EP3236711B1 - Method and device for the non-invasive dielectrical heating of solids - Google Patents

Method and device for the non-invasive dielectrical heating of solids Download PDF

Info

Publication number
EP3236711B1
EP3236711B1 EP17167430.2A EP17167430A EP3236711B1 EP 3236711 B1 EP3236711 B1 EP 3236711B1 EP 17167430 A EP17167430 A EP 17167430A EP 3236711 B1 EP3236711 B1 EP 3236711B1
Authority
EP
European Patent Office
Prior art keywords
electrode
coupling element
solid
live
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17167430.2A
Other languages
German (de)
French (fr)
Other versions
EP3236711A1 (en
Inventor
Ulf Roland
Markus Kraus
Ulf Trommler
Frank Holzer
Christian Hoyer
Frank-Dieter Kopinke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3236711A1 publication Critical patent/EP3236711A1/en
Application granted granted Critical
Publication of EP3236711B1 publication Critical patent/EP3236711B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/62Apparatus for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/54Electrodes

Definitions

  • the invention relates to a method and a device for the non-invasive dielectric heating of solids.
  • the present invention relates to a method and a device for the thermal treatment of an extensive solid-state structure by means of high-frequency energy, wherein for contacting at least one component acting as an electrode, a capacitive coupling without constructive connections that conduct electrical direct current is realized through the solid.
  • a combination of water and chemical discharge can lead to an effective form of decontamination if the chemical discharge is supported by the formation of water vapor and the associated generation of an inherent transport flow out of the pore space.
  • This process known as stripping, corresponds to a steam distillation as is known from chemical process engineering and from soil remediation supported by high-frequency heating [ U. Roland et al., Environ. Sci. Technol. 44 (2010) 9502 ].
  • remedial measures must naturally be supplemented by activities that prevent rewetting or contamination.
  • These can be horizontal barriers, for example, which are realized by introducing a polymer-forming substance into masonry. The prerequisite for this is the provision of free pore volume in the material, which often also requires prior dehumidification.
  • decontamination in the sense of this description of the invention can also be understood to mean that pests and in particular wood pests are killed or at least damaged by the treatment by reaching a certain temperature in the material.
  • the lethal temperatures required for killing depend on the respective organisms and their stages of development, but can also be influenced by parameters such as material moisture and duration of the treatment. Although in most cases the destruction of wood pests can be justified by thermal effects [ S. Steinbach et al., Protect & Preserve (2012) 29 ; C. Hoyer et al., Chemical Engineer Technology 86 (2014) 1187 ], selectivity effects are also discussed in the literature which allow the pests to be killed at lower temperatures of the matrix surrounding the pest in comparison with the lethal temperature [ SO Nelson, Trans. Am. Soc. Agricult. Closely. 39 (1996) 1475 ]. However, this distinction is not relevant for use in the context of the invention.
  • the surface of the material is heated by infrared radiation, and the very small penetration depth of the infrared radiation means that the interior of the solid has to be heated by heat conduction.
  • Irradiated and thus heated areas of less than one square meter are typical for this process.
  • it can have a disadvantage that the irradiated infrared energy is partially absorbed by the escaping water vapor and thus there is a loss of effectiveness with regard to the heating of the surface during drying.
  • heated blankets or hot plates Even when the room is heated with hot gas, the heat is transported from the surface.
  • the heat transfer into the interior of the material which is decisive for the treatment of the volume, does not depend on how the increased surface temperature is established (infrared, heating plates or hot gas).
  • Another, partly already established method for non-invasive heating is dielectric heating with microwaves with frequencies in the gigahertz (GHz) range [ EP 1 374 676 B1 ].
  • the warming here is preferably linked to the presence of water molecules, since these are reoriented as dipole molecules in an external field and impart warming through interactions with their environment due to internal friction losses. Some dry building materials can therefore practically not be heated using this method. Non-polar hydrocarbons (eg mineral oil components) are also unsuitable for imparting energy.
  • Characteristic of microwave heating are the mostly shallow penetration depths in the centimeter range for most building materials, which lead to large temperature gradients with the corresponding disadvantages for the treatment. This harbors the risk that the temperatures required for the relevant processes of drying, decontamination or killing of pests will not be reliably achieved in the entire volume.
  • An innovative direct heating method is dielectric heating using radio waves, ie electromagnetic waves in the radio frequency range of a few megahertz (MHz) [ DE 20 2008 012 371 U1 ].
  • This method of volumetric heating achieves significantly more homogeneous temperature profiles due to a much greater depth of penetration into the materials in the meter range.
  • it is as in DE 20 2010 001 410 U1 described, necessary to attach electrodes on both sides of a flat structure and to contact them. If there are no natural openings, holes must be made in the wall to be heated, through which electrically conductive means for contacting must be made.
  • the method and the device according to the present invention it should be possible, in a non-invasive manner, practically without damaging the material and the structure, arrangements of materials such as e.g. Efficiently thermally drying and / or decontaminating stone, concrete, brick or wood, whereby both chemical and biological contamination can be eliminated.
  • the invention is intended to make it possible to successfully treat so-called one-sided structures that are only accessible from one side, according to the principles mentioned.
  • FR1 151 084 A relates to an electrode system for dielectric loss heating and in particular to a system in which two electrodes are arranged next to one another on one side of a volume to be heated and a counter electrode is located on the opposite side.
  • the method according to the invention for the dielectric heating of solids comprises providing at least one live electrode and at least one shielding electrode on a first side of a solid and at least one coupling element on a second side of the solid, the first side of the solid and the second side of the solid being opposite one another . Furthermore, the area ratio between the overlap area between the surfaces of the at least one coupling element and the at least one shielding electrode and the surfaces of the at least one live electrode is adjusted, the area ratio being greater than 3: 1. Furthermore, the at least one coupling element is at least partially capacitively coupled to the at least one shielding electrode. Furthermore, the method comprises applying a high-frequency voltage to the at least one live electrode, the high-frequency voltage having a frequency in the range between 500 kHz and 500 MHz.
  • the method for the dielectric heating of solids with high-frequency energy is preferably characterized in that the solid is at least partially arranged between at least one live, so-called hot electrode and at least one coupling element, and in that the coupling element has a shielding electrode which is located on the side of the hot electrode is capacitively coupled, so that a high-frequency electric field builds up in the solid between the hot electrode and the coupling element, which leads to the heating of the solid.
  • the applied electrical field can preferably have a high frequency in the range between 500 kHz and 500 MHz, likewise preferably between 1 and 50 MHz and particularly preferably an ISM frequency in this range, for example 13.56 MHz or 27 MHz, which is approved for industrial, medical and research applications , exhibit.
  • the idea of the present invention is to thermally treat a solid body made of a solid and in particular a building structure with the aid of a capacitive coupling in such a way that it is not necessary to conduct electrically conductive connections for contacting through the solid body structure or past it.
  • the thermal treatment is preferably associated with a significant increase in temperature which allows water and / or pollutants to be removed from the solid more efficiently and / or to kill harmful organisms present in the solid by exceeding a lethal temperature and / or irreversibly damaging them.
  • the method according to the invention is particularly suitable for the treatment of structures which have planar surfaces which are arranged parallel to one another.
  • This is brick or concrete walls in buildings.
  • capacitive coupling In contrast to the effect of capacitive coupling, which has to be considered in connection with electromagnetic compatibility [ AJ Schwab, Electromagnetic Compatibility, Springer Verlag 1996, ISBN 3-540-60787-0 ], this instrument is used for targeted energy input in the case of the invention. From the aspect of electromagnetic compatibility, capacitive coupling leads, for example, to undesired coupling of high-frequency voltages into lines lying in parallel. It can also be used deliberately to transmit high-frequency voltages at different DC voltage levels. In both cases, despite the use of the same term, the applications differ very clearly from the method according to the invention, in which this principle is used to implement dielectric heating by means of an energy input.
  • the implementation of the method according to the invention is preferably implemented with an arrangement in which there is a live flat electrode on one side of the structure in the area of the structure that is preferably to be heated (hot electrode), and an extended grounded and electrically conductive electrode (shielding electrode) on the same side. , which can act as a shield and which is usually extended a few centimeters above the hot electrode, is arranged and on the other side of the structure to be treated there is a coupling element which acts as an electrode and is capacitively coupled to the first two components .
  • the coupling element is located at the position of a "cold" electrode in the conventional two-electrode arrangement (cf. for example DE 20 2010 001 410 U1 ).
  • the field strength of the high-frequency field between the coupling element and the hot electrode is preferably particularly high, which leads to a heating especially between the hot electrode and the coupling element.
  • the hot electrode is completely spanned by an electrically conductive structure which acts as a shield and which acts as a shielding electrode, so that the electromagnetic radiation into the surroundings is minimized.
  • the at least one coupling element preferably comprises an electrically conductive coupling electrode, wherein the coupling electrode can comprise a metallic material.
  • a preselected heating regime takes place by adapting the introduced HF power to at least one temperature measured in the volume. It is also preferred that the drying of the solid is accelerated by the temperature increase. It is also preferred that the discharge of pollutants from the solid is accelerated by the temperature increase. It is also preferred that the discharge of the pollutants is supported by the discharge of water vapor. It is particularly preferred that the temperature increase leads to destruction and / or impairment of the viability of wood pests.
  • the heating is achieved without direct contacting in that a capacitive coupling takes place between the shielding electrode and the coupling element.
  • the shielding electrode is preferably grounded, for example by being electrically conductively connected to the housing of an upstream electronic matching network, a so-called matchbox.
  • the capacitive coupling thus means that the potential difference between the shielding electrode and the coupling element is small compared to the potential difference between the coupling element and the "hot" electrode.
  • the high-frequency voltage is generated by a high-frequency generator and the power reflected back from the at least one live electrode to the high-frequency generator is minimized by an electronic matching network.
  • the capacitive coupling between the shielding electrode and the coupling element is implemented partially or completely by a material that is different from the material to be preferably heated between the hot electrode and coupling element differs in terms of its electrical properties. It is further preferred that the respective materials or substances between the hot electrode and the coupling element and between the shielding electrode and the coupling element differ completely or partially from one another.
  • a dielectric heating of solid-state structures according to the invention is thus also possible if one side of the capacitor arrangement produced, which contains the solid to be heated, has no (direct) electrical direct current-conducting contact.
  • the coupling element is not an electrode in the actual sense, but if a naturally occurring medium such as a moist floor takes over this function.
  • This is particularly relevant in the context of applications in construction. This can be, for example, the drying and / or decontamination of chemically or biologically contaminated masonry or other building materials. Structures that are accessible from one and both sides can thus be thermally treated.
  • the at least one coupling element is formed by or comprises a natural compartment (environmental compartment). In particular, no metallic or electrically conductive coupling electrodes are required.
  • the natural compartment is preferably pending or filled soil.
  • the capacitively coupled counter electrode which is located opposite the "hot" electrode, is made available by a natural structure.
  • a natural structure This can be, for example, an existing floor with sufficient high-frequency conductivity so that this natural electrode can act as a coupling element and approximately forms an equipotential surface.
  • a typical example of this with such a one-sided arrangement in the basement area of buildings is moist soil.
  • the capacitive coupling is possible in that, at the frequencies used, the solid to be treated, which acts as a capacitor between the electrodes arranged on both sides, has sufficient dielectric conductivity, which significantly reduces the potential difference between the shielding electrode and the coupling element on the opposite side.
  • the properties of the natural compartment are specifically varied so that it can better fulfill the function as a coupling element.
  • a typical preferred option in this sense is the humidification of ground to improve its electrical conductivity and thus its effect as an electrode-equivalent coupling element.
  • the corresponding moistening can be carried out continuously if required or repeated several times.
  • the materials for the different areas of the solid structure to be treated can also differ or be spatially separated from one another.
  • the material to be preferably heated between the hot electrode and the coupling element can differ from the material by which the capacitive coupling is implemented in the manner described.
  • the overlapping area between the shield and the "cold" electrode on the opposite side is significantly larger than the area of the "hot” electrode.
  • the corresponding ratio is preferably greater than 4: 1, particularly preferably at least 8: 1.
  • a preferred heating of the volume which is located between the hot electrode and the coupling element is to be expected.
  • the corresponding area ratio depends on the specific material and geometric conditions and, if necessary, can be determined experimentally or by means of a model calculation.
  • the area ratio between the hot electrode and the overlap area of the shielding electrode and the oppositely arranged coupling element is preferably set such that the heating preferably takes place in the volume between the hot electrode and the coupling element.
  • the ratio of the areas of the shielding electrode and the hot electrode in such a way that a specific ratio of the heating rates in both volume ranges (between the hot electrode and the coupling element or between the shielding electrode and the coupling element) is set, which for the procedural sequence can be advantageous.
  • a specific ratio of the heating rates in both volume ranges between the hot electrode and the coupling element or between the shielding electrode and the coupling element
  • the method according to the invention for the purpose of maximum heating of the area between the at least one live electrode and the at least one coupling element, furthermore the setting of the area ratio between the overlap area between the surfaces of the at least one coupling element and the at least one shielding electrode, and the Surfaces of the at least one live electrode.
  • area ratios of greater than 3: 1, greater than 6: 1 and greater than 10: 1 are special prefers.
  • a preselected ratio of the heating rates inside and outside the range between the at least one live electrode and the at least one coupling element can preferably be set via the area ratio.
  • the ratio of the overlap areas of the hot electrode and the coupling element or of the shielding electrode and the coupling element can preferably be selected such that a predefined ratio of the heating rates in the solid to be treated is realized in the areas between the hot electrode and the coupling element or between the shielding electrode and the coupling element.
  • the method according to the invention is based on direct dielectric heating of the material, an element acting as an electrode, the coupling element, being capacitively and not directly electrically connected to the RF voltage source via the shielding electrode.
  • a high-frequency alternating electric field is applied in such a way that a field is established in the solid that leads to the reorientation or other movement of polar structures in the solid. Their reorientation or movement is associated with frictional losses due to the interaction with their environment, which leads to heating in the volume.
  • the method according to the invention permits a comparatively homogeneous heating of building structures even if it is not possible to pass electrical lines through the structure or if the structure is only accessible from one side because, for example, the soil is closed heating structure limited on the side facing away from the hot electrode.
  • Dry and moist, porous and non-porous materials can be heated with high efficiency. Examples from the construction sector include natural stone, brick masonry, concrete or wood. This closes if necessary, intermediate and top layers such as mortar joints and plaster surfaces.
  • the method according to the invention can also be transferred to other areas of process engineering.
  • the solid structure to be heated can also be a component made of plastic or ceramic or a pouring bed made of different materials such as adsorbents or catalysts. Further applications with other materials are expressly not excluded.
  • a device for the dielectric heating of solids comprises a live electrode; a shielding electrode, wherein the live electrode and the shielding electrode can be arranged on a first side of a solid, and the shielding electrode is capacitively coupled to a coupling element on a second side of the solid during operation, the first side of the solid and the second side of the solid oppose; and a means for applying a high-frequency voltage, designed to apply a high-frequency voltage with a frequency in the range between 500 kHz and 500 MHz to the live electrode, the area ratio between the overlap area between the surfaces of the at least one coupling element and the at least one shielding electrode, and the surfaces of the at least one live electrode is greater than 3: 1.
  • a preferred embodiment of a device according to the invention for the dielectric heating of solids can have a voltage-carrying electrode which is extended over a large area and has a main plane; a flat shield electrode with a main plane, the main plane of the shield electrode being aligned parallel to the main plane of the live electrode; and a means for applying a high-frequency voltage, designed to apply a high-frequency voltage with a frequency in the range between 500 kHz and 500 MHz to the live electrode; include.
  • This embodiment of the device is characterized in that the projection of the voltage-carrying electrode onto the shielding electrode completely overlaps the shielding electrode along an axis perpendicular to the main plane of the voltage-carrying electrode, the minimum distance between the voltage-carrying electrode and the shielding electrode preferably at least 1 cm, likewise preferably at least 10 cm, more preferably at least 20 cm, and the projected area ratio between the surfaces of the shielding electrode and the live electrode is preferably greater than 3: 1, also preferably greater than 6: 1, still preferably greater than 10: 1.
  • a surface of the shielding electrode results from that surface region of the shielding electrode which lies flat on the solid to be heated or which is largely adjacent to its surface.
  • the surface of the shielding electrode is the maximum area defined within the main plane by the dimensions of the shielding electrode and lies in one plane with the live electrode.
  • the Live electrode and the main plane of the shield electrode are preferably parallel to each other, so that projection of the live electrode on the main plane of the shield electrode completely overlaps with the shield electrode.
  • this embodiment of the device for the dielectric heating of solids preferably comprises a coupling element, a receiving space for a solid to be heated being formed between the voltage-carrying electrode and the coupling element; the live electrode and the shielding electrode are arranged on a first side of the accommodating space and the coupling element is arranged on a second side of the accommodating space, the first side of the accommodating space and the second side of the accommodating space being opposite one another; the coupling element is at least partially capacitively coupled to the shielding electrode; and a high-frequency voltage is present between the at least one live electrode and the coupling element, the high-frequency voltage having a frequency in the range between 500 kHz and 500 MHz.
  • the device according to the invention for the dielectric heating of solids further comprises a high-frequency voltage source which generates an electrical voltage with a frequency between 500 kHz and 500 MHz, preferably between 1 and 50 MHz and particularly preferably with one approved for industrial, medical and research applications ISM frequency of 13.56 MHz or 27 MHz, for example, provides electrical connections to a live electrode and to a shielding electrode, which preferably acts as an electromagnetic shield, and a coupling element on the opposite side of the solid structure to be treated, which is capacitive to the shielding electrode is coupled. Both the electrically conductive shielding electrode and the live hot electrode are thus arranged on one side of the solid structure to be treated and are connected in an electrically conductive manner to the voltage source.
  • a high-frequency voltage source which generates an electrical voltage with a frequency between 500 kHz and 500 MHz, preferably between 1 and 50 MHz and particularly preferably with one approved for industrial, medical and research applications ISM frequency of 13.56 MHz or 27 MHz, for example, provides electrical connections to a live
  • An actively attached coupling electrode or a passive natural coupling element is positioned on the opposite side of the arrangement, which does not have to be connected to the electrode-shield arrangement arranged on the other side by electrically conductive supply lines. It is an essential feature inherent to the process that a capacitive coupling between the shielding and the electrode or the coupling element, which is arranged on the opposite side and has a large area, is realized.
  • the device according to the invention preferably additionally contains an electronic matching network which is arranged between the voltage source and electrodes or shielding and that adjusts the impedance of the load to the internal resistance of the voltage source in such a way that the RF power reflected to the generator is minimized and, if possible, completely eliminated.
  • At least one means for temperature measurement is preferably positioned in the medium to be heated, which is particularly preferably connected to a means for power control, for example a computer system with corresponding software for evaluation, control and regulation, such that on the basis of the Measured values of the power input into the solid can be regulated in such a way that preselected temperature programs can be implemented.
  • the device can comprise at least one means for measuring a field strength, a measured field strength being fed to the means for power regulation and can also be used by the latter for control and regulation.
  • the means for power control which is preferably part of the device according to the invention, can also take on additional tasks for optimizing the process flow in addition to the control and regulation. This also includes, for example, data acquisition and archiving, monitoring of the temperatures in the volume to be heated, monitoring of the electrical field strength, data transfer or taking over control functions to initiate emergency regimes.
  • the electrodes and / or the shielding are preferably designed such that substances emerging from the treated solid can pass through.
  • the electrodes and the shielding are in particular designed so that the transport of water and / or pollutants from the treated material is not or only slightly hindered. Line or perforated electrodes or similar shields are suitable for this.
  • the use of metal-coated, possibly permeable foils can also be suitable for the formation of the different electrodes in order to improve the handling on site.
  • the live electrode, the coupling element and / or the shielding electrode comprise an adsorption-active material.
  • the electrodes are particularly preferably covered with a layer of adsorption-active material, preferably of activated carbon or a hydrophobic zeolite, as a result of which the passage of evaporating pollutants into the ambient air is minimized or completely prevented.
  • An activated carbon fleece which can be connected directly to the flat electrodes, is particularly suitable for fulfilling this task.
  • the device according to the invention for the dielectric heating of solids preferably has at least all those features which are necessary for carrying out the individual process steps of the described method are required.
  • the individual components of the device for dielectric heating of solids preferably have all those features which are considered necessary or preferred in the description of the method.
  • corresponding embodiments of the device according to the invention also result from individual embodiments or the combination of individual features of the method according to the invention. All statements made about the individual embodiments of the method according to the invention apply accordingly.
  • thermally assisted polymer formation in building materials can also be optimally combined with the device and the method for in-situ applications.
  • Figure 1 shows a schematic top view of a preferred embodiment of a device 100 according to the invention for heating solids 40.
  • the embodiment shown is an electrode arrangement with an electrically conductive, for example metallic coupling electrode 22 as the coupling element 20. This lies flat on a spatially extended solid 40 on.
  • the solid can be standing masonry.
  • On the opposite side of the solid 40 there is also a voltage-carrying electrode 10 parallel to the coupling element 20.
  • the surface of the solid covered by the voltage-carrying electrode 10 can, as shown here, be significantly smaller than the surface covered by the coupling element 20.
  • the live electrode 10 is surrounded by a shielding electrode 30, which also lies flat against the surface of the solid 40 in a region around the live electrode 10.
  • This surface element forms the main plane of the shielding electrode 30.
  • the voltage-carrying electrode 10 lies completely within the main plane of the shielding electrode 30 spanned by a large part of the shielding electrode 30.
  • the main plane of the shielding electrode 30 lies parallel to the coupling electrode 10.
  • the shielding electrode 30 is shaped such that the live electrode Although electrode 10 is enclosed or covered on one side by the shielding electrode 30, there is, however, a minimal distance d min between the live electrode 10 and the shielding electrode 30. This serves in particular to electrically decouple the shielding electrode 30 from the live electrode 10 with regard to the conductivity.
  • the shielding electrode 30 and the live electrode 10 can thus be at different electrical potentials.
  • the shape of the immediate area between the live electrode 10 and the shielding electrode 30 can be largely arbitrary; the corner profile of the cover shown here is chosen purely by way of example for illustrative purposes.
  • the live electrode 10 and the shielding electrode 30 are preferably connected to a high-frequency generator 50 via an electronic matching network 60.
  • This generates a high-frequency alternating field between the live electrode 10 and the coupling electrode 22 as the coupling element 20, the power reflected back from the electrode arrangement to the high-frequency generator 50 being minimized by the electronic matching network 60.
  • the device according to the invention shown further comprises a means 70 for temperature measurement and a means 90 for determining the field strength.
  • the means 70 for temperature measurement can in particular be a fiber-optic temperature sensor.
  • the means 90 for determining the field strength can in particular be a sensor for measuring the electrical field strength.
  • the sensors can be connected to a means 80 for regulating the high-frequency voltage.
  • the means 80 for regulating the high-frequency voltage can control and regulate the high-frequency voltage emitted by the high-frequency generator 50 or the high-frequency power as a function of the input variables of individual measuring devices. If active regulation and control is omitted, the measured values can preferably be stored by means 80 for regulating the high-frequency voltage and / or made available for further evaluation.
  • FIG. 2 shows a schematic top view of an electrode arrangement according to the invention with a metallic coupling electrode 22 as a coupling element 20.
  • the electrode arrangement shown corresponds to that in FIG Figure 1 shown arrangement.
  • the reference symbols and descriptions therefore apply accordingly.
  • the external dimensions of the surface A 1 of the shielding electrode 30 and the surface A 2 of the live electrode 10 are also shown.
  • An inventive determination of a projected area ratio between the surfaces A 1 , A 2 of the shielding electrode 30 and the live electrode 10 results from the ratio of surfaces, wherein for A 1 only the area is taken into account for which the shielding electrode is in contact with the structure 40 to be treated.
  • "concern" means that the distance to the solid 40 is substantially smaller than the distance to the solid in the area of the live electrode 10.
  • a factor of at least 10 is essential.
  • the projection is particularly important in the case of a mutual tilting between the live electrode 10, more precisely the plane spanned by the live electrode 10, and the main plane of the shielding electrode 30.
  • these two levels are preferably parallel to one another.
  • FIG 3 shows a schematic top view of an electrode arrangement according to the invention with a natural compartment 24 as coupling element 20.
  • the electrode arrangement shown largely corresponds to that in FIG Figure 1 shown arrangement, but here the coupling element 20 in Figure 1 shown coupling electrode 22 was replaced by a natural compartment 24.
  • This can in particular be adjacent or heaped up soil.
  • the natural compartment 24 comprises an at least slightly electrically conductive material.
  • this can be moist, mineral-containing soil. It is possible, within the scope of a variant of the method according to the invention, to moisten the medium acting as coupling element 20 continuously or discontinuously in order to improve its function as coupling element 20.
  • an arrangement according to the invention can contain a corresponding metering device, preferably for water.
  • a means for measuring the electrical conductivity and / or the moisture can additionally be placed in the compartment 24. It is particularly preferred to connect this means to the evaluation and control unit.
  • a wall made of aerated concrete (size approx. 2.0 mx 1.8 m, thickness 0.2 m) was treated in a pilot plant experiment using the method according to the invention.
  • it was provided on the back with an aluminum (layer thickness 7 ⁇ m) coated polyethylene film (film thickness 12 ⁇ m), which acted as a coupling electrode (area 3.6 m 2 ).
  • the live, so-called hot electrode consisted of perforated aluminum sheet and had an area of 0.36 m 2 .
  • the shielding electrode made of copper gauze covered a total area of 3 m 2 , it also being used for shielding over the hot electrode. This was achieved by placing the shield at a distance of 10 cm above the hot electrode.
  • the live hot electrode and the grounded shield electrode were connected to an electronic matching network, which in turn was connected to an HF generator (working frequency 13.56 MHz, maximum power 3 kW) via a coaxial cable.
  • HF generator working frequency 13.56 MHz, maximum power 3 kW
  • a capacitive coupling between the shielding electrode and the coupling electrode was realized in the manner according to the invention.
  • Figure 4 shows temporal profiles of the mean temperature, the RF power and the RF voltage during an attempt to heat a cellular concrete wall by means of capacitive coupling according to the inventive method and use of a variant of the inventive device.
  • a moistened wall made of brick masonry was thermally treated with the method and device according to the invention.
  • the wall thickness was 24 cm.
  • the treated outer wall of the corresponding building was accessible from both sides, but it should not be drilled through for drying, which is why the capacitive coupling had to be used for the dielectric heating.
  • an aluminum perforated plate acting as a coupling electrode was used, which covered the wall over an area of approximately 12 m 2 .
  • the hot electrode made of perforated aluminum with an area of approx. 1 m 2 and the shielding electrode made of copper gauze (approx. 10 m 2 ) were positioned on the inner wall.
  • Shielding and hot electrode were connected to the electronic matching network and further by means of a coaxial cable to the HF generator (working frequency 13.56 MHz, maximum power 5 kW). Inside the heated wall were at depths of 4 cm, 12 cm and 20 cm fiber optic temperature sensors arranged to track the heating progress continuously and locally.
  • Figure 5 shows time profiles of the mean temperature, the RF power and the RF voltage during an attempt to heat the wall made of brick masonry by means of capacitive coupling.
  • the curve profiles shown illustrate the heating progress within the wall for the segment below the hot electrode on the basis of the mean value for the corresponding temperature sensors arranged there.
  • the stabilization of the temperature in the range of 100 ° C is mainly due to the water evaporation, which increases significantly in this temperature range. It should be noted that this temperature plateau was clearly detectable for many individual sensors, while the mean value shown here is also determined by temperature sensors that have not yet reached the evaporation temperature of the water.
  • the depth-resolved temperature measurement showed good homogeneity of the temperature profile across the wall cross-section.
  • the increasing HF voltage which was necessary to maintain the nominal power of 5 kW, can be explained by the progressive drying out of the wall.
  • the dielectric heating of the wall again demonstrates the applicability of the invention.
  • the device according to the invention and the method according to the invention were carried out in a house which had a dampened basement floor. It can be assumed that there was moist soil beneath the basement floor, which functioned as a coupling element in the sense of the invention.
  • the basement floor consisted of a top layer of screed (thickness approx. 2 cm) over a layer of bricks, which in turn rested directly on the moist soil.
  • the screed / brick bond is to be understood as a solid to be heated.
  • An HF generator (working frequency 13.56 MHz, maximum power 3 kW) was used for heating in connection with an electronic matching network. This was connected via a copper tape to a hot electrode made of perforated aluminum sheet with an area of approximately 1 m 2 .
  • the Matchbox housing was connected to the shielding electrode, which was made of copper gauze and laid out on the basement floor. The total area of the copper gauze was approx. 10 m 2 .
  • the moist soil was capacitively coupled with a shielding gauze and acted as effectively as a coupling element, as from the results of the Attempts to heat can be closed.
  • a total of 24 fiber-optic temperature sensors which also provide reliable measurements during dielectric heating, were used to record the temperatures at depths of 5 cm and 15 cm below the surface of the basement floor.
  • Figure 6 shows time profiles of the mean temperature at two different depths, the RF power and the RF voltage during an attempt to heat a basement floor by means of capacitive coupling.
  • the average temperature profiles in the two horizontal levels within the basement floor are shown, which were determined from the data of 12 temperature sensors.
  • the RF power (constant 1 kW) and the RF voltage are specified. It becomes clear that heating of the basement floor is possible with the aid of the device according to the invention and using the method according to the invention, without it being necessary to make contact with the layer of earth acting as a coupling electrode through the basement floor.
  • a comparison of the heating rates for the individual temperature sensors showed a good homogeneity of the heating within one level (deviations less than 20%).
  • the device and the method according to the invention were successfully tested in analogy to embodiment 3 on a structure that was accessible from one side and was heavily dampened, in this case a brick wall (area 4 mx 2 m, thickness 0.36 m) with adjacent soil .
  • the moist soil behind acted as a coupling element.
  • the hot electrode used had a size of 1 m 2 and was made of perforated aluminum sheet. Copper gauze and aluminum-coated polyethylene film were used for the shielding electrode.
  • An HF generator working frequency 13.56 MHz, maximum power 5 kW in connection with an electronic matching network was available for the heating tests.
  • the connection between the electronic matching network (Matchbox) and the hot electrode was realized via a brass profile.
  • the housing of the matchbox with the shielding electrode which was made of copper gauze in the area of the hot electrode and out aluminum-coated plastic film (perforated, thickness of the aluminum layer 15 microns, thickness of the carrier film 20 microns) existed in the rest of the area.
  • the total area of the shielding electrode was approximately 7 m 2 .
  • a total of 15 fiber optic temperature sensors which were introduced into the brick masonry at depths of 6 cm, 18 cm and 30 cm, were used to record the temperatures.
  • Figure 7 shows temporal profiles of the mean temperature, the RF power and the RF voltage ( Figure 7a ) and temperature profiles for various depths in the masonry during an attempt to heat a basement wall using capacitive coupling ( Figure 7b ).
  • the average temperature of all temperature sensors placed in the directly heated area behind the hot electrode as well as the RF power and the RF voltage over the entire test period are shown.
  • the mean temperature profiles for the individual depths in the masonry are shown. It could be shown that with the aid of the method according to the invention and using the device according to the invention, dielectric heating of a cellar wall accessible from one side is possible by means of radio waves.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur nicht-invasiven dielektrischen Erwärmung von Feststoffen. Insbesondere betrifft die vorliegende Erfindung ein Verfahren und eine Vorrichtung zur thermischen Behandlung einer ausgedehnten Festkörperstruktur mittels Hochfrequenzenergie, wobei zur Kontaktierung zumindest einer als Elektrode wirkenden Komponente eine kapazitive Kopplung ohne elektrisch Gleichstrom leitende konstruktive Verbindungen durch den Feststoff hindurch realisiert wird.The invention relates to a method and a device for the non-invasive dielectric heating of solids. In particular, the present invention relates to a method and a device for the thermal treatment of an extensive solid-state structure by means of high-frequency energy, wherein for contacting at least one component acting as an electrode, a capacitive coupling without constructive connections that conduct electrical direct current is realized through the solid.

