EP3244067B1 - Vacuum pump and method for reducing a residual imbalance in a vacuum pump - Google Patents

Vacuum pump and method for reducing a residual imbalance in a vacuum pump Download PDF

Info

Publication number
EP3244067B1
EP3244067B1 EP16168947.6A EP16168947A EP3244067B1 EP 3244067 B1 EP3244067 B1 EP 3244067B1 EP 16168947 A EP16168947 A EP 16168947A EP 3244067 B1 EP3244067 B1 EP 3244067B1
Authority
EP
European Patent Office
Prior art keywords
rotor shaft
rotor
stator
vacuum pump
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16168947.6A
Other languages
German (de)
French (fr)
Other versions
EP3244067A1 (en
Inventor
Andreas Rippl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP16168947.6A priority Critical patent/EP3244067B1/en
Publication of EP3244067A1 publication Critical patent/EP3244067A1/en
Application granted granted Critical
Publication of EP3244067B1 publication Critical patent/EP3244067B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/662Balancing of rotors

Definitions

  • the present invention relates to a vacuum pump, in particular a turbomolecular pump, with a rotor shaft rotatable about an axis of rotation and an electric motor which comprises a stator fixed to a housing of the vacuum pump and a rotor coupled to the rotor shaft, the stator and the rotor for rotatingly driving the rotor shaft are provided.
  • the present invention also relates to a method for reducing a residual unbalance of a rotor shaft of a vacuum pump that can be rotated about an axis of rotation, in particular a turbomolecular pump.
  • a vacuum pump of the type mentioned is known in principle.
  • the rotor shaft is normally balanced before the vacuum pump is put into operation, in particular in order to reduce the risk of damage to the rotor shaft and to the bearings of the rotor shaft.
  • Normally there remains a so-called residual unbalance after balancing the rotor shaft which according to DIN ISO 1925: 2001 is an unbalance of any kind that remains after balancing.
  • the initial balancing of the rotor shaft which according to the standard mentioned is an unbalance of any kind that is present in the rotor before balancing, can thus be reduced to a remaining residual unbalance by the balancing process. With the residual unbalance, the vacuum pump can normally be started up without any problems.
  • the residual unbalance is based in particular on a mass defect on the rotor shaft, which can be described as a punctiform mass m at a distance r from the axis of rotation of the rotor shaft.
  • a vacuum pump according to the preamble of claim 1 and a method for balancing a rotor of a vacuum pump are in the EP 2 881 591 A2 and in the EP 2 520 807 A2 disclosed.
  • WO 02/07289 A2 A method for improving the concentricity of a rotor of a vacuum pump is shown in WO 02/07289 A2 disclosed.
  • the object of the present invention is therefore to reduce a residual unbalance of a rotor shaft of a vacuum pump.
  • a vacuum pump comprises a rotor shaft rotatable about an axis of rotation and an electric motor with a stator fixed to a housing of the vacuum pump and a rotor coupled to the rotor shaft, the stator and the rotor being provided for rotatingly driving the rotor shaft, the electric motor, to be precise whose stator is designed in such a way that it causes a force which rotates synchronously with the rotor shaft, in particular acts in the radial direction, on the rotor shaft, in particular on the rotor coupled to the rotor shaft, a force being generated by the force residual imbalance of the rotor shaft rotating synchronously can be at least approximately compensated for.
  • the residual unbalance still present after balancing or the force F RU caused by the residual unbalance and rotating synchronously with the rotor shaft can be at least approximately compensated for by the force generated by the electric motor.
  • the rotor shaft runs even less unbalanced, which can increase the service life of the rotor shaft and its bearings.
  • each vacuum pump according to the invention has essentially the same properties over a relatively long operating period as far as the unbalance condition is concerned, for example because an increase in the residual unbalance, for example caused by wear in the bearing, at least to a certain extent by that of the electric motor generated force can be compensated.
  • each vacuum pump according to the invention has at least approximately the same state of balance and thus the same state in terms of vibration.
  • the rotor of an electric motor is also referred to as an armature or a rotor of the electric motor.
  • a so-called PM synchronous motor is preferably used as the electric motor, where PM stands for permanent magnet.
  • PM stands for permanent magnet.
  • permanent magnets are arranged in the rotor, which form the rotor or rotor-side magnetic poles of the electric motor.
  • the magnetic poles are realized using current conductor windings.
  • PM synchronous motors are known from the prior art.
  • the vacuum pump preferably has at least one sensor, in particular an acceleration sensor, for measuring the residual unbalance of the rotor shaft.
  • the residual unbalance can thus be measured during operation of the vacuum pump and the measured value obtained can be used, for example, to control the electric motor.
  • the at least one sensor can be arranged in a plane which runs through the stator of the electric motor and at least substantially perpendicular to the rotor shaft.
  • the residual unbalance can thus be detected in a balancing plane running through the stator of the electric motor and at least approximately compensated for.
  • the sensor is preferably arranged on the rotor of the electric motor.
  • the sensor can alternatively be arranged somewhat above or below the rotor on the rotor shaft. The residual unbalance can therefore be detected in the area of the electric motor.
  • the at least one sensor can also be arranged in the region of a bearing that serves to support the rotor shaft.
  • the detection of the residual unbalance in the area of the bearing has the advantage that this residual unbalance can be at least approximately compensated for by the electric motor. Damage to the bearing due to the residual unbalance can thereby be avoided particularly effectively.
  • At least one operating parameter of the electric motor for adjusting the force according to the amount and / or phase position and / or for adjusting the rotational speed of the force about the axis of rotation can be adjusted by means of a control.
  • the force can thus be generated in such a way that it rotates around the axis of rotation synchronously with the rotational speed of the rotor shaft and thus with the residual unbalance, and thereby the residual unbalance is at least approximately compensated.
  • phase position here refers to the direction of the force in relation to the angular position of the rotor shaft.
  • the phase position of the force is preferably set so that the force of the residual unbalance is directed in the opposite direction.
  • At least one alternating current which is fed into the electric motor, can be set by means of the control so that the magnetic field generated between the stator and the rotor of the electric motor causes a resulting magnetic force on the rotor, which is synchronous with the rotational speed of the rotor shaft and thus revolves with the residual unbalance around the axis of rotation and thereby at least approximately compensates for the residual unbalance, that is to say at least approximately has the amount of the residual unbalance and is counter-directed.
  • the setting of the alternating current can include: setting the amplitude, setting the frequency and / or setting the phase of the alternating current.
  • the electric motor and / or a control for the electric motor can be equipped with appropriate means for adjusting the amplitude, frequency and phase.
  • the controller can be designed to iteratively adjust the at least one operating parameter of the electric motor as a function of a residual unbalance of the rotor shaft, in particular until the residual unbalance fulfills a predetermined criterion, in particular assumes a minimum value or falls below a predetermined threshold value.
  • the at least one operating parameter of the electric motor and thus the force generated by the electric motor can be adjusted until the simultaneously measured residual unbalance fulfills the criterion.
  • the stator has, as seen in the circumferential direction of the stator, staggered auxiliary windings, and the controller can use each of the auxiliary windings to generate a magnetic field with an electrical Supply current, in particular an alternating current, in order to generate the force at least essentially through the interaction of the magnetic fields generated by the auxiliary windings with the magnetic field of the rotor of the electric motor.
  • a number of auxiliary windings which can be energized are thus provided on the stator, with which respective magnetic fields can be generated which interact with the magnetic field on the rotor side.
  • the desired force on the rotor or on the rotor shaft, which compensates for the residual unbalance, can thus be brought about by suitably setting the currents, in particular their respective amplitude, phase and frequency.
  • the stator has four auxiliary windings which are arranged offset from one another by at least approximately 90 degrees in the circumferential direction.
  • Each auxiliary winding can be arranged on a pole piece provided on the stator.
  • the pole pieces can serve in particular as carriers for the auxiliary windings.
  • the controller is preferably designed to adjust the currents through the auxiliary windings, in particular as a function of the respective angular position of the rotor shaft and / or as a function of a measured residual unbalance, in order to generate the force for at least approximately compensating for the residual unbalance.
  • the vacuum pump can have at least one sensor for measuring the angular position of the rotor shaft. This means that the angular position of the rotor shaft can be permanently recorded during pump operation.
  • the vacuum pump is preferably a turbomolecular pump. Since the rotor shaft of a turbomolecular pump is normally operated at a very high speed, for example at a speed of a few tens of thousands of revolutions per minute, the at least approximately compensated residual unbalance contributes, for example, to an extension of the service life of the vacuum pump.
  • the invention also relates to a method for reducing a residual imbalance of a rotor shaft of a vacuum pump which can be rotated about an axis of rotation.
  • the turbomolecular pump 111 shown comprises a pump inlet 115 surrounded by an inlet flange 113, to which a recipient (not shown) can be connected in a manner known per se.
  • the gas from the recipient can be sucked out of the recipient via the pump inlet 115 and conveyed through the pump to a pump outlet 117 to which a backing pump, such as a rotary vane pump, can be connected.
  • the inlet flange 113 forms in accordance with the orientation of the vacuum pump Fig. 1 the upper end of the housing 119 of the vacuum pump 111.
  • the housing 119 comprises a lower part 121, on which an electronics housing 123 is arranged on the side. Electrical and / or electronic components of the vacuum pump 111 are accommodated in the electronics housing 123, for example for operating an electric motor 125 arranged in the vacuum pump.
  • Several connections 127 for accessories are provided on the electronics housing 123.
  • a data interface 129 for example in accordance with the RS485 standard, and a power supply connection 131 are arranged on the electronics housing 123.
  • a flood inlet 133 in particular in the form of a flood valve, is provided on the housing 119 of the turbomolecular pump 111, via which the vacuum pump 111 can be flooded.
  • a sealing gas connection 135, which is also referred to as a purge gas connection via which purge gas to protect the electric motor 125 (see, for example, FIG Fig. 3 ) can be brought into the engine compartment 137, in which the electric motor 125 is housed in the vacuum pump 111, before the gas conveyed by the pump.
  • two coolant connections 139 are arranged in the lower part 121, one of the coolant connections being provided as an inlet and the other coolant connection being provided as an outlet for coolant, which can be guided into the vacuum pump for cooling purposes.
  • the lower side 141 of the vacuum pump can serve as a standing surface, so that the vacuum pump 111 can be operated standing on the underside 141.
  • the vacuum pump 111 can also be fastened to a recipient via the inlet flange 113 and can thus be operated in a manner of hanging.
  • the vacuum pump 111 can be designed so that it can also be operated if it is aligned in a different way than in FIG Fig. 1 is shown.
  • Embodiments of the vacuum pump can also be realized, in which the underside 141 cannot be arranged facing downwards, but turned to the side or directed upwards.
  • various screws 143 are also arranged, by means of which components of the vacuum pump, which are not further specified here, are fastened to one another.
  • a bearing cover 145 is attached to the underside 141.
  • Fastening bores 147 are also arranged on the underside 141, via which the pump 111 can be fastened, for example, to a support surface.
