EP3245709B1 - Système de chargement d'éléments de stockage d'énergie électrique d'un véhicule - Google Patents

Système de chargement d'éléments de stockage d'énergie électrique d'un véhicule Download PDF

Info

Publication number
EP3245709B1
EP3245709B1 EP16703570.8A EP16703570A EP3245709B1 EP 3245709 B1 EP3245709 B1 EP 3245709B1 EP 16703570 A EP16703570 A EP 16703570A EP 3245709 B1 EP3245709 B1 EP 3245709B1
Authority
EP
European Patent Office
Prior art keywords
charging
electric vehicle
energy storage
electrical energy
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16703570.8A
Other languages
German (de)
English (en)
Other versions
EP3245709A2 (fr
Inventor
Alain CROSET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forsee Power SA
Original Assignee
Adetel Transportation Solution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adetel Transportation Solution filed Critical Adetel Transportation Solution
Publication of EP3245709A2 publication Critical patent/EP3245709A2/fr
Application granted granted Critical
Publication of EP3245709B1 publication Critical patent/EP3245709B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the field of the present invention relates to that of so-called “ecological” vehicles and more particularly that of electric vehicles. It relates particularly, but not exclusively, to the field of electric transport means with autonomous power supply as well as their power supply systems. More specifically, the present invention relates to the device for charging an energy storage means used in parallel with a source of electrical energy using energy storage devices as buffer devices.
  • This power supply system comprises, in most cases, an assembly of electrical energy carrier, such as cables and / or rails made of bronze, aluminum, steel and / or an alloy of these components in order to allow the powering electric vehicles by collecting the current transported by the electric energy carrier assembly.
  • electrical energy carrier such as cables and / or rails made of bronze, aluminum, steel and / or an alloy of these components in order to allow the powering electric vehicles by collecting the current transported by the electric energy carrier assembly.
  • the transport space is configured to allow the movement of the electric vehicle between at least two points of the transport space.
  • this power supply system In order to be able to allow a homogeneous and extensive coverage of the transport space, this power supply system however requires that electrified cables be installed along the transport space. This installation generates significant costs. Moreover, when the transport space corresponds to a city with an architectural heritage, it is important to ensure the preservation of this heritage while integrating ecological and efficient means of transport.
  • the documents EP 2 523 301 and US 2014/347017 relate to charging stations for vehicles, but do not disclose at least one transformer, a voltage regulator connected in series with the energy storage device so as to form a closed circuit by being configured to transfer the electrical energy stored by the energy storage device and that the voltage converter is configured to be connected in parallel with the voltage regulator and the energy storage device, of the charging device, between the output node and the common node.
  • the object of the present invention is to resolve all or part of the drawbacks mentioned above in the form of a charging system according to claim 1, of a charging station for an electric vehicle according to claim 7 and of an installation. according to claim 8. Further embodiments are described in the dependent claims.
  • the general principle of the invention is based on the charging of an electric vehicle 900 using a charging device 100 in a transport space 710.
  • the electric vehicle 900 for example a tram 900, comprises at least one consumer unit. of electric energy, at least one electric motor 930 for example, and an energy storage member 910.
  • the energy storage member 910 a super-capacitor for example, is configured to be charged with electric energy and to transfer this electrical energy to the organ consumer of electrical energy, that is to say to the electric motor 930.
  • the consumer of electrical energy is configured to transform this electrical energy into mechanical energy, more exactly into translational energy, and thus enables the electric vehicle 900 to perform a movement in a transport space 710.
  • the energy storage member 910 of the electric vehicle 900 When the electrical energy is partly consumed, it is sometimes necessary to charge the energy storage member 910 of the electric vehicle 900 in a place allowing charging and / or to recharge the energy storage member 910 and to allow the electric vehicle 900 to continue to move in the transport space 710 and to transport passengers between two stations. Under certain circumstances, it may be advantageous to charge the energy storage device 110 of the electric vehicle 900 rapidly in order to avoid unnecessary immobilization of the electric vehicle 900. For example when the electric vehicle 900 stops at a station. stop to allow passengers to get on and / or off.
  • the charging of the energy storage device 910 must not exceed this period of time.
  • the reloading solutions currently implemented are not satisfactory because their reloading times range from around thirty seconds to a few minutes. Some of them can actually charge in less than thirty seconds. However, the power delivered by these solutions does not exceed 100 KW. This is due to the very complex circuit which must provide considerable power in a very short period of time of the order of 10 to 15 seconds and at the same time charge energy storage elements between two charges.
  • the object of the present invention is to provide a charging device 100 making it possible to reduce the charging time of the energy storage member 910 of the electric vehicle 900.
  • the invention achieves its aim by the fact that the charging device 100 comprises an energy storage device 110 capable of storing electrical energy supplied by an energy source 320, a connection device 190 for electrically connecting the energy storage device 110 with the storage member of energy 910 of the electric vehicle 900 and to transfer the energy stored in the energy storage device 110 between the charging device 100 and the electric vehicle 900.
  • the present invention makes it possible to charge an electric vehicle 900 with a terminal charging 200 allowing a hybrid power supply of the energy storage device 910 of the electric vehicle 900, in other words a power supply combining simultaneously the energy ie electrical from an electrical energy source 320 and from the energy storage device 110 so that the transfer of electrical energy between the charging terminal 200 and the electric vehicle 900 is carried out in just a few seconds.
  • the invention greatly improves the transfer of electrical energy between a charging station 200 and an electric vehicle 900, and optimizes the infrastructure costs of a transport space 710 by reducing the downtime of the electric vehicle 900 in operation.
  • the figure 1 is a schematic illustration of a portion of an installation according to the invention comprising a loading station 400 according to the invention and an electric vehicle 900 configured to transport passengers according to the invention.
  • the electric vehicle 900 for example a tram 900
  • the tram 900 is configured to transport passengers in the transport space 710 in which the driver is arranged.
  • the transport space 710 comprises an urban, interurban and / or rural space, and a rail transport network allowing the tramway 900 to move between two loading stations 400.
  • transport space 710 has been simplified and represents a portion of the rail transport network. Still to simplify, a single loading station 400 has been shown as well as a single tram 900.
  • the portion of the railroad transport network is carried out in the open air.
  • this portion of railway tracks is generally embedded in the roadway and thus allows the roadway to be usable as well by other types of electric vehicles 900 such as electric buses and / or vehicles equipped with heat engines or other vehicles authorized to move on a road, such as a bicycle.
  • electric vehicles 900 such as electric buses and / or vehicles equipped with heat engines or other vehicles authorized to move on a road, such as a bicycle.
  • the railroad transport network would, in this case, be underground.
  • the tram 900 travels on the railroad along a predetermined line in the transport space 710 to form a transport line in the railroad transport network.
  • a transport line designates, in general, a journey made in the railroad transport network in order to allow the electric vehicle 900 to move between a place of origin and a place of destination, in other words between two places.
  • a transport line can include a journey of several kilometers, even ten kilometers and in some cases twenty kilometers and a plurality of stations.
  • This distance D corresponds to the minimum distance that the tram 900 must cover to pass from a loading station 400 that it has just left to the following loading station 400.
  • the distance separating at least two loading stations 400 may be between 100 m and 1000 m, in particular between 150 m and 850 m and in particular between 200 m and 800 m.
  • the choice of the length of the distance D, separating at least two loading stations, is important because in the case where the distance is short, or even too short, this amounts to increasing the infrastructure costs very appreciably and vice versa , a great distance, even too great a distance, leads to providing an electric vehicle 900 with an energy storage member 910 capable of storing a large amount of electric energy, and therefore indirectly of increasing the weight of the electric vehicle 900 as well as its consumption of electrical energy and even to reduce the volume of transport available to transport passengers. It is understood by those skilled in the art that this latter drawback directly induces a loss of profitability.
  • the figure 2 shows the simplified electrical diagram of the electric vehicle 900 when it is connected to the charging station 400.
  • the charging station 400 is installed along the transport line and includes a charging system 300 for a tram 900.
  • the loading station 400 for the tram 900 further comprises a loading system 300 according to the invention, a loading, stopping and / or parking space comprising an access configured to receive a tram 900 in said loading space, stop and / or parking. More specifically, the loading space makes it possible to load the tram 900 into the loading space, when the tram 900 is stationary and / or parked.
  • the charging system 300 comprises a charging terminal 200 according to the invention and a connection device 190 configured to transfer a sufficient and / or necessary quantity of energy so that the tram 900 can move in the transport space 710 and / or between at least two charging stations 400.
  • the energy storage device 110 may include a capacitor, a super-capacitor more commonly known as a super-capacitor, a double-layer capacitor, an Ultra-capacitor, and / or a double-layer capacitor.
  • the capacitor 910 of the electric vehicle 900 may have a capacity the value of which may be between 5 Farads and 300 Farads, in particular between 7 Farads and 250 Farads and preferably between 10 Farads and 200 Farads.
  • the energy storage device 110 can be configured to operate at a voltage between 100 V and 1000 V, in particular between 150 V and 850 V and in particular between 200 V and 700 V. More particularly, the storage device 110 d The energy can be configured to operate in charging mode or in transfer mode at a voltage between 100 V and 1000 V, in particular between 150 V and 850 V and in particular between 200 V and 700 V.
  • the energy storage device 110 can also be configured to operate at a current between 0 A and 850 A, in particular between 0 A and 700 A and preferably between 0 A and 550 A. More particularly, the energy storage device 110 can be configured to operate in charging mode or in transfer mode at a current between 0 A and 850 A, in particular between 0 A and 700 A and preferably between 0 A and 550 A.
  • these current and voltage values may evolve with the new generations of technology.
  • the previously cited values that is to say the voltage values and / or the current values, are supplied by the energy storage device 110 to the voltage regulator 120. Moreover, these values can be considered as sufficient and / or necessary to allow the energy storage device 110 to charge the energy storage device 910 of the tram 900 via the connection device 190 so that the tram 900 can move in the transport space 710.
  • the voltage regulator 120 is configured to regulate the output voltage and / or the output current, respectively, within a range. of supply voltage and / or a range of supply current in order to supply the energy storage member 910 of the electric vehicle 900 and more precisely in order to allow the transfer of electrical energy between the storage device 110 energy of the charging device 100 and the energy storage member 910 of the electric vehicle 900 via the connection device 190.
  • the supply range of the storage means is between 240 V and 1200 V, in particular between 400 V and 1100 V and preferably between 450 V and 1000 V.
  • the voltage regulator 120 comprises a chopper (not shown), more exactly the voltage regulator 120 comprises a parallel chopper (not shown) in series with a series chopper (not shown) and a unidirectional device (not shown) in order to avoid a current return.
  • the latter is integrated into the chopper or choppers.
  • a protection can be placed between the two.
  • the operating mode of a chopper will not be described in detail since the operating mode of a chopper, whether it be a series chopper or a parallel chopper, is well known to those skilled in the art.
  • the parallel chopper - in English "boost converter” - is connected downstream of the storage device 110, so as to form a closed circuit and upstream of the series chopper - in English “buck converter” - in the direction of current flow when the charging device 100 is in transfer mode, that is to say when the electrical energy is transferred from the energy storage device 110 to the energy storage member 910.
  • the energy storage device 110 is configured to provide an input voltage to the parallel chopper between 100 V and 1000 V and / or to provide an input current to the parallel chopper between 0 A and 850 A.
  • the parallel chopper is, for its part, configured to supply, from the input voltage supplied by the energy storage device 110, an output voltage greater than this. Effectively, the parallel chopper functions as a voltage booster and thus makes it possible to provide a positive difference between the output voltage and the input voltage.
  • the series chopper functions as a voltage step-down and thus makes it possible to provide a negative difference between the output voltage and the input voltage.
  • the voltage regulator 120 can regulate the output voltage over a wide voltage range, that is to say between 240 V and 1200 V.
  • This voltage regulation can be constant and / or dynamic. Indeed, the voltage regulator 120 is configured to operate according to two operating modes: a constant mode and / or a dynamic mode.
  • the output voltage and / or current are regulated so that the value (of output voltage and / or current) is between ⁇ 1% with respect to a nominal value (output voltage and / or current).
  • This setting can be made by default, i.e. the setting can be made when manufacturing the voltage regulator 120, and / or can be done by the user by setting the voltage value and / or current output via a servo unit 150.
  • the servo unit 150 is configured to be connected to the voltage regulator 120 and / or to interlock the voltage regulator 120.
  • the voltage regulator 120 may be allowed to regulate a voltage and / or a current. over time constantly and / or dynamically. Indeed, it may be necessary to regulate the output voltage as a function of the input voltage supplied by the energy storage device 110, the output voltage of the energy storage device 110 may vary over time when the energy storage device 110 transfers the stored electrical energy to the voltage regulator 120.