Technologischer Hintergrund der ErfindungTechnological background of the invention

Die Freisetzung von unerwünschten Stoffen wie Wasser oder Kontaminanten aus Feststoffen und insbesondere aus Baumaterialien wie Mauerwerk, Naturstein, Ziegel, Beton oder Holz kann durch eine kontrollierte Temperaturerhöhung im Material wesentlich beschleunigt werden. Ursachen hierfür können eine Erhöhung des Dampfdruckes und der Diffusionsgeschwindigkeit mit der Temperatur oder die Verdampfung der Fremdstoffe bei ausreichender Aufheizung sein. So wird die Entfeuchtung durch die Verdampfung von Porenwasser und die thermisch unterstützte Desorption von adsorbiertem Wasser wesentlich beschleunigt, insbesondere dann, wenn durch geeignete unterstützende Maßnahmen ein optimaler Wasserabtransport weg von der Oberfläche gewährleistet ist. Analog gilt dies für Chemikalien wie beispielsweise Mineralölkohlenwasserstoffe, Lösungsmittel und Holzschutzmittel, die in Feststoffen als unerwünschte Kontamination enthalten sein können. Eine Kombination von Wasser- und Chemikalienaustrag kann zu einer effektiven Form der Dekontamination führen, wenn der Chemikalienaustrag durch die Bildung von Wasserdampf und die damit verbundene Erzeugung eines inhärenten Transportstromes aus dem Porenraum heraus unterstützt wird. Dieser als Strippen bezeichnete Prozess entspricht einer Wasserdampfdestillation, wie sie aus der chemischen Verfahrenstechnik und aus der durch Hochfrequenz-Erwärmung unterstützten Bodensanierung bekannt ist [ U. Roland et al., Environ. Sci. Technol. 44 (2010) 9502 ].The release of unwanted substances such as water or contaminants from solids and in particular from building materials such as masonry, natural stone, brick, concrete or wood can be significantly accelerated by a controlled temperature increase in the material. The reasons for this can be an increase in the vapor pressure and the rate of diffusion with the temperature or the evaporation of the foreign matter with sufficient heating. Dehumidification is significantly accelerated by the evaporation of pore water and the thermally assisted desorption of adsorbed water, especially if an optimal water removal away from the surface is ensured by suitable supporting measures. This applies analogously to chemicals such as mineral oil hydrocarbons, solvents and wood preservatives, which can be contained in solids as undesired contamination. A combination of water and chemical discharge can lead to an effective form of decontamination if the chemical discharge is supported by the formation of water vapor and the associated generation of an inherent transport flow out of the pore space. This process, known as stripping, corresponds to a steam distillation as is known from chemical process engineering and from soil remediation supported by high-frequency heating [ U. Roland et al., Environ. Sci. Technol. 44 (2010) 9502 ].

Die Notwendigkeit einer Entfernung von Wasser und/oder Chemikalien aus Materialien wie Baustoffen kann sich aus verschiedenen Ursachen ergeben. So können Akutereignisse zur Überflutung von Bauwerken oder zu Wasserschäden führen, die unter Umständen auch eine Kontamination mit Heizöl durch Leckagen an Heizungsanlagen mit sich bringen. Der Einsatz toxischer Chemikalien beispielsweise zum Holzschutz kann zu einer inakzeptablen Belastung der Raumluft führen, so dass eine Dekontamination erforderlich ist. Schließlich können Planungs- und Ausführungsfehler zu Feuchteschäden führen, die wiederum energetische und gesundheitliche Probleme, beispielsweise durch Schimmelbildung, mit sich bringen können. Im Baubereich ergeben sich die Randbedingungen für eine Sanierung einerseits aus konstruktiven Aspekten (ein- oder beidseitige Zugänglichkeit, betroffene Materialien, Geometrie u.a.), andererseits aber auch aus Aspekten der Werthaltigkeit und der Denkmalpflege. In der Regel besteht ein besonderer Bedarf an nicht-invasiven Verfahren, die die Baustruktur möglichst wenig stören und schädigen.The need to remove water and / or chemicals from materials such as building materials can arise from a variety of causes. Acute events can lead to flooding of buildings or water damage, which may also result in contamination with heating oil due to leaks in heating systems. The use of toxic chemicals, for example for wood protection, can lead to an unacceptable pollution of the room air, so that decontamination is necessary. Finally, planning and execution errors can lead to moisture damage, which in turn can lead to energy and health problems, for example due to mold formation. In the construction sector, the boundary conditions for a renovation result on the one hand from constructive aspects (access on one or both sides, affected materials, geometry, etc.), but on the other hand also from aspects of intrinsic value and monument preservation. As a rule, there is a special need for non-invasive procedures that interfere and damage the building structure as little as possible.