  • a coolant line 148 is shown, in which the coolant introduced and discharged via the coolant connections 139 can circulate.
  • the vacuum pump comprises a plurality of process gas pump stages for conveying the process gas present at the pump inlet 115 to the pump outlet 117.
  • a rotor 149 is arranged in the housing 119 and has a rotor shaft 153 rotatable about an axis of rotation 151.
  • the turbomolecular pump 111 comprises a plurality of turbomolecular pump stages connected in series with one another with effective pumping, with a plurality of radial rotor disks 155 fastened to the rotor shaft 153 and stator disks 157 arranged between the rotor disks 155 and fixed in the housing 119.
  • a rotor disk 155 and an adjacent stator disk 157 each form a turbomolecular one Pump stage.
  • the stator disks 157 are held at a desired axial distance from one another by spacer rings 159.
  • the vacuum pump also comprises Holweck pump stages which are arranged one inside the other in the radial direction and have a pumping effect and are connected in series with one another.
  • the rotor of the Holweck pump stages comprises a rotor hub 161 arranged on the rotor shaft 153 and two cylindrical jacket-shaped Holweck rotor sleeves 163, 165 fastened to and supported by the rotor hub 161, which are oriented coaxially to the axis of rotation 151 and nested one inside the other in the radial direction.
  • two cylindrical jacket-shaped Holweck stator sleeves 167, 169 are provided, which are also oriented coaxially to the axis of rotation 151 and are nested one inside the other in the radial direction.
  • the pump-active surfaces of the Holweck pump stages are formed by the lateral surfaces, that is to say by the radial inner and / or outer surfaces, of the Holweck rotor sleeves 163, 165 and of the Holweck stator sleeves 167, 169.
  • the radial inner surface of the outer Holweck stator sleeve 167 lies opposite the radial outer surface of the outer Holweck rotor sleeve 163, forming a radial Holweck gap 171 and forms the first Holweck pumping stage following the turbomolecular pumps.
  • the radial inner surface of the outer Holweck rotor sleeve 163 faces the radial outer surface of the inner Holweck stator sleeve 169 with the formation of a radial Holweck gap 173 and forms a second Holweck pump stage with the latter.
  • the radial inner surface of the inner Holweck stator sleeve 169 lies opposite the radial outer surface of the inner Holweck rotor sleeve 165, forming a radial Holweck gap 175, and forms the third Holweck pump stage with the latter.
  • a radially extending channel can be provided, via which the radially outer Holweck gap 171 is connected to the central Holweck gap 173.
  • a radially extending channel can be provided at the upper end of the inner Holweck stator sleeve 169, via which the central Holweck gap 173 is connected to the radially inner Holweck gap 175.
  • a connection channel 179 to the outlet 117 can also be provided.
  • the aforementioned pump-active surfaces of the Holweck stator sleeves 163, 165 each have a plurality of Holweck grooves running spirally around the axis of rotation 151 in the axial direction, while the opposite ones
  • the lateral surfaces of the Holweck rotor sleeves 163, 165 are smooth and drive the gas to operate the vacuum pump 111 in the Holweck grooves.
  • a roller bearing 181 in the area of the pump outlet 117 and a permanent magnet bearing 183 in the area of the pump inlet 115 are provided for the rotatable mounting of the rotor shaft 153.
  • a conical injection nut 185 is provided on the rotor shaft 153 with an outer diameter increasing toward the roller bearing 181.
  • the spray nut 185 is in sliding contact with at least one scraper of an operating fluid reservoir.
  • the operating medium storage comprises a plurality of absorbent disks 187 stacked one on top of the other, which are provided with an operating medium for the rolling bearing 181, e.g. are soaked with a lubricant.
  • the operating medium is transferred by capillary action from the operating medium storage via the wiper to the rotating spray nut 185 and, as a result of the centrifugal force along the spray nut 185, is conveyed in the direction of the increasing outer diameter of the spray nut 185 to the roller bearing 181, where it e.g. fulfills a lubricating function.
  • the roller bearing 181 and the operating fluid reservoir are enclosed in the vacuum pump by a trough-shaped insert 189 and the bearing cover 145.
  • the permanent magnet bearing 183 comprises a bearing half 191 on the rotor side and a bearing half 193 on the stator side, each of which comprises an annular stack of a plurality of permanent magnetic rings 195, 197 stacked on one another in the axial direction.
  • the ring magnets 195, 197 lie opposite one another to form a radial bearing gap 199, the rotor-side ring magnets 195 being arranged radially on the outside and the stator-side ring magnets 197 being arranged radially on the inside.
  • the magnetic field present in the bearing gap 199 causes magnetic repulsive forces between the ring magnets 195, 197, which are radial Mount the rotor shaft 153.
  • the rotor-side ring magnets 195 are carried by a carrier section 201 of the rotor shaft 153 which surrounds the ring magnets 195 radially on the outside.
  • the stator-side ring magnets 197 are carried by a stator-side support section 203 which extends through the ring magnets 197 and is suspended from radial struts 205 of the housing 119.
  • Parallel to the axis of rotation 151, the rotor-side ring magnets 195 are fixed by a cover element 207 coupled to the carrier section 203.
  • the stator-side ring magnets 197 are fixed parallel to the axis of rotation 151 in one direction by a fastening ring 209 connected to the carrier section 203 and a fastening ring 211 connected to the carrier section 203.
  • a plate spring 213 can also be provided between the fastening ring 211 and the ring magnet 197.
  • An emergency or catch bearing 215 is provided within the magnetic bearing, which runs empty without contact during normal operation of the vacuum pump 111 and only comes into engagement with an excessive radial deflection of the rotor 149 relative to the stator in order to provide a radial stop for the rotor 149 to form, since a collision of the rotor-side structures with the stator-side structures is prevented.
  • the catch bearing 215 is designed as an unlubricated roller bearing and forms a radial gap with the rotor 149 and / or the stator, which causes the catch bearing 215 to be disengaged in normal pumping operation.
  • the radial deflection at which the catch bearing 215 engages is dimensioned large enough that the catch bearing 215 does not engage during normal operation of the vacuum pump, and at the same time is small enough so that the rotor-side structures collide with the stator-side structures under all circumstances is prevented.
  • the vacuum pump 111 comprises the electric motor 125 for rotatingly driving the rotor 149.
  • the armature of the electric motor 125 is formed by the rotor 149, whose rotor shaft 153 extends through the motor stator 217.
  • a permanent magnet arrangement can be arranged radially on the outside or embedded on the section of the rotor shaft 153 which extends through the motor stator 217.
  • the motor stator 217 is fixed in the housing within the motor space 137 provided for the electric motor 125.
  • a sealing gas which is also referred to as a purge gas and which can be, for example, air or nitrogen, can enter the engine compartment 137 via the sealing gas connection 135.
  • the electric motor 125 can be used before the process gas, e.g. protected against corrosive parts of the process gas.
  • the engine compartment 137 can also be evacuated via the pump outlet 117, i.e. in the engine compartment 137 there is at least approximately the vacuum pressure caused by the backing pump connected to the pump outlet 117.
  • a so-called labyrinth seal 223, which is known per se, can also be provided between the rotor hub 161 and a wall 221 delimiting the engine compartment 137, in particular in order to achieve a better seal of the engine compartment 217 with respect to the radially outside Holweck pump stages.
  • Fig. 6 shows a cross-sectional view in a sectional plane running through the electric motor 125, which also runs perpendicular to the rotor shaft 153.
  • the rotor shaft 153 extends through the electric motor 125.
  • the armature or rotor of the electric motor 125 is formed by the rotor shaft 153.
  • the section of the rotor shaft 153 which extends through the stator 217 of the electric motor 125, points radially on the outside or embedded permanent magnets, which form the rotor-side magnetic poles of the electric motor 125, which in Fig. 6 is shown by the indicated north pole N and the indicated south pole P.
  • the magnetic poles on the rotor side do not consist of a single pair of north and south poles, but of several pole pairs.
  • the turbomolecular pump On the motor stator 217 side, four auxiliary windings 11 are arranged on pole pieces 13 provided on the stator 217. The auxiliary windings 11 are arranged in the circumferential direction U of the stator 217 offset by 90 degrees to one another.
  • the turbomolecular pump also includes a controller 15 for actuating the electric motor 125, which is shown, for example, in FIG Fig. 1 shown electronics housing 123 is housed.
  • the controller 15 can supply each of the auxiliary windings 11 with an alternating current, the amplitude, phase and / or frequency of which can be set by the controller 15. If a respective alternating current flows through the auxiliary windings 11, a magnetic field is generated from each auxiliary winding 11 in a manner known per se, which magnetic field interacts with the rotor-side magnetic field of the permanent magnets. Each magnetic field generated by an auxiliary winding 11 is dependent on the current flowing through the respective auxiliary winding 11 and can thus be changed by changing the amplitude, phase and / or frequency of the current.
  • the interaction between the magnetic fields generated by the auxiliary windings 11 and the rotor-side magnetic field can generate a force on the rotor or on the rotor shaft 153. The force generated depends on the amount and direction as well as its rotational speed depending on the magnetic fields generated by the auxiliary windings 11. The force generated is therefore also dependent on the respective currents through the auxiliary windings 11.
  • the controller 15 is now designed such that it adjusts the electrical currents through the auxiliary windings 11 as a function of a residual unbalance of the rotor shaft 153, which is measured by means of at least one sensor 17, such that the force generated is synchronous with the rotor shaft 153 and thus synchronously circulates with the residual unbalance and at least approximately compensates for the residual unbalance.
  • the residual unbalance can thus be reduced by means of the electric motor 125 or, ideally, eliminated.
  • an iterative method is used to adjust the currents through the auxiliary windings 11.
  • the rotational speed of the rotor shaft 153 and thus the residual unbalance is determined, for example by means of a sensor (not shown) fitted in the vacuum pump 111.
  • the frequency of the alternating currents through the auxiliary windings 11 is then set such that, according to the invention, the force generated revolves around the axis of rotation 151 at the rotational speed.
  • the residual unbalance is determined by means of the at least one sensor 17, preferably as a function of the angular position of the rotor shaft 153, which is measured, for example, by means of an angular position sensor, also not shown.
  • a starting value of the amplitude and a starting value of the phase are set individually for each current through the auxiliary windings 11 such that the force generated approximately compensates for the residual unbalance.
  • the starting values can be determined from empirically obtained data.
  • the start values are then changed iteratively, preferably until the measured residual unbalance fulfills a predefined criterion, for example lies below a predefined threshold value or assumes a minimum.

Description

Die vorliegende Erfindung betrifft eine Vakuumpumpe, insbesondere Turbomolekularpumpe, mit einer um eine Rotationsachse drehbaren Rotorwelle und einem Elektromotor, der einen an einem Gehäuse der Vakuumpumpe festgelegten Stator und einen mit der Rotorwelle gekoppelten Läufer umfasst, wobei der Stator und der Läufer zum rotierenden Antreiben der Rotorwelle vorgesehen sind. Die vorliegende Erfindung betrifft außerdem ein Verfahren zum Verringern einer Restunwucht einer um eine Rotationsachse drehbaren Rotorwelle einer Vakuumpumpe, insbesondere Turbomolekularpumpe.The present invention relates to a vacuum pump, in particular a turbomolecular pump, with a rotor shaft rotatable about an axis of rotation and an electric motor which comprises a stator fixed to a housing of the vacuum pump and a rotor coupled to the rotor shaft, the stator and the rotor for rotatingly driving the rotor shaft are provided. The present invention also relates to a method for reducing a residual unbalance of a rotor shaft of a vacuum pump that can be rotated about an axis of rotation, in particular a turbomolecular pump.

