EP3234967B1 - Apparatus and method for magnetizing permanent magnets - Google Patents

Apparatus and method for magnetizing permanent magnets Download PDF

Info

Publication number
EP3234967B1
EP3234967B1 EP15781646.3A EP15781646A EP3234967B1 EP 3234967 B1 EP3234967 B1 EP 3234967B1 EP 15781646 A EP15781646 A EP 15781646A EP 3234967 B1 EP3234967 B1 EP 3234967B1
Authority
EP
European Patent Office
Prior art keywords
magnet
guide element
field guide
field
exciter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15781646.3A
Other languages
German (de)
French (fr)
Other versions
EP3234967A1 (en
Inventor
Diyap Bueyuekasik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to RS20220333A priority Critical patent/RS63092B1/en
Publication of EP3234967A1 publication Critical patent/EP3234967A1/en
Application granted granted Critical
Publication of EP3234967B1 publication Critical patent/EP3234967B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]

Definitions

  • the invention is based on a device and a method for magnetizing permanent magnets according to the species of the independent claims.
  • Devices for magnetizing permanent magnets which use electromagnetic coils to generate a magnetic field for magnetizing permanent magnets.
  • the permanent magnet is positioned in the area of the magnetic field that can be switched on by means of a linear movement.
  • the electromagnetic coil's magnetic field is turned on by energizing the electrical coil.
  • Such a device consumes a lot of electrical energy and requires a controller for the electromagnetic coils and measurement technology for electronically monitoring the magnetizing currents.
  • the device according to the invention and the associated method with the features of the independent claims have the advantage over the prior art that no electrical energy is required to build up a magnetic field that magnetizes the permanent magnets, since instead of the electromagnetic coils, at least one exciter magnet is used to generate the magnetizing field is used.
  • the permanent magnets are not magnetic before they are magnetized
  • the permanent magnets before magnetization are magnet blanks that do not have a magnetic field. Only when they are magnetized do they become permanently magnetic and have a magnetic field.
  • the device has it a first field conducting element and a second field conducting element.
  • the field magnet is arranged between the first field conducting element and the second field conducting element.
  • the second field conducting element includes a receptacle for the permanent magnet.
  • the permanent magnet can thus be arranged in the receptacle.
  • the recording can be slot-shaped or circular. It is also conceivable that the socket is shaped after the shape of the permanent magnet, so that the permanent magnet can be arranged in the socket, and the walls of the permanent magnet are approximately parallel with the walls that delimit the socket and face the permanent magnet. In this way, an optimal hold for the permanent magnet in the device is guaranteed.
  • the permanent magnet In order to magnetize the permanent magnets, it is necessary to permeate the permanent magnets with a magnetic field.
  • the magnetic field must be so strong that the permanent magnet is magnetized.
  • the permanent magnet is completely magnetized and preferably magnetically saturated, which is characterized by the fact that the permanent magnet is maximally magnetized.
  • the magnetization takes place by introducing magnetic energy into the permanent magnet.
  • the field magnet and the permanent magnet In order to conduct the magnetic field of the field magnet through the permanent magnet, the field magnet and the permanent magnet must be brought into a magnetization position in which the magnetic field flows through the permanent magnet.
  • the exciter magnet performs a relative movement.
  • the relative movement of the excitation magnet describes a circular path that extends around the permanent magnet and thus extends along the circumferential direction.
  • the exciter magnet thus moves relative to the inner field conducting element and the permanent magnet or the receptacle.
  • the exciter magnet performs a relative circular movement.
  • the exciter magnet is therefore movable relative to the field conducting elements and the permanent magnet or the receptacle.
  • a permanent magnet is placed in the receptacle.
  • the permanent magnet is then brought into a magnetization position relative to the exciter magnet, in which position the magnetic field flows through the permanent magnet. Thereafter, the permanent magnet is removed from the recording.
  • Such a device carries out an advantageous method which allows mass production of magnetized permanent magnets. This series production of the permanent magnets is particularly cost-effective because, on the one hand, no current has to be used for magnetization and, on the other hand, a high number of cycles is achieved.
  • the first field conducting element is expediently in the form of a hollow cylinder, while the second field conducting element is in the form of a segment of a circular ring.
  • the hollow-cylindrical shape of the first field conducting element and the annular segment shape of the second field conducting element are aligned with respect to the circumferential direction of the device.
  • the second field conducting element is arranged in the first field conducting element.
  • the second field conducting element is inserted in the hollow-cylindrical first field conducting element, so that the two field conducting elements are arranged concentrically to one another.
  • the second field conducting element has a smaller radius than the first field conducting element.
  • the radially outer walls of the two field conducting elements are arranged opposite one another, at least in sections.
  • the second field conducting element is surrounded by the first field conducting element. It is conceivable that the axial length of the first field conducting element is greater or smaller than the axial length of the second field conducting element. It is also conceivable that the field conducting elements have the same axial length.
  • the wall of the first field conducting element does not touch the wall of the second field conducting element.
  • a space is formed between the wall of the first and the second field conducting element, which space extends in the circumferential direction. In the radial direction, this space has the magnitude of the difference in the radii of the opposing walls of the two field conducting elements as a measure. The space also extends in the axial direction.
  • the opposing walls of the two field conducting elements can be almost parallel.
  • the field magnet is arranged in the space between the outer and the inner field conducting element.
  • the excitation magnet is in the form of a segment of a circular ring.
  • the exciter magnet has a half-shell shape.
  • the excitation magnet extends in the axial direction.
  • the walls of the excitation magnet and the field conducting elements are approximately parallel to one another.
  • the excitation magnet is located in a movable assembly together with the first field conducting element.
  • the permanent magnet is movably arranged between the two field conducting elements.
  • the field magnet preferably has a small air gap to the walls of the field conducting elements.
  • the excitation magnet is preferably movable in the circumferential direction.
  • the first field conducting element is also in Circumferentially movable, and preferably performs a synchronous movement with the excitation magnet.
  • the field magnet and the first field conducting element are firmly connected to one another.
  • the exciter magnet executes a movement in which it runs around the second field conducting element.
  • the second field conducting element is stationary.
  • the excitation magnet also revolves around the stationary permanent magnet.
  • the excitation magnet runs around the permanent magnet and the second field conducting element on a circular path.
  • the first field conducting element and/or the exciter magnet is mounted by a ball bearing. In this way, an inexpensive and at the same time fast clocking device can be constructed.
  • the exciter magnet includes rare earth materials.
  • the exciter magnet contains neodymium-iron-boron.
  • Such an excitation magnet is arranged concentrically to the other two field conducting elements.
  • the cylindrical symmetry of the two field conducting elements and the excitation magnet proves to be advantageous for a relative movement on a circular path.
  • the relative movement on a circular path is possible with little effort.
  • the magnetization position can be reached with little energy expenditure.
  • the excitation magnet is made up of a large number of separate permanent-magnetic magnet elements which are arranged next to one another and touch one another.
  • the separate magnetic elements are prismatic and have a triangular or trapezoidal base.
  • the separate magnet elements After assembling the separate magnet elements, they form a half-shell-like exciter magnet in the form of a circular ring segment from a large number of separate magnet elements. These adjacent magnetic elements are all magnetized in the same radial direction. The excitation magnet is magnetized in the radial direction.
  • a third field conducting element is provided.
  • the third field conducting element is arranged in the second field conducting element.
  • the third field conducting element is arranged concentrically to the second field conducting element.
  • the third field conducting element is cylindrical.
  • the third field conducting element is arranged in the second field conducting element in such a way that their outer walls face each other. Since the third field conducting element is arranged concentrically to the first and the second field conducting element, and the third field conducting element is arranged inside the first and the second field conducting element, the first and the second field conducting element enclose the third field conducting element.
  • the outer wall of the third field conducting element is approximately parallel to the walls of the first and second field conducting elements.
  • the third field conducting element preferably consists of a cylinder, which is made of solid material.
  • the wall of the third field conducting element is spaced apart from the wall of the second field conducting element.
  • a gap is thus formed between the second and the third field conducting element.
  • the gap runs around the third field conducting element over the entire circumference.
  • the gap serves as a receptacle for a permanent magnet.
  • a permanent magnet is fitted into the receptacle.
  • the receptacle in which the permanent magnet is inserted has the shape of a segment of a circular ring and is shaped approximately like the shape of the permanent magnet.
  • the recording extends in the circumferential direction as well as in the axial direction. It is therefore particularly advantageous if the permanent magnet has a half-shell shape.
  • the permanent magnet is in the form of a segment of a circular ring.
  • the mount must also be ring-shaped.
  • permanent magnets that are cuboid. Such permanent magnets have a flat shape. Accordingly, the receptacle is shaped like a slit and has no curvature.
  • rod-shaped magnets between the third and the second field conducting element in the receptacle. The rods can consist of magnetizable round material or flat material.
  • the third field conducting element ensures that the permanent magnet is positioned securely. At the same time, efficient magnetization of the permanent magnet is ensured, since the third field conducting element ensures that the magnetic field lines are conducted with low stray losses.
  • the device expediently has more than one excitation magnet.
  • the excitation magnets do not touch each other.
  • the field magnets are preferably in the form of segments of a circular ring, with the field magnets being arranged adjacent to one another with respect to the circumferential direction.
  • the individual exciter magnets can be composed of the magnetic elements—which, in contrast to the exciter magnets, touch one another. The exciter magnets do not touch. It is possible to arrange two or four or six excitation magnets between the first and the second field conducting element. Two excitation magnets are advantageously used if two magnet blanks are to be magnetized. Four exciter magnets are used when four permanent magnets are to be magnetized and six exciter magnets are used when six permanent magnets are to be magnetized.
  • a ring magnet has at least two poles.
  • Such a ring magnet comprises two areas which have different—in particular radial—directions of magnetization.
  • the number of poles reflects the number of areas with different directions of magnetization.
  • the second field conducting element consists of parts in the form of segments of a circular ring, which preferably extend in the circumferential direction and are therefore in the form of half shells.
  • the parts are arranged in the circumferential direction.
  • the parts do not touch each other and are arranged adjacent to each other with respect to the circumferential direction.
  • a cavity is formed between the parts, with the cavity being arranged between two adjacent parts with respect to the circumferential direction.
  • the parts of the second field conducting element are arranged next to one another in the circumferential direction, so that they are arranged next to one another on a circular line.
  • the same number of parts of the second field conducting element are preferably arranged in the device as there are exciter magnets. This means that if two permanent magnets are installed in the device, then there are two parts of the second field conducting element. However, it is also conceivable to arrange more parts of the field conducting element as permanent magnets in the device. It is also possible to arrange fewer parts of the second field conducting element in the device, as is the case with permanent magnets.
  • the parts of the second field conducting element can extend in the circumferential direction over the same angle as the excitation magnets, so that the parts and the permanent magnets have the same size.
  • the parts all have the same extent in the circumferential direction.
  • a pole is thus created in a magnet blank by the magnetic field penetrating a coherent area in one direction.
  • the magnetic field is introduced into the area of the permanent magnet by at least one exciter magnet and preferably a part of the second field conducting element.
  • one part consists of at least two touching separate part units.
  • the sub-units are also not permanently magnetic and conduct magnetic fields well. When the sub-units are put together, they form part of the second field conducting element.
  • An auxiliary magnet can advantageously be arranged in the cavity between two adjacent parts of the second field conducting element.
  • the auxiliary magnet is arranged between two adjacent parts with respect to the circumferential direction.
  • the auxiliary magnet is also radially co-located with the parts so that the auxiliary magnet extends the same radius as the parts.
  • the auxiliary magnet is magnetized in the tangential direction with respect to the circumferential direction. The use of auxiliary magnets increases the efficiency of the device since stray magnetic fields are suppressed.
  • the third field conducting element preferably serves as a receiving mandrel.
  • the arbor is inserted into a pole housing of an electrical machine. At least one permanent magnet is arranged within the pole housing. After the arbor is placed in the pole housing, the permanent magnet is located between the pole housing and the arbor.
  • the pole housing is a pot-shaped and preferably metallic housing part of an electrical machine, on the radial inner wall of which magnets are arranged. These magnets can be attached to the inside wall of the pole shell before being magnetized. The magnetization of the permanent magnets can thus take place while they are arranged in the pole housing.