Die Sanierungsmaßnahmen müssen naturgemäß bei Bedarf durch Aktivitäten ergänzt werden, die eine Wiederbefeuchtung bzw. -kontamination verhindern. Dabei kann es sich beispielsweise um Horizontalsperren handeln, die durch das Einbringen einer polymer-bildenden Substanz in Mauerwerk realisiert werden. Voraussetzung hierfür ist die Bereitstellung von freiem Porenvolumen im Material, was oft ebenfalls eine vorherige Entfeuchtung erfordert.If necessary, the remedial measures must naturally be supplemented by activities that prevent rewetting or contamination. These can be horizontal barriers, for example, which are realized by introducing a polymer-forming substance into masonry. The prerequisite for this is the provision of free pore volume in the material, which often also requires prior dehumidification.

Eine Dekontamination im Sinne dieser Erfindungsbeschreibung kann neben der Entfernung von Chemikalien auch so verstanden werden, dass Schädlinge und insbesondere Holzschädlinge durch die Behandlung abgetötet oder zumindest geschädigt werden, indem eine bestimmte Temperatur im Material erreicht wird. Die zur Abtötung notwendigen Letaltemperaturen hängen von den jeweiligen Organismen und deren Entwicklungsstadien ab, können aber auch durch Parameter wie Materialfeuchte und Dauer der Behandlung beeinflusst werden. Obwohl in den meisten Fällen die Abtötung von Holzschädlingen durch thermische Effekte begründet werden kann [ S. Steinbach et al., Schützen & Erhalten (2012) 29 ; C. Hoyer et al., Chemie Ingenieur Technik 86 (2014) 1187 ], werden in der Literatur auch Selektivitätseffekte diskutiert, die eine Abtötung der Schädlinge bei niedrigeren Temperaturen der den Schädling umgebenden Matrix im Vergleich zur Letaltemperatur erlauben [ S.O. Nelson, Trans. Am. Soc. Agricult. Eng. 39 (1996) 1475 ]. Für die Anwendung im Kontext der Erfindung ist diese Unterscheidung jedoch nicht relevant.In addition to the removal of chemicals, decontamination in the sense of this description of the invention can also be understood to mean that pests and in particular wood pests are killed or at least damaged by the treatment by reaching a certain temperature in the material. The lethal temperatures required for killing depend on the respective organisms and their stages of development, but can also be influenced by parameters such as material moisture and duration of the treatment. Although in most cases the destruction of wood pests can be justified by thermal effects [ S. Steinbach et al., Protect & Preserve (2012) 29 ; C. Hoyer et al., Chemical Engineer Technology 86 (2014) 1187 ], selectivity effects are also discussed in the literature which allow the pests to be killed at lower temperatures of the matrix surrounding the pest in comparison with the lethal temperature [ SO Nelson, Trans. Am. Soc. Agricult. Closely. 39 (1996) 1475 ]. However, this distinction is not relevant for use in the context of the invention.

Eine Erhöhung der Temperatur in zu behandelnden Materialien und insbesondere in Baumaterialien, die in eine Struktur eingebunden sind, kann durch verschiedene Verfahren erreicht werden. Das Einbringen von Heizstäben in Bohrlöcher ist zwar technisch relativ einfach, jedoch treten in der Umgebung der Heizstäbe starke Temperaturgradienten auf. Dies ist insbesondere dann der Fall, wenn trockene Materialien eine geringe Wärmeleitfähigkeit aufweisen. Besonders nachteilig ist jedoch die mechanische Schädigung der behandelten Struktur, die gerade im Bereich von denkmalgeschützten Bauten oft nicht akzeptabel ist und auch für sonstige Anwendungen einen Folgesanierungsbedarf mit sich bringt. Es wird deshalb der Einsatz von nicht-invasiven Verfahren angestrebt, auf die im Folgenden näher eingegangen werden soll.An increase in the temperature in materials to be treated and in particular in building materials that are integrated into a structure can be achieved by various methods will. The introduction of heating rods into boreholes is technically relatively simple, but there are strong temperature gradients in the vicinity of the heating rods. This is particularly the case when dry materials have a low thermal conductivity. However, the mechanical damage to the treated structure is particularly disadvantageous, which is often unacceptable, particularly in the area of listed buildings, and also necessitates subsequent renovation for other applications. The aim is therefore to use non-invasive procedures, which will be discussed in more detail below.

Durch eine Infrarotbestrahlung wird die Oberfläche des Materials erwärmt, wobei durch die sehr geringe Eindringtiefe der Infrarotstrahlung die Erwärmung des Feststoffinneren durch Wärmeleitung erfolgen muss. Im Ergebnis sind hohe Temperaturgradienten mit einer Überhitzung der Oberfläche zu erwarten. Für dieses Verfahren sind bestrahlte und somit erwärmte Flächen von unter einem Quadratmeter typisch. Weiterhin kann es sich nachteilig auswirken, dass die eingestrahlte Infrarotenergie durch den austretenden Wasserdampf teilweise absorbiert wird und somit bei der Trocknung ein Effektivitätsverlust im Hinblick auf die Erwärmung der Oberfläche eintritt. Ähnliches trifft für die Verwendung von Heizdecken oder Heizplatten zu. Auch bei einer Erwärmung des Raumes über Heißgas erfolgt der Wärmetransport von der Oberfläche ausgehend. Der für die Behandlung des Volumens maßgebende Wärmetransport ins Innere des Materials ist nicht davon abhängig, in welcher Weise die erhöhte Oberflächentemperatur etabliert wird (Infrarot, Heizplatten oder Heißgas).The surface of the material is heated by infrared radiation, and the very small penetration depth of the infrared radiation means that the interior of the solid has to be heated by heat conduction. As a result, high temperature gradients with overheating of the surface can be expected. Irradiated and thus heated areas of less than one square meter are typical for this process. Furthermore, it can have a disadvantage that the irradiated infrared energy is partially absorbed by the escaping water vapor and thus there is a loss of effectiveness with regard to the heating of the surface during drying. The same applies to the use of heated blankets or hot plates. Even when the room is heated with hot gas, the heat is transported from the surface. The heat transfer into the interior of the material, which is decisive for the treatment of the volume, does not depend on how the increased surface temperature is established (infrared, heating plates or hot gas).

Ein weiteres, z.T. schon etabliertes Verfahren für die nicht-invasive Erwärmung ist die dielektrische Erwärmung mit Mikrowellen mit Frequenzen im Gigahertz(GHz)-Bereich [ EP 1 374 676 B1 ]. Die Erwärmung ist hier vorzugsweise an das Vorhandensein von Wassermolekülen gebunden, da sich diese als Dipolmoleküle in einem äußeren Feld umorientieren und durch Wechselwirkungen mit ihrer Umgebung auf Grund innerer Reibungsverluste eine Erwärmung vermitteln. Einige trockene Baustoffe lassen sich mit dieser Methode deshalb praktisch nicht erwärmen. Auch unpolare Kohlenwasserstoffe (z.B. Mineralölbestandteile) sind zur Vermittlung der Energieeinkopplung ungeeignet. Charakteristisch für die Mikrowellenerwärmung sind die zumeist geringen Eindringtiefen im Zentimeterbereich für die meisten Baustoffe, die zu großen Temperaturgradienten mit den entsprechenden Nachteilen für die Behandlung führen. Dies birgt die Gefahr, dass die für die relevanten Prozesse der Trocknung, Dekontamination oder Abtötung von Schädlingen notwendigen Temperaturen nicht zuverlässig im gesamten Volumen erreicht werden.Another, partly already established method for non-invasive heating is dielectric heating with microwaves with frequencies in the gigahertz (GHz) range [ EP 1 374 676 B1 ]. The warming here is preferably linked to the presence of water molecules, since these are reoriented as dipole molecules in an external field and impart warming through interactions with their environment due to internal friction losses. Some dry building materials can therefore practically not be heated using this method. Non-polar hydrocarbons (eg mineral oil components) are also unsuitable for imparting energy. Characteristic of microwave heating are the mostly shallow penetration depths in the centimeter range for most building materials, which lead to large temperature gradients with the corresponding disadvantages for the treatment. This harbors the risk that the temperatures required for the relevant processes of drying, decontamination or killing of pests will not be reliably achieved in the entire volume.

Ein innovatives direktes Erwärmungsverfahren, dessen Wirkprinzip dem der MikrowellenErwärmung ähnelt, ist die dielektrische Erwärmung mittels Radiowellen, d.h. elektromagnetischen Wellen im Radiofrequenz-Bereich von einigen Megahertz (MHz) [ DE 20 2008 012 371 U1 ]. Diese Methode einer volumetrischen Aufheizung erzielt deutlich homogenere Temperaturprofile auf Grund einer wesentlich größeren Eindringtiefe in die Materialien im Meter-Bereich. Damit ist ein aus verschiedenen Materialien bestehendes Mauerwerk in der Regel gut thermisch zu behandeln. Nach dem Stand der Technik ist es jedoch, wie in DE 20 2010 001 410 U1 beschrieben, erforderlich, beidseitig einer flächigen Struktur Elektroden anzubringen und diese zu kontaktieren. Hierfür sind, sofern keine natürlichen Öffnungen vorhanden sind, Löcher in die zu erwärmende Wand einzubringen, durch die elektrisch leitende Mittel zur Kontaktierung geführt werden müssen. Obwohl dieses Verfahren gegenüber einer invasiven Methode wie dem Einbringen von Heizstäben bereits wesentlich schonender ist, muss eine Schädigung des zu behandelnden Baukörpers jedoch in Kauf genommen werden. Dies kann unter Umständen die Anwendbarkeit der Radiofrequenz-Erwärmung trotz ihrer Vorteile gerade im denkmalgeschützten Bereich erheblich einschränken. Darüber hinaus ist es mit der konventionellen Anordnung schwieriger, die Wand oder andere zu behandelnde Feststoffstrukturen sukzessiv zu behandeln, da in der Regel beide Elektroden unter Beibehaltung der beschriebenen Kontaktierung und unter Gewährleistung der adäquaten elektromagnetischen Abschirmung versetzt werden müssen, was auch eine mehrfache Durchbohrung des Mauerwerks erforderlich machen würde.An innovative direct heating method, the principle of which is similar to that of microwave heating, is dielectric heating using radio waves, ie electromagnetic waves in the radio frequency range of a few megahertz (MHz) [ DE 20 2008 012 371 U1 ]. This method of volumetric heating achieves significantly more homogeneous temperature profiles due to a much greater depth of penetration into the materials in the meter range. This means that masonry made of different materials can generally be treated well thermally. According to the prior art, however, it is as in DE 20 2010 001 410 U1 described, necessary to attach electrodes on both sides of a flat structure and to contact them. If there are no natural openings, holes must be made in the wall to be heated, through which electrically conductive means for contacting must be made. Although this method is already much gentler than an invasive method such as the introduction of heating elements, damage to the building structure to be treated must be accepted. Under certain circumstances, this can considerably limit the applicability of radio frequency heating, despite its advantages, particularly in the area under monument protection. In addition, with the conventional arrangement, it is more difficult to treat the wall or other solid structures to be treated successively, since both electrodes usually have to be moved while maintaining the described contacting and while ensuring adequate electromagnetic shielding, which also means that the masonry has to be drilled several times would require.

Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zur Verfügung zu stellen, die die genannten Vorteile der Radiofrequenz-Erwärmung hinsichtlich Einsatzbreite und Homogenität der Temperaturprofile aufgreift und dabei die beschriebenen Nachteile des Standes der Technik überwindet, wodurch sich das Einsatzpotential der Radiowellen-Technologie für die genannten und weitere Applikationen signifikant vergrößert. Mit dem Verfahren und der Vorrichtung nach der vorliegenden Erfindung soll es möglich sein, in nicht-invasiver Weise praktisch ohne Schädigung des Materials und der Struktur Anordnungen aus Materialien wie z.B. Stein, Beton, Ziegel oder Holz effizient thermisch zu trocknen und/oder zu dekontaminieren, wobei sowohl chemische als auch biologische Kontaminationen eliminiert werden können. Die Erfindung soll es ermöglichen, auch nur einseitig zugängliche, so genannte einhäuptige Strukturen nach den genannten Prinzipien erfolgreich zu behandeln.It is therefore an object of the present invention to provide a method and a device which takes up the advantages of radio frequency heating mentioned with regard to the range of use and homogeneity of the temperature profiles and thereby overcomes the disadvantages of the prior art described, as a result of which the use potential of radio waves is increased -Technology significantly increased for the named and other applications. With the method and the device according to the present invention, it should be possible, in a non-invasive manner, practically without damaging the material and the structure, arrangements of materials such as e.g. Efficiently thermally drying and / or decontaminating stone, concrete, brick or wood, whereby both chemical and biological contamination can be eliminated. The invention is intended to make it possible to successfully treat so-called one-sided structures that are only accessible from one side, according to the principles mentioned.

DE 94 13 736 U1 offenbart eine Mikrowellen-Trocknungs- und Schädlingsbekämpfungsanlage, bei der die Wirksamkeit hochfrequenter Wechselfelder ausgenutzt wird. Aus EP 0 581 815 A1 sind ein Verfahren zur Verhinderung und Bekämpfung von Pilzbefall in Gebäudestrukturen sowie Elektroden zur Ausführung des Verfahrens bekannt. FR1 151 084 A betrifft ein Elektrodensystem zur dielektrischen Verlustheizung und insbesondere ein System, bei dem zwei Elektroden nebeneinander auf einer Seite eines zu erhitzenden Volumens angeordnet sind und sich eine Gegenelektrode auf der gegenüberliegenden Seite befindet. DE 94 13 736 U1 discloses a microwave drying and pest control system in which the effectiveness of high-frequency alternating fields is exploited. Out EP 0 581 815 A1 are a method to prevent and control fungal infestation in building structures and electrodes for carrying out the method are known. FR1 151 084 A relates to an electrode system for dielectric loss heating and in particular to a system in which two electrodes are arranged next to one another on one side of a volume to be heated and a counter electrode is located on the opposite side.

Zusammenfassung der ErfindungSummary of the invention

Diese Aufgaben werden erfindungsgemäß durch die unabhängigen Patentansprüche gelöst. Bevorzugte Ausgestaltungen der Erfindung sind in den Unteransprüchen enthalten.According to the invention, these objects are achieved by the independent claims. Preferred embodiments of the invention are contained in the subclaims.

Das erfindungsgemäße Verfahren zur dielektrischen Erwärmung von Feststoffen umfasst das Bereitstellen mindestens einer spannungsführenden Elektrode und mindestens einer Schirmungselektrode auf einer ersten Seite eines Feststoffs sowie mindestens eines Kopplungselements auf einer zweiten Seite des Feststoffs, wobei sich die erste Seite des Feststoffs und die zweite Seite des Feststoffs gegenüberliegen. Weiterhin erfolgt eine Einstellung des Flächenverhältnisses zwischen dem Überlappungsbereich zwischen den Oberflächen des mindestens einen Kopplungselements und der mindestens einen Schirmungselektrode, und den Oberflächen der mindestens einen spannungsführenden Elektrode, wobei das Flächenverhältnis größer als 3:1 ist. Weiterhin erfolgt eine zumindest teilweise kapazitive Kopplung des mindestens einen Kopplungselements mit der mindestens einen Schirmungselektrode. Weiterhin umfasst das Verfahren das Anlegen einer Hochfrequenz-Spannung an die mindestens eine spannungsführende Elektrode, wobei die Hochfrequenz-Spannung eine Frequenz aus dem Bereich zwischen 500 kHz und 500 MHz aufweist.The method according to the invention for the dielectric heating of solids comprises providing at least one live electrode and at least one shielding electrode on a first side of a solid and at least one coupling element on a second side of the solid, the first side of the solid and the second side of the solid being opposite one another . Furthermore, the area ratio between the overlap area between the surfaces of the at least one coupling element and the at least one shielding electrode and the surfaces of the at least one live electrode is adjusted, the area ratio being greater than 3: 1. Furthermore, the at least one coupling element is at least partially capacitively coupled to the at least one shielding electrode. Furthermore, the method comprises applying a high-frequency voltage to the at least one live electrode, the high-frequency voltage having a frequency in the range between 500 kHz and 500 MHz.

Vorzugsweise ist das Verfahren zur dielektrischen Erwärmung von Feststoffen mit Hochfrequenz-Energie dadurch gekennzeichnet, dass der Feststoff zumindest teilweise zwischen mindestens einer spannungsführenden, so genannten heißen Elektrode und mindestens eines Kopplungselements angeordnet ist und dass das Kopplungselement mit einer Schirmungselektrode, die sich auf der Seite der heißen Elektrode befindet, kapazitiv gekoppelt ist, so dass sich im Feststoff ein hochfrequentes elektrisches Feld zwischen heißer Elektrode und Kopplungselement aufbaut, das zur Erwärmung des Feststoffes führt.The method for the dielectric heating of solids with high-frequency energy is preferably characterized in that the solid is at least partially arranged between at least one live, so-called hot electrode and at least one coupling element, and in that the coupling element has a shielding electrode which is located on the side of the hot electrode is capacitively coupled, so that a high-frequency electric field builds up in the solid between the hot electrode and the coupling element, which leads to the heating of the solid.