Eine Vakuumpumpe der eingangs genannten Art ist grundsätzlich bekannt. Bei einer derartigen Vakuumpumpe wird die Rotorwelle normalerweise gewuchtet, bevor die Vakuumpumpe in Betrieb genommen wird, insbesondere um die Gefahr von Beschädigungen an der Rotorwelle und an den Lagern der Rotorwelle zu reduzieren. Normalerweise verbleibt nach dem Wuchten der Rotorwelle noch eine sogenannte Restunwucht, bei der es sich nach DIN ISO 1925:2001 um eine Unwucht jeglicher Art handelt, die nach dem Auswuchten zurückbleibt. Durch den Wuchtvorgang kann somit eine anfängliche Urunwucht der Rotorwelle, bei der es sich gemäß der erwähnten Norm um eine Unwucht jeglicher Art handelt, die im Rotor vor dem Auswuchten vorhanden ist, auf eine verbleibende Restunwucht reduziert werden. Mit der Restunwucht kann die Vakuumpumpe normalerweise problemlos in Betrieb genommen werden kann. Die Restunwucht beruht insbesondere auf einem Massendefekt an der Rotorwelle, der als eine punktförmige Masse m im Abstand r von der Rotationsachse der Rotorwelle beschrieben werden kann. Dabei bewirkt die Restunwucht eine Kraft FRU = m*r*ω2, wobei ω die Winkelgeschwindigkeit ist, mit der sich die Rotorwelle dreht. Durch die Restunwucht wird daher im Betrieb der Vakuumpumpe bei der Winkelgeschwindigkeit ω die Kraft FRU auf die Rotorwelle erzeugt, die synchron mit der Rotorwelle umläuft und - bezogen auf die Rotationsachse der Rotorwelle - nach radial außen gerichtet ist.A vacuum pump of the type mentioned is known in principle. In such a vacuum pump, the rotor shaft is normally balanced before the vacuum pump is put into operation, in particular in order to reduce the risk of damage to the rotor shaft and to the bearings of the rotor shaft. Normally there remains a so-called residual unbalance after balancing the rotor shaft, which according to DIN ISO 1925: 2001 is an unbalance of any kind that remains after balancing. The initial balancing of the rotor shaft, which according to the standard mentioned is an unbalance of any kind that is present in the rotor before balancing, can thus be reduced to a remaining residual unbalance by the balancing process. With the residual unbalance, the vacuum pump can normally be started up without any problems. The residual unbalance is based in particular on a mass defect on the rotor shaft, which can be described as a punctiform mass m at a distance r from the axis of rotation of the rotor shaft. The residual unbalance causes a force F RU = m * r * ω 2 , where ω is the angular velocity with which the rotor shaft rotates. Due to the residual unbalance Therefore, during operation of the vacuum pump at the angular velocity ω, the force F RU is generated on the rotor shaft, which rotates synchronously with the rotor shaft and is directed radially outwards in relation to the axis of rotation of the rotor shaft.

Eine Vakuumpumpe gemäß dem Oberbegriff des Anspruchs 1 und ein Verfahren zum Wuchten eines Rotors einer Vakuumpumpe werden in der EP 2 881 591 A2 und in der EP 2 520 807 A2 offenbart.A vacuum pump according to the preamble of claim 1 and a method for balancing a rotor of a vacuum pump are in the EP 2 881 591 A2 and in the EP 2 520 807 A2 disclosed.

Es kann wünschenswert sein, die Restunwucht in einer Vakuumpumpe weiter zu verringern, beispielsweise um die Lebensdauer der Rotorwelle und/oder deren Lager zu verlängern. Ein Verfahren zum Verbessern des Rundlaufs eines Rotors einer Vakuumpumpe ist in der WO 02/07289 A2 offenbart.It may be desirable to further reduce the residual unbalance in a vacuum pump, for example to extend the life of the rotor shaft and / or its bearings. A method for improving the concentricity of a rotor of a vacuum pump is shown in WO 02/07289 A2 disclosed.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Restunwucht einer Rotorwelle einer Vakuumpumpe zu reduzieren.The object of the present invention is therefore to reduce a residual unbalance of a rotor shaft of a vacuum pump.

Die Aufgabe wird durch eine Vakuumpumpe mit den Merkmalen des Anspruchs 1 beziehungsweise durch ein Verfahren mit den Merkmalen des Anspruchs 8 gelöst. Bevorzugte Weiterbildungen und Ausführungsformen der Erfindung sind in den abhängigen Ansprüchen angegeben.The object is achieved by a vacuum pump with the features of claim 1 or by a method with the features of claim 8. Preferred developments and embodiments of the invention are specified in the dependent claims.

Eine erfindungsgemäße Vakuumpumpe umfasst eine um eine Rotationsachse drehbare Rotorwelle und einen Elektromotor mit einem an einem Gehäuse der Vakuumpumpe festgelegten Stator und einem mit der Rotorwelle gekoppelten Läufer, wobei der Stator und der Läufer zum rotierenden Antreiben der Rotorwelle vorgesehen sind, wobei der Elektromotor, und zwar dessen Stator, derart ausgebildet ist, dass dieser eine mit der Rotorwelle synchron umlaufende, insbesondere in radialer Richtung wirkende, Kraft auf die Rotorwelle, insbesondere auf den mit der Rotorwelle gekoppelten Läufer, bewirkt, wobei mittels der Kraft eine ebenfalls synchron umlaufende Restunwucht der Rotorwelle zumindest annähernd kompensiert werden kann.A vacuum pump according to the invention comprises a rotor shaft rotatable about an axis of rotation and an electric motor with a stator fixed to a housing of the vacuum pump and a rotor coupled to the rotor shaft, the stator and the rotor being provided for rotatingly driving the rotor shaft, the electric motor, to be precise whose stator is designed in such a way that it causes a force which rotates synchronously with the rotor shaft, in particular acts in the radial direction, on the rotor shaft, in particular on the rotor coupled to the rotor shaft, a force being generated by the force residual imbalance of the rotor shaft rotating synchronously can be at least approximately compensated for.

Bei der erfindungsgemäßen Vakuumpumpe kann somit während des Betriebs der Vakuumpumpe mittels des Elektromotors die nach dem Wuchten noch vorhandene Restunwucht bzw. die durch die Restunwucht hervorgerufene und synchron mit der Rotorwelle umlaufende Kraft FRU durch die mittels des Elektromotors erzeugte Kraft zumindest annähernd kompensiert werden. Dadurch läuft die Rotorwelle noch weniger unwuchtig, wodurch die Lebensdauer der Rotorwelle und deren Lager erhöht werden kann.In the vacuum pump according to the invention, during operation of the vacuum pump by means of the electric motor, the residual unbalance still present after balancing or the force F RU caused by the residual unbalance and rotating synchronously with the rotor shaft can be at least approximately compensated for by the force generated by the electric motor. As a result, the rotor shaft runs even less unbalanced, which can increase the service life of the rotor shaft and its bearings.

Da der Elektromotor die Kraft zur Kompensierung der Restunwucht erzeugt, kann diese Kraft durch entsprechende Ansteuerung des Elektromotors an sich ändernde Gegebenheiten in der Vakuumpumpe angepasst werden. Eine erfindungsgemäße Vakuumpumpe weist somit, was den Unwuchtzustand angeht, über einen verhältnismäßig langen Betriebszeitraum die im Wesentlichen gleichen Eigenschaften auf, da zum Beispiel eine Zunahme der Restunwucht, beispielsweise verursacht durch einen Verschleiß in der Lagerung, zumindest bis zu einem gewissen Grad durch die vom Elektromotor erzeugt Kraft kompensiert werden kann. Außerdem kann erreicht werden, dass jede erfindungsgemäße Vakuumpumpe zumindest näherungsweise den gleichen Wuchtzustand und damit schwingungstechnisch den gleichen Zustand aufweist.Since the electric motor generates the force to compensate for the residual unbalance, this force can be adapted to changing conditions in the vacuum pump by correspondingly controlling the electric motor. A vacuum pump according to the invention thus has essentially the same properties over a relatively long operating period as far as the unbalance condition is concerned, for example because an increase in the residual unbalance, for example caused by wear in the bearing, at least to a certain extent by that of the electric motor generated force can be compensated. In addition, it can be achieved that each vacuum pump according to the invention has at least approximately the same state of balance and thus the same state in terms of vibration.

Der Läufer eines Elektromotors wird auch als Anker oder als Rotor des Elektromotors bezeichnet. Vorzugsweise kommt als Elektromotor ein sogenannter PM-Synchronmotor zum Einsatz, wobei PM für Permanentmagnet steht. Bei einem derartigen Elektromotor sind im Läufer Permanentmagnete angeordnet, welche die läufer- bzw. rotorseitigen Magnetpole des Elektromotors bilden. Statorseitig werden die Magnetpole mittels Stromleiterwicklungen realisiert. PM-Synchronmotoren sind aus dem Stand der Technik bekannt.The rotor of an electric motor is also referred to as an armature or a rotor of the electric motor. A so-called PM synchronous motor is preferably used as the electric motor, where PM stands for permanent magnet. With such an electric motor, permanent magnets are arranged in the rotor, which form the rotor or rotor-side magnetic poles of the electric motor. On the stator side, the magnetic poles are realized using current conductor windings. PM synchronous motors are known from the prior art.

Vorzugsweise weist die Vakuumpumpe wenigstens einen Sensor, insbesondere Beschleunigungssensor, zur Messung der Restunwucht der Rotorwelle auf. Die Restunwucht kann somit im Betrieb der Vakuumpumpe gemessen und der erhaltene Messwert kann zum Beispiel zur Steuerung des Elektromotors verwendet werden.The vacuum pump preferably has at least one sensor, in particular an acceleration sensor, for measuring the residual unbalance of the rotor shaft. The residual unbalance can thus be measured during operation of the vacuum pump and the measured value obtained can be used, for example, to control the electric motor.

Der wenigstens eine Sensor kann in einer Ebene angeordnet sein, welche durch den Stator des Elektromotors und zumindest im Wesentlichen senkrecht zur Rotorwelle verläuft. Die Restunwucht kann somit in einer durch den Stator des Elektromotors verlaufenden Wuchtebene erfasst und zumindest näherungsweise kompensiert werden.The at least one sensor can be arranged in a plane which runs through the stator of the electric motor and at least substantially perpendicular to the rotor shaft. The residual unbalance can thus be detected in a balancing plane running through the stator of the electric motor and at least approximately compensated for.

Bevorzugt ist der Sensor am Läufer des Elektromotors angeordnet. Der Sensor kann alternativ etwas oberhalb oder unterhalb des Läufers an der Rotorwelle angeordnet sein. Die Restunwucht kann daher im Bereich des Elektromotors erfasst werden.The sensor is preferably arranged on the rotor of the electric motor. The sensor can alternatively be arranged somewhat above or below the rotor on the rotor shaft. The residual unbalance can therefore be detected in the area of the electric motor.