  • the permanent magnets can be attached to the inner wall of the pole housing by gluing and/or retaining springs, with the retaining springs exerting a force on the permanent magnets so that they are pressed against the inner wall.
  • the force of the retaining springs is a spring force. Since the permanent magnets in the pole housing are not magnetized for the time being, it is possible to use them in the device and in this cost-effective manner to realize assembled and finished pole housings with magnetized magnets for series production. It is conceivable that the pole housing in the previously arranged in the device receiving mandrel is put on. Thus, only the pole housing needs to be inserted into the device and removed again after magnetization.
  • the third field conducting element is fixed in the device.
  • the third field conducting element can be removed so that the receiving mandrel can be easily replaced.
  • This has the advantage that a specific arbor for different pole housings and permanent magnets can be inserted into the device.
  • a further advantage is the possibility of equipping the mandrel with the pole housing outside of the device. It is advantageous if the receiving mandrel is removed from the device in the axial direction and the pole housing with the permanent magnets is placed on the mandrel outside the device. After putting on the pole housing, the mandrel with the pole housing and the permanent magnet is put back into the machine to be magnetized there. After magnetizing, the mandrel with the pole housing and the permanent magnets are removed from the machine. Then the pole housing with the permanent magnets is stripped off the mandrel and a pole housing with unmagnetized blanks is put back on.
  • the exciter magnet performs a movement until the exciter magnet arrives in a magnetization position.
  • the exciter magnet performs a circular movement.
  • the circular movement extends in the circumferential direction of the device.
  • the movement is carried out by the excitation magnet around the second field conducting element.
  • the second field conducting element is stationary with respect to the entire device.
  • the third field conducting element and the permanent magnets are stationary.
  • the exciter magnet moves to a short-circuit position from the magnetization position.
  • the magnetic field does not flow through the permanent magnet.
  • the magnetic field flows through the first field conducting element and the second field conducting element.
  • the magnetic field does not flow through the third field conducting element and the permanent magnets when the excitation magnet is in the short-circuit position the magnetic field of the exciter magnet can be short-circuited via the second field conducting element.
  • the permanent magnet is inserted into the device or removed from the device when the device is in the short-circuit position. This has the advantage that no forces act on the permanent magnet while it is being inserted or removed from the device.
  • the mandrel is also inserted into the device when the excitation magnets are in the short-circuit position.
  • a cross-section of a device 10 according to the invention is shown.
  • the device 10 has a first field conducting element 101 in the form of a hollow cylinder.
  • the first field conducting element 101 is preferably closed in the circumferential direction 1 .
  • the first field conducting element 101 extends in the axial direction 2.
  • the hollow-cylindrical field conducting element 101 is ring-shaped and extends in a closed manner in the circumferential direction 1.
  • the first field conducting element 101 has a recess in the center that extends in the axial direction 2.
  • the recess in the first field conducting element 101 is preferably cylindrical, so that the hollow-cylindrical first field conducting element 101 is hollow.
  • the first field conducting element 101 has a wall thickness of 3 in the radial direction.
  • the first field conducting element 101 is used to manage one Magnetic field 120.
  • the magnetic field 120 is conducted essentially in the circumferential direction 1 in the wall of the first field conducting element 101. Essentially, this means that magnetic field 120 also has field components that do not point in circumferential direction 1, but rather in radial direction 3 and axial direction 2. However, magnetic field 120 is essentially directed in circumferential direction 1 within first field conducting element 101.
  • the exciter magnets 110 are arranged within the first field conducting element 101 .
  • the exciter magnets 110 are half-shell shaped and therefore have a trough shape.
  • the excitation magnets 110 are in the form of segments of a circular ring and extend in the circumferential direction 1 and in the axial direction 2.
  • the radially outer wall of the excitation magnet 110 is approximately parallel to the radially inward-facing wall of the first field conducting element 101.
  • the excitation magnet 110 extends in the axial direction 2 along the first field conducting element 101.
  • the field magnet 110 can be the same length or longer or shorter than the first field conducting element 1 with respect to the axial direction 2.
  • the excitation magnets 110 are magnetized in the radial direction 3 .
  • the excitation magnets 110 introduce their magnetic field 120 into the first field conducting element 101 .
  • the excitation magnets 110 are arranged in the first field conducting element 101 in such a way that they can be moved in the circumferential direction 2 . This makes it possible for the exciter magnet 110 to move in the circumferential direction 1 on a circular path 111 .
  • the exciter magnets 110 revolve around the axis of rotational symmetry of the first field conducting element 101.
  • the exciter magnets 110 move on a circular path 111. It is particularly advantageous if the exciter magnets 110 and the first field conducting element 101 move together on the path 111.
  • the exciter magnets 110 are in a fixed arrangement with the first field guide element 101 and preferably touch it with their radially outward-facing side, so that the wall on the outside of the exciter magnet 110 and the wall on the inside of the first flux guide element 101 touch in relation to the radial direction 2 . It is also conceivable that only the exciter magnets 110 move along the radially inner wall of the first field conducting element 101 .
  • the excitation magnets 110 preferably comprise rare earth materials such as neodymium-iron-boron.
  • the two excitation magnets 110 in the Figures 1a and 1b don't touch.
  • the two field magnets 110 are spaced apart from one another in the circumferential direction 1 . This forms a gap 113 between the field magnets 110.
  • the gap 113 is at the same location in the radial direction 3 as the field magnets 110.
  • the gap 113 has the same location in the radial direction 3 Extension to that of the excitation magnets 110.
  • the gap also extends in the axial direction 2 over the entire length of the excitation magnets 110.
  • Two parts 1020 of a second field conducting element 102 are arranged in the first field conducting element 101 .
  • the parts 1020 of the second field conducting element 102 are in the form of segments of a circular ring.
  • the parts 1020 extend in the circumferential direction 1 and in the axial direction 2 as well as in the radial direction 3.
  • the parts 1020 can be the same length or shorter or longer than the excitation magnets 110 or the first field conducting element 101.
  • the parts 1020 of the second field conducting element 102 are arranged concentrically to the exciter magnet 110 and the first field conducting element 101 .
  • the radially outer walls of the parts 1020 are arranged opposite the radially inner walls of the excitation magnets 110 and the first field conducting element 101 . The walls are almost parallel to each other.
  • the field conducting elements 101, 102 are metallic and conduct magnetic fields 120.
  • the magnetic field 120 which emanates from the exciter magnet 110, is conducted through the first field conducting element 101—as a type of magnetic return ring—and through the second field conducting element 102.
  • the second field conducting element 102 is stationary.
  • the first field conducting element 101 performs a circular movement together with the exciter magnet 110.
  • the movable exciter magnets 110 are in Fig.1a positioned in a short-circuit position 211 . In the short-circuit position 211, the magnetic field flows through the first field conducting element 101 and the second field conducting element 102.
  • the magnetic field 120 flows through the second field conducting element 102 and the first field conducting element 101 essentially in the circumferential direction 1.
  • a third field conducting element 103 is arranged concentrically to the first field conducting element 101, the excitation magnet 110 and the second field conducting element 102, the third field conducting element 103 being cylindrical.
  • the radially outer wall of the third field conducting element 103 is opposite the walls of the first and second field conducting elements 101 , 102 .
  • the walls of the field conducting elements 101, 102, 103 are almost parallel to one another.
  • the third field conducting element 103 serves as a receiving mandrel 1030 for a pole housing 202 of an electrical machine, with permanent magnets 201 being arranged inside the pole housing 202 .
  • the permanent magnets 201 are attached to the inner wall of the pole housing 1030 .
  • the permanent magnets 201 are fastened within the pole housing 202 by gluing or by mechanical fasteners, such as clasps or clips, which exert a spring force on the permanent magnets 201 so that they are pressed against the inner wall of the Pole housing 202 are pressed. These clasps, clips and the adhesive are not shown.
  • the device 10 is suitable for magnetizing two-pole pole housings 202 . Therefore, two field magnets 110 and two parts 1020 of the second field conducting element 102 are arranged in the device 10 .
  • a gap 203 is formed between the third field conducting element 103 and the second field conducting element 102 .
  • the permanent magnets 201 together with the pole housing 202 are arranged in the gap 203 .
  • the third field conducting element 103 is also stationary.
  • the magnetic field 120 does not flow through the third field conducting element 103.
  • the magnetic field 120 thus does not flow through the permanent magnets 201.
  • the third field conducting element 103 can be removed from the device 10.
  • the third field conducting element 103 can be fitted with the pole housing 202 containing permanent magnets 201 when it has been removed from the device 10 .
  • the pole housing 202 with the permanent magnets 201 is pushed onto the third field conducting element 103, which serves as a holding mandrel 1030, so that the holding mandrel 1030 is arranged inside the pole housing 202.
  • the permanent magnet 201 is arranged between the wall of the pole housing 202 and the wall of the receiving mandrel 1030 .
  • the wall of the permanent magnet 201 and the wall of the receiving mandrel 1030 are almost parallel.
  • the holding mandrel 1030 and the permanent magnets 201 preferably touch one another.
  • the holding mandrel 1030 with the pole housing 202 with permanent magnets 201 placed on it is reinserted into the device 10 .
  • the radially outer wall of the pole housing 202, which faces the parts 1020 of the second field conducting element 102, is approximately parallel to the wall of the parts 1020.
  • the pole housing 202 and the parts 1020 of the second field conducting element 102 preferably touch the gap 203 as a receptacle 20 for the permanent magnets 201.
  • the third field conducting element 103 cannot be removed from the device 10, so that the pole housing 202 with the permanent magnets 201 is inserted into the device 10 and thereby rests on the already previously arranged in the device 10 third field conducting element 103 is placed.
  • Fig.1b the bipolar device 10 is off Fig. 1a shown.
  • the exciter magnets 110 in Fig.1b are in magnetization position 210.
  • an exciter magnet 110 is only directly opposite one of the parts 1020 of the second field conducting element 102, while in the short-circuit position 211 an exciter magnet 110 is directly opposite two parts 1020, so that the two exciter magnets 110 are connected by the two parts 120 are magnetically connected.
  • the exciter magnets 110 shorted by parts 1020.
  • the magnetic field lines 120 can flow from an exciter magnet 110 via part 1020 of the second field conducting element 102 to the opposite exciter magnet 110 without flowing through the permanent magnets 201 or the third field conducting element 103 .
  • the magnetic field lines 120 extend on the one hand through the first field conducting element 101 and on the other hand through the second field conducting element 102, the permanent magnets 201 and the third field conducting element 103. A magnetic path is thus formed which leads through the permanent magnets 201.
  • a cavity 1021 is arranged between the parts 1020 of the second field conducting element 102 .
  • the cavity 1021 extends in the circumferential direction between two adjacent parts 1020.
  • the cavity 1021 is at the same height as the parts 1020 in the radial direction 3.
  • the cavity 1021 is bridged by an excitation magnet 110.
  • the gap 113 between two excitation magnets 110 and the cavity 1021 are radially adjacent. Thus, the cavity 1021 is not bridged.
  • Fig.2 a cross section of a further device 10 according to the invention is shown.
  • the device 10 is shown as having a four-pole configuration. instead of as in Fig.1a,b to have two excitation magnets 110, the device in Fig.2 four excitation magnets 110 on.
  • the excitation magnets 110 are magnetized in the radial direction 3 .
  • Opposite exciter magnets 110 are each polarized in opposite directions, so that their magnetic field lines 120 repel each other while they extend in the radial direction 2 towards the center of the device 10 . With a polarity in the same direction, the field lines 120 flow from one exciter magnet 110 to the other and penetrate into it. However, it is also conceivable that the excitation magnets 110 are polarized in the same direction.
  • the second field conducting element 102 has four parts 1020 .
  • An auxiliary magnet 112 is arranged in the cavity 1021 .
  • the auxiliary magnet 112 is stationary.
  • the auxiliary magnet 112 comprises rare earth materials and is polarized in the circumferential direction 1 .
  • the auxiliary magnet 112 can also be used with the two-pole device 10 Fig.1 come into use.
  • the four-pole device 10 off Fig.2 is equipped with a pole housing 202, which has four permanent magnets 201.
  • the permanent magnets 201 are as in Fig.1 arranged within the pole housing 202.
  • Fig.3 shows a six-pole device 10.
  • the device 10 has six exciter magnets 110, six parts 1020 of the second field conducting element 102 and six permanent magnets 201.
  • Permanent magnets 201 for electrical machines can be magnetized with the devices 10 of the different exemplary embodiments. However, it is also conceivable to produce permanent magnets for other applications—except for electrical machines.
  • the permanent magnets 201 consist of ferrite material. But it is also possible to use permanent magnets 201 made of rare earth materials.
  • the field conducting elements 101, 102, 103 are preferably made of solid material. The material is not permanent magnetic, but magnetically conductive. It is conceivable that the field conducting elements 101, 102, 103 consist of electrical steel sheets.
  • Such a field conducting element 101, 102, 103 constructed from electrical sheets has a laminated structure.
  • the advantage of a laminated structure is given by the low magnetic loss scattering.
  • the field conducting elements 101, 102, 103 are not permanently magnetic, but they conduct a magnetic flux well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • External Artificial Organs (AREA)

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einer Vorrichtung sowie einem Verfahren zum Magnetisieren von Permanentmagneten nach Gattung der unabhängigen Ansprüche.The invention is based on a device and a method for magnetizing permanent magnets according to the species of the independent claims.