  • this allows the voltage regulator 120 to provide an output voltage and / or an output current independently of its voltage and / or its input current.
  • the servo unit 150 favorably makes it possible to regulate the output voltage of the voltage regulator 120 thanks to a feedback device 155 allowing the servo unit 150 to be informed on the output voltage and by at the same time maintaining this value and / or according to an established model.
  • the establishment of this model M will be described in more detail later in this description.
  • the charging device 100 further comprises a security 160 at the connection device 190.
  • This security is configured to connect the voltage regulator 120 with the connection device 190 and to act independently of the voltage regulator 120. This arrangement has the advantage of isolating the voltage regulator 120 from the connection device 190 in the event that the variation in the output current of the regulator in a given time interval would be too great.
  • a charging system 300 comprising a charging terminal 200 according to the invention can facilitate a greater transfer of energy, more exactly a charging system 300 can make it possible to supplement an additional quantity of electrical energy.
  • the charging terminal 200 comprises a charging device 100 according to the invention, a voltage converter 210 comprising an input node NE, an output node NS, a reference node NR and a common node NC.
  • the voltage converter 210 is configured to be connected to the charging device between the output node NS and the common node NC and to supply a direct voltage and / or a direct current to the charging device 100.
  • a rectifier 220 is connected between the input node NE and the reference node NR.
  • the charging station is included in a charging system 300.
  • the latter comprises a source of electrical energy 320, a transformer 310 comprising a primary circuit and a secondary circuit, said transformer is configured to be connected to the source of electrical energy. 320 via the charging terminal 200.
  • the rectifier 220 cited previously, is configured to connect transformer 310 to the voltage converter 210. Indeed, the rectifier is configured to rectify the voltage and / or the current between the assembly.
  • the primary circuit of transformer 310 has a primary circuit input node set NECP and the secondary circuit of transformer 310 has a secondary circuit output node set NECS.
  • the loading terminal further comprises a set of primary NPE input node, a set of primary NPS output node and a set of secondary NSE input node.
  • the transformer 310 is configured to be connected to the load terminal between the NPS output primary node set and the NSE input secondary node set. More precisely, the primary circuit of transformer 310 is connected to the primary circuit input node set NECP through the node set. input primary NPE and the secondary circuit of transformer 310 is connected to the secondary circuit output node set NSCS through the input secondary node set NSE.
  • This configuration allows for the integration of a precharge 280 and a security system 290 mounted in series between the NPE input primary node assembly and the NPS output primary node assembly.
  • the charging terminal 200 can combine the electrical energy supplied by the energy source and the electrical energy stored in the energy storage device 110 to the electric vehicle 900 through the voltage regulator 120. More precisely, the charging device 100 can combine the electrical energy supplied by the energy source 320 and the electrical energy stored in the energy storage device 110 to the electric vehicle 900 through the voltage regulator 120.
  • a hybrid power supply is created by associating the electrical energy of the voltage converter 210 with the electrical energy stored in the energy storage device 110.
  • connection device 190 comprises pads (not shown) which are articulated by joints (not shown) with the aid of actuators (not shown). More precisely, the connection device 190 is configured to be articulated between an active position in which the pads are configured to connect the connection device 190 with the connection member 990 of the electric vehicle 900 and to transfer a quantity of energy into it. 'storage member 910 of the electric vehicle 900 and a release position in which the pads are disconnected from the connection member 990 of the electric vehicle 900. Obviously, the connection between the pads of the charging device 100 and the connection member 990 of the electric vehicle 900 occurs when the charging device 100 and the electric vehicle 900 are in proximity to each other and / or stationary.
  • the runners connect to the 'connection member 990 of the tram 900.
  • This connection operation lasts between 0.1 second and 5 seconds, in particular between 0.3 seconds and 4 seconds and in particular between 0.5 second and 3 seconds.
  • the charging device 100 and the tram 900 exchange information before proceeding with the transfer of energy according to the charging method.
  • the operation of the loading system is described with regard to the method of loading the figure 3 , by first considering the approach of the electric vehicle 900, ie in this particular case a tram 900, where the latter approaches near the charging station 400.
  • the charging process described in The remainder of this description will be explained by taking as the starting point of the explanation the moment when the tram 900 leaves the loading station 400 to join a loading station 400.
  • the tram 900 moves between two loading stations 400 by a translation phase. During this step, the tram 900 leaves, for example, the loading station 400 and moves on the transport line to the next loading station 400.
  • the tram 900 performs, alternately, an electric power consumption phase comprising a V / s acceleration operation and a speed maintaining operation
  • the bidirectional converter 920 draws on the electrical energy stored in the energy storage member 910. This energy is subsequently consumed by the electric motor 930 as well as the bidirectional converter 920. , in order to supply an alternating current to the electric motor 930. This consumption of electric energy by the electric motor 930 allows a translational movement to the tram 900 in the transport space 710.
  • This energy is subsequently consumed by the assembly of auxiliary member, the electric motor 930 as well as the bidirectional converter 920, in order to supply an alternating current to the electric motor 930.
  • This consumption of electric energy by the electric motor 930 allows a translational movement of the tram 900 in the transport space 710.
  • the bidirectional converter 920 operates in inverter mode and the electric motor 930 allows, through an assembly of wheels, the translation of the electric vehicle 900.
  • the bidirectional converter 920 operates in rectifier mode and the electric motor 930 operates as a current / voltage generator, in other words in as a generator of electrical energy.
  • the electrical energy generated by the electric motor 930 is supplied to the bidirectional converter 920 so as to charge the energy storage member 910 during its translation. Given that the electrical energy circulates between the energy storage member 910 and the bidirectional converter 920, this energy is perfectly available, during this transfer, to all of the auxiliary members.
  • the 900 tram can inform a station of charging 400 on the general state of the energy storage device 910 and / or being informed of the presence of a charging station 400 nearby and at the same time informing the charging station 400 of the general state of the energy storage unit 910.
  • This communication occurs via a communication unit 970.
  • the communication unit 970 is, in fact, configured to allow wireless communication, of the Wi- type. Fi TM according to the TCP / IP and / or Bluetooth TM protocol for example, with the charging terminal 200. The latter, that is to say the charging terminal, would receive this information via the communication device 170 .
  • the communication unit 970 would include a coupling / decoupling unit 980.
  • the coupling / decoupling unit 980 would be configured to couple and / or decouple the communication from the energy transfer.
  • the connection device and the connection member are configured to allow communication between the electric vehicle and the charging device by power line carrier - in English “Power Line Carrier” or “Broadband over Power Lines”. Consequently, a coupling / decoupling member 980 connected to the communication member 970 makes it possible to couple and / or decouple the communication from the energy transfer.
  • a coupling / decoupling device 180 connected to the communication device 170 makes it possible to couple and / or decouple the communication from the energy transfer so as to establish a communication between the servo unit 150 and the central unit 950.
  • the communication device in the case of the electric vehicle, or the communication device, in the case of the charging device, transfers the communication respectively to the central unit or the servo unit.
  • powerline communication cannot occur when and only when there is an electrical connection between the tram and the charging device.
  • the translation step therefore ends with an immobilization step when the tram 900 accesses the loading, stopping and / or parking space of the loading station 400 via the access configured to receive the tram. 900 in this space and comes to a stop at the level of the loading terminal 200.
  • the tram 900 is opposite the loading terminal 200, more exactly when the connection device 190 is located opposite the 'connection member 990 to allow the loading step.
  • the loading step begins with a “CNX” connection operation of the connection device 190 of the loading station 400 with the connection device 990 of the tram 900. Since the connection device 190 of the station loading 400 and the connection member 990 of the tram 900 are configured to cooperate, the connection is all the more simplified. However, in order to ensure the good electrical connection between the connection device 190 and the connection member 990, the loading device 100, using the return device 155 more exactly using a measuring device (not shown), a slight current is sent to the connection device 990 in order to know the equivalent series resistance - in English Equivalent Series Resistance: ESR. This measurement can be carried out by a “4-point measurement” for example which is well known to those skilled in the art. The result of this measurement makes it possible, in the rest of the charging process, to confirm the good electrical contact at the connection.
  • ESR Equivalent Series Resistance
  • the measured Z impedance is between 1.5 mOhm and 1.5 Ohm, in particular between 3 mOhm and 1 Ohm and in particular between 5 mOhm and 30 mOhm.
  • those skilled in the art speak of resistance and the latter is between 1.5 mOhm and 1.5 Ohm, in particular between 3 mOhm and 1 Ohm and in particular between 5 mOhm and 30 mOhm.
  • an element of the first type that is to say an electric vehicle according to the invention, comprising a Z impedance of between 1.5 mOhm and 1.5 Ohm, in particularly between 3 mOhm and 1 Ohm and in particular between 5 mOhm and 30 mOhm
  • an element of the second type that is to say a standard electric vehicle, comprising an impedance Z greater than 30 mOhm and, in particular greater than 1 Ohm and in particular greater than 1.5 Ohm.
  • the "MD" dynamic charging operation makes it possible to deliver a voltage and / or a variable current as a function of time and the charging operation. constant makes it possible to deliver a nominal voltage value and / or a constant nominal current value over time.
  • impedance Z allows the charging station 400 and the tram 900 to perform an exchange of information such as, for example, an exchange of information with respect to the identification element id of the tram 900 and / or its state character-defining elements.
  • the characteristic elements of the state of the electric vehicle 900 include the state of charge SoC and / or the state of health SoH of the vehicle (operation “SoH” and “SoC ").
  • the charging system On receipt of this various information relating to the tram 900 and the characteristic elements of the state of the electric vehicle 900, the charging system establishes, from the characteristic elements of the state, a loading model M.
  • the charging model M is determined from the characteristics of the energy storage device 910, more exactly from the state of charge SoC and / or the state of health SoH of the device. energy storage 910 and allows the transfer of electrical energy through an open loop regulation.
  • the state of charge SoC and / or the state of health SoH of the energy storage device 910 will make it possible to establish the values in voltage V ch and in current I ch of charging of the model of loading M during the modeling operation “M”.
  • open loop means that the energy transfer is done from the charging model M but that no communication between the charging system and the tram 900 is permanently established in order to know the state of charge. SoC of the energy storage device 910.
  • the energy transfer values in voltage V s and in current I s are measured at the output of the charging device 100 by the feedback device 155. These measurements in voltage V s and in current I s are compared with the values in voltage V calc and in current I calc from the charging model M during charging.
  • the central unit of the tram 900 transmits the state of health SoH of the storage device d. electrical energy 910 to the servo unit 150 of the charging device 100. From the state of health SoH, the servo unit 150 calculates the maxima in voltage and / or in current, more exactly the servo unit 150 calculates the values in voltage V calc (t) and / or in current I calc (t) to be transferred as a function of time.
  • a current and voltage value at the terminals of the energy storage member 910 is estimated, more exactly are estimated from the values of the output measurements (V s (t); I s (t)) and calculated values (V calc (t); I calc (t)).
  • a correction unit corrects the discrepancies between the data taking the values of the loading model M for reference in order to provide values in voltage V is (t) and in current I is (t) estimated.
  • the servo unit 150 compares the values in voltage V est (T) and in current I est (T) estimated at a precise instant (T) with the values in voltage V m (T) and in current I m ( T) measured at the same instant (T) in order to provide voltage V corr (T) and current Icorr (T) values corrected to avoid a deviation of the loading model M.
  • the connection device 190 of the charging device 100 disconnects, during the “DCNX” operation of the connection device 990 of the electric vehicle 900 and a new cycle, more exactly, a new one.
  • loading step of the loading device 100 begins.
  • This step of charging the energy storage device 110 has a duration of between 30 seconds and seconds, in particular between 50 seconds and seconds and preferably between 60 seconds and seconds.
  • the servo unit archives the measured values, the estimated values and / or the corrected values with the identity element of the electric vehicle, the state of charge and / or the state of health.
  • the electric vehicle 900 arriving at the charging station 400 is not an electric vehicle 900 according to the invention but is a tram 900 of standard type. Consequently, the loading step, as previously described, begins with a “CNX” connection operation of the connection device 190 of the loading station 400 with a connection member 990 of a tram 900.
  • the charging device 100 switches to constant mode and delivers a nominal voltage value and / or a nominal current value that is constant over time in order to allow the tram 900 to be able to be charged with electrical energy, during the operation "MC » According to a standard model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