Der wenigstens eine Sensor kann auch im Bereich eines Lagers angeordnet sein, das zur Lagerung der Rotorwelle dient. Die Erfassung der Restunwucht im Bereich des Lagers hat den Vorteil, dass diese Restunwucht mittels des Elektromotors zumindest annähernd kompensiert werden kann. Dadurch kann besonders effektiv eine Beschädigung des Lagers durch die Restunwucht vermieden werden.The at least one sensor can also be arranged in the region of a bearing that serves to support the rotor shaft. The detection of the residual unbalance in the area of the bearing has the advantage that this residual unbalance can be at least approximately compensated for by the electric motor. Damage to the bearing due to the residual unbalance can thereby be avoided particularly effectively.

Erfindungsgemäß ist mittels einer Steuerung wenigstens ein Betriebsparameter des Elektromotors zum Einstellen der Kraft nach Betrag und/oder Phasenlage und/oder zum Einstellen der Umlaufgeschwindigkeit der Kraft um die Rotationsachse verstellbar. Durch richtiges Einstellen des wenigstens einen Betriebsparameters des Elektromotors kann somit die Kraft so erzeugt werden, dass sie synchron mit der Rotationsgeschwindigkeit der Rotorwelle und damit mit der Restunwucht um die Rotationsachse umläuft und dabei die Restunwucht zumindest annähernd kompensiert. Der Begriff "Phasenlage" bezieht sich hierbei auf die Richtung der Kraft in Bezug auf die Winkelstellung der Rotorwelle. Zur Kompensation der Restunwucht wird die Phasenlage der Kraft vorzugsweise so eingestellt, dass die Kraft der Restunwucht entgegengerichtet ist.According to the invention, at least one operating parameter of the electric motor for adjusting the force according to the amount and / or phase position and / or for adjusting the rotational speed of the force about the axis of rotation can be adjusted by means of a control. By correctly setting the at least one operating parameter of the electric motor, the force can thus be generated in such a way that it rotates around the axis of rotation synchronously with the rotational speed of the rotor shaft and thus with the residual unbalance, and thereby the residual unbalance is at least approximately compensated. The term "phase position" here refers to the direction of the force in relation to the angular position of the rotor shaft. To compensate for the residual unbalance, the phase position of the force is preferably set so that the force of the residual unbalance is directed in the opposite direction.

Beispielsweise kann mittels der Steuerung wenigstens ein Wechselstrom, der in den Elektromotor eingespeist wird, so eingestellt werden, dass das zwischen dem Stator und dem Läufer des Elektromotors erzeugte Magnetfeld eine resultierende magnetische Kraft auf den Läufer bewirkt, die synchron mit der Rotationsgeschwindigkeit der Rotorwelle und damit mit der Restunwucht um die Rotationsachse umläuft und dabei die Restunwucht zumindest annähernd kompensiert, also zumindest annähernd den Betrag der Restunwucht aufweist und dieser entgegengerichtet ist. Das Einstellen des Wechselstroms kann dabei umfassen: Einstellen der Amplitude, Einstellen der Frequenz und/oder Einstellen der Phase des Wechselstroms. Der Elektromotor und/oder eine Steuerung für den Elektromotor können dabei mit entsprechenden Mitteln zur Einstellung der Amplitude, Frequenz und Phase ausgestattet sein.For example, at least one alternating current, which is fed into the electric motor, can be set by means of the control so that the magnetic field generated between the stator and the rotor of the electric motor causes a resulting magnetic force on the rotor, which is synchronous with the rotational speed of the rotor shaft and thus revolves with the residual unbalance around the axis of rotation and thereby at least approximately compensates for the residual unbalance, that is to say at least approximately has the amount of the residual unbalance and is counter-directed. The setting of the alternating current can include: setting the amplitude, setting the frequency and / or setting the phase of the alternating current. The electric motor and / or a control for the electric motor can be equipped with appropriate means for adjusting the amplitude, frequency and phase.

Die Steuerung kann dazu ausgebildet sein, in Abhängigkeit von einer Restunwucht der Rotorwelle den wenigstens einen Betriebsparameter des Elektromotors iterativ zu verstellen, insbesondere solange, bis die Restunwucht ein vorgegebenes Kriterium erfüllt, insbesondere einen minimalen Wert annimmt oder einen vorgegebenen Schwellenwert unterschreitet. Somit kann, zum Beispiel unter Verwendung eines iterativen Verfahrens, der wenigstens eine Betriebsparameter des Elektromotors und damit die vom Elektromotor erzeugte Kraft solange verstellt werden, bis die gleichzeitig gemessene Restunwucht das Kriterium erfüllt.The controller can be designed to iteratively adjust the at least one operating parameter of the electric motor as a function of a residual unbalance of the rotor shaft, in particular until the residual unbalance fulfills a predetermined criterion, in particular assumes a minimum value or falls below a predetermined threshold value. Thus, for example using an iterative method, the at least one operating parameter of the electric motor and thus the force generated by the electric motor can be adjusted until the simultaneously measured residual unbalance fulfills the criterion.

Der Stator weist - in Umfangsrichtung des Stators gesehen - versetzt zueinander angeordnete Hilfswicklungen auf, und die Steuerung kann jede der Hilfswicklungen zur Erzeugung eines magnetischen Felds mit einem elektrischen Strom, insbesondere einem Wechselstrom, versorgen, um die Kraft zumindest im Wesentlichen durch die Wechselwirkung der von den Hilfswicklungen erzeugten magnetischen Felder mit dem Magnetfeld des Läufers des Elektromotors zu erzeugen. Es sind somit am Stator mehrere bestrombare Hilfswicklungen vorgesehen, mit denen jeweilige Magnetfelder erzeugt werden können, die mit dem läuferseitigen Magnetfeld zusammenwirken. Durch geeignete Einstellung der Ströme, insbesondere deren jeweiliger Amplitude, Phase und Frequenz, kann die gewünschte, die Restunwucht kompensierende Kraft auf den Läufer bzw. auf die Rotorwelle somit bewirkt werden.The stator has, as seen in the circumferential direction of the stator, staggered auxiliary windings, and the controller can use each of the auxiliary windings to generate a magnetic field with an electrical Supply current, in particular an alternating current, in order to generate the force at least essentially through the interaction of the magnetic fields generated by the auxiliary windings with the magnetic field of the rotor of the electric motor. A number of auxiliary windings which can be energized are thus provided on the stator, with which respective magnetic fields can be generated which interact with the magnetic field on the rotor side. The desired force on the rotor or on the rotor shaft, which compensates for the residual unbalance, can thus be brought about by suitably setting the currents, in particular their respective amplitude, phase and frequency.

Hierzu ist erfindungsgemäß vorgesehen, dass der Stator vier Hilfswicklungen aufweist, welche um zumindest annähernd 90 Grad in Umfangsrichtung versetzt zueinander angeordnet sind. Mittels einer derartigen Konfiguration kann mit verhältnismäßig geringem Aufwand die gewünschte synchron mit der Restunwucht umlaufende Kraft zur Kompensation der Restunwucht erzeugt werden.For this purpose, it is provided according to the invention that the stator has four auxiliary windings which are arranged offset from one another by at least approximately 90 degrees in the circumferential direction. By means of such a configuration, the desired force for synchronizing the residual unbalance, which rotates synchronously with the residual unbalance, can be generated with relatively little effort.

Jede Hilfswicklung kann auf einem am Stator vorgesehenen Polschuh angeordnet sein. Die Polschuhe können insbesondere als Träger für die Hilfswicklungen dienen.Each auxiliary winding can be arranged on a pole piece provided on the stator. The pole pieces can serve in particular as carriers for the auxiliary windings.

Vorzugsweise ist die Steuerung dazu ausgebildet, die Ströme durch die Hilfswicklungen, insbesondere in Abhängigkeit von der jeweiligen Winkelstellung der Rotorwelle und/oder in Abhängigkeit von einer gemessenen Restunwucht, einzustellen, um die Kraft zur zumindest annähernden Kompensation der Restunwucht zu erzeugen.The controller is preferably designed to adjust the currents through the auxiliary windings, in particular as a function of the respective angular position of the rotor shaft and / or as a function of a measured residual unbalance, in order to generate the force for at least approximately compensating for the residual unbalance.

Die Vakuumpumpe kann wenigstens einen Sensor zur Messung der Winkelstellung der Rotorwelle aufweisen. Damit kann während des Pumpenbetriebs die Winkelstellung der Rotorwelle permanent erfasst werden.The vacuum pump can have at least one sensor for measuring the angular position of the rotor shaft. This means that the angular position of the rotor shaft can be permanently recorded during pump operation.

Bei der Vakuumpumpe handelt es sich vorzugsweise um eine Turbomolekularpumpe. Da die Rotorwelle einer Turbomolekularpumpe normalerweise mit einer sehr hohen Drehzahl betrieben wird, bspw. mit einer Drehzahl von einigen zehntausend Umdrehungen pro Minute, wird durch die zumindest annähernd kompensierte Restunwucht zum Beispiel zu einer Verlängerung der Lebensdauer der Vakuumpumpe beigetragen.The vacuum pump is preferably a turbomolecular pump. Since the rotor shaft of a turbomolecular pump is normally operated at a very high speed, for example at a speed of a few tens of thousands of revolutions per minute, the at least approximately compensated residual unbalance contributes, for example, to an extension of the service life of the vacuum pump.

Die Erfindung betrifft auch ein Verfahren zum Verringern einer Restunwucht einer um eine Rotationsachse drehbaren Rotorwelle einer Vakuumpumpe gemäß Anspruch 8.The invention also relates to a method for reducing a residual imbalance of a rotor shaft of a vacuum pump which can be rotated about an axis of rotation.

Nachfolgend wird die Erfindung beispielhaft anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen, jeweils schematisch:

Fig. 1
eine perspektivische Ansicht einer Turbomolekularpumpe,
Fig. 2
eine Ansicht der Unterseite der Turbomolekularpumpe von Fig. 1,
Fig. 3
einen Querschnitt der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie A-A,
Fig. 4
eine Querschnittsansicht der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie B-B,
Fig. 5
eine Querschnittsansicht der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie C-C,
Fig. 6
eine Querschnittsansicht der Turbomolekularpumpe von Fig. 1 in einer durch den Elektromotor verlaufenden Schnittebene, und
Fig. 7
ein Blockdiagramm einer erfindungsgemäßen Vakuumpumpe.
The invention is described below by way of example using advantageous embodiments with reference to the attached figures. Each shows schematically:
Fig. 1
a perspective view of a turbomolecular pump,
Fig. 2
a bottom view of the turbomolecular pump of FIG Fig. 1 ,
Fig. 3
a cross section of the turbomolecular pump along the in Fig. 2 shown section line AA,
Fig. 4
a cross-sectional view of the turbomolecular pump along the in Fig. 2 shown section line BB,
Fig. 5
a cross-sectional view of the turbomolecular pump along the in Fig. 2 shown section line CC,
Fig. 6
a cross-sectional view of the turbomolecular pump of Fig. 1 in a cutting plane running through the electric motor, and
Fig. 7
a block diagram of a vacuum pump according to the invention.