Das angewandte elektrische Feld kann bevorzugt eine Hochfrequenz im Bereich zwischen 500 kHz und 500 MHz, ebenfalls bevorzugt zwischen 1 und 50 MHz und besonders bevorzugt eine für industrielle, medizinische und Forschungsanwendungen freigegebene ISM-Frequenz in diesem Bereich, beispielsweise 13,56 MHz oder 27 MHz, aufweisen.The applied electrical field can preferably have a high frequency in the range between 500 kHz and 500 MHz, likewise preferably between 1 and 50 MHz and particularly preferably an ISM frequency in this range, for example 13.56 MHz or 27 MHz, which is approved for industrial, medical and research applications , exhibit.

Die Idee der vorliegenden Erfindung besteht darin, einen Festkörper aus einem Feststoff und insbesondere eine Baustruktur derart mit Hilfe einer kapazitiven Kopplung thermisch zu behandeln, dass es nicht notwendig ist, durch die Festkörperstruktur oder an ihr vorbei elektrisch leitende Verbindungen zur Kontaktierung zu führen. Vorzugsweise ist die thermische Behandlung mit einer signifikanten Temperaturerhöhung verbunden, die es erlaubt, Wasser und/oder Schadstoffe effizienter aus dem Festkörper zu entfernen und/oder im Festkörper vorhandene Schadorganismen durch Überschreitung einer Letaltemperatur abzutöten und/oder diese irreversibel zu schädigen. Das erfindungsgemäße Verfahren eignet sich besonders für die Behandlung von Strukturen, die planare und zueinander parallel angeordnete Oberflächen besitzen. Ein Beispiel hierfür sind gemauerte oder betonierte Wände in Gebäuden.The idea of the present invention is to thermally treat a solid body made of a solid and in particular a building structure with the aid of a capacitive coupling in such a way that it is not necessary to conduct electrically conductive connections for contacting through the solid body structure or past it. The thermal treatment is preferably associated with a significant increase in temperature which allows water and / or pollutants to be removed from the solid more efficiently and / or to kill harmful organisms present in the solid by exceeding a lethal temperature and / or irreversibly damaging them. The method according to the invention is particularly suitable for the treatment of structures which have planar surfaces which are arranged parallel to one another. One example of this is brick or concrete walls in buildings.

Im Gegensatz zu dem Effekt der kapazitiven Kopplung, die im Zusammenhang mit der elektromagnetischen Verträglichkeit zu beachten ist [ A.J. Schwab, Elektromagnetische Verträglichkeit, Springer Verlag 1996, ISBN 3-540-60787-0 ], wird im erfindungsgemäßen Fall dieses Instrument zum gezielten Energieeintrag genutzt. Unter dem Aspekt der elektromagnetischen Verträglichkeit führt eine kapazitive Kopplung beispielsweise zu einer unerwünschten Einkopplung hochfrequenter Spannungen in parallel liegende Leitungen. Sie kann auch bewusst dazu eingesetzt werden, um hochfrequente Spannungen auf unterschiedlichen Gleichspannungsniveaus zu übertragen. In beiden Fällen unterscheiden sich die Anwendungen trotz der Verwendung desselben Begriffs sehr deutlich von dem erfindungsgemäßen Verfahren, bei dem dieses Prinzip genutzt wird, um über einen Energieeintrag eine dielektrische Erwärmung zu realisieren.In contrast to the effect of capacitive coupling, which has to be considered in connection with electromagnetic compatibility [ AJ Schwab, Electromagnetic Compatibility, Springer Verlag 1996, ISBN 3-540-60787-0 ], this instrument is used for targeted energy input in the case of the invention. From the aspect of electromagnetic compatibility, capacitive coupling leads, for example, to undesired coupling of high-frequency voltages into lines lying in parallel. It can also be used deliberately to transmit high-frequency voltages at different DC voltage levels. In both cases, despite the use of the same term, the applications differ very clearly from the method according to the invention, in which this principle is used to implement dielectric heating by means of an energy input.

Vorzugsweise wird die Umsetzung des erfinderischen Verfahrens mit einer Anordnung realisiert, bei der sich auf einer Seite der Struktur eine spannungsführende flächige Elektrode im bevorzugt zu erwärmenden Bereich der Struktur befindet (heiße Elektrode), auf derselben Seite eine ausgedehnte geerdete und elektrisch leitfähige Elektrode (Schirmungselektrode), die als Schirmung wirken kann und die üblicherweise im Abstand von einigen Zentimetern auch über die heiße Elektrode ausgedehnt ist, angeordnet ist und sich auf der anderen Seite der zu behandelnden Struktur ein als Elektrode wirkendes Kopplungselement befindet, das mit den beiden erstgenannten Komponenten kapazitiv gekoppelt ist. Das Kopplungselement befindet sich an der Position einer "kalten" Elektrode bei der konventionellen Zweielektrodenanordnung (vgl. z.B. DE 20 2010 001 410 U1 ). Vorzugsweise ist die Feldstärke des Hochfrequenzfeldes zwischen dem Kopplungselement und der heißen Elektrode besonders hoch, was zu einer Erwärmung vor allem zwischen der heißen Elektrode und dem Kopplungselement führt. In einer besonders bevorzugten Anordnung ist die heiße Elektrode von einer als Schirmung wirkenden elektrisch leitfähigen Struktur, welche als Schirmungselektrode wirkt, komplett überspannt, so dass die elektromagnetische Abstrahlung in die Umgebung minimiert wird. Vorzugsweise umfasst das mindestens eine Kopplungselement eine elektrisch leitfähige Kopplungselektrode, wobei die Kopplungselektrode ein metallisches Material umfassen kann.The implementation of the method according to the invention is preferably implemented with an arrangement in which there is a live flat electrode on one side of the structure in the area of the structure that is preferably to be heated (hot electrode), and an extended grounded and electrically conductive electrode (shielding electrode) on the same side. , which can act as a shield and which is usually extended a few centimeters above the hot electrode, is arranged and on the other side of the structure to be treated there is a coupling element which acts as an electrode and is capacitively coupled to the first two components . The coupling element is located at the position of a "cold" electrode in the conventional two-electrode arrangement (cf. for example DE 20 2010 001 410 U1 ). The field strength of the high-frequency field between the coupling element and the hot electrode is preferably particularly high, which leads to a heating especially between the hot electrode and the coupling element. In a Particularly preferred arrangement, the hot electrode is completely spanned by an electrically conductive structure which acts as a shield and which acts as a shielding electrode, so that the electromagnetic radiation into the surroundings is minimized. The at least one coupling element preferably comprises an electrically conductive coupling electrode, wherein the coupling electrode can comprise a metallic material.

Bevorzugt ist, dass ein vorgewähltes Aufheizregime durch eine Anpassung der eingebrachten HF-Leistung an mindestens eine im Volumen gemessene Temperatur erfolgt. Ebenfalls bevorzugt ist, dass durch die Temperaturerhöhung die Trocknung des Feststoffes beschleunigt wird. Bevorzugt ist auch, dass durch die Temperaturerhöhung der Austrag von Schadstoffen aus dem Feststoff beschleunigt wird. Ebenfalls bevorzugt ist, dass dabei der Austrag der Schadstoffe durch den Austrag von Wasserdampf unterstützt wird. Besonders bevorzugt ist, dass durch die Temperaturerhöhung eine Abtötung und/oder eine Beeinträchtigung der Lebensfähigkeit von Holzschädlingen erfolgt.It is preferred that a preselected heating regime takes place by adapting the introduced HF power to at least one temperature measured in the volume. It is also preferred that the drying of the solid is accelerated by the temperature increase. It is also preferred that the discharge of pollutants from the solid is accelerated by the temperature increase. It is also preferred that the discharge of the pollutants is supported by the discharge of water vapor. It is particularly preferred that the temperature increase leads to destruction and / or impairment of the viability of wood pests.

Die Erwärmung wird bei dem erfindungsgemäßen Verfahren ohne direkte Kontaktierung dadurch realisiert, dass eine kapazitive Kopplung zwischen Schirmungselektrode und Kopplungselement erfolgt. Dies bedeutet vereinfacht gesprochen eine indirekte Kontaktierung des Kopplungselements, die dann funktionell ähnlich einer kalten Elektrode bei klassischen Anordnungen nach dem Stand der Technik wirken kann. Die Schirmungselektrode ist vorzugsweise geerdet, beispielsweise indem sie elektrisch leitend mit dem Gehäuse eines vorgeschalteten elektronischen Anpassnetzwerkes, einer sogenannten Matchbox, verbunden ist. Die kapazitive Kopplung bedeutet also, dass die Potentialdifferenz zwischen Schirmungselektrode und Kopplungselement klein gegenüber der Potentialdifferenz zwischen Kopplungselement und "heißer" Elektrode ist. Dadurch ergibt sich beispielsweise für Feststoffstrukturen mit ausreichender Homogenität eine deutlich höhere elektrische Feldstärke zwischen heißer Elektrode und Kopplungselement als zwischen Schirmungselektrode und Kopplungselement. Bekanntermaßen führt dies zu einer stärkeren dielektrischen Erwärmung zwischen heißer Elektrode und Kopplungselement im Vergleich zum Volumen abseits der heißen Elektrode. Bevorzugt sind dabei insbesondere solche Ausführungsformen, bei denen die Hochfrequenz-Spannung durch einen Hochfrequenzgenerator erzeugt wird und die von der mindestens einen spannungsführenden Elektrode zum Hochfrequenzgenerator rückreflektierte Leistung durch ein elektronisches Anpassnetzwerk minimiert wird. In einer vorzugsweisen Realisierung von Verfahren und Vorrichtung wird die kapazitive Kopplung zwischen Schirmungselektrode und Kopplungselement teilweise oder vollständig durch ein Material realisiert, das sich von dem vorzugsweise zu erwärmenden Material zwischen heißer Elektrode und Kopplungselement hinsichtlich seiner elektrischen Eigenschaften unterscheidet. Weiterhin ist bevorzugt, dass sich die jeweiligen Materialien bzw. Stoffe zwischen heißer Elektrode und Kopplungselement und zwischen Schirmungselektrode und Kopplungselement ganz oder teilweise voneinander unterscheiden.In the method according to the invention, the heating is achieved without direct contacting in that a capacitive coupling takes place between the shielding electrode and the coupling element. Put simply, this means indirect contacting of the coupling element, which can then functionally function similarly to a cold electrode in conventional arrangements according to the prior art. The shielding electrode is preferably grounded, for example by being electrically conductively connected to the housing of an upstream electronic matching network, a so-called matchbox. The capacitive coupling thus means that the potential difference between the shielding electrode and the coupling element is small compared to the potential difference between the coupling element and the "hot" electrode. For solid structures with sufficient homogeneity, for example, this results in a significantly higher electrical field strength between the hot electrode and the coupling element than between the shielding electrode and the coupling element. As is known, this leads to greater dielectric heating between the hot electrode and the coupling element in comparison to the volume away from the hot electrode. In particular, embodiments are preferred in which the high-frequency voltage is generated by a high-frequency generator and the power reflected back from the at least one live electrode to the high-frequency generator is minimized by an electronic matching network. In a preferred implementation of the method and the device, the capacitive coupling between the shielding electrode and the coupling element is implemented partially or completely by a material that is different from the material to be preferably heated between the hot electrode and coupling element differs in terms of its electrical properties. It is further preferred that the respective materials or substances between the hot electrode and the coupling element and between the shielding electrode and the coupling element differ completely or partially from one another.

Eine erfindungsgemäße dielektrische Erwärmung von Festkörperstrukturen ist somit auch möglich, wenn eine Seite der erzeugten Kondensatoranordnung, die den zu erwärmenden Feststoff enthält, keine (direkte) elektrisch Gleichstrom leitende Kontaktierung besitzt. Dies trifft sogar zu, wenn das Kopplungselement gar keine Elektrode im eigentlichen Sinne darstellt, sondern wenn ein natürlich anstehendes Medium wie beispielsweise feuchter Boden diese Funktion übernimmt. Dies ist insbesondere im Kontext von Anwendungen im Bauwesen relevant. Hierbei kann es sich beispielsweise um die Trocknung und/oder Dekontamination von chemisch oder biologisch kontaminiertem Mauerwerk oder anderen Baustoffen handeln. Damit sind ein- und beidseitig zugängliche Strukturen thermisch behandelbar. Bevorzugt ist unter anderem im genannten Anwendungskontext, dass das mindestens eine Kopplungselement durch ein natürliches Kompartiment (Umweltkompartiment) gebildet wird oder dieses umfasst. Insbesondere werden keine metallischen bzw. elektrisch leitfähigen Kopplungselektroden benötigt. Vorzugsweise handelt es sich bei dem natürlichen Kompartiment um anstehendes oder aufgefülltes Erdreich.A dielectric heating of solid-state structures according to the invention is thus also possible if one side of the capacitor arrangement produced, which contains the solid to be heated, has no (direct) electrical direct current-conducting contact. This even applies if the coupling element is not an electrode in the actual sense, but if a naturally occurring medium such as a moist floor takes over this function. This is particularly relevant in the context of applications in construction. This can be, for example, the drying and / or decontamination of chemically or biologically contaminated masonry or other building materials. Structures that are accessible from one and both sides can thus be thermally treated. It is preferred, inter alia, in the application context mentioned that the at least one coupling element is formed by or comprises a natural compartment (environmental compartment). In particular, no metallic or electrically conductive coupling electrodes are required. The natural compartment is preferably pending or filled soil.

In einer vorzugsweisen Ausgestaltung des erfindungsgemäßen Verfahrens für einhäuptige Problemfälle wird daher die kapazitiv gekoppelte Gegenelektrode (Kopplungselektrode), die sich gegenüber der "heißen" Elektrode befindet, durch eine natürliche Struktur zur Verfügung gestellt. Dies kann beispielsweise ein anstehender Boden mit einer ausreichenden Hochfrequenzleitfähigkeit sein, so dass diese natürliche Elektrode als Kopplungselement fungieren kann und näherungsweise eine Äquipotentialfläche ausbildet. Ein typisches Beispiel hierfür kann bei einer solchen einhäuptigen Anordnung im Kellerbereich von Gebäuden feuchtes anstehendes Erdreich sein. Die kapazitive Kopplung ist dadurch möglich, dass bei den eingesetzten Frequenzen der zu behandelnde Festkörper, der als Kondensator zwischen den beidseitig angeordneten Elektroden wirkt, eine ausreichende dielektrische Leitfähigkeit aufweist, was den Potentialunterschied zwischen der Schirmungselektrode und dem Kopplungselement auf der Gegenseite deutlich reduziert.In a preferred embodiment of the method according to the invention for single-sided problem cases, the capacitively coupled counter electrode (coupling electrode), which is located opposite the "hot" electrode, is made available by a natural structure. This can be, for example, an existing floor with sufficient high-frequency conductivity so that this natural electrode can act as a coupling element and approximately forms an equipotential surface. A typical example of this with such a one-sided arrangement in the basement area of buildings is moist soil. The capacitive coupling is possible in that, at the frequencies used, the solid to be treated, which acts as a capacitor between the electrodes arranged on both sides, has sufficient dielectric conductivity, which significantly reduces the potential difference between the shielding electrode and the coupling element on the opposite side.

In einer bevorzugten Variante bei der Anwendung werden die Eigenschaften des natürlichen Kompartiments gezielt variiert, damit dieses die Funktion als Kopplungselement besser erfüllen kann. Eine typische vorzugsweise Option in diesem Sinne ist die Befeuchtung von anstehendem Boden, um dessen elektrische Leitfähigkeit und damit dessen Wirkung als elektrodenäquivalentes Kopplungselement zu verbessern. Die entsprechende Befeuchtung kann bei Bedarf kontinuierlich erfolgen oder mehrfach wiederholt werden.In a preferred variant in use, the properties of the natural compartment are specifically varied so that it can better fulfill the function as a coupling element. A typical preferred option in this sense is the humidification of ground to improve its electrical conductivity and thus its effect as an electrode-equivalent coupling element. The corresponding moistening can be carried out continuously if required or repeated several times.

In bestimmten Situationen können sich auch die Materialien für die verschiedenen Bereiche der zu behandelnden Feststoffstruktur unterscheiden oder räumlich voneinander getrennt sein. Beispielsweise kann sich das vorzugsweise zu erwärmende Material zwischen der heißen Elektrode und dem Kopplungselement, von dem Material unterscheiden, durch das die kapazitive Kopplung in der beschriebenen Weise realisiert wird.In certain situations, the materials for the different areas of the solid structure to be treated can also differ or be spatially separated from one another. For example, the material to be preferably heated between the hot electrode and the coupling element can differ from the material by which the capacitive coupling is implemented in the manner described.

Für die Funktion des erfindungsgemäßen Verfahrens ist es in der Regel notwendig, dass die überlappende Fläche zwischen Schirmung und "kalter" Elektrode auf der Gegenseite deutlich größer als die Fläche der "heißen" Elektrode ist. Vorzugsweise ist das entsprechende Verhältnis größer als 4:1, besonders bevorzugt mindestens 8:1. In diesem Fall ist mit einer bevorzugten Erwärmung des Volumens zu rechnen, welches sich zwischen heißer Elektrode und Kopplungselement befindet. Das entsprechende Flächenverhältnis ist von den konkreten stofflichen und geometrischen Gegebenheiten abhängig und gegebenenfalls experimentell oder durch Modellrechnung zu ermitteln. Bevorzugt wird das Flächenverhältnis zwischen heißer Elektrode und dem Überlappungsbereich von Schirmungselektrode und entgegengesetzt angeordnetem Kopplungselement so eingestellt, dass die Erwärmung vorzugsweise im Volumen zwischen heißer Elektrode und Kopplungselement erfolgt.For the function of the method according to the invention, it is generally necessary that the overlapping area between the shield and the "cold" electrode on the opposite side is significantly larger than the area of the "hot" electrode. The corresponding ratio is preferably greater than 4: 1, particularly preferably at least 8: 1. In this case, a preferred heating of the volume which is located between the hot electrode and the coupling element is to be expected. The corresponding area ratio depends on the specific material and geometric conditions and, if necessary, can be determined experimentally or by means of a model calculation. The area ratio between the hot electrode and the overlap area of the shielding electrode and the oppositely arranged coupling element is preferably set such that the heating preferably takes place in the volume between the hot electrode and the coupling element.