    Domaine de l'invention
  • Le domaine de la présente invention porte sur celui des véhicules dits « écologiques » et plus notamment celui des véhicules électriques. Elle concerne particulièrement, mais pas exclusivement, le domaine des moyens de transport électriques à alimentation autonome ainsi que leurs système d'alimentation. Plus précisément, la présente invention se rapporte au dispositif de chargement d'un moyen de stockage d'énergie utilisé en parallèle avec une source d'énergie électrique en utilisant des dispositifs de stockage d'énergie comme dispositifs tampons.
  • Art antérieur
  • De nos jours, la plupart des véhicules électriques récents utilisés dans les espaces de transport sont équipés, dans le cas des espaces de transport terrestre, d'un système d'alimentation classique, c'est-à-dire par fil ou plus précisément par caténaire dans le cas de tramway et/ou de bus, et par rail, plus exactement par un troisième rail dans le cas de métro. Ce système d'alimentation comprend, dans la plupart des cas, un ensemble de transporteur d'énergie électrique, tel des câbles et/ou des rails en bronze, en aluminium, acier et/ou un alliage de ces composants afin de permettre l'alimentation des véhicules électriques par captage du courant transporté par l'ensemble de transporteur d'énergie électrique. Ainsi il permet aux passagers de se déplacer entre deux points distincts et distants à l'intérieur d'un espace de transport à l'aide de moyens de transport. Bien entendu, l'espace de transport est configuré pour permettre le déplacement du véhicule électrique entre au moins deux points de l'espace de transport.
  • Afin de pouvoir permettre une couverture homogène et étendue de l'espace de transport, ce système d'alimentation nécessite toutefois que des câbles électrifiés soient installés le long de l'espace de transport. Cette installation engendre des coûts importants. Par ailleurs, lorsque l'espace de transport correspond à une ville avec un patrimoine architectural, il est important de veiller à la préservation de ce patrimoine tout en intégrant des moyens de transport écologiques et performants.
  • Il existe quelques solutions de dispositifs de rechargement. Cependant, leurs temps de rechargement s'étalent entre une trentaine de secondes et quelques minutes. Ces dispositifs de rechargement existants proposent des systèmes, dont la connexion avec un véhicule électrique, est réalisée par un dispositif électromécanique. Ce dispositif électromécanique augmente considérablement le temps de connexion entre le dispositif et le véhicule électrique, et ne favorise pas un temps court de rechargement. De plus, la connexion série des deux éléments sources, c'est-à-dire entre le dispositif de stockage d'énergie et l'organe de stockage d'énergie, ne permet pas une régulation précise de la tension de charge du stockage d'énergie du véhicule électrique. Il existe donc un besoin pour une nouvelle technique permettant de couvrir un espace de transport le plus vaste possible tout en préservant le patrimoine architectural compris dans l'espace de transport.
  • Les documents EP 2 523 301 et US 2014/347017 concernent des stations de chargement pour véhicules, mais ne divulguent pas au moins un transformateur, un régulateur de tension connecté en série avec le dispositif de stockage d'énergie de sorte à former un circuit fermé en étant configuré pour transférer l'énergie électrique stockée par le dispositif de stockage d'énergie et que le convertisseur de tension est configuré pour être connecté en parallèle au régulateur de tension et au dispositif de stockage d'énergie, du dispositif de chargement, entre le noeud de sortie et le noeud commun.
  • Exposé de l'invention
  • La présente invention a pour but de résoudre tout ou partie des inconvénients mentionnés ci-dessus sous la forme d'un système de chargement selon la revendication 1, d'une station de chargement pour un véhicule électrique selon la revendication 7 et d'une installation selon la revendication 8. D'autres modes de réalisation sont décrits dans les revendications dépendantes.
  • D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit d'un mode réalisation de l'invention donné à titre d'exemple non limitatif.
  • Liste des figures
  • L'invention sera mieux comprise à l'aide la description détaillée qui est exposée ci-dessous en regard du dessin, dans lesquels :
    • la figure 1 représente un exemple chargement de véhicule électrique dans lequel le dispositif de chargement selon l'invention est mis en œuvre ;
    • la figure 2 montre un schéma électrique simplifié du véhicule électrique 900 lorsqu'il est connecté à la station de chargement 400
    • La figure 3 illustre un procédé de chargement.
  • Dans la description détaillée qui va suivre des figures définies ci-dessus, les mêmes éléments ou les éléments remplissant des fonctions identiques pourront conserver les mêmes références de manière à simplifier la compréhension de l'invention.
  • Dans la suite de cette description, les caractéristiques et les fonctions bien connues de l'homme du métier ne seront pas décrites en détails.
  • Description d'un mode réalisation de l'invention Principe général
  • Le principe général de l'invention repose sur le chargement de véhicule électrique 900 à l'aide d'un dispositif de chargement 100 dans un espace de transport 710. Le véhicule électrique 900, par exemple un tramway 900, comprend au moins un organe consommateur d'énergie électrique, au moins un moteur électrique 930 par exemple, et un organe de stockage d'énergie 910. L'organe de stockage d'énergie 910, un super-condensateur par exemple, est configuré pour être chargé en énergie électrique et à transférer cette énergie électrique à l'organe consommateur d'énergie électrique, c'est à dire au moteur électrique 930. L'organe consommateur d'énergie électrique est configuré pour transformer cette énergie électrique en une énergie mécanique, plus exactement en une énergie de translation, et ainsi permet au véhicule électrique 900 d'effectuer un déplacement dans un espace de transport 710. Lorsque l'énergie électrique est en partie consommée, il est parfois nécessaire de charger l'organe de stockage d'énergie 910 du véhicule électrique 900 dans un lieu permettant de charger et/ou de recharger l'organe de stockage d'énergie 910 et de permettre au véhicule électrique 900 de continuer à se déplacer dans l'espace de transport 710 et de transporter des passagers entre deux stations. Dans certaines circonstances, il peut être avantageux de charger le dispositif de stockage d'énergie 110 du véhicule électrique 900 rapidement afin d'éviter une immobilisation inutile du véhicule électrique 900. Par exemple lorsque le véhicule électrique 900 s'arrête à une station d'arrêt afin de permettre aux passagers de monter et/ou de descendre.
  • Étant donné que l'arrêt du véhicule électrique 900 à la station d'arrêt n'excède pas une trentaine de secondes dans certains cas, plus communément une vingtaine de secondes, le chargement de l'organe de stockage d'énergie 910 ne doit pas dépasser ce laps de temps. Les solutions de rechargement actuellement mises en œuvre ne donne pas satisfaction car leurs temps de rechargement s'étalent entre une trentaine de secondes et quelques minutes. Certaines d'entre elles peuvent effectivement charger en moins de trentes secondes. Cependant, la puissance délivrée par ces solutions ne dépasse pas 100 KW. Cela est dû au circuit très complexe qui doit fournir une puissance considérable dans un laps de temps très court de l'ordre de 10 à 15 secondes et en même temps charger des éléments de stockage d'énergie entre deux chargements.
  • D'autres dispositifs de rechargement proposent des systèmes, dont le chargement et le déchargement des éléments de stockage d'énergie ce réalise par l'intermédiaire de contacteurs. Ces contacteurs ont une position de chargement dans laquelle l'éléments de stockage d'énergie est chargé par un chargeur et ensuite déchargé par l'intermédiaire de ce même chargeur vers une baterie d'un véhicule électrique. Cependant, lorque les contacteurs changent de position, il est important pour le chargeur d'observer un temps d'« inertie ». Effectivement, dans ce type de chargeur le courant alternatif du réseau électrique est transformé en courant continu. La plupart du temps, il s'agit d'abaisser la tension et ensuite de convertir le courant alternatif en courant continu.Cette étape de conversion met en jeu des condensateurs comprenant de fortes capacités de l'ordre de quelques dizaine de miliFarads et qui emmagasinent cette énergie avant de la restituer. À cela s'ajoute un élément inductif, typiquement une bobine de quelque miliHenry, qui va également enmagasiner de l'énergie mais la restituera avec un retard.
  • Dès lors, lorsque le chargeur a terminé de charger les éléments de stockage d'énergie, une partie de l'énergie électrique, qui a servi à charger les éléments de stockage d'énergie, reste piégée dans le chargeur et lorsque un véhicule électrique se présente devant le chargeur, l'énergie électrique piégée est libérée violemment et incontrolée vers le véhicule électrique, à la manière d'une décharge électrostatique. Une solution serait de décharger l'énergie électrique piégée dans des résistances, ce qui ne serait pas très économique, ou d'attendre que l'énergie électrique piégée se dissipe dans le circuit électrique. Cette dernière solution diminuerait considérablement le temps de charge entre deux déchargements d'une part et d'autre part elle augmentrait considérablement le temps de connexion entre le dispositif et le véhicule électrique.
  • La présente invention a pour objet de fournir un dispositif de chargement 100 permettant de diminuer le temps de chargement de l'organe de stockage d'énergie 910 du véhicule électrique 900. L'invention atteint son but par le fait que le dispositif de chargement 100 comprend un dispositif de stockage 110 d'énergie apte à stocker de l'énergie électrique fournie par une source d'énergie 320, un dispositif de connexion 190 pour connecter électriquement le dispositif de stockage d'énergie 110 avec l'organe de stockage d'énergie 910 du véhicule électrique 900 et de transférer l'énergie stocké dans le dispositif de stockage d'énergie 110 entre le dispositif de chargement 100 et le véhicule électrique 900. Plus particulièrement, la présente invention permet de charger un véhicule électrique 900 avec une borne de chargement 200 permettant une alimentation hybride de l'organe de stockage d'énergie 910 du véhicule électrique 900, en d'autres termes une alimentation combinant simultanément l'énergie électrique d'une source d'énergie électrique 320 et du dispositif de stockage 110 d'énergie afin que le transfert d'énergie électrique entre la borne de chargement 200 et le véhicule électrique 900 soit effectué en quelques secondes seulement.
  • Ainsi l'invention améliore grandement le transfert d'énergie électrique entre une borne de chargement 200 et un véhicule électrique 900, et optimise les coûts d'infrastructure d'un espace de transport 710 en diminuant les temps d'arrêt du véhicule électrique 900 en fonctionnement.
  • Description générale d'un mode réalisation
  • La figure 1 est une illustration schématique d'une portion d'installation selon l'invention comprenant une station de chargement 400 selon l'invention et un véhicule électrique 900 configuré pour transporter des passagers selon l'invention. Dans cet exemple, il sera considéré que le véhicule électrique 900, par exemple un tramway 900, se déplace dans un espace de transport 710 et que le tramway 900 est configuré pour transporter des passagers dans l'espace de transport 710 dans lequel est disposé au moins une station de chargement 400 selon l'invention. Dans l'exemple de la figure 1, l'espace de transport 710 comprend un espace urbain, interurbain et/ou rural, et un réseau de transport de voies ferrées permettant au tramway 900 de se déplacer entre deux stations de chargement 400.