Es sind Vorrichtungen zum Magnetisieren von Permanentmagneten bekannt, die mittels elektromagnetischen Spulen ein Magnetfeld zum Magnetisieren von Permanentmagneten erzeugen. Dabei wird der Permanentmagnet durch eine lineare Bewegung im Bereich des einschaltbaren Magnetfelds positioniert. Wenn der Rohling in Position gebracht wird, wird das Magnetfeld der elektromagnetischen Spule eingeschaltet, indem die elektrische Spule bestromt wird. Solch eine Vorrichtung verbraucht viel elektrische Energie und benötigt eine Steuerung für die elektromagnetischen Spulen sowie Messtechnik zur elektronischen Überwachung der Magnetisierströme.Devices for magnetizing permanent magnets are known which use electromagnetic coils to generate a magnetic field for magnetizing permanent magnets. The permanent magnet is positioned in the area of the magnetic field that can be switched on by means of a linear movement. When the blank is placed in position, the electromagnetic coil's magnetic field is turned on by energizing the electrical coil. Such a device consumes a lot of electrical energy and requires a controller for the electromagnetic coils and measurement technology for electronically monitoring the magnetizing currents.

Offenbarung der ErfindungDisclosure of Invention Vorteile der ErfindungAdvantages of the Invention

Die erfindungsgemäße Vorrichtung sowie das zugehörige Verfahren mit den Merkmalen der unabhängigen Ansprüche hat dem Stand der Technik gegenüber den Vorteil, dass keine elektrische Energie zum Aufbauen eines Magnetfeldes, welches die Permanentmagnete magnetisiert, benötigt wird, da anstatt der elektromagnetischen Spulen wenigstens ein Erregermagnet zur Erzeugung des magnetisierenden Feldes verwendet wird. Dabei sind die Permanentmagnete vor dem magnetisieren nicht magnetischThe device according to the invention and the associated method with the features of the independent claims have the advantage over the prior art that no electrical energy is required to build up a magnetic field that magnetizes the permanent magnets, since instead of the electromagnetic coils, at least one exciter magnet is used to generate the magnetizing field is used. The permanent magnets are not magnetic before they are magnetized

Somit sind die Permanentmagnete vor dem magnetisieren Magnetrohlinge, die kein Magnetfeld aufweisen. Erst durch das magnetisieren werden diese permanentmagnetisch und weisen ein magnetisches Feld auf. Die Vorrichtung weist dabei ein erstes Feldleitelement und ein zweites Feldleitelement auf. Zwischen dem ersten Feldleitelement und dem zweiten Feldleitelement ist der Erregermagnet angeordnet. Das zweite Feldleitelement umfasst eine Aufnahme für den Permanentmagnet. So kann der Permanentmagnet in der Aufnahme angeordnet werden. Dabei kann die Aufnahme schlitzförmig oder kreisförmig sein. Es ist auch denkbar, dass die Aufnahme der Form des Permanentmagnets nachgeformt ist, so dass der Permanentmagnet in der Aufnahme angeordnet werden kann, und die Wandungen des Permanentmagnets in etwa parallel mit den Wandungen ist, die die Aufnahme begrenzen und dem Permanentmagnet zugewandt sind. Auf diese Weise wird eine optimaler Halt für den Permanentmagnets in der Vorrichtung gewährleistet.Thus, the permanent magnets before magnetization are magnet blanks that do not have a magnetic field. Only when they are magnetized do they become permanently magnetic and have a magnetic field. The device has it a first field conducting element and a second field conducting element. The field magnet is arranged between the first field conducting element and the second field conducting element. The second field conducting element includes a receptacle for the permanent magnet. The permanent magnet can thus be arranged in the receptacle. The recording can be slot-shaped or circular. It is also conceivable that the socket is shaped after the shape of the permanent magnet, so that the permanent magnet can be arranged in the socket, and the walls of the permanent magnet are approximately parallel with the walls that delimit the socket and face the permanent magnet. In this way, an optimal hold for the permanent magnet in the device is guaranteed.

Um die Permanentmagnete zu magnetisieren, ist es notwendig, die Permanentmagnete mit einem Magnetfeld zu durchsetzen. Dabei muss das Magnetfeld so stark sein, dass der Permanentmagnet magnetisiert wird. Dabei wird der Permanentmagnet vollständig magnetisiert, und vorzugsweise magnetisch gesättigt, was sich dadurch auszeichnet, das der Permanentmagnet maximal magnetisiert ist. Die Magnetisierung erfolgt durch Einbringen von magnetischer Energie in den Permanentmagnet. Um das Magnetfeld des Erregermagneten durch den Permanentmagnet zu leiten, müssen der Erregermagnet und der Permanentmagnet in eine Magnetisierungsposition gebracht werden, bei der das Magnetfeld den Permanentmagnet durchströmt. Dazu führt der Erregermagnet eine Relativbewegung aus. Die Relativbewegung des Erregermagneten beschreibt eine kreisförmigen Bahn, die sich um den Permanentmagnet herum erstreckt, und erstreckt sich somit entlang der Umfangsrichtung. So bewegt sich der Erregermagnet relativ zu dem inneren Feldleitelement und dem Permanentmagnet beziehungsweise der Aufnahme. Dabei führt der Erregermagnet eine relative kreisförmige Bewegung aus. Der Erregermagnet ist also relativ zu den Feldleitelementen und dem Permanentmagnet beziehungsweise der Aufnahme beweglich. Um einen Permanentmagnet zu magnetisieren, wird ein Permanentmagnet in der Aufnahme angeordnet. Der Permanentmagnet wird dann relativ zu dem Erregermagneten in eine Magnetisierungsposition gebracht, in der der Permanentmagnet von dem Magnetfeld durchströmt wird. Danach wird der Permanentmagnet aus der Aufnahme entnommen. Solch eine Vorrichtung führt ein vorteilhaftes Verfahren aus, welches eine Serienproduktion von magnetisierten Permanentmagneten zulässt. Diese Serienproduktion der Permanentmagnete ist dabei besonders kostengünstig, da zum einen kein Strom für die Magnetisierung verwendet werden muss, und zum anderen eine hohe Taktzahl erreicht wird.In order to magnetize the permanent magnets, it is necessary to permeate the permanent magnets with a magnetic field. The magnetic field must be so strong that the permanent magnet is magnetized. In this case, the permanent magnet is completely magnetized and preferably magnetically saturated, which is characterized by the fact that the permanent magnet is maximally magnetized. The magnetization takes place by introducing magnetic energy into the permanent magnet. In order to conduct the magnetic field of the field magnet through the permanent magnet, the field magnet and the permanent magnet must be brought into a magnetization position in which the magnetic field flows through the permanent magnet. For this purpose, the exciter magnet performs a relative movement. The relative movement of the excitation magnet describes a circular path that extends around the permanent magnet and thus extends along the circumferential direction. The exciter magnet thus moves relative to the inner field conducting element and the permanent magnet or the receptacle. The exciter magnet performs a relative circular movement. The exciter magnet is therefore movable relative to the field conducting elements and the permanent magnet or the receptacle. In order to magnetize a permanent magnet, a permanent magnet is placed in the receptacle. The permanent magnet is then brought into a magnetization position relative to the exciter magnet, in which position the magnetic field flows through the permanent magnet. Thereafter, the permanent magnet is removed from the recording. Such a device carries out an advantageous method which allows mass production of magnetized permanent magnets. This series production of the permanent magnets is particularly cost-effective because, on the one hand, no current has to be used for magnetization and, on the other hand, a high number of cycles is achieved.

Es sind vorteilhafte Weiterentwicklungen und alternativen Ausführungsformen des Gegenstandes der unabhängigen Ansprüche in den abhängigen Ansprüchen wiedergegeben.Advantageous further developments and alternative embodiments of the subject-matter of the independent claims are reflected in the dependent claims.

Zweckmäßigerweise ist das erste Feldleitelement hohlzylinderförmig, während das zweite Feldleitelement kreisringsegmentförmig ist. Dabei ist die hohlzylinderförmige Form des ersten Feldleitelementes und die kreisringsegmentförmige Form des zweiten Feldleitelementes bezüglich der Umfangsrichtung der Vorrichtung ausgerichtet. Das zweite Feldleitelement ist in dem ersten Feldleitelement angeordnet. Dabei ist in dem hohlzylinderförmigen ersten Feldleitelement das zweite Feldleitelement eingefügt, so dass die beiden Feldleitelemente konzentrisch zueinander angeordnet sind. Das zweite Feldleitelement weist dabei einen geringeren Radius auf als das erste Feldleitelement. Die radial äußeren Wandungen der beiden Feldleitelemente sind wenigstens abschnittsweise gegenüberliegend angeordnet. Somit ist wenigstens abschnittsweise das zweite Feldleitelement vom ersten Feldleitelement umschlossen. Es ist denkbar, dass die axiale Länge des ersten Feldleitelementes größer oder kleiner als die axiale Länge des zweiten Feldleitelementes ist. Es ist auch denkbar, dass die Feldleitelemente die gleich axiale Länge aufweisen. Die Wandung des ersten Feldleitelementes berührt nicht die Wandung des zweiten Feldleitelementes. Zwischen der Wandung des ersten und des zweiten Feldleitelementes ist ein Raum ausgebildet, der sich in Umfangsrichtung erstreckt. Dieser Raum weist in Radialrichtung als Maß den Betrag der Differenz der Radien der gegenüberliegenden Wandungen der beiden Feldleitelementen auf. Der Raum erstreckt sich auch in Axialrichtung. Die gegenüberliegenden Wandungen der beiden Feldleitelemente können nahezu parallel sein.The first field conducting element is expediently in the form of a hollow cylinder, while the second field conducting element is in the form of a segment of a circular ring. The hollow-cylindrical shape of the first field conducting element and the annular segment shape of the second field conducting element are aligned with respect to the circumferential direction of the device. The second field conducting element is arranged in the first field conducting element. In this case, the second field conducting element is inserted in the hollow-cylindrical first field conducting element, so that the two field conducting elements are arranged concentrically to one another. The second field conducting element has a smaller radius than the first field conducting element. The radially outer walls of the two field conducting elements are arranged opposite one another, at least in sections. Thus, at least in sections, the second field conducting element is surrounded by the first field conducting element. It is conceivable that the axial length of the first field conducting element is greater or smaller than the axial length of the second field conducting element. It is also conceivable that the field conducting elements have the same axial length. The wall of the first field conducting element does not touch the wall of the second field conducting element. A space is formed between the wall of the first and the second field conducting element, which space extends in the circumferential direction. In the radial direction, this space has the magnitude of the difference in the radii of the opposing walls of the two field conducting elements as a measure. The space also extends in the axial direction. The opposing walls of the two field conducting elements can be almost parallel.

