Gmbh, 6100 Darmstadt Phenylcyclohexane derivatives and their use in liquid-crystalline dielectrics
DE2853728A1 (en) 1978-12-13 1980-07-17 Merck Patent Gmbh LIQUID CRYSTALLINE CARBONIC ACID ESTER, METHOD FOR THE PRODUCTION THEREOF, ITS CONTAINING DIELECTRICS AND ELECTRO-OPTICAL DISPLAY ELEMENT
DE3321373A1 (en) 1983-06-14 1984-12-20 Merck Patent Gmbh, 6100 Darmstadt BICYCLOHEXYLE
DE3807872A1 (en) 1988-03-10 1989-09-21 Merck Patent Gmbh DIFLUORBENZENE DERIVATIVES
JP4387276B2 (en) 2004-09-24 2009-12-16 シャープ株式会社 Liquid crystal display
JP6193226B2 (en) * 2011-07-07 2017-09-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Liquid crystal media
DE102012024126A1 (en) * 2011-12-20 2013-06-20 Merck Patent Gmbh Liquid crystalline medium
DE102013017174A1 (en) * 2012-10-18 2014-04-24 Merck Patent Gmbh Liquid-crystalline medium, method for its stabilization and liquid-crystal display
KR101603152B1 (en) * 2013-03-25 2016-03-15 디아이씨 가부시끼가이샤 Liquid crystal composition, liquid crystal display element, and liquid crystal display
CN104371744B (en) * 2013-08-02 2019-01-01 默克专利股份有限公司 Liquid crystal media
US10131841B2 (en) * 2013-12-16 2018-11-20 Merck Patent Gmbh Liquid-crystalline medium
DE102013021683A1 (en) * 2013-12-19 2015-06-25 Merck Patent Gmbh Liquid crystalline medium
EP2985334B1 (en) * 2014-08-15 2018-06-20 Merck Patent GmbH Liquid-crystalline medium
DE102015009924A1 (en) * 2014-08-22 2016-02-25 Merck Patent Gmbh Liquid crystalline medium
EP2993216B1 (en) * 2014-09-02 2017-07-26 Merck Patent GmbH Compounds and liquid crystalline medium
EP3268450B1 (en) * 2015-03-13 2019-12-11 Merck Patent GmbH Liquid-crystal medium
US9783735B2 (en) 2015-04-15 2017-10-10 Samsung Display Co., Ltd. Liquid crystal display device and liquid crystal composition used therefor
EP3127991B1 (en) * 2015-08-05 2020-04-15 Merck Patent GmbH Liquid crystalline medium
CN105295955A (en) * 2015-09-30 2016-02-03 石家庄诚志永华显示材料有限公司 Positive and negative mixed liquid crystal composition
CN105419816A (en) * 2015-12-07 2016-03-23 石家庄诚志永华显示材料有限公司 Liquid crystal medium and liquid crystal display including same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11739267B2 (en) 2019-06-28 2023-08-29 Merck Patent Gmbh LC medium

Also Published As

Publication number Publication date
EP3246374A3 (en) 2018-01-24
CN107400521A (en) 2017-11-28
US10301544B2 (en) 2019-05-28
JP2017214552A (en) 2017-12-07
US20170335195A1 (en) 2017-11-23
KR102353427B1 (en) 2022-01-20
TW201809232A (en) 2018-03-16
JP7065571B2 (en) 2022-05-12
EP3246374A2 (en) 2017-11-22
KR20170131260A (en) 2017-11-29

Similar Documents

Publication Publication Date Title
EP3246374B1 (en) Liquid-crystal medium
EP2628779B1 (en) Liquid-crystalline medium
EP2931836B1 (en) Liquid-crystalline medium
KR102088166B1 (en) Liquid-crystalline medium
EP3130651B1 (en) Liquid-crystalline medium
EP3848436A1 (en) Liquid-crystal medium
KR20230090307A (en) Liquid-crystalline medium
JP2020073700A (en) Liquid crystalline medium
EP3130650B1 (en) Liquid-crystalline medium
KR20170120505A (en) Liquid-crystalline medium
EP4286493A1 (en) Liquid-crystal medium
EP3246377B1 (en) Liquid-crystal medium
KR20180002794A (en) Liquid crystal medium
EP3103855A1 (en) Liquid-crystalline medium
US11655417B2 (en) Liquid-crystal medium
WO2023052283A1 (en) Liquid-crystal medium
EP4001378A1 (en) Liquid-crystal medium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170516

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C09K 19/34 20060101ALI20171221BHEP

Ipc: C09K 19/20 20060101ALI20171221BHEP

Ipc: C09K 19/06 20060101ALI20171221BHEP

Ipc: C09K 19/30 20060101ALI20171221BHEP

Ipc: C09K 19/54 20060101ALI20171221BHEP

Ipc: C09K 19/12 20060101AFI20171221BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181017

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C09K 19/54 20060101ALI20190329BHEP

Ipc: C09K 19/04 20060101ALI20190329BHEP

Ipc: C09K 19/06 20060101ALI20190329BHEP

Ipc: C09K 19/20 20060101ALI20190329BHEP

Ipc: C09K 19/12 20060101AFI20190329BHEP

Ipc: C09K 19/30 20060101ALI20190329BHEP

Ipc: C09K 19/34 20060101ALI20190329BHEP

INTG Intention to grant announced

Effective date: 20190418

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1167009

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017006044

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1167009

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191214

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017006044

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200516

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 7