  • Pour des raisons de clarté, l'espace de transport 710 a été simplifié et représente une portion du réseau de transport de voies ferrées. Toujours pour simplifier, une seule station de chargement 400 a été représentée ainsi qu'un seul tramway 900.
  • En l'espèce, la portion du réseau de transport de voies ferrées est réalisée à l'air libre. Bien entendu, cette portion de voies ferrées est généralement incrustée dans la chaussée et permet ainsi à la chaussée d'être utilisable aussi bien par d'autres types de véhicules électriques 900 tels que des bus électrique et/ou des véhicules équipés de moteurs thermiques ou autres véhicules autorisés à se déplacer sur une chaussée, comme par exemple une bicyclette. Par ailleurs, puisque dans certains cas il peut s'agir d'un véhicule électrique de type métro, naturellement le réseau de transport de voies ferrées serait, dans ce cas, souterrain.
  • Le tramway 900 se déplace sur la voie ferrée le long d'une ligne prédéterminée dans l'espace de transport 710 afin de former une ligne de transport dans le réseau de transport de voies ferrées. Une ligne de transport désigne, en général, un trajet réalisé dans le réseau de transport de voies ferrées afin de permettre au véhicule électrique 900 de se déplacer entre un lieu de provenance et un lieu de destination, autrement dit entre deux lieux. Typiquement, une ligne de transport peut comprendre un trajet de plusieurs kilomètres, voire d'une dizaine de kilomètres et dans certains cas une vingtaine de kilomètres et une pluralité de stations de chargement qui jalonne la ligne de transport. Chaque station de chargement 400 peut être séparée de la prochaine station de chargement 400 qui la précède immédiatement où qui la suit immédiatement le long de cette ligne de transport par une distance D.
  • Cette distance D correspond à la distance minimale que doit parcourir le tramway 900 pour passer d'une station de chargement 400 qu'il vient de quitter à la station de chargement 400 suivante. Selon certaines lignes de transport, la distance séparant au moins deux stations de chargement 400 peut être comprise entre 100 m et 1000 m, en particulier entre 150 m et 850 m et notamment entre 200 m et 800 m. Le choix de la longueur de la distance D, séparant au moins deux stations de chargement, est important car dans le cas où la distance est courte, voire trop courte, cela revient à augmenter très sensiblement les coûts d'infrastructures et à l'inverse, une grande distance, voire une trop grande distance, conduit à doter un véhicule électrique 900 d'organe de stockage d'énergie 910 capable de stocker une importante quantité d'énergie électrique, et donc indirectement d'augmenter le poids du véhicule électrique 900 ainsi que sa consommation d'énergie électrique et voire même de diminuer le volume de transport disponible pour transporter les passagers. Il est compris de l'homme du métier que ce dernier inconvénient induit directement une perte de rentabilité.
  • La figure 2 représente le schéma électrique simplifié du véhicule électrique 900 lorsqu'il est connecté à la station de chargement 400. La station de chargement 400 est installée le long de la ligne de transport et comprend un système de chargement 300 pour un tramway 900.
  • Le tramway 900 comprend un organe de stockage d'énergie 910 électrique et un organe consommateur d'énergie. L'organe consommateur d'énergie comprend :
    • un convertisseur bidirectionnel 920 ; le convertisseur bidirectionnel 920 est configuré pour être connecté au organe de stockage d'énergie 910 électrique et pour fournir une énergie électrique transformé ;
    • un moteur électrique 930 ; le moteur électrique 930 est configuré pour être connecté au convertisseur bidirectionnel 920 et pour transformer l'énergie électrique transformé par le convertisseur bidirectionnel 920 en une énergie de translation plus exactement en une énergie motrice ;
    • un générateur basse tension 940 ; le générateur basse tension 940 est configuré pour être connecté à l'organe de stockage d'énergie 910 et pour fournir une basse tension ; et,
    • un ensemble d'organes auxiliaires 945 ; l'ensemble d'organes auxiliaires 945 peut comprendre au moins un appareil électrique 945 connecté au générateur basse tension 940.
  • La station de chargement 400 pour le tramway 900 comprend en outre un système de chargement 300 selon l'invention, un espace de chargement, d'arrêt et/ou de stationnement comprenant un accès configuré pour recevoir un tramway 900 dans ledit espace de chargement, d'arrêt et/ou de stationnement. De façon plus spécifique, l'espace de chargement permet de charger le tramway 900 dans l'espace de chargement, lorsque le tramway 900 se trouve à l'arrêt et/ou en stationnement.
  • Le système de chargement 300 comprend une borne de chargement 200 selon l'invention et un dispositif de connexion 190 configuré pour transférer une quantité d'énergie suffisante et/ou nécessaire afin que le tramway 900 puisse se déplacer dans l'espace de transport 710 et/ou entre au moins deux stations de chargement 400.
  • À présent le dispositif de chargement 100 va être décrit plus en détails en référence à la figure 2.
  • Le dispositif de chargement 100, représenté sur la figure 2, comprend :
    • un dispositif de stockage d'énergie 110 ; le dispositif de stockage d'énergie 110 étant destiné à être chargé en énergie électrique, à stocker de l'énergie électrique et à transférer cette énergie électrique ;
    • un régulateur de tension 120 ; ledit régulateur de tension 120 étant connecté en série avec le dispositif de stockage d'énergie 110 de sorte à former un circuit fermé et étant configuré pour transférer l'énergie électrique stockée par le dispositif de stockage d'énergie 110 ; et,
    • un dispositif de connexion 190 ; le dispositif de connexion 190 étant configuré pour connecter électriquement le dispositif de stockage d'énergie 110 du dispositif de chargement 100, par l'intermédiaire du régulateur de tension 120, avec l'organe de stockage d'énergie 910 du véhicule électrique 900 et pour transférer au moins en partie l'énergie électrique stockée par le dispositif de stockage d'énergie 110 du dispositif de chargement 100 vers l'organe de stockage d'énergie 910 du véhicule électrique 900.
  • Le dispositif de stockage 110 d'énergie peut comprendre un condensateur, un super-condensateur plus connus sous le nom de super-capacité, un condensateur à double couche, une Ultra-capacité, et/ou une capacité à double couche. Le condensateur 910 du véhicule électrique 900 peut posséder une capacité dont la valeur peut être comprise entre 5 Farads et 300 Farads, en particulier entre 7 Farads et 250 Farads et de préférence entre 10 Farads et 200 Farads.
  • Le dispositif de stockage 110 d'énergie peut être configuré pour fonctionner à une tension comprise entre 100 V et 1000 V, en particulier entre 150 V et 850 V et notamment entre 200 V et 700 V. En outre, le dispositif de stockage 110 d'énergie peut être configuré pour fonctionner selon trois modes fonctionnement :
    • un mode chargement; le mode chargement permet de charger le dispositif de stockage 110 en énergie électrique par une source d'énergie électrique 320 ;
    • un mode stockage ; le mode stockage permet de stocker de l'énergie électrique chargée par le mode chargement ; et,
    • un mode transfert; le mode transfert permet de transférer l'énergie électrique stockée lors du mode stockage vers le véhicule électrique 900 par exemple.
  • Le dispositif de stockage 110 d'énergie peut être configuré pour fonctionner à une tension comprise entre 100 V et 1000 V, en particulier entre 150 V et 850 V et notamment entre 200 V et 700 V. Plus particulièrement, le dispositif de stockage 110 d'énergie peut être configuré pour fonctionner en mode chargement ou en mode transfert à une tension comprise entre 100 V et 1000 V, en particulier entre 150 V et 850 V et notamment entre 200 V et 700 V.
  • De plus, le dispositif de stockage 110 d'énergie peut également être configuré pour fonctionner à un courant compris entre 0 A et 850 A, en particulier entre 0 A et 700 A et de préférence entre 0 A et 550 A. Plus particulièrement, le dispositif de stockage 110 d'énergie peut être configuré pour fonctionner en mode chargement ou en mode transfert à un courant compris entre 0 A et 850 A, en particulier entre 0 A et 700 A et de préférence entre 0 A et 550 A. Bien entendu, ces valeurs de courant et de tension pourront évoluer avec les nouvelles générations de technologie.
  • Les valeurs précédemment citées, c'est à dire les valeurs en tension et/ou les valeurs en courant, sont fournies par le dispositif de stockage 110 d'énergie au régulateur de tension 120. D'ailleurs ces valeurs peuvent être considérées comme suffisantes et/ou nécessaires pour permettre au dispositif de stockage 110 d'énergie de charger l'organe de stockage d'énergie 910 du tramway 900 par l'intermédiaire du dispositif de connexion 190 afin que le tramway 900 puisse se déplacer dans l'espace de transport 710.
  • Ce transfert d'énergie se produit par l'intermédiaire du régulateur de tension 120 au travers du dispositif de connexion 190. Le régulateur de tension 120 est configuré pour réguler la tension de sortie et/ou le courant de sortie, respectivement, dans une plage de tension d'alimentation et/ou une plage de courant d'alimentation afin d'alimenter l'organe de stockage d'énergie 910 du véhicule électrique 900 et plus précisément afin de permettre le transfert d'énergie électrique entre le dispositif de stockage 110 d'énergie du dispositif de chargement 100 et l'organe de stockage d'énergie 910 du véhicule électrique 900 via le dispositif de connexion 190. La plage d'alimentation des moyens de stockage est comprise entre 240 V et 1200 V, en particulier entre 400 V et 1100 V et de préférence entre 450 V et 1000 V.
  • Le régulateur de tension 120 comprend un hacheur (non représenté), plus exactement le régulateur de tension 120 comprend un hacheur parallèle (non représenté) en série avec un hacheur série (non représenté) et un dispositif unidirectionnel (non représenté) afin d'éviter un retour de courant. Ce dernier est intégré dans le hacheur ou les hacheurs. Par ailleurs, afin d'éviter une surtension du hacheur parallèle au hacheur série, une protection peut être disposée entre les deux. Dans cette description, le mode fonctionnement d'un hacheur ne sera pas décrit en détails puisque le mode fonctionnement d'un hacheur, que ce soit un hacheur série ou un hacheur parallèle, est bien connu de l'homme du métier.
  • Comme il peut être observé sur la figure 2, le hacheur parallèle - en anglais « boost converter » - est connecté en aval du dispositif de stockage 110, de sorte à former un circuit fermé et en amont du hacheur série - en anglais « buck converter » - dans le sens de circulation du courant lorsque le dispositif de chargement 100 est en mode transfert, c'est-à-dire lorsque l'énergie électrique est transférée du dispositif de stockage d'énergie 110 vers l'organe de stockage d'énergie 910.
  • Dans cette configuration, le dispositif de stockage 110 d'énergie est configuré pour fournir une tension d'entrée au hacheur parallèle comprise entre 100 V et 1000 V et/ou pour fournir un courant d'entrée au hacheur parallèle compris 0 A et 850 A. Le hacheur parallèle est, quant à lui, configuré pour fournir à partir de la tension d'entrée fournie par le dispositif de stockage 110 d'énergie une tension de sortie supérieure à celle-ci. Effectivement, le hacheur parallèle fonctionne comme un élévateur de tension et permet ainsi de fournir une différence positive entre la tension de sortie et la tension d'entrée. En revanche, le hacheur série fonctionne comme un abaisseur de tension et permet ainsi de fournir une différence négative entre la tension de sortie et la tension d'entrée.
  • Ainsi avantageusement, le régulateur de tension 120 peut réguler la tension de sortie dans une large plage de tension, c'est à dire entre 240 V et 1200 V.
  • Cette régulation de tension peut être constante et/ou dynamique. En effet, le régulateur de tension 120 est configuré pour fonctionner selon deux modes de fonctionnement : un mode constant et/ou un mode dynamique.