Die in Fig. 1 gezeigte Turbomolekularpumpe 111 umfasst einen von einem Einlassflansch 113 umgebenen Pumpeneinlass 115, an welchen in an sich bekannter Weise ein nicht dargestellter Rezipient angeschlossen werden kann. Das Gas aus dem Rezipienten kann über den Pumpeneinlass 115 aus dem Rezipienten gesaugt und durch die Pumpe hindurch zu einem Pumpenauslass 117 gefördert werden, an den eine Vorvakuumpumpe, wie etwa eine Drehschieberpumpe, angeschlossen sein kann.In the Fig. 1 The turbomolecular pump 111 shown comprises a pump inlet 115 surrounded by an inlet flange 113, to which a recipient (not shown) can be connected in a manner known per se. The gas from the recipient can be sucked out of the recipient via the pump inlet 115 and conveyed through the pump to a pump outlet 117 to which a backing pump, such as a rotary vane pump, can be connected.

Der Einlassflansch 113 bildet bei der Ausrichtung der Vakuumpumpe gemäß Fig. 1 das obere Ende des Gehäuses 119 der Vakuumpumpe 111. Das Gehäuse 119 umfasst ein Unterteil 121, an welchem seitlich ein Elektronikgehäuse 123 angeordnet ist. In dem Elektronikgehäuse 123 sind elektrische und/oder elektronische Komponenten der Vakuumpumpe 111 untergebracht, z.B. zum Betreiben eines in der Vakuumpumpe angeordneten Elektromotors 125. Am Elektronikgehäuse 123 sind mehrere Anschlüsse 127 für Zubehör vorgesehen. Außerdem sind eine Datenschnittstelle 129, z.B. gemäß dem RS485-Standard, und ein Stromversorgungsanschluss 131 am Elektronikgehäuse 123 angeordnet.The inlet flange 113 forms in accordance with the orientation of the vacuum pump Fig. 1 the upper end of the housing 119 of the vacuum pump 111. The housing 119 comprises a lower part 121, on which an electronics housing 123 is arranged on the side. Electrical and / or electronic components of the vacuum pump 111 are accommodated in the electronics housing 123, for example for operating an electric motor 125 arranged in the vacuum pump. Several connections 127 for accessories are provided on the electronics housing 123. Also are a data interface 129, for example in accordance with the RS485 standard, and a power supply connection 131 are arranged on the electronics housing 123.

Am Gehäuse 119 der Turbomolekularpumpe 111 ist ein Fluteinlass 133, insbesondere in Form eines Flutventils, vorgesehen, über den die Vakuumpumpe 111 geflutet werden kann. Im Bereich des Unterteils 121 ist ferner noch ein Sperrgasanschluss 135, der auch als Spülgasanschluss bezeichnet wird, angeordnet, über welchen Spülgas zum Schutz des Elektromotors 125 (siehe z.B. Fig. 3) vor dem von der Pumpe geförderten Gas in den Motorraum 137, in welchem der Elektromotor 125 in der Vakuumpumpe 111 untergebracht ist, gebracht werden kann. Im Unterteil 121 sind ferner noch zwei Kühlmittelanschlüsse 139 angeordnet, wobei einer der Kühlmittelanschlüsse als Einlass und der andere Kühlmittelanschluss als Auslass für Kühlmittel vorgesehen ist, das zu Kühlzwecken in die Vakuumpumpe geleitet werden kann.A flood inlet 133, in particular in the form of a flood valve, is provided on the housing 119 of the turbomolecular pump 111, via which the vacuum pump 111 can be flooded. In the area of the lower part 121 there is also a sealing gas connection 135, which is also referred to as a purge gas connection, via which purge gas to protect the electric motor 125 (see, for example, FIG Fig. 3 ) can be brought into the engine compartment 137, in which the electric motor 125 is housed in the vacuum pump 111, before the gas conveyed by the pump. Furthermore, two coolant connections 139 are arranged in the lower part 121, one of the coolant connections being provided as an inlet and the other coolant connection being provided as an outlet for coolant, which can be guided into the vacuum pump for cooling purposes.

Die untere Seite 141 der Vakuumpumpe kann als Standfläche dienen, sodass die Vakuumpumpe 111 auf der Unterseite 141 stehend betrieben werden kann. Die Vakuumpumpe 111 kann aber auch über den Einlassflansch 113 an einem Rezipienten befestigt werden und somit gewissermaßen hängend betrieben werden. Außerdem kann die Vakuumpumpe 111 so gestaltet sein, dass sie auch in Betrieb genommen werden kann, wenn sie auf andere Weise ausgerichtet ist als in Fig. 1 gezeigt ist. Es lassen sich auch Ausführungsformen der Vakuumpumpe realisieren, bei der die Unterseite 141 nicht nach unten, sondern zur Seite gewandt oder nach oben gerichtet angeordnet werden kann.The lower side 141 of the vacuum pump can serve as a standing surface, so that the vacuum pump 111 can be operated standing on the underside 141. However, the vacuum pump 111 can also be fastened to a recipient via the inlet flange 113 and can thus be operated in a manner of hanging. In addition, the vacuum pump 111 can be designed so that it can also be operated if it is aligned in a different way than in FIG Fig. 1 is shown. Embodiments of the vacuum pump can also be realized, in which the underside 141 cannot be arranged facing downwards, but turned to the side or directed upwards.

An der Unterseite 141, die in Fig. 2 dargestellt ist, sind noch diverse Schrauben 143 angeordnet, mittels denen hier nicht weiter spezifizierte Bauteile der Vakuumpumpe aneinander befestigt sind. Beispielsweise ist ein Lagerdeckel 145 an der Unterseite 141 befestigt.At the bottom 141, which in Fig. 2 is shown, various screws 143 are also arranged, by means of which components of the vacuum pump, which are not further specified here, are fastened to one another. For example, a bearing cover 145 is attached to the underside 141.

An der Unterseite 141 sind außerdem Befestigungsbohrungen 147 angeordnet, über welche die Pumpe 111 beispielsweise an einer Auflagefläche befestigt werden kann.Fastening bores 147 are also arranged on the underside 141, via which the pump 111 can be fastened, for example, to a support surface.

In den Figuren 2 bis 5 ist eine Kühlmittelleitung 148 dargestellt, in welcher das über die Kühlmittelanschlüsse 139 ein- und ausgeleitete Kühlmittel zirkulieren kann.In the Figures 2 to 5 A coolant line 148 is shown, in which the coolant introduced and discharged via the coolant connections 139 can circulate.

Wie die Schnittdarstellungen der Figuren 3 bis 5 zeigen, umfasst die Vakuumpumpe mehrere Prozessgaspumpstufen zur Förderung des an dem Pumpeneinlass 115 anstehenden Prozessgases zu dem Pumpenauslass 117.Like the sectional views of the Figures 3 to 5 show, the vacuum pump comprises a plurality of process gas pump stages for conveying the process gas present at the pump inlet 115 to the pump outlet 117.

In dem Gehäuse 119 ist ein Rotor 149 angeordnet, der eine um eine Rotationsachse 151 drehbare Rotorwelle 153 aufweist.A rotor 149 is arranged in the housing 119 and has a rotor shaft 153 rotatable about an axis of rotation 151.

Die Turbomolekularpumpe 111 umfasst mehrere pumpwirksam miteinander in Serie geschaltete turbomolekulare Pumpstufen mit mehreren an der Rotorwelle 153 befestigten radialen Rotorscheiben 155 und zwischen den Rotorscheiben 155 angeordneten und in dem Gehäuse 119 festgelegten Statorscheiben 157. Dabei bilden eine Rotorscheibe 155 und eine benachbarte Statorscheibe 157 jeweils eine turbomolekulare Pumpstufe. Die Statorscheiben 157 sind durch Abstandsringe 159 in einem gewünschten axialen Abstand zueinander gehalten.The turbomolecular pump 111 comprises a plurality of turbomolecular pump stages connected in series with one another with effective pumping, with a plurality of radial rotor disks 155 fastened to the rotor shaft 153 and stator disks 157 arranged between the rotor disks 155 and fixed in the housing 119. A rotor disk 155 and an adjacent stator disk 157 each form a turbomolecular one Pump stage. The stator disks 157 are held at a desired axial distance from one another by spacer rings 159.

Die Vakuumpumpe umfasst außerdem in radialer Richtung ineinander angeordnete und pumpwirksam miteinander in Serie geschaltete Holweck-Pumpstufen. Der Rotor der Holweck-Pumpstufen umfasst eine an der Rotorwelle 153 angeordnete Rotornabe 161 und zwei an der Rotornabe 161 befestigte und von dieser getragene zylindermantelförmige Holweck-Rotorhülsen 163, 165, die koaxial zur Rotationsachse 151 orientiert und in radialer Richtung ineinander geschachtelt sind. Ferner sind zwei zylindermantelförmige Holweck-Statorhülsen 167, 169 vorgesehen, die ebenfalls koaxial zu der Rotationsachse 151 orientiert und in radialer Richtung gesehen ineinander geschachtelt sind.The vacuum pump also comprises Holweck pump stages which are arranged one inside the other in the radial direction and have a pumping effect and are connected in series with one another. The rotor of the Holweck pump stages comprises a rotor hub 161 arranged on the rotor shaft 153 and two cylindrical jacket-shaped Holweck rotor sleeves 163, 165 fastened to and supported by the rotor hub 161, which are oriented coaxially to the axis of rotation 151 and nested one inside the other in the radial direction. Furthermore, two cylindrical jacket-shaped Holweck stator sleeves 167, 169 are provided, which are also oriented coaxially to the axis of rotation 151 and are nested one inside the other in the radial direction.

Die pumpaktiven Oberflächen der Holweck-Pumpstufen sind durch die Mantelflächen, also durch die radialen Innen- und/oder Außenflächen, der Holweck-Rotorhülsen 163, 165 und der Holweck-Statorhülsen 167, 169 gebildet. Die radiale Innenfläche der äußeren Holweck-Statorhülse 167 liegt der radialen Außenfläche der äußeren Holweck-Rotorhülse 163 unter Ausbildung eines radialen Holweck-Spalts 171 gegenüber und bildet mit dieser die der Turbomolekularpumpen nachfolgende erste Holweck-Pumpstufe. Die radiale Innenfläche der äußeren Holweck-Rotorhülse 163 steht der radialen Außenfläche der inneren Holweck-Statorhülse 169 unter Ausbildung eines radialen Holweck-Spalts 173 gegenüber und bildet mit dieser eine zweite Holweck-Pumpstufe. Die radiale Innenfläche der inneren Holweck-Statorhülse 169 liegt der radialen Außenfläche der inneren Holweck-Rotorhülse 165 unter Ausbildung eines radialen Holweck-Spalts 175 gegenüber und bildet mit dieser die dritte Holweck-Pumpstufe.The pump-active surfaces of the Holweck pump stages are formed by the lateral surfaces, that is to say by the radial inner and / or outer surfaces, of the Holweck rotor sleeves 163, 165 and of the Holweck stator sleeves 167, 169. The radial inner surface of the outer Holweck stator sleeve 167 lies opposite the radial outer surface of the outer Holweck rotor sleeve 163, forming a radial Holweck gap 171 and forms the first Holweck pumping stage following the turbomolecular pumps. The radial inner surface of the outer Holweck rotor sleeve 163 faces the radial outer surface of the inner Holweck stator sleeve 169 with the formation of a radial Holweck gap 173 and forms a second Holweck pump stage with the latter. The radial inner surface of the inner Holweck stator sleeve 169 lies opposite the radial outer surface of the inner Holweck rotor sleeve 165, forming a radial Holweck gap 175, and forms the third Holweck pump stage with the latter.