Es ist jedoch auch möglich, das Verhältnis der Flächen von Schirmungselektrode und heißer Elektrode so zu wählen, dass ein bestimmtes Verhältnis der Aufheizraten in beiden Volumenbereichen (zwischen heißer Elektrode und Kopplungselement bzw. zwischen Schirmungselektrode und Kopplungselement) eingestellt wird, was unter bestimmten Umständen für den verfahrenstechnischen Ablauf vorteilhaft sein kann. So kann beispielsweise erreicht werden, dass der kältere Bereich der Festkörperstruktur eine Temperatur nicht unterschreitet, die zu einer Rekondensation von verdampften Stoffen wie Wasser oder Chemikalien führen würde. Bevorzugt ist, dass das erfindungsgemäße Verfahren, zum Zwecke einer maximalen Erwärmung des Bereichs zwischen der mindestens einen spannungsführenden Elektrode und dem mindestens einen Kopplungselement, weiterhin die Einstellung des Flächenverhältnisses zwischen dem Überlappungsbereich zwischen den Oberflächen des mindestens einen Kopplungselements und der mindestens einen Schirmungselektrode, und den Oberflächen der mindestens einen spannungsführenden Elektrode. Insbesondere sind dabei Flächenverhältnisse von größer als 3:1, größer als 6:1 und größer als 10:1 besonders bevorzugt. Bevorzugt kann über das Flächenverhältnis ein vorgewähltes Verhältnis der Aufheizraten innerhalb und außerhalb des Bereiches zwischen der mindestens einen spannungsführenden Elektrode und dem mindestens einen Kopplungselement eingestellt werden. Vorzugsweise kann das Verhältnis der Überlappungsflächen von heißer Elektrode und Kopplungselement bzw. von Schirmungselektrode und Kopplungselement so gewählt werden, dass ein vordefiniertes Verhältnis der Aufheizraten im zu behandelnden Feststoff in den Bereichen zwischen heißer Elektrode und Kopplungselement bzw. zwischen Schirmungselektrode und Kopplungselement realisiert wird.However, it is also possible to choose the ratio of the areas of the shielding electrode and the hot electrode in such a way that a specific ratio of the heating rates in both volume ranges (between the hot electrode and the coupling element or between the shielding electrode and the coupling element) is set, which for the procedural sequence can be advantageous. For example, it can be achieved that the colder area of the solid structure does not fall below a temperature that would lead to recondensation of evaporated substances such as water or chemicals. It is preferred that the method according to the invention, for the purpose of maximum heating of the area between the at least one live electrode and the at least one coupling element, furthermore the setting of the area ratio between the overlap area between the surfaces of the at least one coupling element and the at least one shielding electrode, and the Surfaces of the at least one live electrode. In particular, area ratios of greater than 3: 1, greater than 6: 1 and greater than 10: 1 are special prefers. A preselected ratio of the heating rates inside and outside the range between the at least one live electrode and the at least one coupling element can preferably be set via the area ratio. The ratio of the overlap areas of the hot electrode and the coupling element or of the shielding electrode and the coupling element can preferably be selected such that a predefined ratio of the heating rates in the solid to be treated is realized in the areas between the hot electrode and the coupling element or between the shielding electrode and the coupling element.

Das erfindungsgemäße Verfahren beruht auf einer direkten dielektrischen Erwärmung des Materials, wobei ein als Elektrode wirkendes Element, das Kopplungselement, kapazitiv und nicht direkt elektrisch über die Schirmungselektrode mit der HF-Spannungsquelle verbunden ist. Hierzu wird ein hochfrequentes elektrisches Wechselfeld derart angelegt, dass sich im Festkörper ein solches Feld etabliert, das zur Umorientierung oder anderweitigen Bewegung polarer Strukturen im Festkörper führt. Deren Umorientierung bzw. Bewegung ist durch die Wechselwirkung mit ihrer Umgebung mit Reibungsverlusten verbunden, die zur Erwärmung im Volumen führen. Während die Orientierungspolarisation des Wassermoleküls im MHz-Bereich im Gegensatz zum GHz-Frequenzbereich der Mikrowellen nicht zu einer effizienten Energieeinkopplung und damit Erwärmung führt, können beispielsweise Prozesse der lonenbeweglichkeit zu einer sehr effizienten Erwärmung im MHz-Frequenzbereich führen. Aus diesem Grund ist es im eingesetzten Frequenzbereich auch möglich, trockene Materialien effizient zu erwärmen. Die Mechanismen der Energieeinkopplung, die der dielektrischen Erwärmung zugrunde liegen, sind der Fachliteratur zu entnehmen. Für die Umsetzung des erfindungsgemäßen Verfahrens ist es unerheblich, auf welchem physikalischen Wirkprinzip die dielektrische Erwärmung konkret beruht. Das erfindungsgemäße Verfahren erlaubt durch die Umsetzung der Vorteile der Radiowellen-Erwärmung eine vergleichsweise homogene Erwärmung von Bauwerksstrukturen auch dann, wenn eine Durchführung von elektrischen Leitungen durch die Struktur nicht möglich ist oder wenn die Struktur nur von einer Seite zugänglich ist, weil beispielsweise Erdreich die zu erwärmende Struktur auf der der heißen Elektrode abgewandten Seite begrenzt.The method according to the invention is based on direct dielectric heating of the material, an element acting as an electrode, the coupling element, being capacitively and not directly electrically connected to the RF voltage source via the shielding electrode. For this purpose, a high-frequency alternating electric field is applied in such a way that a field is established in the solid that leads to the reorientation or other movement of polar structures in the solid. Their reorientation or movement is associated with frictional losses due to the interaction with their environment, which leads to heating in the volume. While the orientation polarization of the water molecule in the MHz range, in contrast to the GHz frequency range for microwaves, does not lead to efficient energy coupling and thus heating, processes of ion mobility, for example, can lead to very efficient heating in the MHz frequency range. For this reason, it is also possible to heat dry materials efficiently in the frequency range used. The mechanisms of energy coupling that underlie dielectric heating can be found in the specialist literature. For the implementation of the method according to the invention, it is irrelevant which physical operating principle the dielectric heating is based on. By implementing the advantages of radio wave heating, the method according to the invention permits a comparatively homogeneous heating of building structures even if it is not possible to pass electrical lines through the structure or if the structure is only accessible from one side because, for example, the soil is closed heating structure limited on the side facing away from the hot electrode.

Die Vielzahl von Prozessen, die für die einzelnen Stoffe einen dielektrischen Energieeintrag, d.h. eine Absorption von Energie im Hochfrequenzbereich, ermöglicht, bringt eine hohe Flexibilität hinsichtlich der zu behandelnden Materialien mit sich. Es können trockene und feuchte, poröse und unporöse Stoffe mit hoher Effizienz erwärmt werden. Als Beispiele aus dem Baubereich seien Naturstein, Ziegelmauerwerk, Beton oder Holz genannt. Dies schließt gegebenenfalls Zwischen- und Deckschichten wie Mörtelfugen und Putzoberflächen mit ein. Das erfindungsgemäße Verfahren ist jedoch auch auf andere Bereiche der Verfahrenstechnik übertragbar. So kann es sich bei der zu erwärmenden Feststoffstruktur prinzipiell auch um ein Bauteil aus Kunststoff oder Keramik oder um ein Schüttbett aus verschiedenen Materialien wie Adsorbenzien oder Katalysatoren handeln. Weitere Applikationen mit anderen Materialien werden ausdrücklich nicht ausgeschlossen.The large number of processes that enable dielectric energy input for the individual substances, ie absorption of energy in the high-frequency range, brings with it a high degree of flexibility with regard to the materials to be treated. Dry and moist, porous and non-porous materials can be heated with high efficiency. Examples from the construction sector include natural stone, brick masonry, concrete or wood. This closes if necessary, intermediate and top layers such as mortar joints and plaster surfaces. However, the method according to the invention can also be transferred to other areas of process engineering. In principle, the solid structure to be heated can also be a component made of plastic or ceramic or a pouring bed made of different materials such as adsorbents or catalysts. Further applications with other materials are expressly not excluded.

Der Grenzfall einer idealen kapazitiven Kopplung wäre nur dann zu erreichen, wenn das Verhältnis aus den überlappenden Flächen von Schirmungselektrode und Kopplungselement einerseits und heißer Elektrode und Kopplungselement andererseits unendlich groß wäre. Im realen Einsatzfall ist die elektrische Feldstärke, die für die Aufheizrate relevant ist, durch das endliche Flächenverhältnis auch zwischen Schirmungselektrode und gegenüberliegend angeordnetem Kopplungselement nicht Null. Da aber die Aufheizrate dem Quadrat der elektrischen Feldstärke proportional ist, kann durch die Wahl von Flächenverhältnissen oberhalb von 5 oder sogar 10 problemlos eine deutlich bevorzugte Aufheizung im Bereich der "heißen" Elektrode realisiert werden. Dies bedeutet beispielsweise für ein sehr ausgedehntes Kopplungselement mit einer Fläche, die den gesamten Bereich abdeckt, dass die Schirmungselektrode wesentlich größer als die heiße Elektrode sein muss, was in der Regel problemlos realisiert werden kann.The borderline case of an ideal capacitive coupling would only be reached if the ratio of the overlapping areas of shielding electrode and coupling element on the one hand and hot electrode and coupling element on the other hand were infinitely large. In real use, the electrical field strength, which is relevant for the heating rate, is not zero due to the finite area ratio between the shielding electrode and the coupling element arranged opposite. However, since the heating rate is proportional to the square of the electric field strength, a clearly preferred heating in the area of the “hot” electrode can easily be achieved by choosing area ratios above 5 or even 10. For example, for a very extensive coupling element with an area that covers the entire area, this means that the shielding electrode must be significantly larger than the hot electrode, which can generally be implemented without problems.

Aus verfahrenstechnischer Sicht kann es jedoch von Vorteil sein, parallel zur Erwärmung zwischen heißer Elektrode und Kopplungselement eine moderate Erwärmung in der Umgebung der eigentlich aufzuheizenden Zone des Festkörpers vorzunehmen. So kann beispielsweise eine unerwünschte Rekondensation von aus der heißen Zone austretenden Verbindungen wie Wasser und Schadstoffen verhindert werden. Außerdem wird durch verminderte Temperaturgradienten der Wärmefluss aus dem direkt erwärmten Bereich reduziert. Geringere Temperaturgradienten sind darüber hinaus mit kleineren mechanischen Spannungen im Material verbunden, wodurch das Risiko einer Schädigung beispielsweise durch Rissbildung vermindert werden kann. Eine Variante des erfindungsgemäßen Verfahrens kann also durchaus auf verringerte bzw. definiert eingestellte Flächenverhältnisse im oben genannten Sinne zurückgreifen, um die Erwärmungsraten im eigentlichen Zielbereich und im angrenzenden Wandbereich gezielt aufeinander abzustimmen.From a procedural point of view, however, it can be advantageous to carry out a moderate heating in the vicinity of the zone of the solid body that is actually to be heated, parallel to the heating between the hot electrode and the coupling element. For example, undesired recondensation of compounds emerging from the hot zone, such as water and pollutants, can be prevented. Reduced temperature gradients also reduce the heat flow from the directly heated area. Lower temperature gradients are also associated with smaller mechanical stresses in the material, which can reduce the risk of damage, for example due to crack formation. A variant of the method according to the invention can therefore fall back on reduced or defined area ratios in the above-mentioned sense in order to specifically coordinate the heating rates in the actual target area and in the adjacent wall area.

Ein weiterer Aspekt der vorliegenden Erfindung betrifft eine Vorrichtung zur dielektrischen Erwärmung von Feststoffen, welche vorzugsweise mindestens all diejenigen Merkmale aufweist, welche für die Durchführung der einzelnen Verfahrensschritte des beschriebenen Verfahrens erforderlich sind. Eine Vorrichtung zur dielektrischen Erwärmung von Feststoffen umfasst eine spannungsführende Elektrode; eine Schirmungselektrode, wobei die spannungsführende Elektrode und die Schirmungselektrode auf einer ersten Seite eines Feststoffs anordenbar sind, und die Schirmungselektrode mit einem Kopplungselement auf einer zweiten Seite des Feststoffs im Betrieb kapazitiv gekoppelt ist, wobei sich die erste Seite des Feststoffs und die zweite Seite des Feststoffs gegenüberliegen; und ein Mittel zum Anlegen einer Hochfrequenz-Spannung, dazu ausgebildet, eine Hochfrequenz-Spannung mit einer Frequenz aus dem Bereich zwischen 500 kHz und 500 MHz an die spannungsführende Elektrode anzulegen, wobei das Flächenverhältnis zwischen dem Überlappungsbereich zwischen den Oberflächen des mindestens einen Kopplungselements und der mindestens einen Schirmungselektrode, und den Oberflächen der mindestens einen spannungsführenden Elektrode größer als 3:1 ist.Another aspect of the present invention relates to a device for the dielectric heating of solids, which preferably has at least all those features which are necessary for carrying out the individual method steps of the described Procedure are required. A device for the dielectric heating of solids comprises a live electrode; a shielding electrode, wherein the live electrode and the shielding electrode can be arranged on a first side of a solid, and the shielding electrode is capacitively coupled to a coupling element on a second side of the solid during operation, the first side of the solid and the second side of the solid oppose; and a means for applying a high-frequency voltage, designed to apply a high-frequency voltage with a frequency in the range between 500 kHz and 500 MHz to the live electrode, the area ratio between the overlap area between the surfaces of the at least one coupling element and the at least one shielding electrode, and the surfaces of the at least one live electrode is greater than 3: 1.

Insbesondere kann eine bevorzugte Ausführungsform einer erfindungsgemäßen Vorrichtung zur dielektrischen Erwärmung von Feststoffen eine flächig ausgedehnte spannungsführende Elektrode mit einer Hauptebene; eine flächig ausgedehnte Schirmungselektrode mit einer Hauptebene, wobei die Hauptebene der Schirmungselektrode parallel zur Hauptebene der spannungsführenden Elektrode ausgerichtet ist; und ein Mittel zum Anlegen einer Hochfrequenz-Spannung, dazu ausgebildet, eine Hochfrequenz-Spannung mit einer Frequenz aus dem Bereich zwischen 500 kHz und 500 MHz an die spannungsführende Elektrode anzulegen; umfassen. Diese Ausführungsform der Vorrichtung ist dadurch gekennzeichnet, dass die Projektion der spannungsführenden Elektrode auf die Schirmungselektrode entlang einer Achse senkrecht zur Hauptebene der spannungsführenden Elektrode vollständig mit der Schirmungselektrode überlappt, der minimale Abstand zwischen der spannungsführenden Elektrode und der Schirmungselektrode bevorzugt mindestens 1 cm, ebenfalls bevorzugt mindestens 10 cm, noch bevorzugter mindestens 20 cm, beträgt und das projektierte Flächenverhältnis zwischen den Oberflächen der Schirmungselektrode und der spannungsführenden Elektrode bevorzugt größer als 3:1, ebenfalls bevorzugt größer als 6:1, noch bevorzugt größer als 10:1, ist.In particular, a preferred embodiment of a device according to the invention for the dielectric heating of solids can have a voltage-carrying electrode which is extended over a large area and has a main plane; a flat shield electrode with a main plane, the main plane of the shield electrode being aligned parallel to the main plane of the live electrode; and a means for applying a high-frequency voltage, designed to apply a high-frequency voltage with a frequency in the range between 500 kHz and 500 MHz to the live electrode; include. This embodiment of the device is characterized in that the projection of the voltage-carrying electrode onto the shielding electrode completely overlaps the shielding electrode along an axis perpendicular to the main plane of the voltage-carrying electrode, the minimum distance between the voltage-carrying electrode and the shielding electrode preferably at least 1 cm, likewise preferably at least 10 cm, more preferably at least 20 cm, and the projected area ratio between the surfaces of the shielding electrode and the live electrode is preferably greater than 3: 1, also preferably greater than 6: 1, still preferably greater than 10: 1.

Dabei ergibt sich für diese Betrachtung eine Fläche der Schirmungselektrode durch denjenigen Flächenbereich der Schirmungselektrode, welcher flächig auf den zu erwärmenden Feststoff aufliegt bzw. weitestgehend an dessen Oberfläche angrenzt. Die Oberfläche der Schirmungselektrode ergibt sich dabei bei einer bevorzugten Ausführungsvariante als die maximal innerhalb der Hauptebene durch die Abmessungen der Schirmungselektrode umschriebene Fläche, die in einer Ebene mit der spannungsführenden Elektrode liegt. Die spannungsführende Elektrode und die Hauptebene der Schirmungselektrode liegen vorzugsweise parallel zueinander, so dass Projektion der spannungsführenden Elektrode auf die Hauptebene der Schirmungselektrode vollständig mit der Schirmungselektrode überlappt.For this consideration, a surface of the shielding electrode results from that surface region of the shielding electrode which lies flat on the solid to be heated or which is largely adjacent to its surface. In a preferred embodiment variant, the surface of the shielding electrode is the maximum area defined within the main plane by the dimensions of the shielding electrode and lies in one plane with the live electrode. The Live electrode and the main plane of the shield electrode are preferably parallel to each other, so that projection of the live electrode on the main plane of the shield electrode completely overlaps with the shield electrode.