Der Erregermagnet ist in dem Raum zwischen dem äußeren und dem inneren Feldleitelement angeordnet. Dabei ist der Erregermagnet kreisringsegmentförmig. Der Erregermagnet hat eine halbschalenartige Form. Der Erregermagnet erstreckt sich in Axialrichtung. Dabei sind die Wandungen des Erregermagneten und der Feldleitelemente in etwa parallel zueinander. Der Erregermagnet befindet sich zusammen mit dem ersten Feldleitelement in einer beweglichen Baugruppe. Es ist auch denkbar, dass der Permanentmagnet beweglich zwischen den beiden Feldleitelementen angeordnet ist. Dabei weist der Erregermagnet vorzugsweise einen geringen Luftspalt zu den Wandungen der Feldleitelemente auf. Vorzugsweise ist der Erregermagnet in Umfangsrichtung beweglich. Dabei ist insbesondere das erste Feldleitelement ebenfalls in Umfangsrichtung beweglich, und führt vorzugsweise eine mit dem Erregermagneten synchrone Bewegung aus. Hierzu sind der Erregermagnet und das erste Feldleitelement fest miteinander Verbunden. Dabei ist es möglich, dass der Erregermagnet eine Bewegung ausführt, bei der er das zweite Feldleitelement umläuft. Dabei ist das zweite Feldleitelemente ortsfest. Der Erregermagnet umläuft auch den ortsfesten Permanentmagnet. Dabei umläuft der Erregermagnet den Permanentmagneten und das zweite Feldleitelement auf einer kreisförmigen Bahn. Vorzugsweise ist das erste Feldleitelement und/oder der Erregermagnet durch ein Kugellager gelagert. Auf diese Weise kann eine kostengünstige und gleichzeitig schnelltaktende Vorrichtung aufgebaut werden. Der Erregermagnet umfasst Seltenerdmaterialien. Dabei ist denkbar, dass der Erregermagnet Neodym-Eisen-Bor enthält. Solch ein Erregermagnet ist konzentrisch zu den beiden anderen Feldleitelementen angeordnet. Die Zylindersymmetrie der beiden Feldleitelemente und des Erregermagneten erweist sich als vorteilhaft für eine Relativbewegung auf einer kreisförmigen Bahn. Somit ist die Relativbewegung auf einer kreisförmigen Bahn durch einen geringen Kraftaufwand möglich. Aufgrund des vorteilhaften Aufbaus ist die Magnetisierungsposition mit geringem Energieaufwand erreichbar. Es ist auch denkbar, dass der Erregermagnet aus einer Vielzahl von separaten permanentmagnetischen Magnetelementen aufgebaut ist, die nebeneinander angeordnet sind, und sich gegenseitig berühren. Die separaten Magnetelemente sind dabei prismenförmig, und weisen eine dreieckige oder trapezförmige Grundfläche auf. Nachdem Zusammensetzen der separaten Magnetelemente bilden diese einen halbschalenartigen, kreisringsegmentförmigen Erregermagnet aus einer Vielzahl separater Magnetelemente. Diese benachbarten Magnetelemente sind alle in die gleiche, radiale Richtung magnetisiert. Der Erregermagnet ist in Radialrichtung magnetisiert.The field magnet is arranged in the space between the outer and the inner field conducting element. The excitation magnet is in the form of a segment of a circular ring. The exciter magnet has a half-shell shape. The excitation magnet extends in the axial direction. The walls of the excitation magnet and the field conducting elements are approximately parallel to one another. The excitation magnet is located in a movable assembly together with the first field conducting element. It is also conceivable that the permanent magnet is movably arranged between the two field conducting elements. In this case, the field magnet preferably has a small air gap to the walls of the field conducting elements. The excitation magnet is preferably movable in the circumferential direction. In particular, the first field conducting element is also in Circumferentially movable, and preferably performs a synchronous movement with the excitation magnet. For this purpose, the field magnet and the first field conducting element are firmly connected to one another. In this case, it is possible for the exciter magnet to execute a movement in which it runs around the second field conducting element. In this case, the second field conducting element is stationary. The excitation magnet also revolves around the stationary permanent magnet. The excitation magnet runs around the permanent magnet and the second field conducting element on a circular path. Preferably, the first field conducting element and/or the exciter magnet is mounted by a ball bearing. In this way, an inexpensive and at the same time fast clocking device can be constructed. The exciter magnet includes rare earth materials. It is conceivable that the exciter magnet contains neodymium-iron-boron. Such an excitation magnet is arranged concentrically to the other two field conducting elements. The cylindrical symmetry of the two field conducting elements and the excitation magnet proves to be advantageous for a relative movement on a circular path. Thus, the relative movement on a circular path is possible with little effort. Due to the advantageous structure, the magnetization position can be reached with little energy expenditure. It is also conceivable that the excitation magnet is made up of a large number of separate permanent-magnetic magnet elements which are arranged next to one another and touch one another. The separate magnetic elements are prismatic and have a triangular or trapezoidal base. After assembling the separate magnet elements, they form a half-shell-like exciter magnet in the form of a circular ring segment from a large number of separate magnet elements. These adjacent magnetic elements are all magnetized in the same radial direction. The excitation magnet is magnetized in the radial direction.

In einer vorteilhaften Weiterbildung ist ein drittes Feldleitelement vorgesehen. Das dritte Feldleitelement ist in dem zweiten Feldleitelement angeordnet. Dabei ist das dritte Feldleitelement konzentrisch zu dem zweiten Feldleitelement angeordnet. Das dritte Feldleitelement ist dabei zylinderförmig. Das dritte Feldleitelement ist in dem zweiten Feldleitelement so angeordnet, dass deren äußere Wandungen einander gegenüberliegen. Da das dritte Feldleitelement konzentrisch zu dem ersten und dem zweiten Feldleitelement angeordnet ist, und das dritte Feldleitelement innerhalb dem ersten und dem zweiten Feldleitelement angeordnet ist, umschließen das erste und das zweite Feldleitelement das dritte Feldleitelement. Die äußere Wandung des dritten Feldleitelementes ist in etwa parallel zu den Wandungen des ersten und des zweiten Feldleitelementes. Das dritte Feldleitelement besteht vorzugsweise aus einem Zylinder, der aus Vollmaterial gebildet ist. Die Wandung des dritten Feldleitelementes ist beabstandet von der Wandung des zweiten Feldleitelementes. Somit bildet sich ein Spalt zwischen dem zweiten und dem dritten Feldleitelement aus. Der Spalt umläuft das dritte Feldleitelement über den gesamten Umfang. Der Spalt dient als Aufnahme für einen Permanentmagnet. In die Aufnahme wird ein Permanentmagnet eingepasst. Die Aufnahme, in der der Permanentmagnet eingesetzt wird, hat eine kreisringsegmentförmige Form, und ist der Form des Permanentmagnets in etwa nachgeformt. Die Aufnahme erstreckt sich in Umfangsrichtung, als auch in Axialrichtung. Somit ist es besonders vorteilhaft, wenn der Permanentmagnet eine halbschalenförmige Form aufweist. Der Permanentmagnet ist kreisringsegmentförmig. Es ist aber auch denkbar, Permanentmagnete in den Spalt beziehungsweise die Aufnahme einzusetzen, die eine hohlzylinderförmige Form aufweisen und sogenannte Ringmagnete sind. Dazu muss die Aufnahme ebenfalls ringförmig sein. Es ist auch denkbar, Permanentmagnete zu verwenden, die quaderförmig sind. Solche Permanentmagnete weisen eine flache Form auf. Entsprechend ist die Aufnahme schlitzartig geformt und weist keine Krümmung auf. Es ist auch denkbar, stabförmige Magnete zwischen dem dritten und dem zweiten Feldleitelement in der Aufnahme anzuordnen. Dabei können die Stäbe aus magnetisierbarem Rundmaterial oder Flachmaterial bestehen. Durch das dritte Feldleitelement wird eine sichere Positionierung des Permanentmagnets gewährleistet. Gleichzeitig wird eine effiziente Magnetisierung des Permanentmagnets sichergestellt, da das dritte Feldleitelement eine streuverlustarme Leitung der Magnetfeldlinien gewährleistet.In an advantageous development, a third field conducting element is provided. The third field conducting element is arranged in the second field conducting element. The third field conducting element is arranged concentrically to the second field conducting element. The third field conducting element is cylindrical. The third field conducting element is arranged in the second field conducting element in such a way that their outer walls face each other. Since the third field conducting element is arranged concentrically to the first and the second field conducting element, and the third field conducting element is arranged inside the first and the second field conducting element, the first and the second field conducting element enclose the third field conducting element. The outer wall of the third field conducting element is approximately parallel to the walls of the first and second field conducting elements. The third field conducting element preferably consists of a cylinder, which is made of solid material. The wall of the third field conducting element is spaced apart from the wall of the second field conducting element. A gap is thus formed between the second and the third field conducting element. The gap runs around the third field conducting element over the entire circumference. The gap serves as a receptacle for a permanent magnet. A permanent magnet is fitted into the receptacle. The receptacle in which the permanent magnet is inserted has the shape of a segment of a circular ring and is shaped approximately like the shape of the permanent magnet. The recording extends in the circumferential direction as well as in the axial direction. It is therefore particularly advantageous if the permanent magnet has a half-shell shape. The permanent magnet is in the form of a segment of a circular ring. However, it is also conceivable to use permanent magnets in the gap or the receptacle, which have a hollow-cylindrical shape and are so-called ring magnets. For this purpose, the mount must also be ring-shaped. It is also conceivable to use permanent magnets that are cuboid. Such permanent magnets have a flat shape. Accordingly, the receptacle is shaped like a slit and has no curvature. It is also conceivable to arrange rod-shaped magnets between the third and the second field conducting element in the receptacle. The rods can consist of magnetizable round material or flat material. The third field conducting element ensures that the permanent magnet is positioned securely. At the same time, efficient magnetization of the permanent magnet is ensured, since the third field conducting element ensures that the magnetic field lines are conducted with low stray losses.