  • Dans le cas d'une régulation constante, c'est à dire dans le cas où le régulateur de tension 120 est configuré pour fonctionner selon le mode constant, la tension et/ou le courant en sortie sont régulés de sorte que la valeur (de tension et/ou de courant en sortie) soit comprise entre ±1% par rapport à une valeur nominale (de tension et/ou de courant en sortie). Ce réglage peut être effectué par défaut, c'est-à-dire que le réglage peut être effectué lors de la fabrication du régulateur de tension 120, et/ou peut être effectué par l'utilisateur en réglant la valeur de tension et/ou de courant en sortie par l'intermédiaire d'une unité d'asservissement 150.
  • Effectivement, l'unité d'asservissement 150 est configurée pour être connectée au régulateur de tension 120 et/ou pour asservir le régulateur de tension 120. Ainsi, il peut être permis au régulateur de tension 120 de réguler une tension et/ou un courant au cours du temps de façon constante et/ou de façon dynamique. En effet, il peut être nécessaire de réguler la tension de sortie en fonction de la tension en entrée fournie par le dispositif de stockage 110 d'énergie, la tension en sortie du dispositif de stockage d'énergie 110 peut varier au cours du temps lorsque le dispositif de stockage d'énergie 110 transfert l'énergie électrique stockée vers le régulateur de tension 120. Avantageusement, cela permet au régulateur de tension 120 de fournir une tension et/ou un courant de sortie indépendamment de sa tension et/ou de son courant d'entrée. De surcroit, l'unité d'asservissement 150 permet favorablement de réguler la tension de sortie du régulateur de tension 120 grâce à un dispositif de retour 155 permettant à l'unité d'asservissement 150 d'être informer sur la tension en sortie et par la même occasion le maintien de cette valeur et/ou selon un modèle établit. L'établissement de ce modèle M sera décrit plus en détails un peu plus loin dans cette description.
  • De surcroit, étant donné que de fortes tensions et/ou de forts courants sont mis en jeu lors du transfert d'énergie entre le dispositif de stockage 110 d'énergie du dispositif de chargement 100 et l'organe de stockage d'énergie 910 du véhicule électrique 900, le dispositif de chargement 100 comprend en outre une sécurité 160 au niveau du dispositif de connexion 190. Cette sécurité est configurée pour relier le régulateur de tension 120 avec le dispositif de connexion 190 et pour agir de façon indépendante du régulateur de tension 120. Cette disposition possède l'avantage d'isoler le régulateur de tension 120 du dispositif de connexion 190 dans le cas où la variation du courant de sortie du régulateur dans un intervalle de temps donné serait trop importante.
  • En effet, dans certaines circonstances, le dispositif de chargement 100 doit fournir une tension et/ou un courant très important. Pour se faire, un système de chargement 300 comprenant une borne de chargement 200 selon l'invention peut faciliter un transfert d'énergie plus important, plus exactement un système de chargement 300 peut permettre de suppléer une quantité d'énergie électrique supplémentaire.
  • Comme il peut être observé sur la figure 2, la borne de chargement 200 comprend un dispositif de chargement 100 selon l'invention, un convertisseur de tension 210 comprenant un nœud d'entrée NE, un nœud de sortie NS, un nœud de référence NR et un nœud commun NC. Le convertisseur de tension 210 est configuré pour être connecté au dispositif de chargement entre le nœud de sortie NS et le nœud commun NC et pour fournir une tension continue et/ou un courant continu au dispositif de chargement 100. En amont du convertisseur de tension 210, un redresseur 220 est connecté entre le nœud d'entrée NE et le nœud de référence NR.
  • La borne de chargement est comprise dans un système de chargement 300. Ce dernier comprend une source d'énergie électrique 320, un transformateur 310 comprenant un circuit primaire et un circuit secondaire, ledit transformateur est configuré pour être connecté à la source d'énergie électrique 320 par l'intermédiaire de la borne de chargement 200. Le redresseur 220, cité précédemment, est configuré pour relier transformateur 310 au convertisseur de tension 210. Effectivement, le redresseur est configuré pour redresser la tension et/ou le courant entre l'ensemble de nœud secondaire d'entrée NSE et le nœud d'entrée NE et le nœud de référence NR.
  • Le circuit primaire du transformateur 310 est muni d'un ensemble de nœud d'entrée de circuit primaire NECP et le circuit secondaire du transformateur 310 possède un ensemble de nœud de sortie de circuit secondaire NECS.
  • En effet, la borne de chargement comprend en outre un ensemble de nœud primaire d'entrée NPE, un ensemble de nœud primaire de sortie NPS et un ensemble de nœud secondaire d'entrée NSE. Le transformateur 310, quant à lui, est configuré pour être connecté à la borne de chargement entre l'ensemble de nœud primaire de sortie NPS et l'ensemble de nœud secondaire d'entrée NSE. Plus exactement, le circuit primaire du transformateur 310 est connecté à l'ensemble de nœud d'entrée de circuit primaire NECP par l'intermédiaire de l'ensemble de nœud primaire d'entrée NPE et le circuit secondaire du transformateur 310 est connecté à l'ensemble de nœud de sortie de circuit secondaire NSCS par l'intermédiaire de l'ensemble de nœud secondaire d'entrée NSE. Cette configuration permet d'intégrer une précharge 280 et un système de sécurité 290 monté en série entre l'ensemble de nœud primaire d'entrée NPE et l'ensemble de nœud primaire de sortie NPS.
  • Grâce à cette disposition, la borne de chargement 200 peut combiner l'énergie électrique fournie par la source d'énergie et l'énergie électrique stockée dans le dispositif de stockage d'énergie 110 au véhicule électrique 900 au travers du régulateur de tension 120. Plus précisément, le dispositif de chargement 100 peut combiner l'énergie électrique fournie par la source d'énergie 320 et l'énergie électrique stockée dans le dispositif de stockage d'énergie 110 au véhicule électrique 900 au travers du régulateur de tension 120. Ainsi, une alimentation hybride est crée en associant l'énergie électrique du convertisseur de tension 210 avec l'énergie électrique stockée dans le dispositif de stockage d'énergie 110.
  • Le dispositif de connexion 190 comprend des patins (non représentés) qui sont articulés par des articulations (non représentés) à l'aide d'actionneurs (non représentés). Plus exactement, le dispositif de connexion 190 est configuré pour être articulé entre une position active dans laquelle les patins sont configurés pour connecter le dispositif de connexion 190 avec l'organe de connexion 990 du véhicule électrique 900 et transférer une quantité d'énergie dans l'organe de stockage 910 du véhicule électrique 900 et une position de libération dans laquelle les patins sont déconnectés de l'organe de connexion 990 du véhicule électrique 900. Évidemment, la connexion entre les patins du dispositif de chargement 100 et l'organe de connexion 990 du véhicule électrique 900 se produit lorsque le dispositif de chargement 100 et le véhicule électrique 900 sont à proximité l'un de l'autre et/ou à l'arrêt.
  • Dès lors que le tramway 900 est à proximité du dispositif de chargement 100, plus exactement lorsque le tramway 900 accède à l'espace de chargement, d'arrêt et/ou de stationnement de la station de chargement 400, les patins se connectent à l'organe de connexion 990 du tramway 900. Cette opération de connexion a une durée comprise entre 0,1 seconde et 5 secondes, en particulier entre 0,3 seconde et 4 secondes et notamment entre 0,5 seconde et 3 secondes.
  • Lors de cette opération de connexion, le dispositif de chargement 100 et le tramway 900 échange des informations avant de procéder au transfert d'énergie selon le procédé de chargement.
  • Présentation des étapes du procédé de chargement
  • Le fonctionnement du système de chargement est décrit en regard du procédé de chargement de la figure 3, en considérant, dans un premier temps l'approche du véhicule électrique 900, c'est à dire dans ce cas particulier un tramway 900, où ce dernier s'approche à proximité de la station de chargement 400. Le procédé de chargement décrit dans la suite de cette description sera expliqué en prenant comme point de départ de l'explication le moment où le tramway 900 quitte la station de chargement 400 pour en rejoindre une station de chargement 400.
  • À l'étape de translation, le tramway 900 se déplace entre deux stations de chargement 400 par une phase de translation. Lors de cette étape, le tramway 900 quitte, par exemple, la station de chargement 400 et se déplace sur la ligne de transport vers la prochaine station de chargement 400. Lors de l'étape de translation, le tramway 900 effectue, en alternance, une phase de consommation d'énergie électrique comprenant une opération d'accélération V/s et une opération de maintien de la vitesse |V|, et une phase de génération d'énergie électrique comprenant une opération de décélération -V/s.
  • Lors de la phase de consommation d'énergie, le convertisseur bidirectionnel 920 puise dans l'énergie électrique stockée dans l'organe de stockage d'énergie 910. Cette énergie est consommée par la suite par le moteur électrique 930 ainsi que le convertisseur bidirectionnel 920, afin de fournir un courant alternatif au moteur électrique 930. Cette consommation d'énergie électrique par le moteur électrique 930 permet un mouvement de translation au tramway 900 dans l'espace de transport 710.
  • Cette énergie est consommée par la suite par l'ensemble d'organe auxiliaire, le moteur électrique 930 ainsi que le convertisseur bidirectionnel 920, afin de fournir un courant alternatif au moteur électrique 930. Cette consommation d'énergie électrique par le moteur électrique 930 permet un mouvement de translation au tramway 900 dans l'espace de transport 710.
  • Au cours de la phase de consommation d'énergie, plus particulièrement, lors des opérations d'accélération et de maintien de la vitesse, le convertisseur bidirectionnel 920 fonctionne en mode onduleur et le moteur électrique 930 permet, par l'intermédiaire d'un ensemble de roues, la translation du véhicule électrique 900.
  • Au cours de la phase de génération d'énergie, plus exactement, lors des opérations de décélération -V/s, le convertisseur bidirectionnel 920 fonctionne en mode redresseur et le moteur électrique 930 fonctionne en tant que génératrice de courant/tension, autrement dit en tant que génératrice d'énergie électrique.
  • En effet, l'énergie électrique générée par le moteur électrique 930 est fournie au convertisseur bidirectionnel 920 de sorte à charger l'organe de stockage d'énergie 910 lors de sa translation. Étant donné que l'énergie électrique circule entre l'organe de stockage d'énergie 910 et le convertisseur bidirectionnel 920, cette énergie est parfaitement disponible, lors de ce transfert, à l'ensemble des organes auxiliaires.
  • En parallèle à l'étape de translation, l'organe de contrôle mesure la situation du tramway 900. Une partie des mesures comprend un état général de l'organe de stockage d'énergie 910. À des fins de simplification, il sera considéré qu'un organe de contrôle 950 mesure un état de charge SoC de l'organe de stockage 910 et un état de santé SoH de l'organe de stockage d'énergie 910 :
    • l'état de charge SoC comprend un indicateur du niveau de charge de l'organe de stockage d'énergie 910, plus précisément l'état de charge SoC permet de connaître la tension entre la borne d'entrée et la borne de sortie de l'organe de stockage d'énergie 910 ;
    • l'état de santé SoH comprend un indicateur de l'état d'usure de l'organe de stockage d'énergie 910, plus précisément l'état de santé SoH permet de connaître la capacité maximale et la résistance interne équivalente de stockage de l'organe de stockage d'énergie 910.