Weiterhin umfasst diese Ausführungsform der Vorrichtung zur dielektrischen Erwärmung von Feststoffen vorzugsweise ein Kopplungselement, wobei zwischen der spannungsführenden Elektrode und dem Kopplungselement ein Aufnahmeraum für einen zu erwärmenden Feststoff ausgebildet ist; die spannungsführende Elektrode und die Schirmungselektrode auf einer ersten Seite des Aufnahmeraums und das Kopplungselement auf einer zweiten Seite des Aufnahmeraums angeordnet sind, wobei sich die erste Seite des Aufnahmeraums und die zweite Seite des Aufnahmeraums gegenüberliegen; das Kopplungselement mit der Schirmungselektrode zumindest teilweise kapazitiv gekoppelt ist; und zwischen der mindestens einen spannungsführenden Elektrode und dem Kopplungselement eine Hochfrequenz-Spannung anliegt, wobei die Hochfrequenz-Spannung eine Frequenz aus dem Bereich zwischen 500 kHz und 500 MHz aufweist.Furthermore, this embodiment of the device for the dielectric heating of solids preferably comprises a coupling element, a receiving space for a solid to be heated being formed between the voltage-carrying electrode and the coupling element; the live electrode and the shielding electrode are arranged on a first side of the accommodating space and the coupling element is arranged on a second side of the accommodating space, the first side of the accommodating space and the second side of the accommodating space being opposite one another; the coupling element is at least partially capacitively coupled to the shielding electrode; and a high-frequency voltage is present between the at least one live electrode and the coupling element, the high-frequency voltage having a frequency in the range between 500 kHz and 500 MHz.

Vorzugsweise umfasst die erfindungsgemäße Vorrichtung zur dielektrischen Erwärmung von Feststoffen weiterhin eine Hochfrequenz-Spannungsquelle, die eine elektrische Spannung mit einer Frequenz zwischen 500 kHz und 500 MHz, vorzugsweise zwischen 1 und 50 MHz und besonders bevorzugt mit einer für industrielle, medizinische und Forschungsanwendungen freigegebenen, so genannten ISM-Frequenz von beispielsweise 13,56 MHz oder 27 MHz, bereitstellt, elektrische Verbindungen zu einer spannungsführenden Elektrode und zu einer Schirmungselektrode, die vorzugsweise als elektromagnetische Abschirmung fungiert, sowie ein Kopplungselement auf der Gegenseite der zu behandelnden Feststoffstruktur, das kapazitiv mit der Schirmungselektrode gekoppelt ist. Auf einer Seite der zu behandelnden Festkörperstruktur sind damit sowohl die elektrisch leitfähige Schirmungselektrode als auch die spannungsführende heiße Elektrode angeordnet und mit der Spannungsquelle elektrisch leitend verbunden. Auf der Gegenseite der Anordnung ist eine aktiv angebrachte Kopplungselektrode oder ein passiv wirkendes natürliches Kopplungselement positioniert, die mit der auf der anderen Seite angeordneten Elektroden-Schirmungs-Anordnung nicht durch elektrisch leitende Zuleitungen verbunden sein muss. Wesentliches verfahrensimmanentes Merkmal ist es, dass eine kapazitive Kopplung zwischen der Schirmung und der auf der Gegenseite angeordneten, flächig ausgedehnten Elektrode bzw. dem Kopplungselement realisiert wird.Preferably, the device according to the invention for the dielectric heating of solids further comprises a high-frequency voltage source which generates an electrical voltage with a frequency between 500 kHz and 500 MHz, preferably between 1 and 50 MHz and particularly preferably with one approved for industrial, medical and research applications ISM frequency of 13.56 MHz or 27 MHz, for example, provides electrical connections to a live electrode and to a shielding electrode, which preferably acts as an electromagnetic shield, and a coupling element on the opposite side of the solid structure to be treated, which is capacitive to the shielding electrode is coupled. Both the electrically conductive shielding electrode and the live hot electrode are thus arranged on one side of the solid structure to be treated and are connected in an electrically conductive manner to the voltage source. An actively attached coupling electrode or a passive natural coupling element is positioned on the opposite side of the arrangement, which does not have to be connected to the electrode-shield arrangement arranged on the other side by electrically conductive supply lines. It is an essential feature inherent to the process that a capacitive coupling between the shielding and the electrode or the coupling element, which is arranged on the opposite side and has a large area, is realized.

Bevorzugt enthält die erfindungsgemäße Vorrichtung zusätzlich ein elektronisches Anpassnetzwerk, das zwischen Spannungsquelle und Elektroden bzw. Schirmung angeordnet ist und das die Impedanz der Last an den Innenwiderstand der Spannungsquelle so anpasst, dass die zum Generator reflektierte HF-Leistung minimiert und nach Möglichkeit gänzlich eliminiert wird.The device according to the invention preferably additionally contains an electronic matching network which is arranged between the voltage source and electrodes or shielding and that adjusts the impedance of the load to the internal resistance of the voltage source in such a way that the RF power reflected to the generator is minimized and, if possible, completely eliminated.

Vorzugsweise ist im zu erwärmenden Medium mindestens ein Mittel zur Temperaturmessung, beispielsweise ein Temperatursensor, positioniert, der besonders bevorzugt mit einem Mittel zur Leistungsregelung, beispielsweise einem Computersystem mit einer entsprechenden Software zur Auswertung, Steuerung und Regelung, so verbunden ist, dass auf der Basis der Messwerte der Leistungseintrag in den Feststoff so reguliert werden kann, dass vorgewählte Temperaturprogramme realisierbar sind. Weiterhin kann die Vorrichtung mindestens ein Mittel zur Messung einer Feldstärke umfassen, wobei eine gemessene Feldstärke dem Mittel zur Leistungsregelung zugeführt werden und von diesem ebenfalls zur Steuerung und Regelung eingesetzt werden kann. Das vorzugsweise als Teil der erfindungsgemäßen Vorrichtung vorhandene Mittel zur Leistungsregelung kann neben der Steuerung und Regelung auch zusätzliche Aufgaben zur Optimierung des Prozessablaufs mit übernehmen. Dies beinhaltet beispielsweise auch Datenerfassung und -archivierung, Überwachung der Temperaturen im zu erwärmenden Volumen, Überwachung der elektrischen Feldstärke, Datenweitergabe oder Übernahme von Kontrollfunktionen zur Einleitung von Notfallregimes.At least one means for temperature measurement, for example a temperature sensor, is preferably positioned in the medium to be heated, which is particularly preferably connected to a means for power control, for example a computer system with corresponding software for evaluation, control and regulation, such that on the basis of the Measured values of the power input into the solid can be regulated in such a way that preselected temperature programs can be implemented. Furthermore, the device can comprise at least one means for measuring a field strength, a measured field strength being fed to the means for power regulation and can also be used by the latter for control and regulation. The means for power control, which is preferably part of the device according to the invention, can also take on additional tasks for optimizing the process flow in addition to the control and regulation. This also includes, for example, data acquisition and archiving, monitoring of the temperatures in the volume to be heated, monitoring of the electrical field strength, data transfer or taking over control functions to initiate emergency regimes.

Bevorzugt sind die Elektroden und/oder die Schirmung so ausgebildet, dass ein Durchtritt von aus dem behandelten Feststoff austretenden Substanzen möglich ist. Die Elektroden und die Schirmung sind dabei insbesondere so gestaltet, dass ein Transport von Wasser und/oder Schadstoffen aus dem behandelten Material nicht oder wenig behindert wird. Hierfür bieten sich Netz- oder Lochelektroden bzw. gleichartige Schirmungen an. Auch der Einsatz von metallbeschichteten, ggf. stoffdurchlässigen Folien kann für die Ausbildung der unterschiedlichen Elektroden geeignet sein, um die Handhabbarkeit vor Ort zu verbessern.The electrodes and / or the shielding are preferably designed such that substances emerging from the treated solid can pass through. The electrodes and the shielding are in particular designed so that the transport of water and / or pollutants from the treated material is not or only slightly hindered. Line or perforated electrodes or similar shields are suitable for this. The use of metal-coated, possibly permeable foils can also be suitable for the formation of the different electrodes in order to improve the handling on site.

In einer besonders bevorzugten Variante für bestimmte Anwendungskontexte umfassen die spannungsführende Elektrode, das Kopplungselement und/oder die Schirmungselektrode ein adsorptionsaktives Material. Besonders bevorzugt sind die Elektroden mit einer Schicht aus adsorptionsaktivem Material, vorzugsweise aus Aktivkohle oder einem hydrophoben Zeolith, belegt, wodurch einen Durchtritt von ausdampfenden Schadstoffen in die Umgebungsluft minimiert oder gänzlich verhindert wird. Zur Erfüllung dieser Aufgabe eignet sich besonders auch ein Aktivkohlevlies, das direkt mit den flächigen Elektroden verbunden sein kann.In a particularly preferred variant for certain application contexts, the live electrode, the coupling element and / or the shielding electrode comprise an adsorption-active material. The electrodes are particularly preferably covered with a layer of adsorption-active material, preferably of activated carbon or a hydrophobic zeolite, as a result of which the passage of evaporating pollutants into the ambient air is minimized or completely prevented. An activated carbon fleece, which can be connected directly to the flat electrodes, is particularly suitable for fulfilling this task.

Mithin weist die erfindungsgemäße Vorrichtung zur dielektrischen Erwärmung von Feststoffen vorzugsweise mindestens all diejenigen Merkmale auf, welche für die Durchführung der einzelnen Verfahrensschritte des beschriebenen Verfahrens erforderlich sind. Insbesondere weisen die einzelnen Komponenten der erfindungsgemäßen Vorrichtung zur dielektrischen Erwärmung von Feststoffen vorzugsweise all diejenigen Merkmale auf, welche in Beschreibung des Verfahrens als notwendig oder bevorzugt betrachtet werden. Weiterhin ergeben sich aus einzelnen Ausführungsformen oder der Kombination einzelner Merkmale des erfindungsgemäßen Verfahrens ebenfalls entsprechende Ausführungsformen der erfindungsgemäßen Vorrichtung. Alle zu den einzelnen Ausführungsformen des erfindungsgemäßen Verfahrens gemachten Angaben gelten entsprechend.Accordingly, the device according to the invention for the dielectric heating of solids preferably has at least all those features which are necessary for carrying out the individual process steps of the described method are required. In particular, the individual components of the device for dielectric heating of solids preferably have all those features which are considered necessary or preferred in the description of the method. Furthermore, corresponding embodiments of the device according to the invention also result from individual embodiments or the combination of individual features of the method according to the invention. All statements made about the individual embodiments of the method according to the invention apply accordingly.

Auch wenn die Ausführungen auf potentielle Anwendungen im Bauwesen fokussiert sind, sind Applikationen in anderen Bereichen ausdrücklich adressiert. Bei anderen Anwendungsfeldern sollen explizit auch andere relevante thermisch unterstützte Prozesse angesprochen werden. Hierbei kann es sich beispielsweise um eine thermisch initiierte Aushärtung oder Strukturbildung im materialwissenschaftlichen Kontext handeln. Auch die thermisch unterstützte Polymerbildung in Baustoffen ist für in-situ-Anwendungen mit der Vorrichtung und dem Verfahren in optimaler Form kombinierbar.Even if the explanations focus on potential applications in construction, applications in other areas are expressly addressed. In other fields of application, other relevant thermally supported processes should also be explicitly addressed. This can be, for example, a thermally initiated hardening or structure formation in the material science context. The thermally assisted polymer formation in building materials can also be optimally combined with the device and the method for in-situ applications.

Kurzbeschreibung der FigurenBrief description of the figures

Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen erläutert. Es zeigen:

Figur 1
eine schematische Aufsicht-Darstellung einer bevorzugten Ausführungsform einer erfindungsgemäßen Vorrichtung zur Erwärmung von Feststoffen;
Figur 2
eine schematische Aufsicht-Darstellung einer erfindungsgemäßen Elektrodenanordnung mit metallischer Kopplungselektrode als Kopplungselement;
Figur 3
eine schematische Aufsicht-Darstellung einer erfindungsgemäßen Elektrodenanordnung mit natürlichem Kompartiment als Kopplungselement;
Figur 4
zeitliche Verläufe der mittleren Temperatur, der HF-Leistung und der HF-Spannung während eines Versuches zur Erwärmung einer Porenbetonwand mittels kapazitiver Kopplung;
Figur 5
zeitliche Verläufe der mittleren Temperatur, der HF-Leistung und der HF-Spannung während eines Versuches zur Erwärmung der Wand aus Ziegelmauerwerk mittels kapazitiver Kopplung;
Figur 6
zeitliche Verläufe der mittleren Temperatur in zwei verschiedenen Tiefen, der HF-Leistung und der HF-Spannung während eines Versuches zur Erwärmung eines Kellerbodens mittels kapazitiver Kopplung;
Figuren 7a, 7b
zeitliche Verläufe der mittleren Temperatur, der HF-Leistung und der HF-Spannung (Figur 7a) sowie Temperaturverläufe für verschiedene Tiefen (Figur 7b) im Mauerwerk während eines Versuches zur Erwärmung einer Kellerwand mittels kapazitiver Kopplung;
The invention is explained below in exemplary embodiments with reference to the accompanying drawings. Show it:
Figure 1
is a schematic plan view of a preferred embodiment of a device for heating solids according to the invention;
Figure 2
is a schematic plan view of an electrode arrangement according to the invention with a metallic coupling electrode as a coupling element;
Figure 3
is a schematic plan view of an electrode arrangement according to the invention with a natural compartment as a coupling element;
Figure 4
time profiles of the mean temperature, the RF power and the RF voltage during an attempt to heat a cellular concrete wall by means of capacitive coupling;
Figure 5
temporal courses of the mean temperature, the RF power and the RF voltage during an attempt to heat the wall of brick masonry by means of capacitive coupling;
Figure 6
temporal courses of the mean temperature at two different depths, the RF power and the RF voltage during an attempt to heat a basement floor by means of capacitive coupling;
Figures 7a, 7b
time profiles of the mean temperature, the RF power and the RF voltage ( Figure 7a ) and temperature profiles for different depths ( Figure 7b ) in the masonry during an attempt to heat a basement wall using capacitive coupling;

Detaillierte Beschreibung der ErfindungDetailed description of the invention

Figur 1 zeigt eine schematische Aufsicht-Darstellung einer bevorzugten Ausführungsform einer erfindungsgemäßen Vorrichtung 100 zur Erwärmung von Feststoffen 40. Bei der dargestellten Ausführungsform handelt es sich um eine Elektrodenanordnung mit einer elektrisch leitfähigen, beispielsweise metallischen Kopplungselektrode 22 als Kopplungselement 20. Diese liegt flächig an einem räumlich ausgedehnten Feststoff 40 an. Beispielsweise kann es sich bei dem Feststoff um stehendes Mauerwerk handeln. Auf der gegenüberliegenden Seite des Feststoffs 40 befindet sich parallel zum Kopplungselement 20 ebenfalls flächig angeordnet eine spannungsführende Elektrode 10. Die von der spannungsführenden Elektrode 10 überdeckte Oberfläche des Feststoffs kann, wie hier dargestellt, deutlich kleiner als die von dem Kopplungselement 20 überdeckte Oberfläche sein. Figure 1 shows a schematic top view of a preferred embodiment of a device 100 according to the invention for heating solids 40. The embodiment shown is an electrode arrangement with an electrically conductive, for example metallic coupling electrode 22 as the coupling element 20. This lies flat on a spatially extended solid 40 on. For example, the solid can be standing masonry. On the opposite side of the solid 40 there is also a voltage-carrying electrode 10 parallel to the coupling element 20. The surface of the solid covered by the voltage-carrying electrode 10 can, as shown here, be significantly smaller than the surface covered by the coupling element 20.

Die spannungsführende Elektrode 10 ist umgeben von einer Schirmungselektrode 30, welche in einem Bereich um die spannungsführende Elektrode 10 ebenfalls flächig an der Oberfläche des Feststoffs 40 anliegt. Dieses Flächenelement bildet dabei die Hauptebene der Schirmungselektrode 30 aus. In der gezeigten Darstellung liegt die spannungsführende Elektrode 10 vollständig innerhalb der von einem Großteil der Schirmungselektrode 30 aufgespannten Hauptebene der Schirmungselektrode 30. Die Hauptebene der Schirmungselektrode 30 liegt parallel zur Kopplungselektrode 10. Zwischen der spannungsführenden Elektrode 10 und dem Kopplungselektrode 22 als Kopplungselement 20 wird dabei ein Aufnahmeraum für einen zu erwärmenden Feststoff 40 ausgebildet. Im Bereich unmittelbar um die spannungsführende Elektrode 10 ist die Schirmungselektrode 30 derart geformt, dass die spannungsführende Elektrode 10 zwar von der Schirmungselektrode 30 halbseitig umschlossen bzw. überdeckt wird, sich jedoch ein minimaler Abstand dmin zwischen spannungsführender Elektrode 10 und Schirmungselektrode 30 ergibt. Dies dient insbesondere dazu, die Schirmungselektrode 30 von der spannungsführender Elektrode 10 elektrisch hinsichtlich der Leitfähigkeit zu entkoppeln. Die Schirmungselektrode 30 und die spannungsführende Elektrode 10 können sich somit auf unterschiedlichen elektrischen Potentialen befinden. Die formenhafte Ausgestaltung des unmittelbaren Bereichs zwischen der spannungsführende Elektrode 10 und der Schirmungselektrode 30 kann weitgehend beliebig ausgeprägt sein; das hier dargestellte Reckteckprofil der Überdeckung ist rein beispielhaft für illustratorische Zwecke gewählt.The live electrode 10 is surrounded by a shielding electrode 30, which also lies flat against the surface of the solid 40 in a region around the live electrode 10. This surface element forms the main plane of the shielding electrode 30. In the illustration shown, the voltage-carrying electrode 10 lies completely within the main plane of the shielding electrode 30 spanned by a large part of the shielding electrode 30. The main plane of the shielding electrode 30 lies parallel to the coupling electrode 10. Between the voltage-carrying electrode 10 and the coupling electrode 22 as a coupling element 20 a Receiving space for a solid 40 to be heated. In the area immediately around the live electrode 10, the shielding electrode 30 is shaped such that the live electrode Although electrode 10 is enclosed or covered on one side by the shielding electrode 30, there is, however, a minimal distance d min between the live electrode 10 and the shielding electrode 30. This serves in particular to electrically decouple the shielding electrode 30 from the live electrode 10 with regard to the conductivity. The shielding electrode 30 and the live electrode 10 can thus be at different electrical potentials. The shape of the immediate area between the live electrode 10 and the shielding electrode 30 can be largely arbitrary; the corner profile of the cover shown here is chosen purely by way of example for illustrative purposes.