Zweckmäßigerweise weist die Vorrichtung mehr als einen Erregermagneten auf. Dabei berühren sich die Erregermagnete nicht. Die Erregermagnete sind vorzugsweise kreisringsegmentförmig, wobei die Erregermagnete bezüglich der Umfangsrichtung benachbart zueinander angeordnet sind. Die einzelnen Erregermagnete können aus den Magnetelementen - die sich im Gegensatz zu den Erregermagneten berühren - zusammengesetzt sein. Die Erregermagneten berühren sich nicht. Es ist möglich, zwei oder vier oder sechs Erregermagnete zwischen dem ersten und dem zweiten Feldleitelement anzuordnen. Vorteilhafterweise werden zwei Erregermagnete verwendet, wenn zwei Magnetrohlinge magnetisiert werden sollen. Es werden vier Erregermagnete verwendet, wenn vier Permanentmagnete magnetisiert werden sollen und es werden sechs Erregermagnete verwendet, wenn sechs Permanentmagnete magnetisiert werden sollen. Es ist auch denkbar, mit zwei Erregermagneten nur einen Permanentmagneten zu magnetisieren. Dabei durchlaufen die Magnetfeldlinien der beiden Erregermagneten nur einen Permanentmagnet. Es ist auch möglich, mehr als zwei Erregermagnete für die Magnetisierung eines Permanentmagneten zu verwenden. Es ist auch denkbar, einen Ringmagneten mit einer Vielzahl von Erregermagneten zu magnetisieren, so dass der Ringmagnet eine Vielzahl von Magnetpolen aufweist. Dabei sind die Erregermagnete in Radialrichtung magnetisiert. Durch die freie Wahl der Anzahl der Erregermagnete und damit der Polzahl ist es möglich, verschiedenste Formen von Permanentmagneten zu magnetisieren. Dabei können den Permanentmagneten unterschiedlichste Polzahlen verliehen werden. Dabei ist ein Pol in einem Magnet durch seine Magnetisierungsrichtung gekennzeichnet. So ist vorstellbar, dass z.B. ein Ringmagnet wenigstens zwei Pole aufweist. Solch ein Ringmagnet umfasst zwei Bereiche, die unterschiedliche - insbesondere radiale - Magnetisierungsrichtungen aufweisen. Die Polzahl gibt die die Anzahl von Bereichen mit unterschiedlicher Magnetisierungsrichtung wieder.The device expediently has more than one excitation magnet. The excitation magnets do not touch each other. The field magnets are preferably in the form of segments of a circular ring, with the field magnets being arranged adjacent to one another with respect to the circumferential direction. The individual exciter magnets can be composed of the magnetic elements—which, in contrast to the exciter magnets, touch one another. The exciter magnets do not touch. It is possible to arrange two or four or six excitation magnets between the first and the second field conducting element. Two excitation magnets are advantageously used if two magnet blanks are to be magnetized. Four exciter magnets are used when four permanent magnets are to be magnetized and six exciter magnets are used when six permanent magnets are to be magnetized. It is also conceivable to magnetize only one permanent magnet with two excitation magnets. The magnetic field lines of the two excitation magnets only pass through a permanent magnet. It is also possible to use more than two excitation magnets for magnetizing a permanent magnet. It is also conceivable to magnetize a ring magnet with a large number of excitation magnets, so that the ring magnet has a large number of magnetic poles. The excitation magnets are magnetized in the radial direction. Due to the free choice of the number of excitation magnets and thus the number of poles, it is possible to magnetize a wide variety of forms of permanent magnets. The permanent magnets can be given a wide variety of pole numbers. A pole in a magnet is characterized by its direction of magnetization. So it is conceivable that, for example, a ring magnet has at least two poles. Such a ring magnet comprises two areas which have different—in particular radial—directions of magnetization. The number of poles reflects the number of areas with different directions of magnetization.

Das zweite Feldleitelement besteht aus kreisringsegmentförmigen Teilen, die sich vorzugsweise in Umfangsrichtung erstrecken, und somit halbschalenförmig sind. Die Teile sind in Umfangsrichtung angeordnet. Die Teile berühren sich nicht, und sind bezüglich der Umfangsrichtung benachbart zueinander angeordnet. Dadurch bildet sich ein Hohlraum zwischen den Teilen aus, wobei der Hohlraum bezüglich der Umfangsrichtung zwischen zwei benachbarten Teilen angeordnet ist. Entsprechend der Anzahl der Erregermagneten ist es vorteilhaft, die Anzahl Teile des zweiten Feldleitelements anzupassen. Dabei ist es denkbar, zwei oder vier oder sechs kreisringsegmentförmige Teile zu verwenden, um das zweite Feldleitelement aufzubauen. Dabei werden die Teile des zweiten Feldleitelements in Umfangsrichtung nebeneinander angeordnet, so dass sie benachbart auf einer kreisförmigen Linie angeordnet sind. Vorzugsweise sind gleich viele Teile des zweiten Feldleitelements in der Vorrichtung angeordnet, wie Erregermagneten vorhanden sind. Das bedeutet, wenn zwei Permanentmagnete in der Vorrichtung verbaut sind, so sind zwei Teile des zweiten Feldleitelements vorhanden. Es ist aber auch denkbar, mehr Teile des Feldleitelements als Permanentmagneten in der Vorrichtung anzuordnen. Es ist auch möglich, weniger Teile des zweiten Feldleitelements in der Vorrichtung anzuordnen, wie es Permanentmagnete aufweist. Weiter ist es möglich, dass sich die Teile des zweiten Feldleitelements in Umfangsrichtung über den gleichen Winkel erstrecken wie die Erregermagneten, so dass die Teile und die Permanentmagneten die gleiche Größe aufweisen. Dabei weisen die Teile alle die gleiche Ausdehnung in Umfangsrichtung auf. Allerdings ist es auch möglich, dass die Teile in Umfangsrichtung unterschiedliche Winkel aufweisen. Durch die Möglichkeit, die Größe und die Anzahl der Teile frei zu wählen, können unterschiedlichste Arten von Magnetrohlingen und Polzahlen in den Magnetrohlingen realisiert werden. So wird ein Pol in einem Magnetrohling durch das in einem zusammenhängenden Bereich eindringende Magnetfeld einer Richtung erzeugt. Das Magnetfeld wird durch wenigstens einen Erregermagnet und vorzugsweise ein Teil des zweiten Feldleitelements in den Bereich des Permanentmagneten eingeleitet. Hinsichtlich der Teile ist eine alternative Ausführungsform möglich, bei der ein Teil aus wenigstens zwei sich berührenden separaten Teileinheiten bestehen. Dabei sind die Teileinheiten ebenfalls nicht permanentmagnetisch und leiten Magnetfelder gut. Wenn die Teileinheiten zusammengesetzt werden, so ergeben sie ein Teil des zweiten Feldleitelements.The second field conducting element consists of parts in the form of segments of a circular ring, which preferably extend in the circumferential direction and are therefore in the form of half shells. The parts are arranged in the circumferential direction. The parts do not touch each other and are arranged adjacent to each other with respect to the circumferential direction. As a result, a cavity is formed between the parts, with the cavity being arranged between two adjacent parts with respect to the circumferential direction. Depending on the number of excitation magnets, it is advantageous to adjust the number of parts of the second field conducting element. It is conceivable to use two or four or six parts in the shape of a segment of a circular ring in order to construct the second field conducting element. In this case, the parts of the second field conducting element are arranged next to one another in the circumferential direction, so that they are arranged next to one another on a circular line. The same number of parts of the second field conducting element are preferably arranged in the device as there are exciter magnets. This means that if two permanent magnets are installed in the device, then there are two parts of the second field conducting element. However, it is also conceivable to arrange more parts of the field conducting element as permanent magnets in the device. It is also possible to arrange fewer parts of the second field conducting element in the device, as is the case with permanent magnets. It is also possible for the parts of the second field conducting element to extend in the circumferential direction over the same angle as the excitation magnets, so that the parts and the permanent magnets have the same size. The parts all have the same extent in the circumferential direction. However, it is also possible for the parts to have different angles in the circumferential direction. Due to the possibility of freely choosing the size and number of parts, a wide variety of types of magnet blanks and numbers of poles can be used in the Magnet blanks can be realized. A pole is thus created in a magnet blank by the magnetic field penetrating a coherent area in one direction. The magnetic field is introduced into the area of the permanent magnet by at least one exciter magnet and preferably a part of the second field conducting element. With regard to the parts, an alternative embodiment is possible, in which one part consists of at least two touching separate part units. The sub-units are also not permanently magnetic and conduct magnetic fields well. When the sub-units are put together, they form part of the second field conducting element.

Vorteilhafterweise kann zwischen zwei benachbarten Teilen des zweiten Feldleitelementes ein Hilfsmagnet in dem Hohlraum angeordnet sein. Dabei ist der Hilfsmagnet bezüglich der Umfangsrichtung zwischen zwei benachbarten Teilen angeordnet. Der Hilfsmagnet ist auch in Radialrichtung im gleichen Ort wie die Teile, so dass der Hilfsmagnet sich über den gleichen Radius erstreckt wie die Teile. Dabei ist der Hilfsmagnet in Tangentialrichtung bezüglich der Umfangsrichtung magnetisiert. Die Verwendung von Hilfsmagneten erhöht die Effizienz der Vorrichtung, da magnetische Streufelder unterdrückt werden.An auxiliary magnet can advantageously be arranged in the cavity between two adjacent parts of the second field conducting element. In this case, the auxiliary magnet is arranged between two adjacent parts with respect to the circumferential direction. The auxiliary magnet is also radially co-located with the parts so that the auxiliary magnet extends the same radius as the parts. The auxiliary magnet is magnetized in the tangential direction with respect to the circumferential direction. The use of auxiliary magnets increases the efficiency of the device since stray magnetic fields are suppressed.

Vorzugsweise dient das dritte Feldleitelement als ein Aufnahmedorn. Der Aufnahmedorn wird dabei in ein Polgehäuse einer elektrischen Maschine eingeführt. Dabei ist mindestens ein Permanentmagnet innerhalb des Polgehäuses angeordnet. Nachdem der Aufnahmedorn in dem Polgehäuse angeordnet ist, befindet sich der Permanentmagnet zwischen dem Polgehäuse und dem Aufnahmedorn. Das Polgehäuse ist ein topfförmiges und vorzugsweise metallisches Gehäuseteil einer elektrischen Maschine, an dessen radialer Innenwand Magnete angeordnet werden. Diese Magnete können an der Innenwand des Polgehäuses befestigt werden, bevor sie magnetisiert werden. So kann die Magnetisierung der Permanentmagnete erfolgen, während sie in dem Polgehäuse angeordnet sind. Die Befestigung der Permanentmagnete an der Innenwand des Polgehäuses kann durch Kleben und/oder Haltefedern erfolgen, wobei die Haltefedern eine Kraft auf die Permanentmagnete ausüben, so dass diese an die Innenwand gepresst werden. Die Kraft der Haltefedern ist eine Federkraft. Da die Permanentmagneten im Polgehäuse vorerst noch nicht magnetisiert sind, ist es möglich, diese in die Vorrichtung einzusetzen und auf diese kostengünstige Weise montierte und fertige Polgehäuse mit magnetisierten Magneten für eine Serienfertigung zu realisieren. Dabei ist es denkbar, dass das Polgehäuse in dem vorher in der Vorrichtung angeordneten Aufnahmedorn aufgesetzt wird. Somit braucht nur das Polgehäuse in die Vorrichtung eingesetzt zu werden und nach dem Magnetisieren wieder herausgenommen werden. Das dritte Feldleitelement ist dabei fest in der Vorrichtung angeordnet.The third field conducting element preferably serves as a receiving mandrel. The arbor is inserted into a pole housing of an electrical machine. At least one permanent magnet is arranged within the pole housing. After the arbor is placed in the pole housing, the permanent magnet is located between the pole housing and the arbor. The pole housing is a pot-shaped and preferably metallic housing part of an electrical machine, on the radial inner wall of which magnets are arranged. These magnets can be attached to the inside wall of the pole shell before being magnetized. The magnetization of the permanent magnets can thus take place while they are arranged in the pole housing. The permanent magnets can be attached to the inner wall of the pole housing by gluing and/or retaining springs, with the retaining springs exerting a force on the permanent magnets so that they are pressed against the inner wall. The force of the retaining springs is a spring force. Since the permanent magnets in the pole housing are not magnetized for the time being, it is possible to use them in the device and in this cost-effective manner to realize assembled and finished pole housings with magnetized magnets for series production. It is conceivable that the pole housing in the previously arranged in the device receiving mandrel is put on. Thus, only the pole housing needs to be inserted into the device and removed again after magnetization. The third field conducting element is fixed in the device.