  • Dans ce procédé de chargement, il est tout à fait possible de prévoir une troisième étape parallèle à l'étape de translation et à l'étape de mesure, qui serait une étape de télécommunication. Ainsi le tramway 900 peut informer une station de chargement 400 sur l'état général de l'organe de stockage d'énergie 910 et/ou être informé de la présence d'une station de chargement 400 à proximité et par la même occasion informer la station de chargement 400 de l'état général de l'organe de stockage d'énergie 910. Cette communication se produit par l'intermédiaire d'un organe de communication 970. L'organe de communication 970 est, en effet, configuré pour permettre une communication sans fil, de type Wi-Fi™ selon le protocole TCP/IP et/ou Bluetooth™ par exemple, avec la borne de chargement 200. Cette dernière, c'est-à-dire la borne de chargement, recevrait ces informations par l'intermédiaire du dispositif de communication 170.
  • Alternativement à une communication sans fil, l'organe de communication 970 comprendrait un organe de couplage/découplage 980. L'organe de couplage/découplage 980 serait configuré pour coupler et/ou découpler la communication du transfert d'énergie. En effet, le dispositif de connexion et l'organe de connexion sont configurés pour permettre la communication entre le véhicule électrique et le dispositif de chargement par courant porteur - en anglais « Power Line Carrier » ou « Broadband over Power Lines ». Dès lors, un organe de couplage/découplage 980 relié à l'organe de communication 970 permet de coupler et/ou de découpler la communication du transfert d'énergie. Parallèlement, un dispositif de couplage/découplage 180 relié au dispositif de communication 170 permet de coupler et/ou de découpler la communication du transfert d'énergie de sorte à établir une communication entre l'unité d'asservissement 150 et l'unité centrale 950. En effet, une fois la communication couplée et ensuite découplée du transfert d'énergie, l'organe de communication, dans le cas du véhicule électrique, ou le dispositif de communication, dans le cas du dispositif de chargement, transfert la communication respectivement à l'unité central ou l'unité d'asservissement. Bien évidemment, la communication par courant porteur ne peut se produire lorsque et seulement lorsque il y a une connexion électrique entre le tramway et le dispositif de chargement.
  • L'étape de translation s'achève donc par une étape d'immobilisation lorsque le tramway 900 accède à l'espace de chargement, d'arrêt et/ou de stationnement de la station de chargement 400 par l'accès configuré pour recevoir le tramway 900 dans cette espace et s'immobilise au niveau de la borne de chargement 200. Lorsque le tramway 900 se trouve en vis-à-vis avec la borne de chargement 200, plus exactement lorsque le dispositif de connexion 190 se trouve en regard de l'organe de connexion 990 afin de permettre l'étape de chargement.
  • En effet, l'étape de chargement débute par une opération de connexion « CNX » du dispositif de connexion 190 de la station de chargement 400 avec l'organe de connexion 990 du tramway 900. Étant donné que le dispositif de connexion 190 de la station de chargement 400 et l'organe de connexion 990 du tramway 900 sont configurés pour coopérer, la connexion en est d'autant plus simplifiée. Toutefois, afin de s'assurer de la bonne connexion électrique entre le dispositif de connexion 190 et l'organe de connexion 990, le dispositif de chargement 100, à l'aide du dispositif de retour 155 plus exactement à l'aide d'un dispositif de mesure (non représenté), un léger courant est envoyé vers l'organe de connexion 990 afin de connaître la résistance série équivalente - en anglais Equivalent Series Résistance : ESR. Cette mesure peut être réalisée par une « mesure 4 pointes » par exemple qui est bien connue de l'homme du métier. Le résultat de cette mesure permet, dans la suite du procédé de chargement, de confirmer le bon contact électrique au niveau de la connexion.
  • Effectivement, cette mesure permet de révéler l'impédance Z au niveau de l'organe de connexion 990 et ainsi permet par la même occasion de déterminer l'identité du tramway 900. Cela se déroule lors de l'opération « id = 1er type ». L'impédance Z mesurée est comprise entre 1,5 mOhm et 1,5 Ohm, en particulier entre 3 mOhm et 1 Ohm et notamment entre 5 mOhm et 30 mOhm. Dans le cas d'une mesure par courant constant, l'homme du métier parle de résistance et cette dernière est comprise entre 1,5 mOhm et 1,5 Ohm, en particulier entre 3 mOhm et 1 Ohm et notamment entre 5 mOhm et 30 mOhm.
  • Selon l'impédance Z mesurée, une distinction est faite entre un élément de premier type, c'est-à-dire un véhicule électrique selon l'invention, comprenant une impédance Z comprise entre 1,5 mOhm et 1,5 Ohm, en particulier entre 3 mOhm et 1 Ohm et notamment entre 5 mOhm et 30 mOhm, et un élément de deuxième type, c'est-à-dire un véhicule électrique standard, comprenant une impédance Z supérieure à 30 mOhm et, en particulier supérieure à 1 Ohm et notamment supérieure à 1,5 Ohm. Cette distinction permet de déclencher l'opération de chargement dynamique « MD » dans le cas d'un véhicule électrique selon l'invention ou de déclencher l'opération de chargement constant « MC » dans le cas d'un véhicule standard.
  • L'opération de chargement dynamique « MD » permet de délivrer une tension et/ou un courant variable en fonction du temps et l'opération de chargement constant permet de délivrer une valeur nominale de tension et/ou une valeur nominale de courant constante au cours du temps.
  • Cette valeur d'impédance Z permet, à la station de chargement 400 et au tramway 900, d'effectuer un échange d'information comme par exemple un échange d'information par rapport à l'élément d'identification id du tramway 900 et/ou à ses éléments caractéristiques d'état. Comme il a été précisé un peu plus en amont dans cette description, les éléments caractéristiques d'état du véhicule électrique 900 comprennent l'état de charge SoC et/ou l'état de santé SoH du véhicule (opération « SoH » et « SoC »).
  • À la réception de ces différentes informations relatives au tramway 900 et des éléments caractéristiques d'état du véhicule électrique 900, le système de chargement établit, à partir des éléments caractéristiques d'état un modèle de chargement M. Lors de l'opération « M », le modèle de chargement M est déterminé à partir des caractéristiques de l'organe de stockage d'énergie 910, plus exactement à partir de l'état de charge SoC et/ou de l'état de santé SoH de l'organe de stockage d'énergie 910 et permet le transfert d'énergie électrique par une boucle ouverte de régulation.
  • En effet, l'état de charge SoC et/ou de l'état de santé SoH de l'organe de stockage d'énergie 910 vont permettre d'établir les valeurs en tension Vch et en courant Ich de chargement du modèle de chargement M lors de l'opération de modélisation « M ».
  • Le terme de boucle ouverte signifie que le transfert d'énergie se fait à partir du modèle de chargement M mais qu'aucune communication entre le système de chargement et le tramway 900 n'est établie de façon permanente afin de connaître l'état de charge SoC de l'organe de stockage d'énergie 910.
  • Lors du transfert d'énergie électrique, par l'intermédiaire du régulateur de tension 120, entre le dispositif de chargement 100 et le tramway 900, les valeurs de transfert d'énergie en tension Vs et en courant Is sont mesurées à la sortie du dispositif de chargement 100 par le dispositif de retour 155. Ces mesures en tension Vs et en courant Is sont comparées avec les valeurs en tension Vcalc et en courant Icalc à partir du modèle de chargement M au cours du chargement.
  • En effet, lors de la connexion de l'organe de connexion 990 du tramway 900 avec le dispositif de connexion 190 du dispositif de chargement 100, l'unité centrale du tramway 900 transmet l'état de santé SoH de l'organe de stockage d'énergie 910 électrique à l'unité d'asservissement 150 du dispositif de chargement 100. À partir de l'état de santé SoH, l'unité d'asservissement 150 calcule les maxima en tension et/ou en courant, plus exactement l'unité d'asservissement 150 calcule les valeurs en tension Vcalc(t) et/ou en courant Icalc(t) à transférer en fonction du temps.
  • En d'autres termes, à intervalle de temps régulier, autrement dit à une fréquence fixe, une valeur en courant et de tension aux bornes de l'organe de stockage d'énergie 910 est estimée, plus exactement sont estimées à partir des valeurs des mesures en sortie (Vs(t) ; Is(t)) et des valeurs calculées (Vcalc(t) ; Icalc(t)).
  • Afin d'éviter tout écart entre les valeurs mesurées (Vs(t) ; Is(t)) et les valeurs calculées (Vcalc(t) ; Icalc(t)) à partir du modèle, une unité de correction corrige les divergences entre les données en prenant les valeurs du modèle de chargement M pour référence afin de fournir des valeurs en tension Vest(t) et en courant Iest(t) estimées.
  • Lorsque cela est permis, certaines mesures en tension Vm(t) et en courant Im(t) sont effectuées aux bornes de l'organe de stockage du véhicule électrique 900 et sont renvoyées vers l'unité d'asservissement 150 par l'intermédiaire de la connexion. En effet, grâce à la liaison permanente entre le véhicule électrique 900 et le dispositif de chargement 100 lors de l'opération de transfert d'énergie, le véhicule électrique 900 peut transmettre ces mesures par courant porteur, en utilisant le protocole TCP/IP et en couplant au transfert d'énergie un signal haute fréquence par l'intermédiaire de l'organe de couplage/découplage 980. L'unité d'asservissement 150 peut recevoir ainsi ces mesures en les découplant du transfert d'énergie par l'intermédiaire du dispositif de couplage/découplage 180.
  • L'unité d'asservissement 150 compare alors les valeurs en tension Vest(T) et en courant Iest(T) estimées à un instant précis (T) avec les valeurs en tension Vm(T) et en courant Im(T) mesurées au même instant (T) afin de fournir des valeurs en tension Vcorr(T) et en courant Icorr(T) corrigées pour éviter une déviation du modèle de chargement M.
  • Ces étapes de régulation à boucle ouverte sont répétées à intervalle régulier jusqu'à ce que les valeurs en tension Vm(T) et en courant Im(T) aient atteint les valeurs en tension Vch(T) et en courant Ich(T) de chargement.
  • Une fois les valeurs de chargements atteints, le dispositif de connexion 190 du dispositif de chargement 100 se déconnecte, lors de l'opération « DCNX » de l'organe de connexion 990 du véhicule électrique 900 et un nouveau cycle, plus exactement, une nouvelle étape de chargement du dispositif de chargement 100 commence. Cette étape de chargement du dispositif de stockage d'énergie 110 a une durée comprise entre 30 secondes et secondes, en particulier entre 50 secondes et secondes et de préférence entre 60 secondes et secondes. En parallèle, l'unité d'asservissement, archive les valeurs mesurées, les valeurs estimées et/ou les valeurs corrigées avec l'élément d'identité du véhicule électrique, l'état de charge et/ou l'état de santé.
  • Il se peut que, dans certains cas, le véhicule électrique 900 se présentant à la station de chargement 400 ne soit pas un véhicule électrique 900 selon l'invention mais soit un tramway 900 de type standard. Dès lors, l'étape de chargement, comme précédemment décrite, débute par une opération de connexion « CNX » du dispositif de connexion 190 de la station de chargement 400 avec un organe de connexion 990 d'un tramway 900.
  • Or le dispositif de détection ne reconnaît pas l'élément d'identification id du tramway 900 selon l'invention lors de l'opération « id =1er type », c'est à dire une impédance Z mesurée comprise entre 1,5 mOhm et 1,5 Ohm. Le dispositif de chargement 100 bascule en mode constant et délivre une valeur nominale de tension et/ou une valeur nominale de courant constante au cours du temps afin de permettre au tramway 900 de pouvoir être chargé en énergie électrique, lors de l'opération « MC », selon un modèle standard.
  • Bien que l'invention ait été décrite en liaison avec des exemples particuliers de réalisation, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.