Am unteren Ende der Holweck-Rotorhülse 163 kann ein radial verlaufender Kanal vorgesehen sein, über den der radial außenliegende Holweck-Spalt 171 mit dem mittleren Holweck-Spalt 173 verbunden ist. Außerdem kann am oberen Ende der inneren Holweck-Statorhülse 169 ein radial verlaufender Kanal vorgesehen sein, über den der mittlere Holweck-Spalt 173 mit dem radial innenliegenden Holweck-Spalt 175 verbunden ist. Dadurch werden die ineinander geschachtelten Holweck-Pumpstufen in Serie miteinander geschaltet. Am unteren Ende der radial innenliegenden Holweck-Rotorhülse 165 kann ferner ein Verbindungskanal 179 zum Auslass 117 vorgesehen sein.At the lower end of the Holweck rotor sleeve 163, a radially extending channel can be provided, via which the radially outer Holweck gap 171 is connected to the central Holweck gap 173. In addition, a radially extending channel can be provided at the upper end of the inner Holweck stator sleeve 169, via which the central Holweck gap 173 is connected to the radially inner Holweck gap 175. As a result, the nested Holweck pump stages are connected in series. At the lower end of the radially inner Holweck rotor sleeve 165, a connection channel 179 to the outlet 117 can also be provided.

Die vorstehend genannten pumpaktiven Oberflächen der Holweck-Statorhülsen 163, 165 weisen jeweils mehrere spiralförmig um die Rotationsachse 151 herum in axialer Richtung verlaufende Holweck-Nuten auf, während die gegenüberliegenden Mantelflächen der Holweck-Rotorhülsen 163, 165 glatt ausgebildet sind und das Gas zum Betrieb der Vakuumpumpe 111 in den Holweck-Nuten vorantreiben.The aforementioned pump-active surfaces of the Holweck stator sleeves 163, 165 each have a plurality of Holweck grooves running spirally around the axis of rotation 151 in the axial direction, while the opposite ones The lateral surfaces of the Holweck rotor sleeves 163, 165 are smooth and drive the gas to operate the vacuum pump 111 in the Holweck grooves.

Zur drehbaren Lagerung der Rotorwelle 153 sind ein Wälzlager 181 im Bereich des Pumpenauslasses 117 und ein Permanentmagnetlager 183 im Bereich des Pumpeneinlasses 115 vorgesehen.A roller bearing 181 in the area of the pump outlet 117 and a permanent magnet bearing 183 in the area of the pump inlet 115 are provided for the rotatable mounting of the rotor shaft 153.

Im Bereich des Wälzlagers 181 ist an der Rotorwelle 153 eine konische Spritzmutter 185 mit einem zu dem Wälzlager 181 hin zunehmenden Außendurchmesser vorgesehen. Die Spritzmutter 185 steht mit mindestens einem Abstreifer eines Betriebsmittelspeichers in gleitendem Kontakt. Der Betriebsmittelspeicher umfasst mehrere aufeinander gestapelte saugfähige Scheiben 187, die mit einem Betriebsmittel für das Wälzlager 181, z.B. mit einem Schmiermittel, getränkt sind.In the area of the roller bearing 181, a conical injection nut 185 is provided on the rotor shaft 153 with an outer diameter increasing toward the roller bearing 181. The spray nut 185 is in sliding contact with at least one scraper of an operating fluid reservoir. The operating medium storage comprises a plurality of absorbent disks 187 stacked one on top of the other, which are provided with an operating medium for the rolling bearing 181, e.g. are soaked with a lubricant.

Im Betrieb der Vakuumpumpe 111 wird das Betriebsmittel durch kapillare Wirkung von dem Betriebsmittelspeicher über den Abstreifer auf die rotierende Spritzmutter 185 übertragen und in Folge der Zentrifugalkraft entlang der Spritzmutter 185 in Richtung des größer werdenden Außendurchmessers der Spritzmutter 185 zu dem Wälzlager 181 hin gefördert, wo es z.B. eine schmierende Funktion erfüllt. Das Wälzlager 181 und der Betriebsmittelspeicher sind durch einen wannenförmigen Einsatz 189 und den Lagerdeckel 145 in der Vakuumpumpe eingefasst.During the operation of the vacuum pump 111, the operating medium is transferred by capillary action from the operating medium storage via the wiper to the rotating spray nut 185 and, as a result of the centrifugal force along the spray nut 185, is conveyed in the direction of the increasing outer diameter of the spray nut 185 to the roller bearing 181, where it e.g. fulfills a lubricating function. The roller bearing 181 and the operating fluid reservoir are enclosed in the vacuum pump by a trough-shaped insert 189 and the bearing cover 145.

Das Permanentmagnetlager 183 umfasst eine rotorseitige Lagerhälfte 191 und eine statorseitige Lagerhälfte 193, welche jeweils einen Ringstapel aus mehreren in axialer Richtung aufeinander gestapelten permanentmagnetischen Ringen 195, 197 umfassen. Die Ringmagnete 195, 197 liegen einander unter Ausbildung eines radialen Lagerspalts 199 gegenüber, wobei die rotorseitigen Ringmagnete 195 radial außen und die statorseitigen Ringmagnete 197 radial innen angeordnet sind. Das in dem Lagerspalt 199 vorhandene magnetische Feld ruft magnetische Abstoßungskräfte zwischen den Ringmagneten 195, 197 hervor, welche eine radiale Lagerung der Rotorwelle 153 bewirken. Die rotorseitigen Ringmagnete 195 sind von einem Trägerabschnitt 201 der Rotorwelle 153 getragen, welcher die Ringmagnete 195 radial außenseitig umgibt. Die statorseitigen Ringmagnete 197 sind von einem statorseitigen Trägerabschnitt 203 getragen, welcher sich durch die Ringmagnete 197 hindurch erstreckt und an radialen Streben 205 des Gehäuses 119 aufgehängt ist. Parallel zu der Rotationsachse 151 sind die rotorseitigen Ringmagnete 195 durch ein mit dem Trägerabschnitt 203 gekoppeltes Deckelelement 207 festgelegt. Die statorseitigen Ringmagnete 197 sind parallel zu der Rotationsachse 151 in der einen Richtung durch einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 209 sowie einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 211 festgelegt. Zwischen dem Befestigungsring 211 und den Ringmagneten 197 kann außerdem eine Tellerfeder 213 vorgesehen sein.The permanent magnet bearing 183 comprises a bearing half 191 on the rotor side and a bearing half 193 on the stator side, each of which comprises an annular stack of a plurality of permanent magnetic rings 195, 197 stacked on one another in the axial direction. The ring magnets 195, 197 lie opposite one another to form a radial bearing gap 199, the rotor-side ring magnets 195 being arranged radially on the outside and the stator-side ring magnets 197 being arranged radially on the inside. The magnetic field present in the bearing gap 199 causes magnetic repulsive forces between the ring magnets 195, 197, which are radial Mount the rotor shaft 153. The rotor-side ring magnets 195 are carried by a carrier section 201 of the rotor shaft 153 which surrounds the ring magnets 195 radially on the outside. The stator-side ring magnets 197 are carried by a stator-side support section 203 which extends through the ring magnets 197 and is suspended from radial struts 205 of the housing 119. Parallel to the axis of rotation 151, the rotor-side ring magnets 195 are fixed by a cover element 207 coupled to the carrier section 203. The stator-side ring magnets 197 are fixed parallel to the axis of rotation 151 in one direction by a fastening ring 209 connected to the carrier section 203 and a fastening ring 211 connected to the carrier section 203. A plate spring 213 can also be provided between the fastening ring 211 and the ring magnet 197.

Innerhalb des Magnetlagers ist ein Not- bzw. Fanglager 215 vorgesehen, welches im normalen Betrieb der Vakuumpumpe 111 ohne Berührung leer läuft und erst bei einer übermäßigen radialen Auslenkung des Rotors 149 relativ zu dem Stator in Eingriff gelangt, um einen radialen Anschlag für den Rotor 149 zu bilden, da eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen verhindert wird. Das Fanglager 215 ist als ungeschmiertes Wälzlager ausgebildet und bildet mit dem Rotor 149 und/oder dem Stator einen radialen Spalt, welcher bewirkt, dass das Fanglager 215 im normalen Pumpbetrieb außer Eingriff ist. Die radiale Auslenkung, bei der das Fanglager 215 in Eingriff gelangt, ist groß genug bemessen, sodass das Fanglager 215 im normalen Betrieb der Vakuumpumpe nicht in Eingriff gelangt, und gleichzeitig klein genug, sodass eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen unter allen Umständen verhindert wird.An emergency or catch bearing 215 is provided within the magnetic bearing, which runs empty without contact during normal operation of the vacuum pump 111 and only comes into engagement with an excessive radial deflection of the rotor 149 relative to the stator in order to provide a radial stop for the rotor 149 to form, since a collision of the rotor-side structures with the stator-side structures is prevented. The catch bearing 215 is designed as an unlubricated roller bearing and forms a radial gap with the rotor 149 and / or the stator, which causes the catch bearing 215 to be disengaged in normal pumping operation. The radial deflection at which the catch bearing 215 engages is dimensioned large enough that the catch bearing 215 does not engage during normal operation of the vacuum pump, and at the same time is small enough so that the rotor-side structures collide with the stator-side structures under all circumstances is prevented.

Die Vakuumpumpe 111 umfasst den Elektromotor 125 zum drehenden Antreiben des Rotors 149. Der Anker des Elektromotors 125 ist durch den Rotor 149 gebildet, dessen Rotorwelle 153 sich durch den Motorstator 217 hindurch erstreckt. Auf den sich durch den Motorstator 217 hindurch erstreckenden Abschnitt der Rotorwelle 153 kann radial außenseitig oder eingebettet eine Permanentmagnetanordnung angeordnet sein. Zwischen dem Motorstator 217 und dem sich durch den Motorstator 217 hindurch erstreckenden Abschnitt des Rotors 149 ist ein Zwischenraum 219 angeordnet, welcher einen radialen Motorspalt umfasst, über den sich der Motorstator 217 und die Permanentmagnetanordnung zur Übertragung des Antriebsmoments magnetisch beeinflussen können.The vacuum pump 111 comprises the electric motor 125 for rotatingly driving the rotor 149. The armature of the electric motor 125 is formed by the rotor 149, whose rotor shaft 153 extends through the motor stator 217. A permanent magnet arrangement can be arranged radially on the outside or embedded on the section of the rotor shaft 153 which extends through the motor stator 217. Between the motor stator 217 and the section of the rotor 149 which extends through the motor stator 217 there is an intermediate space 219 which comprises a radial motor gap, via which the motor stator 217 and the permanent magnet arrangement for transmitting the drive torque can magnetically influence one another.