Es ist auch denkbar, dass das dritte Feldleitelement herausnehmbar ist, so dass der Aufnahmedorn leicht ausgetauscht werden kann. Dies hat den Vorteil, dass ein für unterschiedliche Polgehäuse und Permanentmagnete spezifischer Aufnahmedorn in die Vorrichtung eingesetzt werden kann. Ein weiterer Vorteil ist die Möglichkeit, den Aufnahmedorn mit dem Polgehäuse außerhalb der Vorrichtung zu bestücken. Dabei ist es vorteilhaft, wenn der Aufnahmedorn in Axialrichtung aus der Vorrichtung herausgenommen wird, und außerhalb der Vorrichtung das Polgehäuse mit den Permanentmagneten auf den Dorn aufgesetzt wird. Nach dem Aufsetzen des Polgehäuses wird der Aufnahmedorn mit dem Polgehäuse und den Permanentmagneten wieder in die Maschine eingesetzt, um dort magnetisiert zu werden. Nach dem Magnetisieren wird wiederum der Aufnahmedorn mit dem Polgehäuse und den Permanentmagneten aus der Maschine herausgenommen. Danach wird das Polgehäuse mit den Permanentmagneten von dem Dorn abgestreift und ein Polgehäuse mit unmagnetisierten Rohlingen wieder aufgesetzt.It is also conceivable that the third field conducting element can be removed so that the receiving mandrel can be easily replaced. This has the advantage that a specific arbor for different pole housings and permanent magnets can be inserted into the device. A further advantage is the possibility of equipping the mandrel with the pole housing outside of the device. It is advantageous if the receiving mandrel is removed from the device in the axial direction and the pole housing with the permanent magnets is placed on the mandrel outside the device. After putting on the pole housing, the mandrel with the pole housing and the permanent magnet is put back into the machine to be magnetized there. After magnetizing, the mandrel with the pole housing and the permanent magnets are removed from the machine. Then the pole housing with the permanent magnets is stripped off the mandrel and a pole housing with unmagnetized blanks is put back on.

Ist die Vorrichtung mit einem noch nicht magnetisierten Permanentmagnet bestückt, führt der Erregermagnet eine Bewegung aus bis der Erregermagnet in eine Magnetisierungsposition ankommt. Dabei führt der Erregermagnet eine kreisförmige Bewegung aus. Die kreisförmige Bewegung erstreckt sich in Umfangsrichtung der Vorrichtung. Die Bewegung wird durch den Erregermagneten um das zweite Feldleitelement herum ausgeführt. Dabei ist das zweite Feldleitelement ortsfest bezüglich der gesamten Vorrichtung. Ebenso ist das dritte Feldleitelement und die Permanentmagneten ortsfest. Wenn der Erregermagnet in Magnetisierungsposition ist, durchströmen die Magnetfeldlinien das erste Feldleitelement, das zweite Feldleitelement, den Permanentmagneten und das dritte Feldleitelement, so dass ein geschlossener Magnetfeldpfad ausgebildet ist. Dabei wird der Permanentmagnet magnetisiert. Nachdem der Permanentmagnet magnetisiert ist, bewegt sich der Erregermagnet in eine Kurzschlussposition aus der Magnetisierungsposition heraus. In der Kurzschlussposition wird der Permanentmagnet nicht von dem Magnetfeld durchströmt. In der Kurzschlussposition wird das erste Feldleitelement und das zweite Feldleitelement vom Magnetfeld durchströmt. Das dritte Feldleitelement und die Permanentmagnete sind nicht von dem Magnetfeld durchströmt, wenn der Erregermagnet in Kurzschlussposition ist, da das Magnetfeld des Erregermagneten über das zweite Feldleitelement kurzgeschlossen werden. Der Permanentmagnet wird in die Vorrichtung eingesetzt beziehungsweise aus der Vorrichtung herausgenommen, wenn die Vorrichtung in Kurzschlussposition ist. Das hat den Vorteil, dass keine Kräfte auf den Permanentmagnet wirken während er eingesetzt wird beziehungsweise herausgenommen wird aus der Vorrichtung. Ebenso wird der Aufnahmedorn in die Vorrichtung eingesetzt, wenn die Erregermagnete in Kurzschlussposition sind.If the device is equipped with a permanent magnet that has not yet been magnetized, the exciter magnet performs a movement until the exciter magnet arrives in a magnetization position. The exciter magnet performs a circular movement. The circular movement extends in the circumferential direction of the device. The movement is carried out by the excitation magnet around the second field conducting element. The second field conducting element is stationary with respect to the entire device. Likewise, the third field conducting element and the permanent magnets are stationary. When the excitation magnet is in the magnetization position, the magnetic field lines flow through the first field conducting element, the second field conducting element, the permanent magnet and the third field conducting element, so that a closed magnetic field path is formed. The permanent magnet is thereby magnetized. After the permanent magnet is magnetized, the exciter magnet moves to a short-circuit position from the magnetization position. In the short-circuit position, the magnetic field does not flow through the permanent magnet. In the short-circuit position, the magnetic field flows through the first field conducting element and the second field conducting element. The magnetic field does not flow through the third field conducting element and the permanent magnets when the excitation magnet is in the short-circuit position the magnetic field of the exciter magnet can be short-circuited via the second field conducting element. The permanent magnet is inserted into the device or removed from the device when the device is in the short-circuit position. This has the advantage that no forces act on the permanent magnet while it is being inserted or removed from the device. The mandrel is also inserted into the device when the excitation magnets are in the short-circuit position.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Die Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

  • Fig.1a einen Querschnitt einer zweipoligen erfindungsgemäßen Vorrichtung mit einem Polgehäuse mit Permanentmagneten, wobei die Vorrichtung in Kurzschlussposition ist,
  • Fig.1b eine zweipolige erfindungsgemäße Vorrichtung in Magnetisierungsposition,
  • Fig.2 Querschnitt einer erfindungsgemäßen vierpoligen Vorrichtung in Kurzschlussposition,
  • Fig.3 Querschnitt einer erfindungsgemäßen sechspoligen Vorrichtung in Kurzschlussposition.
The embodiments of the invention are shown in the drawings and explained in more detail in the following description. Show it:
  • Fig.1a a cross section of a two-pole device according to the invention with a pole housing with permanent magnets, the device being in the short-circuit position,
  • Fig.1b a two-pole device according to the invention in the magnetization position,
  • Fig.2 Cross section of a four-pole device according to the invention in the short-circuit position,
  • Fig.3 Cross-section of a six-pole device according to the invention in the short-circuit position.

Ausführungsformen der ErfindungEmbodiments of the invention

In Fig. 1a ist ein Querschnitt einer erfindungsgemäßen Vorrichtung 10 gezeigt. Die Vorrichtung 10 weist ein hohlzylinderförmiges erstes Feldleitelement 101 auf. Das erste Feldleitelement 101 ist vorzugsweise in Umfangsrichtung 1 geschlossen. Dabei erstreckt sich das erste Feldleitelement 101 in Axialrichtung 2. Das hohlzylinderförmige Feldleitelement 101ist ringförmig und erstreckt sich in geschlossener Weise in Umfangsrichtung 1. Das erste Feldleitelement 101 weist eine Ausnehmung in der Mitte auf, die sich in Axialrichtung 2 erstreckt. Die Ausnehmung in dem ersten Feldleitelement 101 ist vorzugsweise zylinderförmig, so dass das hohlzylinderförmige erste Feldleitelement 101 hohl ist. Das erste Feldleitelement 101 weist eine Wandstärke in Radialrichtung 3 auf. Das erste Feldleitelement 101 dient zur Leitung von einem Magnetfeld 120. Dabei wird das Magnetfeld 120 im Wesentlichen in Umfangsrichtung 1 in der Wand des ersten Feldleitelementes 101 geleitet. Im Wesentlichen bedeutet dies, dass das Magnetfeld 120 auch Feldkomponenten aufweist, die nicht in Umfangsrichtung 1 weisen, sondern in Radialrichtung 3 und Axialrichtung 2. Jedoch ist das Magnetfeld 120 im Wesentlichen in Umfangsrichtung 1 gerichtet innerhalb des ersten Feldleitelements 101.In Fig. 1a a cross-section of a device 10 according to the invention is shown. The device 10 has a first field conducting element 101 in the form of a hollow cylinder. The first field conducting element 101 is preferably closed in the circumferential direction 1 . The first field conducting element 101 extends in the axial direction 2. The hollow-cylindrical field conducting element 101 is ring-shaped and extends in a closed manner in the circumferential direction 1. The first field conducting element 101 has a recess in the center that extends in the axial direction 2. The recess in the first field conducting element 101 is preferably cylindrical, so that the hollow-cylindrical first field conducting element 101 is hollow. The first field conducting element 101 has a wall thickness of 3 in the radial direction. The first field conducting element 101 is used to manage one Magnetic field 120. The magnetic field 120 is conducted essentially in the circumferential direction 1 in the wall of the first field conducting element 101. Essentially, this means that magnetic field 120 also has field components that do not point in circumferential direction 1, but rather in radial direction 3 and axial direction 2. However, magnetic field 120 is essentially directed in circumferential direction 1 within first field conducting element 101.

Innerhalb des ersten Feldleitelements 101 sind zwei Erregermagnete 110 angeordnet. Die Erregermagnete 110 sind halbschalenförmig, und daher weisen sie eine rinnenförmige Form auf. Die Erregermagnete 110 sind kreisringsegmentförmig und erstrecken sich in Umfangsrichtung 1 als auch in Axialrichtung 2. Die radial äußere Wandung des Erregermagneten 110 ist in etwa parallel zur radial nach innen gerichteten Wandung des ersten Feldleitelementes 101. Dabei erstreckt sich der Erregermagnet 110 in Axialrichtung 2 entlang des ersten Feldleitelementes 101. Dabei kann der Erregermagnet 110 gleich lang oder länger oder kürzer als das erste Feldleitelement 1 bezüglich der Axialrichtung 2 sein. Die Erregermagnete 110 sind in Radialrichtung 3 magnetisiert. So leiten die Erregermagnete 110 ihr Magnetfeld 120 in das erste Feldleitelement 101 ein. Die Erregermagnete 110 sind derart in dem ersten Feldleitelement 101 angeordnet, dass sie in Umfangsrichtung 2 beweglich sind. Dadurch ist es den Erregermagneten 110 möglich, sich in Umfangsrichtung 1 auf einer kreisrunden Bahn 111 zu bewegen. Dabei umlaufen die Erregermagnete 110 die Rotationssymmetrieachse des ersten Feldleitelementes 101. Die Erregermagnete 110 bewegen sich auf einer kreisrunden Bahn 111. Dabei ist es besonders vorteilhaft, wenn die Erregermagnete 110 und das erste Feldleitelement 101 gemeinsam die Bewegung auf der Bahn 111 ausführen. Dabei sind die Erregermagneten 110 in einer festen Anordnung mit dem ersten Feldleitelement 101, und berühren diese vorzugsweise mit ihrer radialen nach außen gerichteten Seite, sodass sich bezüglich der Radialrichtung 2 die Wandung der Außenseite des Erregermagnets 110 und die Wandung der Innenseite des ersten Flussleitelements 101 berühren. Es ist auch denkbar, dass sich nur die Erregermagnete 110 entlang der radial inneren Wandung des ersten Feldleitelementes 101 bewegen. Die Erregermagnete 110 umfassen vorzugsweise Seltenerdmaterialien wie z.B. Neodym-Eisen-Bohr. Die beiden Erregermagnete 110 in der Fig.1a und Fig. 1b berühren sich nicht. Die beiden Erregermagnete 110 sind in Umfangsrichtung 1 voneinander beabstandet. Dadurch bildet sich eine Lücke 113 zwischen den Erregermagneten 110. Die Lücke 113 ist in Radialrichtung 3 am gleichen Ort wie die Erregermagneten 110. Die Lücke 113 weist in Radialrichtung 3 die gleiche Ausdehnung auf wie die Erregermagnete 110. Ebenso erstreckt sich die Lücke in Axialrichtung 2 über die gesamte Länge der Erregermagnete 110.Two exciter magnets 110 are arranged within the first field conducting element 101 . The exciter magnets 110 are half-shell shaped and therefore have a trough shape. The excitation magnets 110 are in the form of segments of a circular ring and extend in the circumferential direction 1 and in the axial direction 2. The radially outer wall of the excitation magnet 110 is approximately parallel to the radially inward-facing wall of the first field conducting element 101. The excitation magnet 110 extends in the axial direction 2 along the first field conducting element 101. The field magnet 110 can be the same length or longer or shorter than the first field conducting element 1 with respect to the axial direction 2. The excitation magnets 110 are magnetized in the radial direction 3 . In this way, the excitation magnets 110 introduce their magnetic field 120 into the first field conducting element 101 . The excitation magnets 110 are arranged in the first field conducting element 101 in such a way that they can be moved in the circumferential direction 2 . This makes it possible for the exciter magnet 110 to move in the circumferential direction 1 on a circular path 111 . The exciter magnets 110 revolve around the axis of rotational symmetry of the first field conducting element 101. The exciter magnets 110 move on a circular path 111. It is particularly advantageous if the exciter magnets 110 and the first field conducting element 101 move together on the path 111. The exciter magnets 110 are in a fixed arrangement with the first field guide element 101 and preferably touch it with their radially outward-facing side, so that the wall on the outside of the exciter magnet 110 and the wall on the inside of the first flux guide element 101 touch in relation to the radial direction 2 . It is also conceivable that only the exciter magnets 110 move along the radially inner wall of the first field conducting element 101 . The excitation magnets 110 preferably comprise rare earth materials such as neodymium-iron-boron. The two excitation magnets 110 in the Figures 1a and 1b don't touch. The two field magnets 110 are spaced apart from one another in the circumferential direction 1 . This forms a gap 113 between the field magnets 110. The gap 113 is at the same location in the radial direction 3 as the field magnets 110. The gap 113 has the same location in the radial direction 3 Extension to that of the excitation magnets 110. The gap also extends in the axial direction 2 over the entire length of the excitation magnets 110.