Claims (8)

  1. Système de chargement (300) comprenant une borne de chargement (200), une source d'énergie électrique (320), un transformateur (310) comprenant un circuit primaire et un circuit secondaire, ledit transformateur est configuré pour être connecté à la source d'énergie électrique (320) par l'intermédiaire de la borne de chargement (200), comprenant un dispositif de chargement (100) pour un véhicule électrique (900), ledit véhicule électrique (900) comprenant au moins un organe consommateur d'énergie électrique (930) et un organe de stockage d'énergie destiné à être chargé en énergie électrique, à stocker de l'énergie électrique et à transférer cette énergie électrique à l'organe consommateur d'énergie électrique (930) afin de permettre au véhicule électrique (900) d'effectuer un déplacement dans un espace de transport (710) dans lequel se trouve la borne de chargement (200), ledit dispositif de chargement (100) étant configuré pour charger l'organe de stockage d'énergie (910) du véhicule électrique (900), lorsque le véhicule électrique (900) est à proximité dudit dispositif de chargement (100), ledit dispositif de chargement (100) comprend :
    - un dispositif de stockage d'énergie (110) ; le dispositif de stockage d'énergie (110) étant destiné à être chargé en énergie électrique, à stocker de l'énergie électrique et à transférer cette énergie électrique ;
    - un régulateur de tension (120) ; ledit régulateur de tension (120) étant connecté en série avec le dispositif de stockage d'énergie (110) de sorte à former un circuit fermé et étant configuré pour transférer l'énergie électrique stockée par le dispositif de stockage d'énergie (110) ; et,
    - un dispositif de connexion (190) ; le dispositif de connexion (190) étant configuré pour connecter électriquement le dispositif de stockage d'énergie (110) du dispositif de chargement (100), par l'intermédiaire du régulateur de tension (120), avec l'organe de stockage d'énergie (910) du véhicule électrique (900) et pour transférer au moins en partie l'énergie électrique stockée par le dispositif de stockage d'énergie (110) du dispositif de chargement (100) vers l'organe de stockage d'énergie (910) du véhicule électrique (900) ;
    ladite borne de chargement (200) comprenant en outre un convertisseur de tension (210) comprenant un nœud d'entrée (NE), un nœud de sortie (NS), un nœud de référence (NR) et un nœud commun (NC), ladite borne de chargement (200) comprenant également un redresseur (220) configuré pour relier le transformateur (310) audit convertisseur de tension (210), ledit convertisseur de tension (210) étant configuré pour être connecté en parallèle au régulateur de tension (120) et au dispositif de stockage d'énergie (110), du dispositif de chargement (100), entre le nœud de sortie et le nœud commun.
  2. Système de chargement (300) selon la revendication 1, dans lequel le régulateur de tension (120) est configuré pour réguler la tension d'entrée de l'organe de stockage d'énergie (910) du véhicule électrique (900).
  3. Système de chargement (300) selon l'une quelconque des revendications précédentes, dans lequel le régulateur de tension (120) est configuré pour fonctionner selon deux modes de chargement :
    - un mode dynamique ; le mode dynamique est configuré pour délivrer une tension et/ou un courant variable en fonction du temps ;
    - un mode constant; le mode constant est configuré pour délivrer une valeur nominale de tension et/ou une valeur nominale de courant constante au cours du temps.
  4. Système de chargement (300) selon l'une quelconque des revendications précédentes, dans lequel le dispositif de chargement (100) comprend en outre une unité d'asservissement (150) configurée pour asservir le régulateur de tension (120).
  5. Système de chargement (300) selon la revendication 4, dans lequel l'unité d'asservissement (150) est configurée pour permettre le transfert d'énergie électrique, par l'intermédiaire du régulateur de tension (120), entre le dispositif de chargement (100) et le véhicule électrique (900) selon un modèle de chargement établi.
  6. Système de chargement (300) selon l'une quelconque des revendications précédentes, dans lequel le dispositif de connexion (190) est configuré pour connecter l'organe de connexion du véhicule électrique (990), détecter l'élément d'identification et transférer une quantité d'énergie dans les organes de stockage du véhicule électrique (910).
  7. Station de chargement (400) pour un véhicule électrique (900), ladite station de chargement (400) comprend un système de chargement (300) selon l'une quelconque des revendications précédentes, un espace de chargement, d'arrêt et/ou de stationnement comprenant un accès configuré pour recevoir un véhicule électrique (900) dans ledit espace de chargement, d'arrêt et/ou de stationnement.
  8. Installation (700) comprenant une pluralité de stations de chargement (400) selon la revendication 7, les stations de chargement étant réparties dans un espace de transport (710) de manière à permettre le déplacement d'un véhicule électrique (900) dans l'espace de transport (710).
EP16703570.8A 2015-01-16 2016-01-14 Système de chargement d'éléments de stockage d'énergie électrique d'un véhicule Active EP3245709B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1550384A FR3031846B1 (fr) 2015-01-16 2015-01-16 Systeme de chargement d’elements de stockage d’energie electrique d’un vehicule
PCT/FR2016/050064 WO2016113505A2 (fr) 2015-01-16 2016-01-14 Système de chargement d'éléments de stockage d'énergie électrique d'un véhicule