Die spannungsführende Elektrode 10 und die Schirmungselektrode 30 sind vorzugsweise über ein elektronisches Anpassnetzwerk 60 mit einem Hochfrequenzgenerator 50 verbunden. Über diesen wird ein hochfrequentes Wechselfeld zwischen die spannungsführende Elektrode 10 und die Kopplungselektrode 22 als Kopplungselement 20 erzeugt, wobei die von der Elektrodenanordnung zum Hochfrequenzgenerator 50 rückreflektierte Leistung durch das elektronische Anpassnetzwerk 60 minimiert wird. Die dargestellte erfindungsgemäße Vorrichtung umfasst weiterhin ein Mittel 70 zur Temperaturmessung und ein Mittel 90 zur Bestimmung der Feldstärke. Bei dem Mittel 70 zur Temperaturmessung kann es sich insbesondere um einen faseroptischen Temperatursensor handeln. Bei dem Mittel 90 zur Bestimmung der Feldstärke kann es sich insbesondere um einen Sensor zur Messung der elektrischen Feldstärke handeln. Die Sensoren können mit einem Mittel 80 zur Regelung der Hochfrequenz-Spannung verbunden sein. Das Mittel 80 zur Regelung der Hochfrequenz-Spannung kann dabei die vom Hochfrequenzgenerator 50 abgegebene Hochfrequenz-Spannung bzw. die Hochfrequenz-Leistung in Abhängigkeit von den Eingangsgrößen einzelner Messmittel steuern und regeln. Unterbleibt eine aktive Regelung und Steuerung, so können die Messwerte vorzugsweise durch das Mittel 80 zur Regelung der Hochfrequenz-Spannung gespeichert und/oder zur weiteren Auswertung zur Verfügung gestellt werden.The live electrode 10 and the shielding electrode 30 are preferably connected to a high-frequency generator 50 via an electronic matching network 60. This generates a high-frequency alternating field between the live electrode 10 and the coupling electrode 22 as the coupling element 20, the power reflected back from the electrode arrangement to the high-frequency generator 50 being minimized by the electronic matching network 60. The device according to the invention shown further comprises a means 70 for temperature measurement and a means 90 for determining the field strength. The means 70 for temperature measurement can in particular be a fiber-optic temperature sensor. The means 90 for determining the field strength can in particular be a sensor for measuring the electrical field strength. The sensors can be connected to a means 80 for regulating the high-frequency voltage. The means 80 for regulating the high-frequency voltage can control and regulate the high-frequency voltage emitted by the high-frequency generator 50 or the high-frequency power as a function of the input variables of individual measuring devices. If active regulation and control is omitted, the measured values can preferably be stored by means 80 for regulating the high-frequency voltage and / or made available for further evaluation.

Figur 2 zeigt eine schematische Aufsicht-Darstellung einer erfindungsgemäßen Elektrodenanordnung mit metallischer Kopplungselektrode 22 als Kopplungselement 20. Die dargestellte Elektrodenanordnung entspricht der in Figur 1 gezeigten Anordnung. Die Bezugszeichen und Beschreibungen gelten daher entsprechend. Zusätzlich sind hier jedoch die äußeren Abmessungen der Oberfläche A1 der Schirmungselektrode 30 und die Oberfläche A2 der spannungsführenden Elektrode 10 mit dargestellt. Eine erfindungsgemäße Bestimmung eines projektierten Flächenverhältnisses zwischen den Oberflächen A1, A2 der Schirmungselektrode 30 und der spannungsführenden Elektrode 10 ergibt sich daraus als Verhältnis der eingezeichneten Oberflächen, wobei für A1 nur die Fläche berücksichtigt wird, für die die Schirmungselektrode an der zu behandelnden Struktur 40 anliegt. Anliegen bedeutet in diesem Fall, dass der Abstand zum Feststoff 40 wesentlich kleiner als der Abstand zum Feststoff im Bereich der spannungsführenden Elektrode 10 ist. Wesentlich ist in diesem Zusammenhang mit einem Faktor von mindestens 10 gegeben. Die Projektion ist insbesondere im Falle einer gegenseitigen Verkippung zwischen der spannungsführenden Elektrode 10, genauer der von der spannungsführenden Elektrode 10 aufgespannten Ebene, und der Hauptebene der Schirmungselektrode 30 von Bedeutung. Vorzugsweise liegen diese beiden Ebenen jedoch parallel zueinander. Figure 2 shows a schematic top view of an electrode arrangement according to the invention with a metallic coupling electrode 22 as a coupling element 20. The electrode arrangement shown corresponds to that in FIG Figure 1 shown arrangement. The reference symbols and descriptions therefore apply accordingly. In addition, however, the external dimensions of the surface A 1 of the shielding electrode 30 and the surface A 2 of the live electrode 10 are also shown. An inventive determination of a projected area ratio between the surfaces A 1 , A 2 of the shielding electrode 30 and the live electrode 10 results from the ratio of surfaces, wherein for A 1 only the area is taken into account for which the shielding electrode is in contact with the structure 40 to be treated. In this case, "concern" means that the distance to the solid 40 is substantially smaller than the distance to the solid in the area of the live electrode 10. In this context, a factor of at least 10 is essential. The projection is particularly important in the case of a mutual tilting between the live electrode 10, more precisely the plane spanned by the live electrode 10, and the main plane of the shielding electrode 30. However, these two levels are preferably parallel to one another.

Figur 3 zeigt eine schematische Aufsicht-Darstellung einer erfindungsgemäßen Elektrodenanordnung mit einem natürlichen Kompartiment 24 als Kopplungselement 20. Die dargestellte Elektrodenanordnung entspricht weitgehend der in Figur 1 gezeigten Anordnung, wobei hier jedoch beim Kopplungselement 20 die in Figur 1 gezeigte Kopplungselektrode 22 durch ein natürliches Kompartiment 24 ersetzt wurde. Hierbei kann es sich insbesondere um anliegendes oder aufgeschüttetes Erdreich handeln. Zur Umsetzung des erfindungsgemäßen Verfahrens muss dieses die Funktion einer Kopplungselektrode 22 übernehmen können. Daher ist besonders bevorzugt, dass das natürliche Kompartiment 24 ein zumindest geringfügig elektrisch leitfähiges Material umfasst. Hierbei kann es sich insbesondere um feuchtes, mineralhaltiges Erdreich handeln. Es ist möglich, im Rahmen einer Variante des erfindungsgemäßen Verfahrens das als Kopplungselement 20 wirkende Medium kontinuierlich oder diskontinuierlich zu befeuchten, um dessen Funktion als Kopplungselement 20 zu verbessern. Hierzu kann eine erfindungsgemäße Anordnung eine entsprechende Dosiereinrichtung, vorzugsweise für Wasser, enthalten. In einer weiteren bevorzugten Ausgestaltung der Vorrichtung kann im Kompartiment 24 zusätzlich ein Mittel zur Messung der elektrischen Leitfähigkeit und/oder der Feuchte platziert werden. Besonders bevorzugt ist, dieses Mittel mit der Auswerte- und Steuerungseinheit zu verbinden. Figure 3 shows a schematic top view of an electrode arrangement according to the invention with a natural compartment 24 as coupling element 20. The electrode arrangement shown largely corresponds to that in FIG Figure 1 shown arrangement, but here the coupling element 20 in Figure 1 shown coupling electrode 22 was replaced by a natural compartment 24. This can in particular be adjacent or heaped up soil. To implement the method according to the invention, it must be able to take on the function of a coupling electrode 22. It is therefore particularly preferred that the natural compartment 24 comprises an at least slightly electrically conductive material. In particular, this can be moist, mineral-containing soil. It is possible, within the scope of a variant of the method according to the invention, to moisten the medium acting as coupling element 20 continuously or discontinuously in order to improve its function as coupling element 20. For this purpose, an arrangement according to the invention can contain a corresponding metering device, preferably for water. In a further preferred embodiment of the device, a means for measuring the electrical conductivity and / or the moisture can additionally be placed in the compartment 24. It is particularly preferred to connect this means to the evaluation and control unit.

Ausführungsbeispiel 1:Example 1: Erwärmung einer Wand aus Porenbeton im TechnikumsmaßstabHeating a wall made of aerated concrete on a pilot plant scale

Zur Demonstration wurde in einem Technikumsversuch eine Wand aus Porenbeton (Größe ca. 2,0 m x 1,8 m, Dicke 0,2 m) nach dem erfindungsgemäßen Verfahren behandelt. Hierzu wurde sie auf der Rückseite mit einer mit Aluminium (Schichtdicke 7 µm) beschichteten Polyethylenfolie (Foliendicke 12 µm) versehen, welche als Kopplungselektrode (Fläche 3,6 m2) wirkte. Die spannungsführende, so genannte heiße Elektrode bestand aus Aluminiumlochblech und wies eine Fläche von 0,36 m2 auf. Die Schirmungselektrode aus Kupfergaze deckte eine Gesamtfläche von 3 m2 ab, wobei sie auch zur Schirmung über der heißen Elektrode diente. Dies wurde erreicht, indem die Schirmung mit einem Abstand von 10 cm auch über der heißen Elektrode angeordnet war.For demonstration purposes, a wall made of aerated concrete (size approx. 2.0 mx 1.8 m, thickness 0.2 m) was treated in a pilot plant experiment using the method according to the invention. For this purpose, it was provided on the back with an aluminum (layer thickness 7 µm) coated polyethylene film (film thickness 12 µm), which acted as a coupling electrode (area 3.6 m 2 ). The live, so-called hot electrode consisted of perforated aluminum sheet and had an area of 0.36 m 2 . The shielding electrode made of copper gauze covered a total area of 3 m 2 , it also being used for shielding over the hot electrode. This was achieved by placing the shield at a distance of 10 cm above the hot electrode.

Die spannungsführende heiße Elektrode und die geerdete Schirmungselektrode waren mit einem elektronischen Anpassnetzwerk verbunden, dass wiederum mit einem HF-Generator (Arbeitsfrequenz 13,56 MHz, Maximalleistung 3 kW) über ein Koaxialkabel in Verbindung stand. Es wurde eine kapazitive Kopplung zwischen Schirmungselektrode und Kopplungselektrode in erfindungsgemäßer Art und Weise realisiert.The live hot electrode and the grounded shield electrode were connected to an electronic matching network, which in turn was connected to an HF generator (working frequency 13.56 MHz, maximum power 3 kW) via a coaxial cable. A capacitive coupling between the shielding electrode and the coupling electrode was realized in the manner according to the invention.

Figur 4 zeigt zeitliche Verläufe der mittleren Temperatur, der HF-Leistung und der HF-Spannung während eines Versuches zur Erwärmung einer Porenbetonwand mittels kapazitiver Kopplung nach dem erfindungsgemäßen Verfahren und Verwendung einer Variante der erfindungsgemäßen Vorrichtung. Bei einer über die Zeit im Wesentlichen konstanten HF-Leistung und HF-Spannung ist ein nahezu linearer Temperaturanstieg im Porenbetonmauerwerk zwischen der heißen Elektrode und der Kopplungselektrode zu verzeichnen. Der Versuch wurde bei einer Endtemperatur von ca. 32°C abgebrochen, da das Demonstrationsziel erreicht worden war. Es wurde eine Erwärmung um ca. 13 K durch faseroptische Temperatursensoren nachgewiesen. Figure 4 shows temporal profiles of the mean temperature, the RF power and the RF voltage during an attempt to heat a cellular concrete wall by means of capacitive coupling according to the inventive method and use of a variant of the inventive device. With an essentially constant RF power and RF voltage over time, an almost linear temperature rise in the cellular concrete masonry between the hot electrode and the coupling electrode can be observed. The experiment was stopped at a final temperature of approx. 32 ° C because the demonstration goal had been reached. A temperature increase of approx. 13 K was detected by fiber optic temperature sensors.

Ausführungsbeispiel 2:Example 2: Erwärmung eines Wandsegmentes aus ZiegelmauerwerkHeating a wall segment from brick masonry

An einem realen Standort wurde eine durchfeuchtete Wand aus Ziegelmauerwerk mit dem erfindungsgemäßen Verfahren und einer erfindungsgemäßen Vorrichtung thermisch behandelt. Die Wanddicke betrug 24 cm. Die behandelte Außenwand des entsprechenden Gebäudes war von beiden Seiten zugänglich, allerdings sollte sie für die Trocknung nicht durchbohrt werden, weshalb die kapazitive Kopplung für die dielektrische Erwärmung eingesetzt werden musste. Auf der Außenseite der Wand wurde ein als Kopplungselektrode fungierendes Aluminiumlochblech eingesetzt, das die Wand auf einer Fläche von ca. 12 m2 bedeckte. An der Innenwand waren die heiße Elektrode aus Aluminiumlochblech mit einer Fläche von ca. 1 m2 und die Schirmungselektrode aus Kupfergaze (ca. 10 m2) positioniert. Schirmung und heiße Elektrode waren mit dem elektronischen Anpassnetzwerk und weiter mittels eines Koaxialkabels mit dem HF-Generator (Arbeitsfrequenz 13,56 MHz, Maximalleistung 5 kW) verbunden. Innerhalb der erwärmten Wand waren in Tiefen von 4 cm, 12 cm und 20 cm faseroptische Temperatursensoren angeordnet, um den Erwärmungsfortschritt kontinuierlich und örtlich aufgelöst zu verfolgen.At a real location, a moistened wall made of brick masonry was thermally treated with the method and device according to the invention. The wall thickness was 24 cm. The treated outer wall of the corresponding building was accessible from both sides, but it should not be drilled through for drying, which is why the capacitive coupling had to be used for the dielectric heating. On the outside of the wall, an aluminum perforated plate acting as a coupling electrode was used, which covered the wall over an area of approximately 12 m 2 . The hot electrode made of perforated aluminum with an area of approx. 1 m 2 and the shielding electrode made of copper gauze (approx. 10 m 2 ) were positioned on the inner wall. Shielding and hot electrode were connected to the electronic matching network and further by means of a coaxial cable to the HF generator (working frequency 13.56 MHz, maximum power 5 kW). Inside the heated wall were at depths of 4 cm, 12 cm and 20 cm fiber optic temperature sensors arranged to track the heating progress continuously and locally.

Figur 5 zeigt zeitliche Verläufe der mittleren Temperatur, der HF-Leistung und der HF-Spannung während eines Versuches zur Erwärmung der Wand aus Ziegelmauerwerk mittels kapazitiver Kopplung. Die dargestellten Kurvenverläufe verdeutlichen den Erwärmungsfortschritt innerhalb der Wand für das Segment unterhalb der heißen Elektrode anhand des Mittelwertes für die entsprechenden dort angeordneten Temperatursensoren. Die Stabilisierung der Temperatur im Bereich von 100 °C ist vor allem auf die sich in diesem Temperaturbereich wesentlich verstärkende Wasserverdampfung zurückzuführen. Es ist darauf hinzuweisen, dass dieses Temperaturplateau für viele Einzelsensoren klar nachweisbar war, während der hier dargestellte Mittelwert auch von Temperatursensoren mitbestimmt wird, die die Verdampfungstemperatur des Wassers noch nicht erreicht hatten. Die tiefenaufgelöste Temperaturmessung zeigte eine gute Homogenität des Temperaturprofils über den Wandquerschnitt. Die ansteigende HF-Spannung, die für die Aufrechterhaltung der Sollleistung von 5 kW notwendig war, ist durch eine fortschreitende Austrocknung der Wand zu erklären. Die dielektrische Erwärmung der Wand demonstriert wiederum die Anwendbarkeit der Erfindung. Figure 5 shows time profiles of the mean temperature, the RF power and the RF voltage during an attempt to heat the wall made of brick masonry by means of capacitive coupling. The curve profiles shown illustrate the heating progress within the wall for the segment below the hot electrode on the basis of the mean value for the corresponding temperature sensors arranged there. The stabilization of the temperature in the range of 100 ° C is mainly due to the water evaporation, which increases significantly in this temperature range. It should be noted that this temperature plateau was clearly detectable for many individual sensors, while the mean value shown here is also determined by temperature sensors that have not yet reached the evaporation temperature of the water. The depth-resolved temperature measurement showed good homogeneity of the temperature profile across the wall cross-section. The increasing HF voltage, which was necessary to maintain the nominal power of 5 kW, can be explained by the progressive drying out of the wall. The dielectric heating of the wall again demonstrates the applicability of the invention.

Ausführungsbeispiel 3:Example 3: Erwärmung eines Kellerbodens mit feuchtem UntergrundHeating of a basement floor with a damp surface

Hierbei wurden die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren in einem Wohnhaus ausgeführt, das über einen durchfeuchteten Kellerboden verfügte. Es ist davon auszugehen, dass unterhalb des Kellerbodens durchfeuchtetes Erdreich vorhanden war, das als Kopplungselement im Sinne der Erfindung fungierte. Der Kellerboden bestand aus einer Deckschicht aus Estrich (Dicke ca. 2 cm) über einer Schicht aus Ziegelsteinen, welche wiederum direkt auf dem durchfeuchteten Erdreich auflagen. Insofern ist hier der Verbund Estrich/Ziegel als zu erwärmender Festkörper zu verstehen.Here, the device according to the invention and the method according to the invention were carried out in a house which had a dampened basement floor. It can be assumed that there was moist soil beneath the basement floor, which functioned as a coupling element in the sense of the invention. The basement floor consisted of a top layer of screed (thickness approx. 2 cm) over a layer of bricks, which in turn rested directly on the moist soil. In this respect, the screed / brick bond is to be understood as a solid to be heated.