In dem ersten Feldleitelement 101 sind zwei Teile 1020 eines zweiten Feldleitelementes 102 angeordnet. Dabei sind die Teile 1020 des zweiten Feldleitelementes 102 kreisringsegmentförmig. Die Teile 1020 erstrecken sich in Umfangsrichtung 1 und in Axialrichtung 2 als auch in Radialrichtung 3. Dabei können die Teile 1020 gleich lang oder kürzer oder länger als die Erregermagnete 110 oder das erste Feldleitelement 101 sein. Die Teile 1020 des zweiten Feldleitelementes 102 sind konzentrisch zu den Erregermagneten 110 und dem ersten Feldleitelement 101 angeordnet. Dabei sind die radial äußeren Wandungen der Teile 1020 gegenüberliegend zu den radial inneren Wandungen der Erregermagnete 110 und des ersten Feldleitelementes 101 angeordnet. Die Wandungen sind nahezu parallel zueinander. Die Feldleitelemente 101, 102 sind metallisch und leiten Magnetfelder 120. Das Magnetfeld 120, das von den Erregermagneten 110 ausgeht, wird durch das erste Feldleitelement 101 - als eine Art magnetischer Rückschlussring - und durch das zweite Feldleitelement 102 geleitet. Das zweite Feldleitelement 102 ist ortsfest. Das erste Feldleitelement 101 führt zusammen mit dem Erregermagnet 110 eine kreisförmige Bewegung aus.. Die beweglichen Erregermagnete 110 sind in Fig.1a in einer Kurzschlussposition 211 positioniert. In der Kurzschlussposition 211 durchströmt das Magnetfeld das erste Feldleitelement 101 und das zweite Feldleitelement 102. Dabei durchströmt das Magnetfeld 120 das zweite Feldleitelement 102 sowie das erste Feldleitelement 101 im Wesentlichen in Umfangsrichtung 1.Two parts 1020 of a second field conducting element 102 are arranged in the first field conducting element 101 . The parts 1020 of the second field conducting element 102 are in the form of segments of a circular ring. The parts 1020 extend in the circumferential direction 1 and in the axial direction 2 as well as in the radial direction 3. The parts 1020 can be the same length or shorter or longer than the excitation magnets 110 or the first field conducting element 101. The parts 1020 of the second field conducting element 102 are arranged concentrically to the exciter magnet 110 and the first field conducting element 101 . The radially outer walls of the parts 1020 are arranged opposite the radially inner walls of the excitation magnets 110 and the first field conducting element 101 . The walls are almost parallel to each other. The field conducting elements 101, 102 are metallic and conduct magnetic fields 120. The magnetic field 120, which emanates from the exciter magnet 110, is conducted through the first field conducting element 101—as a type of magnetic return ring—and through the second field conducting element 102. The second field conducting element 102 is stationary. The first field conducting element 101 performs a circular movement together with the exciter magnet 110. The movable exciter magnets 110 are in Fig.1a positioned in a short-circuit position 211 . In the short-circuit position 211, the magnetic field flows through the first field conducting element 101 and the second field conducting element 102. The magnetic field 120 flows through the second field conducting element 102 and the first field conducting element 101 essentially in the circumferential direction 1.

Konzentrisch zu dem ersten Feldleitelement 101, dem Erregermagneten 110 und dem zweiten Feldleitelement 102 ist ein drittes Feldleitelement 103 angeordnet, wobei das dritte Feldleitelement 103 zylinderförmig ist. Dabei liegt die radial äußere Wandung des dritten Feldleitelementes 103 den Wandungen des ersten und zweiten Feldleitelementes 101, 102 gegenüber. Die Wandungen der Feldleitelemente 101, 102, 103 sind nahezu parallel zueinander. Das dritte Feldleitelement 103 dient als Aufnahmedorn 1030 für ein Polgehäuse 202 einer elektrische Maschine, wobei innerhalb des Polgehäuses 202 Permanentmagnete 201 angeordnet sind. Die Permanentmagnete 201 sind an der inneren Wandung des Polgehäuses 1030 befestigt. Die Befestigung der Permanentmagnete 201 innerhalb des Polgehäuses 202 erfolgt durch Ankleben oder durch mechanische Befestigungsmittel, wie Spangen oder Clips, die eine Federkraft auf die Permanentmagnete 201 ausüben, so dass diese gegen die innere Wandung des Polgehäuses 202 gepresst werden. Diese Spangen, Clips sowie der Klebstoff sind nicht dargestellt. Die Vorrichtung 10 ist zur Magnetisierung von zweipoligen Polgehäusen 202 geeignet. Daher sind zwei Erregermagnete 110 und zwei Teile 1020 des zweiten Feldleitelements 102 in der Vorrichtung 10 angeordnet. Zwischen dem dritten Feldleitelement 103 und dem zweiten Feldleitelement 102 ist ein Spalt 203 ausgebildet. In dem Spalt 203 werden die Permanentmagnete 201 samt dem Polgehäuse 202 angeordnet. Das dritte Feldleitelement 103 ist ebenfalls ortsfest. In der Kurzschlussposition 211 wird das dritte Feldleitelement 103 nicht von dem Magnetfeld 120 durchströmt. Das Magnetfeld 120 durchström somit nicht die Permanentmagnete 201. Das dritte Feldleitelement 103 ist aus der Vorrichtung 10 herausnehmbar. Dabei kann das dritte Feldleitelement 103, wenn es aus der Vorrichtung 10 herausgenommen ist, mit dem Permanentmagnete 201 enthaltenden Polgehäuse 202 bestückt werden. Dazu wird das Polgehäuse 202 mit den Permanentmagneten 201 auf das dritte Feldleitelement 103, das als Aufnahmedorn 1030 dient, aufgeschoben, so dass der Aufnahmedorn 1030 innerhalb des Polgehäuses 202 angeordnet ist. Dabei ist zwischen der Wandung des Polgehäuses 202 und der Wandung des Aufnahmedorns 1030 die Permanentmagnet 201 angeordnet. Die Wandung des Permanentmagnets 201 und die Wandung des Aufnahmedorns 1030 sind dabei nahezu parallel. Vorzugsweise berühren sich der Aufnahmedorn 1030 und die Permanentmagnete 201. Der Aufnahmedorn 1030 mit dem auf diesen aufgesetzten Polgehäuse 202 mit Permanentmagneten 201 wird in die Vorrichtung 10 wieder eingesetzt. Nach dem Einsetzen ist die radial äußere Wandung des Polgehäuses 202, die den Teilen 1020 des zweiten Feldleitelementes 102 zugewandt ist, in etwa parallel mit der Wandung der Teile 1020. Vorzugsweise berühren sich das Polgehäuse 202 und die Teile 1020 des zweiten Feldleitelements 102. Somit dient der Spalt 203 als Aufnahme 20 für die Permanentmagnete 201. Es ist aber auch denkbar, dass das dritte Feldleitelement 103 aus der Vorrichtung 10 nicht herausnehmbar ist, so dass das Polgehäuse 202 mit den Permanentmagneten 201 in die Vorrichtung 10 eingesetzt wird und dabei auf den schon vorher in der Vorrichtung 10 angeordneten dritten Feldleitelement 103 aufgesetzt wird.A third field conducting element 103 is arranged concentrically to the first field conducting element 101, the excitation magnet 110 and the second field conducting element 102, the third field conducting element 103 being cylindrical. The radially outer wall of the third field conducting element 103 is opposite the walls of the first and second field conducting elements 101 , 102 . The walls of the field conducting elements 101, 102, 103 are almost parallel to one another. The third field conducting element 103 serves as a receiving mandrel 1030 for a pole housing 202 of an electrical machine, with permanent magnets 201 being arranged inside the pole housing 202 . The permanent magnets 201 are attached to the inner wall of the pole housing 1030 . The permanent magnets 201 are fastened within the pole housing 202 by gluing or by mechanical fasteners, such as clasps or clips, which exert a spring force on the permanent magnets 201 so that they are pressed against the inner wall of the Pole housing 202 are pressed. These clasps, clips and the adhesive are not shown. The device 10 is suitable for magnetizing two-pole pole housings 202 . Therefore, two field magnets 110 and two parts 1020 of the second field conducting element 102 are arranged in the device 10 . A gap 203 is formed between the third field conducting element 103 and the second field conducting element 102 . The permanent magnets 201 together with the pole housing 202 are arranged in the gap 203 . The third field conducting element 103 is also stationary. In the short-circuit position 211, the magnetic field 120 does not flow through the third field conducting element 103. The magnetic field 120 thus does not flow through the permanent magnets 201. The third field conducting element 103 can be removed from the device 10. The third field conducting element 103 can be fitted with the pole housing 202 containing permanent magnets 201 when it has been removed from the device 10 . For this purpose, the pole housing 202 with the permanent magnets 201 is pushed onto the third field conducting element 103, which serves as a holding mandrel 1030, so that the holding mandrel 1030 is arranged inside the pole housing 202. The permanent magnet 201 is arranged between the wall of the pole housing 202 and the wall of the receiving mandrel 1030 . The wall of the permanent magnet 201 and the wall of the receiving mandrel 1030 are almost parallel. The holding mandrel 1030 and the permanent magnets 201 preferably touch one another. The holding mandrel 1030 with the pole housing 202 with permanent magnets 201 placed on it is reinserted into the device 10 . After insertion, the radially outer wall of the pole housing 202, which faces the parts 1020 of the second field conducting element 102, is approximately parallel to the wall of the parts 1020. The pole housing 202 and the parts 1020 of the second field conducting element 102 preferably touch the gap 203 as a receptacle 20 for the permanent magnets 201. However, it is also conceivable that the third field conducting element 103 cannot be removed from the device 10, so that the pole housing 202 with the permanent magnets 201 is inserted into the device 10 and thereby rests on the already previously arranged in the device 10 third field conducting element 103 is placed.