Der Motorstator 217 ist in dem Gehäuse innerhalb des für den Elektromotor 125 vorgesehenen Motorraums 137 festgelegt. Über den Sperrgasanschluss 135 kann ein Sperrgas, das auch als Spülgas bezeichnet wird, und bei dem es sich beispielsweise um Luft oder um Stickstoff handeln kann, in den Motorraum 137 gelangen. Über das Sperrgas kann der Elektromotor 125 vor Prozessgas, z.B. vor korrosiv wirkenden Anteilen des Prozessgases, geschützt werden. Der Motorraum 137 kann auch über den Pumpenauslass 117 evakuiert werden, d.h. im Motorraum 137 herrscht zumindest annäherungsweise der von der am Pumpenauslass 117 angeschlossenen Vorvakuumpumpe bewirkte Vakuumdruck.The motor stator 217 is fixed in the housing within the motor space 137 provided for the electric motor 125. A sealing gas, which is also referred to as a purge gas and which can be, for example, air or nitrogen, can enter the engine compartment 137 via the sealing gas connection 135. The electric motor 125 can be used before the process gas, e.g. protected against corrosive parts of the process gas. The engine compartment 137 can also be evacuated via the pump outlet 117, i.e. in the engine compartment 137 there is at least approximately the vacuum pressure caused by the backing pump connected to the pump outlet 117.

Zwischen der Rotornabe 161 und einer den Motorraum 137 begrenzenden Wandung 221 kann außerdem eine sog. und an sich bekannte Labyrinthdichtung 223 vorgesehen sein, insbesondere um eine bessere Abdichtung des Motorraums 217 gegenüber den radial außerhalb liegenden Holweck-Pumpstufen zu erreichen.A so-called labyrinth seal 223, which is known per se, can also be provided between the rotor hub 161 and a wall 221 delimiting the engine compartment 137, in particular in order to achieve a better seal of the engine compartment 217 with respect to the radially outside Holweck pump stages.

Fig. 6 zeigt eine Querschnittsansicht in einer durch den Elektromotor 125 verlaufenden Schnittebene, die außerdem senkrecht zur Rotorwelle 153 verläuft. Die Rotorwelle 153 erstreckt sich durch den Elektromotor 125 hindurch. Wie vorstehend bereits erwähnt wurde, wird der Anker bzw. Läufer des Elektromotors 125 durch die Rotorwelle 153 gebildet. Der Abschnitt der Rotorwelle 153, der sich durch den Stator 217 des Elektromotors 125 hindurch erstreckt, weist radial außenseitig oder eingebettet Permanentmagnete auf, welche die läuferseitigen Magnetpole des Elektromotors 125 bilden, was in Fig. 6 durch den angedeuteten Nordpol N und den angedeuteten Südpol P gezeigt ist. Normalerweise bestehen die läuferseitigen Magnetpole nicht aus einem einzigen Paar eines Nord- und Südpols, sondern aus mehreren Polpaaren. Fig. 6 shows a cross-sectional view in a sectional plane running through the electric motor 125, which also runs perpendicular to the rotor shaft 153. The rotor shaft 153 extends through the electric motor 125. As already mentioned above, the armature or rotor of the electric motor 125 is formed by the rotor shaft 153. The section of the rotor shaft 153, which extends through the stator 217 of the electric motor 125, points radially on the outside or embedded permanent magnets, which form the rotor-side magnetic poles of the electric motor 125, which in Fig. 6 is shown by the indicated north pole N and the indicated south pole P. Normally, the magnetic poles on the rotor side do not consist of a single pair of north and south poles, but of several pole pairs.

Auf Seiten des Motorstators 217 sind vier Hilfswicklungen 11 auf am Stator 217 vorgesehenen Polschuhen 13 angeordnet. Die Hilfswicklungen 11 sind dabei in Umfangsrichtung U des Stators 217 gesehen um 90 Grad versetzt zueinander angeordnet. Wie das Blockdiagramm der Fig. 7 zeigt, umfasst die Turbomolekularpumpe noch eine Steuerung 15 zur Ansteuerung des Elektromotors 125, die beispielsweise in dem in Fig. 1 gezeigten Elektronikgehäuse 123 untergebracht ist.On the motor stator 217 side, four auxiliary windings 11 are arranged on pole pieces 13 provided on the stator 217. The auxiliary windings 11 are arranged in the circumferential direction U of the stator 217 offset by 90 degrees to one another. Like the block diagram of the Fig. 7 shows, the turbomolecular pump also includes a controller 15 for actuating the electric motor 125, which is shown, for example, in FIG Fig. 1 shown electronics housing 123 is housed.

Die Steuerung 15 kann jede der Hilfswicklungen 11 mit einem Wechselstrom versorgen, dessen Amplitude, Phase und/oder Frequenz von der Steuerung 15 eingestellt werden kann. Wenn durch die Hilfswicklungen 11 ein jeweiliger Wechselstrom strömt, wird in an sich bekannter Weise von jeder Hilfswicklung 11 ein magnetisches Feld generiert, das mit dem läuferseitigen Magnetfeld der Permanentmagnete wechselwirkt. Jedes von einer Hilfswicklung 11 erzeugte Magnetfeld ist dabei vom Strom, der durch die jeweilige Hilfswicklung 11 strömt, abhängig und kann somit durch Änderung der Amplitude, Phase und/oder Frequenz des Stromes verändert werden. Durch die Wechselwirkung zwischen den von den Hilfswicklungen 11 erzeugten Magnetfeldern mit dem läuferseitigen Magnetfeld kann eine Kraft auf den Läufer bzw. auf die Rotorwelle 153 erzeugt werden. Die erzeugte Kraft ist nach Betrag und Richtung sowie was ihre Umlaufgeschwindigkeit angeht abhängig von den von den Hilfswicklungen 11 erzeugten Magnetfeldern. Damit ist die erzeugte Kraft auch abhängig von den jeweiligen Strömen durch die Hilfswicklungen 11.The controller 15 can supply each of the auxiliary windings 11 with an alternating current, the amplitude, phase and / or frequency of which can be set by the controller 15. If a respective alternating current flows through the auxiliary windings 11, a magnetic field is generated from each auxiliary winding 11 in a manner known per se, which magnetic field interacts with the rotor-side magnetic field of the permanent magnets. Each magnetic field generated by an auxiliary winding 11 is dependent on the current flowing through the respective auxiliary winding 11 and can thus be changed by changing the amplitude, phase and / or frequency of the current. The interaction between the magnetic fields generated by the auxiliary windings 11 and the rotor-side magnetic field can generate a force on the rotor or on the rotor shaft 153. The force generated depends on the amount and direction as well as its rotational speed depending on the magnetic fields generated by the auxiliary windings 11. The force generated is therefore also dependent on the respective currents through the auxiliary windings 11.

Die Steuerung 15 ist nun derart ausgebildet, dass sie in Abhängigkeit von einer Restunwucht der Rotorwelle 153, die mittels wenigstens eines Sensors 17 gemessen wird, die elektrischen Ströme durch die Hilfswicklungen 11 derart einstellt, dass die erzeugte Kraft synchron mit der Rotorwelle 153 und damit synchron mit der Restunwucht umläuft und die Restunwucht wenigstens näherungsweise kompensiert. Die Restunwucht kann somit mittels des Elektromotors 125 reduziert bzw. im Idealfall beseitigt werden.The controller 15 is now designed such that it adjusts the electrical currents through the auxiliary windings 11 as a function of a residual unbalance of the rotor shaft 153, which is measured by means of at least one sensor 17, such that the force generated is synchronous with the rotor shaft 153 and thus synchronously circulates with the residual unbalance and at least approximately compensates for the residual unbalance. The residual unbalance can thus be reduced by means of the electric motor 125 or, ideally, eliminated.

Zur Einstellung der Ströme durch die Hilfswicklungen 11 kommt ein iteratives Verfahren zum Einsatz. Bei einer bevorzugten Ausgestaltung dieses Verfahrens wird die Umlaufgeschwindigkeit der Rotorwelle 153 und damit der Restunwucht ermittelt, zum Beispiel mittels eines in der Vakuumpumpe 111 angebrachten Sensors (nicht gezeigt). Die Frequenz der Wechselströme durch die Hilfswicklungen 11 wird sodann derart eingestellt, dass erfindungsgemäß die erzeugte Kraft mit der Umlaufgeschwindigkeit um die Rotationsachse 151 umläuft. Ferner wird die Restunwucht mittels des wenigstens einen Sensors 17 ermittelt, und zwar bevorzugt als Funktion der Winkelstellung der Rotorwelle 153, die bspw. mittels eines ebenfalls nicht gezeigten Winkelstellungssensors gemessen wird. Ein Startwert der Amplitude und ein Startwert der Phase werden individuell für jeden Strom durch die Hilfswicklungen 11 so eingestellt, dass die erzeugte Kraft näherungsweise die Restunwucht kompensiert. Die Startwerte können dabei aus empirisch gewonnenen Daten bestimmt werden. Die Startwerte werden sodann iterativ verändert, und zwar bevorzugt solange, bis die gemessene Restunwucht ein vorgegebenes Kriterium erfüllt, zum Beispiel unterhalb eines vorgegebenen Schwellenwertes liegt oder ein Minimum einnimmt.An iterative method is used to adjust the currents through the auxiliary windings 11. In a preferred embodiment of this method, the rotational speed of the rotor shaft 153 and thus the residual unbalance is determined, for example by means of a sensor (not shown) fitted in the vacuum pump 111. The frequency of the alternating currents through the auxiliary windings 11 is then set such that, according to the invention, the force generated revolves around the axis of rotation 151 at the rotational speed. Furthermore, the residual unbalance is determined by means of the at least one sensor 17, preferably as a function of the angular position of the rotor shaft 153, which is measured, for example, by means of an angular position sensor, also not shown. A starting value of the amplitude and a starting value of the phase are set individually for each current through the auxiliary windings 11 such that the force generated approximately compensates for the residual unbalance. The starting values can be determined from empirically obtained data. The start values are then changed iteratively, preferably until the measured residual unbalance fulfills a predefined criterion, for example lies below a predefined threshold value or assumes a minimum.