Für die Erwärmung wurde ein HF-Generator (Arbeitsfrequenz 13,56 MHz, Maximalleistung 3 kW) in Verbindung mit einem elektronischen Anpassnetzwerk verwendet. Dieses war über ein Kupferband mit einer heißen Elektrode aus Aluminiumlochblech mit einer Fläche von ca. 1 m2 verbunden. Das Gehäuse der Matchbox war mit der Schirmungselektrode verbunden, die aus Kupfergaze bestand und auf dem Kellerboden ausgelegt war. Die Gesamtfläche der Kupfergaze betrug ca. 10 m2. Das durchfeuchtete Erdreich war kapazitiv mit einer Schirmungsgaze gekoppelt und fungierte so wirksam als Kopplungselement, wie aus den Resultaten der Erwärmungsversuche geschlossen werden kann. Zur Erfassung der Temperaturen wurden insgesamt 24 faseroptische Temperatursensoren, die auch während der dielektrischen Erwärmung zuverlässige Messungen liefern, in Tiefen von 5 cm und 15 cm unterhalb der Oberfläche des Kellerbodens eingesetzt.An HF generator (working frequency 13.56 MHz, maximum power 3 kW) was used for heating in connection with an electronic matching network. This was connected via a copper tape to a hot electrode made of perforated aluminum sheet with an area of approximately 1 m 2 . The Matchbox housing was connected to the shielding electrode, which was made of copper gauze and laid out on the basement floor. The total area of the copper gauze was approx. 10 m 2 . The moist soil was capacitively coupled with a shielding gauze and acted as effectively as a coupling element, as from the results of the Attempts to heat can be closed. A total of 24 fiber-optic temperature sensors, which also provide reliable measurements during dielectric heating, were used to record the temperatures at depths of 5 cm and 15 cm below the surface of the basement floor.

Figur 6 zeigt zeitliche Verläufe der mittleren Temperatur in zwei verschiedenen Tiefen, der HF-Leistung und der HF-Spannung während eines Versuches zur Erwärmung eines Kellerbodens mittels kapazitiver Kopplung. Dargestellt sind die mittleren Temperaturverläufe in den beiden horizontalen Ebenen innerhalb des Kellerbodens, die jeweils aus den Daten von 12 Temperatursensoren ermittelt wurden. Zusätzlich sind die HF-Leistung (konstant 1 kW) und die HF-Spannung angegeben. Es wird deutlich, dass ein Erwärmung des Kellerbodens mit Hilfe der erfindungsgemäßen Vorrichtung und unter Nutzung des erfindungsgemäßen Verfahrens möglich ist, ohne dass eine Kontaktierung der als Kopplungselektrode fungierenden Erdschicht durch den Kellerboden hindurch notwendig ist. Ein Vergleich der Aufheizraten für die einzelnen Temperatursensoren zeigte eine gute Homogenität der Erwärmung innerhalb einer Ebene (Abweichungen kleiner als 20 %). Durch Erhöhung der eingesetzten Leistung und/oder eine Verlängerung der Zeit können auch deutlich höhere Temperaturen im Kellerboden erreicht werden, die eine ausreichende Trocknung sicherstellen können. Figure 6 shows time profiles of the mean temperature at two different depths, the RF power and the RF voltage during an attempt to heat a basement floor by means of capacitive coupling. The average temperature profiles in the two horizontal levels within the basement floor are shown, which were determined from the data of 12 temperature sensors. In addition, the RF power (constant 1 kW) and the RF voltage are specified. It becomes clear that heating of the basement floor is possible with the aid of the device according to the invention and using the method according to the invention, without it being necessary to make contact with the layer of earth acting as a coupling electrode through the basement floor. A comparison of the heating rates for the individual temperature sensors showed a good homogeneity of the heating within one level (deviations less than 20%). By increasing the power used and / or extending the time, significantly higher temperatures can be reached in the basement floor, which can ensure adequate drying.

Ausführungsbeispiel 4:Example 4: Erwärmung einer Kellerwand mit dahinter liegendem ErdreichHeating of a basement wall with soil behind it

An einem weiteren Demonstrationsstandort wurden die erfindungsmäßige Vorrichtung und das erfindungsmäßige Verfahren in Analogie zum Ausführungsbeispiel 3 an einer einseitig zugänglichen und stark durchfeuchteten Struktur, in diesem Fall einer Ziegelmauerwand (Fläche 4 m x 2 m, Dicke 0,36 m) mit anliegendem Erdreich, erfolgreich getestet. Hier fungierte das dahinterliegende feuchte Erdreich als Kopplungselement. Die dabei eingesetzte heiße Elektrode hatte eine Größe von 1 m2 und bestand aus Aluminiumlochblech. Für die Schirmungselektrode wurden Kupfergaze und aluminiumbeschichtete Polyethylenfolie verwendet.At another demonstration site, the device and the method according to the invention were successfully tested in analogy to embodiment 3 on a structure that was accessible from one side and was heavily dampened, in this case a brick wall (area 4 mx 2 m, thickness 0.36 m) with adjacent soil . Here the moist soil behind acted as a coupling element. The hot electrode used had a size of 1 m 2 and was made of perforated aluminum sheet. Copper gauze and aluminum-coated polyethylene film were used for the shielding electrode.

Für die Erwärmungsversuche stand ein HF-Generator (Arbeitsfrequenz 13,56 MHz, Maximalleistung 5 kW) in Verbindung mit einem elektronischen Anpassnetzwerk zur Verfügung. Die Verbindung zwischen dem elektronischen Anpassnetzwerk (Matchbox) und der heißen Elektrode wurde über ein Messingprofil realisiert. Weiterhin war das Gehäuse der Matchbox mit der Schirmungselektrode, welche aus Kupfergaze im Bereich der heißen Elektrode und aus aluminiumbeschichteter Kunststofffolie (gelocht, Dicke der Aluminiumschicht 15 µm, Dicke der Trägerfolie 20 µm) im übrigen Bereich bestand, verbunden. Die Gesamtfläche der Schirmungselektrode betrug ca. 7 m2. Zur Erfassung der Temperaturen wurden insgesamt 15 faseroptische Temperatursensoren, welche in Tiefen von 6 cm, 18 cm und 30 cm in das Ziegelmauerwerk eingebracht waren, verwendet.An HF generator (working frequency 13.56 MHz, maximum power 5 kW) in connection with an electronic matching network was available for the heating tests. The connection between the electronic matching network (Matchbox) and the hot electrode was realized via a brass profile. Furthermore, the housing of the matchbox with the shielding electrode, which was made of copper gauze in the area of the hot electrode and out aluminum-coated plastic film (perforated, thickness of the aluminum layer 15 microns, thickness of the carrier film 20 microns) existed in the rest of the area. The total area of the shielding electrode was approximately 7 m 2 . A total of 15 fiber optic temperature sensors, which were introduced into the brick masonry at depths of 6 cm, 18 cm and 30 cm, were used to record the temperatures.

Figur 7 zeigt zeitliche Verläufe der mittleren Temperatur, der HF-Leistung und der HF-Spannung (Figur 7a) sowie Temperaturverläufe für verschiedene Tiefen im Mauerwerk während eines Versuches zur Erwärmung einer Kellerwand mittels kapazitiver Kopplung (Figur 7b). Dargestellt sind die mittlere Temperatur aller im direkt erwärmten Bereich hinter der heißen Elektrode eingebrachten Temperatursensoren sowie die HF-Leistung und die HF-Spannung über den gesamten Versuchszeitraum. Außerdem sind die mittleren Temperaturverläufe für die einzelnen Tiefen im Mauerwerk dargestellt. Es konnte gezeigt werden, dass mit Hilfe des erfindungsgemäßen Verfahrens und unter der Nutzung der erfindungsgemäßen Vorrichtung die dielektrische Erwärmung einer einseitig zugänglichen Kellerwand mittels Radiowellen möglich ist. Figure 7 shows temporal profiles of the mean temperature, the RF power and the RF voltage ( Figure 7a ) and temperature profiles for various depths in the masonry during an attempt to heat a basement wall using capacitive coupling ( Figure 7b ). The average temperature of all temperature sensors placed in the directly heated area behind the hot electrode as well as the RF power and the RF voltage over the entire test period are shown. In addition, the mean temperature profiles for the individual depths in the masonry are shown. It could be shown that with the aid of the method according to the invention and using the device according to the invention, dielectric heating of a cellar wall accessible from one side is possible by means of radio waves.

BezugszeichenlisteReference list

1010th
spannungsführende Elektrodelive electrode
2020th
KopplungselementCoupling element
2222
KopplungselektrodeCoupling electrode
2424th
natürliches Kompartimentnatural compartment
3030th
SchirmungselektrodeShielding electrode
4040
FeststoffSolid
40'40 '
AufnahmeraumRecording room
5050
HochfrequenzgeneratorHigh frequency generator
6060
elektronisches Anpassnetzwerkelectronic matching network
7070
Mittel zur TemperaturmessungMeans for temperature measurement
8080
Mittel zur LeistungsregelungPower regulation means
9090
Mittel zur Bestimmung der FeldstärkeMeans for determining the field strength
100100
Vorrichtung zur dielektrischen ErwärmungDielectric heating device
dmin d min
minimaler Abstand zwischen spannungsführender Elektrode und Schirmungselektrodeminimum distance between the live electrode and the shielding electrode
A1 A 1
Oberfläche der Schirmungselektrode 30Surface of the shield electrode 30
A2 A 2
Oberfläche der spannungsführenden Elektrode 10Surface of the live electrode 10

Claims (14)

  1. A method for the dielectric heating of solids (40), comprising the following steps:
    - providing at least one live electrode (10) and at least one shielding electrode (30) on a first side of a solid (40) and at least one coupling element (20) on a second side of the solid (40), wherein the first side of the solid (40) and the second side of the solid (40) lie opposite one another;
    - setting the area ratio between the overlapping area between the surfaces of the at least one coupling element (20) and the at least one shielding electrode (30) and the surfaces of the at least one live electrode (10), wherein the area ratio is greater than 3:1;
    - coupling the at least one coupling element (20) with the at least one shielding electrode (30) in a manner that is at least partially capacitive;
    - applying a high-frequency voltage to the at least one live electrode (10), wherein the high-frequency voltage has a frequency in the range between 500 kHz and 500 MHz.
  2. The method according to claim 1, wherein a preselected ratio of the heating rates inside and outside the area between the at least one live electrode (10) and the at least one coupling element (20) is set via the area ratio.
  3. The method according to one of the preceding claims, wherein the at least one coupling element (20) comprises a natural environmental compartment (24) as an electrode-equivalent coupling element (20).
  4. The method according to claim 3, wherein a wetting of the natural environmental compartment (24) occurs in order to improve the electrical conductivity of the natural environmental compartment (24) and thus its effect as an electrode-equivalent coupling element (20) .
  5. The method according to one of the preceding claims, wherein the output of the high-frequency voltage is adjusted to a temperature measured in the area between the at least one live electrode (10) and the at least one coupling element (20) in view of an intended temporal heating regime.
  6. The method according to one of the preceding claims, wherein the temperature of the solid (40) is increased in order to dry the solid (40), to kill wood pests and/or impair their ability to live and/or in order to remove noxious substances from the solid (40).
  7. The method according to one of the preceding claims, wherein a removal of noxious substances from the solid (40) is supported by a removal of water vapour from the solid (40).
  8. The method according to one of the preceding claims, wherein the output of the high-frequency voltage is adjusted to a field strength measured in the area between the at least one live electrode (10) and the at least one coupling element (20).
  9. A device (100) for the dielectric heating of solids (40) comprising:
    - a live electrode (10);
    - a shielding electrode (30), wherein the live electrode (10) and the shielding electrode (30) can be arranged on a first side of a solid (40), and the shielding electrode (30) is capacitively coupled to a coupling element (20) on a second side of the solid (40) during operation, wherein the first side of the solid (40) and the second side of the solid (40) lie opposite one another; and
    - a means for applying a high-frequency voltage which is configured to apply a high-frequency voltage with a frequency in the range between 500 kHz and 500 MHz to the live electrode (10),
    characterized in that
    the area ratio between the overlapping area between the surfaces of the at least one coupling element (20) and the at least one shielding electrode (30) and the surfaces of the at least one live electrode (10) is greater than 3:1.
  10. The device (100) according to claim 9, wherein the shielding electrode (30) and the live electrode (10) lie in a common plane.
  11. The device (100) according to claim 9 or 10, wherein the at least one coupling element (20) comprises a natural environmental compartment (24) as an electrode-equivalent coupling element (20).
  12. The device (100) according to claim 11, wherein at least one means for the wetting of the natural environmental compartment (24) is provided in order to improve the electrical conductivity of the natural environmental compartment (24) and thus its effect as an electrode-equivalent coupling element (20).
  13. The device (100) according to one of claims 9 to 12, further comprising:
    - a means (70) for temperature measurement which is configured to determine a temperature of a solid (40) and/or a means (90) for determining the field strength between the live electrode (10) and the coupling element (20);
    - a means (80) for output adjustment which is configured to adjust the output of the high-frequency voltage applied to the live electrode (10) as a function of the temperature of the solid and/or of the field strength.
  14. The device (100) according to one of claims 9 to 13, wherein the live electrode (10), the coupling element (20) and/or the shielding electrode (30) are permeable for noxious substances escaping from the solid (40) and/or comprise an adsorption-active material.
EP17167430.2A 2016-04-22 2017-04-20 Method and device for the non-invasive dielectrical heating of solids Active EP3236711B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016107547.7A DE102016107547B3 (en) 2016-04-22 2016-04-22 Method and apparatus for non-invasive dielectric heating of solids

Publications (2)

Publication Number Publication Date
EP3236711A1 EP3236711A1 (en) 2017-10-25
EP3236711B1 true EP3236711B1 (en) 2020-04-29

Family

ID=58632217

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17167430.2A Active EP3236711B1 (en) 2016-04-22 2017-04-20 Method and device for the non-invasive dielectrical heating of solids

Country Status (2)

Country Link
EP (1) EP3236711B1 (en)
DE (1) DE102016107547B3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202022100876U1 (en) 2022-02-16 2022-03-14 Helmholtz-Zentrum Für Umweltforschung Gmbh - Ufz Device for the controlled heating of shaped bodies

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11324082B2 (en) * 2019-05-02 2022-05-03 Nxp Usa, Inc. RF thermal increase systems with multi-level electrodes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE557128A (en) * 1956-05-30
DK171523B1 (en) * 1991-04-09 1996-12-23 Ib Obel Pedersen Method for controlling fungus in existing wood structures and electrodes for use in the process
DE4240272C2 (en) * 1992-12-01 1994-11-24 Peter Dr Hoffmann Device for heating a water-containing material
DE9413736U1 (en) * 1994-06-14 1995-07-13 AHRENS Bautechnologie Handelsgesellschaft mbH, 61118 Bad Vilbel Microwave drying and pest control system
DK1374676T3 (en) 2002-06-17 2006-11-20 Silvia Hofmann System and method for extermination of wood-destroying insects and fungi and for treatment of materials contaminated with harmful substances
DE202008012371U1 (en) 2008-09-11 2008-12-04 Helmholtz-Zentrum Für Umweltforschung Gmbh - Ufz Apparatus for treating gases, in particular for drying natural gas or biogas
DE202010001410U1 (en) * 2010-01-25 2010-05-27 Helmholtz-Zentrum Für Umweltforschung Gmbh - Ufz Device for drying and decontamination of masonry, concrete, wood and other solids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202022100876U1 (en) 2022-02-16 2022-03-14 Helmholtz-Zentrum Für Umweltforschung Gmbh - Ufz Device for the controlled heating of shaped bodies
EP4231780A1 (en) 2022-02-16 2023-08-23 Helmholtz-Zentrum für Umweltforschung GmbH-UFZ Device for the controlled heating of moulded bodies

Also Published As

Publication number Publication date
DE102016107547B3 (en) 2017-09-28
EP3236711A1 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
EP2354349B1 (en) Device for drying and decontaminating masonry, concrete, wood and other solids
EP3236711B1 (en) Method and device for the non-invasive dielectrical heating of solids
EP1779938B1 (en) Process and apparatus for selective dielectrical heating a particulate bed using elongate electrodes
EP2877842A1 (en) Capacitive device for measuring the moisture content of soil and having a porous access element
WO2015132197A1 (en) Drying device
DE102012100591A1 (en) Arrangement and method for heating a medium by means of microwave radiation
EP3236710B1 (en) Method and device for thermal processing of solids
DE19824930A1 (en) In-situ soil decontamination process using subsoil high frequency emissions
DE102020124138A1 (en) Device and method for generating a dielectric barrier discharge
EP1374676B1 (en) System and method for killing wood-destroying insects and mushrooms and for treating infected materials
DE10309686B3 (en) Process and device for the treatment of solids
DE4240272C2 (en) Device for heating a water-containing material
DE10136403A1 (en) Electrically active plaster for controlled application of active substances to surfaces, e.g. analgesics to skin, comprises substance reservoir, electrically-charged polymer, first electrode and adhesive, all permeable to the substance
EP2024080A1 (en) Method and device for treating bulk material with a physical plasma at atmospheric pressure
AT402562B (en) DEVICE FOR DRYING PRODUCTS OF ANY GEOMETRY, POWDER, GRANULES AND THE LIKE
DE202022100876U1 (en) Device for the controlled heating of shaped bodies
DE4340819A1 (en) Destruction of biological infestations in building structures
WO2019238866A1 (en) Method for testing an electrode arrangement for generating a non-thermal plasma, and plasma source having an electrode arrangement of this kind and configured for performing a method of this kind
DE3839368C2 (en)
Roland et al. Arrangements for radio-frequency heating of building structures
DE19702075A1 (en) Removal of biocides and harmful substances from wood etc.
DE19804842A1 (en) System for applying HF power in imperfect dielectrics esp. for warming and drying of materials
DE102011115718A1 (en) Device for pest control
DE102014001175A1 (en) Infrared flat radiator and method for its efficient operation
EP0968420A1 (en) Methods for measuring the sorbate content of substrates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180425

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 6/54 20060101ALI20191030BHEP

Ipc: H05B 6/62 20060101AFI20191030BHEP

INTG Intention to grant announced

Effective date: 20191125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOLZER, FRANK

Inventor name: KOPINKE, FRANK-DIETER

Inventor name: KRAUS, MARKUS

Inventor name: TROMMLER, ULF

Inventor name: ROLAND, ULF

Inventor name: HOYER, CHRISTIAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1265288

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200730

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210420

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170420

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230502

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230414

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429