Publications (2)

Publication Number Publication Date
EP3245709A2 EP3245709A2 (fr) 2017-11-22
EP3245709B1 true EP3245709B1 (fr) 2021-09-01

Family

ID=53177608

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16703570.8A Active EP3245709B1 (fr) 2015-01-16 2016-01-14 Système de chargement d'éléments de stockage d'énergie électrique d'un véhicule

Country Status (5)

Country Link
US (1) US10611253B2 (fr)
EP (1) EP3245709B1 (fr)
ES (1) ES2899856T3 (fr)
FR (1) FR3031846B1 (fr)
WO (1) WO2016113505A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109353242B (zh) * 2018-11-13 2021-11-09 国网电动汽车(山西)服务有限公司 一种智能充电桩系统实现双向有序充放电的充电算法
CN109367430B (zh) * 2018-11-28 2023-08-25 保定市北昊新能源科技有限公司 一种抗冲击新能源电动汽车充电桩
US11727118B2 (en) * 2019-11-08 2023-08-15 The Boeing Company Vehicle vulnerability testing
EP4062525A1 (fr) * 2019-11-21 2022-09-28 Kollmorgen Corporation Régulateur cc avec supercondensateur

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034554A (ja) * 2009-08-21 2012-02-16 Jfe Engineering Corp 急速充電装置
JP4954335B2 (ja) * 2010-01-08 2012-06-13 Jfeエンジニアリング株式会社 急速充電装置
US8405360B2 (en) * 2010-04-07 2013-03-26 Evp Technology Llc Usa Energy-efficient fast charging device and method
US20130020993A1 (en) * 2011-07-18 2013-01-24 Green Charge Networks Llc Multi-Mode Electric Vehicle Charging Station
WO2013084999A1 (fr) * 2011-12-08 2013-06-13 株式会社エネルギー応用技術研究所 Système d'alimentation en énergie à charge rapide
US9963038B2 (en) * 2013-03-15 2018-05-08 Schneider Electric USA, Inc. Portable electric vehicle charging device

Also Published As

Publication number Publication date
US20180037122A1 (en) 2018-02-08
US10611253B2 (en) 2020-04-07
FR3031846B1 (fr) 2017-02-03
WO2016113505A2 (fr) 2016-07-21
FR3031846A1 (fr) 2016-07-22
EP3245709A2 (fr) 2017-11-22
WO2016113505A3 (fr) 2016-12-01
ES2899856T3 (es) 2022-03-15

Similar Documents

Publication Publication Date Title
EP3245709B1 (fr) Système de chargement d'éléments de stockage d'énergie électrique d'un véhicule
EP3016817B1 (fr) Vehicule electrique et installation de transport associee
CA2778162C (fr) Procede d'alimentation electrique d'un vehicule ferroviaire, systeme d'alimentation en station, systeme de stockage d'energie embarque et vehicule ferroviaire associes
EP1938438B1 (fr) Poste de recharge et vehicule electrique associe
EP3080889B1 (fr) Système et procédé d'équilibrage de la charge d'une pluralité de modules de stockage d'énergie
EP2079148B1 (fr) Circuit electrique
EP2822830B1 (fr) Réseau ferroviaire électrique et procédé d'échange d'énergie associé
EP1765631B1 (fr) Utilisation d'un dispositif d'alimentation, procede d'alimentation de consommateurs d'electricite de ce vehicule de traction et support d'enregistrement de ce procede
EP2695279A1 (fr) Dispositif de transfert de charge et procédé de gestion associé
FR3032921A1 (fr) Systeme de transport ferroviaire autonome en energie electrique
FR2988926A1 (fr) Procede et systeme d'alimentation electrique d'un vehicule automobile hybride a double stockeurs d'energie electrique
FR3004596A1 (fr) Procede de charge par induction d'une batterie de vehicule
FR2980651A1 (fr) Procede de gestion d'un reseau embarque a deux accumulateurs
EP3562704B1 (fr) Procédé et système de gestion de la charge de modules de stockage d'énergie électrique employés dans un système de transport à énergie électrique
EP3389175B1 (fr) Dispositif de conversion, procédé de commande et véhicule associés
FR2973297A1 (fr) Procede et systeme d'alimentation electrique redondante d'un vehicule automobile hybride
EP3377366A1 (fr) Procede et systeme de rechargement electrique d'un vehicule electrique
FR2945081A1 (fr) Procede et systeme d'arret et de redemarrage automatique d'un moteur thermique
FR2974041A1 (fr) Systeme d'alimentation embarque dans un vehicule, procede d'alimentation electrique et vehicule associes
EP2292459B1 (fr) Procédé de charge d'un module auxiliaire de stockage d'énergie
WO2022018226A1 (fr) Systeme d'alimentation d'un moteur de traction
FR3007583A1 (fr) Systeme de stockage d’energie et systeme d’entrainement et de recuperation d’energie
FR3104515A1 (fr) Procede de controle d'une machine electrique d'un vehicule hybride
FR3073336A1 (fr) Procede et dispositif de stabilisation d'un reseau electrique continu excite par des perturbations d'une source d'alimentation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170710

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190315

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602016063018

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H02J0007000000

Ipc: B60L0053300000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B60L 53/53 20190101ALI20210304BHEP

Ipc: H02J 7/34 20060101ALI20210304BHEP

Ipc: B60L 58/16 20190101ALI20210304BHEP

Ipc: B60L 53/10 20190101ALI20210304BHEP

Ipc: B60L 53/30 20190101AFI20210304BHEP

INTG Intention to grant announced

Effective date: 20210407

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1425883

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016063018

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HOLIWATT

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1425883

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2899856

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016063018

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

26N No opposition filed

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PLAA Information modified related to event that no opposition was filed

Free format text: ORIGINAL CODE: 0009299DELT

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602016063018

Country of ref document: DE

Owner name: FORSEE POWER, FR

Free format text: FORMER OWNER: ADETEL TRANSPORTATION SOLUTION, ECULLY, FR

R26N No opposition filed (corrected)

Effective date: 20220602

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FORSEE POWER

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20221229 AND 20230104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231229

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231229

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240207

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 9

Ref country code: CH

Payment date: 20240201

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240111

Year of fee payment: 9