BezugszeichenlisteReference list

1111
HilfswicklungAuxiliary winding
1313
PolschuhPole piece
1515
Steuerungcontrol
1717th
Sensorsensor
111111
TurbomolekularpumpeTurbomolecular pump
113113
EinlassflanschInlet flange
115115
PumpeneinlassPump inlet
117117
PumpenauslassPump outlet
119119
Gehäusecasing
121121
UnterteilLower part
123123
ElektronikgehäuseElectronics housing
125125
ElektromotorElectric motor
127127
ZubehöranschlussAccessory connection
129129
DatenschnittstelleData interface
131131
StromversorgungsanschlussPower connector
133133
FluteinlassFlood inlet
135135
SperrgasanschlussSealing gas connection
137137
MotorraumEngine compartment
139139
KühlmittelanschlussCoolant connection
141141
Unterseitebottom
143143
Schraubescrew
145145
LagerdeckelBearing cover
147147
BefestigungsbohrungMounting hole
148148
KühlmittelleitungCoolant line
149149
Rotorrotor
151151
RotationsachseAxis of rotation
153153
RotorwelleRotor shaft
155155
RotorscheibeRotor disc
157157
StatorscheibeStator disc
159159
AbstandsringSpacer ring
161161
RotornabeRotor hub
163163
Holweck-RotorhülseHolweck rotor sleeve
165165
Holweck-RotorhülseHolweck rotor sleeve
167167
Holweck-StatorhülseHolweck stator sleeve
169169
Holweck-StatorhülseHolweck stator sleeve
171171
Holweck-SpaltHolweck gap
173173
Holweck-SpaltHolweck gap
175175
Holweck-SpaltHolweck gap
179179
VerbindungskanalConnecting channel
181181
Wälzlagerroller bearing
183183
PermanentmagnetlagerPermanent magnet bearings
185185
SpritzmutterSpray nut
187187
Scheibedisc
189189
Einsatzcommitment
191191
rotorseitige Lagerhälftehalf of the bearing on the rotor side
193193
statorseitige Lagerhälftestator side bearing half
195195
RingmagnetRing magnet
197197
RingmagnetRing magnet
199199
LagerspaltBearing gap
201201
TrägerabschnittBeam section
203203
TrägerabschnittBeam section
205205
radiale Streberadial strut
207207
DeckelelementCover element
209209
StützringSupport ring
211211
BefestigungsringMounting ring
213213
TellerfederDisc spring
215215
Not- bzw. FanglagerEmergency or catch camp
217217
MotorstatorMotor stator
219219
ZwischenraumSpace
221221
WandungWall
223223
LabyrinthdichtungLabyrinth seal
NN
NorpolNorpol
SS
SüdpolSouth Pole
UU
UmfangsrichtungCircumferential direction

Claims (10)

  1. A vacuum pump, in particular a turbomolecular pump, comprising a rotor shaft (153) rotatable about an axis of rotation (151); and
    an electric motor (125) having a stator (217) fixed to a housing (119) of the vacuum pump (111) and having a rotor coupled to the rotor shaft (153),
    wherein the stator (217) and the rotor are provided for a rotating driving of the rotor shaft (153),
    characterized in that
    the electric motor (125), and indeed its stator (217), is configured such that it brings about a force on the rotor shaft (153), in particular on the rotor coupled to the rotor shaft (153), said force revolving synchronously with the rotor shaft (153) and in particular acting in the radial direction, with a residual imbalance of the rotor shaft (153) which likewise revolves synchronously being able to be at least approximately compensated by means of the force, and with at least one operating parameter of the electric motor (125) for setting the force by magnitude and/or phasing and/or for setting the revolution speed of the force about the axis of rotation (151) being adjustable by means of a control (15), with the stator having auxiliary windings (11) arranged offset from one another, viewed in the peripheral direction (U) of the stator (217), with the control (15) being able to supply each of the auxiliary windings (11) with an electric current to produce a magnetic field in order to produce the force at least substantially through an interaction of the magnetic fields produced by the auxiliary windings (11) with the magnetic field of the rotor of the electric motor (125), and with the stator (217) having four auxiliary windings (11) which are arranged offset from one another by at least approximately 90 degrees in the peripheral direction (U).
  2. A vacuum pump in accordance with claim 1,
    characterized in that
    it has at least one sensor (17), in particular an acceleration sensor, for measuring the residual imbalance of the rotor shaft (153).
  3. A vacuum pump in accordance with claim 2,
    characterized in that
    the sensor (17) is arranged in a plane which extends through the stator (217) of the electric motor (125) and at least substantially perpendicular to the rotor shaft (153), with, preferably, the sensor (17) being arranged at the rotor of the electric motor (125).
  4. A vacuum pump in accordance with at least one of the preceding claims,
    characterized in that
    the control (15) is configured to iteratively adjust the at least one operating parameter in dependence on a residual imbalance of the rotor shaft (153), in particular for so long until the residual imbalance satisfies a specific criterion, in particular adopts a minimum value or falls below a predefined threshold value.
  5. A vacuum pump in accordance with at least one of the preceding claims,

    characterized in that
    each auxiliary winding (11) is arranged on a pole shoe (13) provided at the stator (217).
  6. A vacuum pump in accordance with at least one of the preceding claims,
    characterized in that
    the control (15) is configured to set the electric currents through the auxiliary windings (11), in particular in dependence on the respective angular position of the rotor shaft (153) and/or in dependence on a measured residual imbalance, in order to produce the force for an at least approximate compensation of the residual imbalance.
  7. A vacuum pump in accordance with at least one of the preceding claims,
    characterized in that
    it has a sensor for measuring the angular position of the rotor shaft (153).
  8. A method of reducing a residual imbalance of a rotor shaft (153), rotatable about an axis of rotation (151), of a vacuum pump (111), in particular of a turbomolecular pump, in particular in accordance with any one of the preceding claims,
    wherein the vacuum pump (111) has an electric motor (125) having a stator (217) fixed to a housing (119) of the vacuum pump (111) and having a rotor coupled to the rotor shaft (153) for driving the rotor shaft (153); and wherein, in the method,
    the rotor shaft (153) is driven such that it rotates at least substantially at a constant speed of rotation;
    a residual imbalance of the rotor shaft (153) is measured; and
    the electric motor (125), and indeed its stator (217), is driven such that it produces a force on the rotor shaft (153), in particular on the rotor coupled to the rotor shaft (153), said force revolving synchronously with the rotor shaft (153), in particular acting in the radial direction and at least approximately compensating the residual imbalance which likewise revolves synchronously;
    wherein the stator (217) has auxiliary windings (11) which are arranged offset from one another, viewed in the peripheral direction (U) of the stator (217), and which are supplied with an electric current to produce a respective magnetic field in order to produce the force at least substantially through the interaction of the magnetic fields produced by the auxiliary windings (11) with the magnetic field of the rotor of the electric motor (125); and
    wherein the electric current through each of the auxiliary windings (11) is set such that the force produced revolves synchronously with the rotor shaft (153) and at least approximately compensates the residual imbalance which likewise revolves synchronously and the setting of at least one electric current takes place iteratively.
  9. A method in accordance with claim 8,
    characterized in that
    the residual imbalance is measured in a plane which extends through the stator (217) of the electric motor (125) and which extends perpendicular to the axis of rotation (151).
  10. A method in accordance with claim 8 or claim 9,
    characterized in that,
    by adjusting at least one operating parameter of the electric motor (125), the force is adjusted, in particular iteratively adjusted, with respect to its magnitude and/or its phasing for so long until the residual imbalance satisfies a specific criterion, in particular adopts a minimum or falls below a predefined threshold value.
EP16168947.6A 2016-05-10 2016-05-10 Vacuum pump and method for reducing a residual imbalance in a vacuum pump Active EP3244067B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16168947.6A EP3244067B1 (en) 2016-05-10 2016-05-10 Vacuum pump and method for reducing a residual imbalance in a vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16168947.6A EP3244067B1 (en) 2016-05-10 2016-05-10 Vacuum pump and method for reducing a residual imbalance in a vacuum pump

Publications (2)

Publication Number Publication Date
EP3244067A1 EP3244067A1 (en) 2017-11-15
EP3244067B1 true EP3244067B1 (en) 2020-07-22

Family

ID=55953074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16168947.6A Active EP3244067B1 (en) 2016-05-10 2016-05-10 Vacuum pump and method for reducing a residual imbalance in a vacuum pump

Country Status (1)

Country Link
EP (1) EP3244067B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1619778A1 (en) * 2004-07-23 2006-01-25 Siemens Aktiengesellschaft Procedure for balancing the rotor of an electric motor drive

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH583856A5 (en) * 1974-09-27 1977-01-14 Balzers Patent Beteilig Ag
JPS5989821A (en) * 1982-11-11 1984-05-24 Seiko Instr & Electronics Ltd Control-type magnetic bearing device
DE10034662A1 (en) * 2000-07-16 2002-01-24 Wolfgang Amrhein Expensive electrical drive for generating load capacities and torques
DE102009009961B4 (en) * 2009-02-23 2013-10-31 Hanning Elektro-Werke Gmbh & Co. Kg body of revolution
DE102011105806A1 (en) * 2011-05-05 2012-11-08 Pfeiffer Vacuum Gmbh Vacuum pump with rotor
DE102013113400A1 (en) 2013-12-03 2015-06-03 Pfeiffer Vacuum Gmbh Pump and method for balancing a rotor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1619778A1 (en) * 2004-07-23 2006-01-25 Siemens Aktiengesellschaft Procedure for balancing the rotor of an electric motor drive

Also Published As

Publication number Publication date
EP3244067A1 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
EP0414127B1 (en) Vacuum pump with magnetic bearing
EP3550150B1 (en) Method for balancing a rotor of a vacuum pump or a rotor of a rotary unit for a vacuum pump
EP2884125B1 (en) Rotating system
EP2520807B1 (en) Vacuum pump with rotor
EP3139044A1 (en) Method for balancing a rotor of a vacuum pump or a rotor of a rotary unit for a vacuum pump
EP3150872A1 (en) Method for reducing a magnetic stray vector field of a rotary unit with a magnetic bearing comprising permanent magnets by providing a compensating magnet, rotary unit and vacuum pump
CH697741A2 (en) Rotor alignment system and method.
EP3244067B1 (en) Vacuum pump and method for reducing a residual imbalance in a vacuum pump
EP3683449B1 (en) Magnetic bearing and vacuum apparatus
EP3708843B1 (en) Method for the manufacture of an electric motor or a vacuum apparatus with such a motor
EP3582387B1 (en) Breaking method for a permanent magnet synchronous motor
EP3196471B1 (en) Vacuum pump
EP3557072A1 (en) Monitoring the bearing assembly of a vacuum pump
EP3653884B1 (en) Vacuum pump
EP3244068B1 (en) Vacuum pump
EP3536965B1 (en) Vacuum pump wherein the support of a rolling bearing has an adjustable stiffness and/or damping property
EP3327293B1 (en) Vacuum pump having multiple inlets
EP3135932B1 (en) Vacuum pump and permanent magnet bearing
EP3536966B1 (en) Vacuum device
EP3633204B1 (en) Vacuum pump
EP3670924A1 (en) Vacuum pump and method for producing same
EP3926174B1 (en) Vacuum pump
EP3063422A2 (en) Electrical machine and method of operating an electrical machine
WO2018029116A1 (en) Electric disc rotor with a pressure reducer for the motor gap
EP3557071B1 (en) Vacuum pump and method for operating the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171127

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200324

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010559

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1293643

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201023

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010559

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

26N No opposition filed

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200722

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210510

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1293643

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230526

Year of fee payment: 8

Ref country code: CZ

Payment date: 20230502

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230727

Year of fee payment: 8