In Fig.1b ist die zweipolige Vorrichtung 10 aus Fig. 1a gezeigt. Die Erregermagneten 110 in Fig.1b sind in Magnetisierungsstellung 210. Bei der Magnetisierungsstellung 210 liegt ein Erregermagnet 110 lediglich einem der Teile 1020 des zweiten Feldleitelementes 102 unmittelbar gegenüber, während in der Kurzschlussstellung 211 ein Erregermagnet 110 zwei Teilen 1020 unmittelbar gegenüberliegt, so dass die beiden Erregermagnete 110 durch die beiden Teile 120 magnetisch verbunden sind. Somit sind die Erregermagnete 110 durch die Teile 1020 kurzgeschlossen. So können die Magnetfeldlinien 120 aus einem Erregermagnet 110 über ein Teil 1020 des zweiten Feldleitelementes 102 zum gegenüberliegenden Erregermagnet 110 fließen ohne durch die Permanentmagnete 201 oder das dritte Feldleitelement 103 zu fließen. In der Magnetisierungsposition 210 erstrecken sich die Magnetfeldlinien 120 zum einen durch das erste Feldleitelement 101 und zum anderen durch das zweite Feldleitelement 102, die Permanentmagnete 201 und das dritte Feldleitelement 103. Somit bildet sich ein Magnetpfad, der durch die Permanentmagnete 201 führt. Zwischen den Teilen 1020 des zweiten Feldleitelements 102 ist ein Hohlraum 1021 angeordnet. Der Hohlraum 1021 erstreckt sich in Umfangsrichtung zwischen zwei benachbarte Teile 1020. Der Hohlraum 1021 ist in Radialrichtung 3 auf gleicher Höhe wie die Teile 1020. In Kurzschlussposition 211 wird der Hohlraum 1021 durch einen Erregermagneten 110 überbrückt. In Magnetisierungsposition 211 sind die Lücke 113 zwischen zwei Erregermagneten 110 und der Hohlraum 1021 radial benachbart. Somit ist der Hohlraum 1021 nicht überbrückt.In Fig.1b the bipolar device 10 is off Fig. 1a shown. The exciter magnets 110 in Fig.1b are in magnetization position 210. In the magnetization position 210, an exciter magnet 110 is only directly opposite one of the parts 1020 of the second field conducting element 102, while in the short-circuit position 211 an exciter magnet 110 is directly opposite two parts 1020, so that the two exciter magnets 110 are connected by the two parts 120 are magnetically connected. Thus, the exciter magnets 110 shorted by parts 1020. Thus, the magnetic field lines 120 can flow from an exciter magnet 110 via part 1020 of the second field conducting element 102 to the opposite exciter magnet 110 without flowing through the permanent magnets 201 or the third field conducting element 103 . In the magnetization position 210, the magnetic field lines 120 extend on the one hand through the first field conducting element 101 and on the other hand through the second field conducting element 102, the permanent magnets 201 and the third field conducting element 103. A magnetic path is thus formed which leads through the permanent magnets 201. A cavity 1021 is arranged between the parts 1020 of the second field conducting element 102 . The cavity 1021 extends in the circumferential direction between two adjacent parts 1020. The cavity 1021 is at the same height as the parts 1020 in the radial direction 3. In the short-circuit position 211, the cavity 1021 is bridged by an excitation magnet 110. In the magnetization position 211, the gap 113 between two excitation magnets 110 and the cavity 1021 are radially adjacent. Thus, the cavity 1021 is not bridged.

In Fig.2 ist ein Querschnitt einer weiteren erfindungsgemäßen Vorrichtung 10 gezeigt. Die Vorrichtung 10 ist in vierpoliger Ausführung dargestellt. Anstatt wie in Fig.1a,b zwei Erregermagnete 110 aufzuweisen, weist die Vorrichtung in Fig.2 vier Erregermagnete 110 auf. Die Erregermagnete 110 sind dabei in Radialrichtung 3 magnetisiert. Gegenüberliegende Erregermagnete 110 sind jeweils in entgegengesetzter Richtung polarisiert, so dass sich ihre Magnetfeldlinien 120 voneinander abstoßen, während sie in Radialrichtung 2 gegen das Zentrum der Vorrichtung 10 erstrecken. Bei einer Polarität in gleicher Richtung fließen die Feldlinien 120 von einem Erregermagnete 110 zum anderen und dringen in diesen ein. Es ist aber auch denkbar, dass die Erregermagnete 110 in gleicher Richtung polarisiert sind. Ebenso weist das zweite Feldleitelement 102 vier Teile 1020 auf. In dem Hohlraum 1021 ist ein Hilfsmagnet 112 angeordnet. Der Hilfsmagnet 112 ist ortsfest. Der Hilfsmagnet 112 umfasst Seltenerdmaterialien und ist in Umfangsrichtung 1 polarisiert. Der Hilfsmagnet 112 kann auch bei der zweipoligen Vorrichtung 10 aus Fig.1 zum Einsatz kommen. Die vierpolige Vorrichtung 10 aus Fig.2 ist mit einem Polgehäuse 202 bestückt, das vier Permanentmagnete 201 aufweist. Dabei sind die Permanentmagnete 201 ebenso wie in Fig.1 innerhalb des Polgehäuses 202 angeordnet.In Fig.2 a cross section of a further device 10 according to the invention is shown. The device 10 is shown as having a four-pole configuration. instead of as in Fig.1a,b to have two excitation magnets 110, the device in Fig.2 four excitation magnets 110 on. The excitation magnets 110 are magnetized in the radial direction 3 . Opposite exciter magnets 110 are each polarized in opposite directions, so that their magnetic field lines 120 repel each other while they extend in the radial direction 2 towards the center of the device 10 . With a polarity in the same direction, the field lines 120 flow from one exciter magnet 110 to the other and penetrate into it. However, it is also conceivable that the excitation magnets 110 are polarized in the same direction. Likewise, the second field conducting element 102 has four parts 1020 . An auxiliary magnet 112 is arranged in the cavity 1021 . The auxiliary magnet 112 is stationary. The auxiliary magnet 112 comprises rare earth materials and is polarized in the circumferential direction 1 . The auxiliary magnet 112 can also be used with the two-pole device 10 Fig.1 come into use. The four-pole device 10 off Fig.2 is equipped with a pole housing 202, which has four permanent magnets 201. The permanent magnets 201 are as in Fig.1 arranged within the pole housing 202.

Fig.3 zeigt eine sechspolige Vorrichtung 10. Die Vorrichtung 10 weist sechs Erregermagnete 110, sechs Teile 1020 des zweiten Feldleitelements 102 und sechs Permanentmagnete 201 auf. Fig.3 shows a six-pole device 10. The device 10 has six exciter magnets 110, six parts 1020 of the second field conducting element 102 and six permanent magnets 201.

Weiterhin sind alle Merkmale der erfindungsgemäßen Vorrichtung 10 untereinander miteinander kombinierbar. Zudem gelten die Merkmale der Beschreibung aus Fig.1a und Figur.1b auch für die Figuren 2 und 3. Mit den Vorrichtungen 10 der unterschiedlichen Ausführungsbeispiele können Permanentmagnete 201 für elektrische Maschinen magnetisiert werden. Es ist aber auch denkbar, Permanentmagnete für andere Anwendungen - außer für elektrische Maschinen - herzustellen. Die Permanentmagnete 201 bestehen dabei aus Ferritmaterial. Es ist aber auch möglich, Permanentmagnete 201 aus Seltenerdmaterialien zu verwenden. Die Feldleitelemente 101, 102, 103 sind dabei vorzugsweise aus Vollmaterial hergestellt. Das Material ist nicht permanentmagnetisch, jedoch magnetisch leitfähig. Es ist denkbar, dass die Feldleitelemente 101, 102, 103 aus Elektroblechen bestehen. Solch ein aus Elektroblechen aufgebautes Feldleitelement 101, 102, 103 weist eine laminierte Struktur auf. Der Vorteil einer laminierten Struktur ist durch die geringe magnetische Verluststreuung gegeben. Die Feldleitelemente 101, 102, 103 sind nicht dauerhaft magnetisch, jedoch leiten sie einen Magnetfluss gut.Furthermore, all features of the device 10 according to the invention can be combined with one another. In addition, the features of the description apply Fig.1a and Fig.1b also for them Figures 2 and 3 . Permanent magnets 201 for electrical machines can be magnetized with the devices 10 of the different exemplary embodiments. However, it is also conceivable to produce permanent magnets for other applications—except for electrical machines. The permanent magnets 201 consist of ferrite material. But it is also possible to use permanent magnets 201 made of rare earth materials. The field conducting elements 101, 102, 103 are preferably made of solid material. The material is not permanent magnetic, but magnetically conductive. It is conceivable that the field conducting elements 101, 102, 103 consist of electrical steel sheets. Such a field conducting element 101, 102, 103 constructed from electrical sheets has a laminated structure. The advantage of a laminated structure is given by the low magnetic loss scattering. The field conducting elements 101, 102, 103 are not permanently magnetic, but they conduct a magnetic flux well.

Claims (16)

  1. Apparatus (10) for magnetizing at least one permanent magnet (201), wherein the apparatus (10) comprises a first field guide element (101) and a second field guide element (102), wherein more than one exciter magnet (110) is arranged between the first and the second field guide element (101, 102), wherein the more than one exciter magnet (110) is magnetized in the radial direction (3), wherein the second field guide element (102) consists of parts (1020) in the form of circular ring segments which do not touch and are arranged adjacent to one another with respect to the circumferential direction (1), and wherein the second field guide element (102) comprises a holder (20) for a magnet blank to be magnetized, wherein the more than one exciter magnet (110) is movable relative to the field guide elements (101, 102) and the magnet blank (201) is movable on a circular path (111) around the magnet blank, so that, in a magnetization position (210), a magnetic field (120) from the exciter magnet (110) magnetizes the magnet blank to form the permanent magnet.
  2. Apparatus (10) according to Claim 1, characterized in that the first field guide element (101) is hollow-cylindrical, and the second field guide element (102) has the form of a circular ring segment in the circumferential direction (1), wherein the second is arranged in the first field guide element (101, 102), so that the field guide elements (101, 102) are arranged concentrically relative to each other, their radially outer walls being at least partly opposite each other.
  3. Apparatus (10) according to Claim 1 or 2, characterized in that the exciter magnet (110) has the form of a circular ring segment and extends in the axial direction (2), wherein the walls of the exciter magnet (110) and of the first and second field guide element (101, 102) are approximately parallel to each other.
  4. Apparatus (10) according to one of the preceding claims, characterized in that a third field guide element (103) is arranged inside the second field guide element (102), wherein the third field guide element (103) is cylindrical, so that the third field guide element is arranged concentrically relative to the first and second field guide element (101, 102) such that their walls are opposite each other, wherein a gap (203), which is a holder (20) for the magnet blank, is formed between the second and the third field guide element (102, 103).
  5. Apparatus (10) according to one of the preceding claims, characterized in that the exciter magnet (110) is movable in the circumferential direction (1), so that the exciter magnet (110) runs around the second field guide element (102) during its movement and is preferably supported by ball-bearings.
  6. Apparatus (10) according to one of the preceding claims, characterized in that two or four or six exciter magnets (110) are arranged between the first and the second field guide element (101, 102), the exciter magnets (110) being magnetized in the radial direction (3) .
  7. Apparatus (10) according to one of the preceding claims, characterized in that the second field guide element (102) consists of two or four or six parts (1020) in the form of circular ring segments.
  8. Apparatus (10) according to one of the preceding claims, characterized in that an auxiliary magnet (112) is arranged both in the circumferential direction (1) and in the radial direction (3) between two adjacent parts (1020) of the second field guide element (102), wherein the auxiliary magnet (112) is magnetized tangentially with respect to the circumferential direction (1).
  9. Apparatus (10) according to one of the preceding claims, characterized in that the third field guide element (103) serves as a holding mandrel (1030) for the magnet blank within a pole housing (202) of an electric machine, so that the pole housing (202) is seated on the holding mandrel (1031), the magnet blank being arranged between the holding mandrel (1031) and the pole housing (202) .
  10. Apparatus (10) according to one of the preceding claims, characterized in that the third field guide element (103) can be removed from the second field guide element (102) in the axial direction (2).
  11. Method for magnetizing permanent magnets (201) by means of an apparatus (10) according to Claim 1, comprising the steps:
    - arranging the magnet blank in the holder (20),
    - relative movement of the exciter magnets (110) in the circumferential direction (1) on a circular path (111) around the magnet blank,
    - magnetizing the magnet blank to form the permanent magnet (201),
    - removing the permanent magnet (201).
  12. Method according to Claim 11, characterized in that the third field guide element (103) is inserted into a pole housing (202) with the magnet blank, and then the third field guide element (103) with the pole housing (202) is arranged concentrically in the second field guide element (102).
  13. Method according to Claim 11, characterized in that firstly the third field guide element (103) is arranged in the second field guide element (102), and after that the pole housing (202) with the magnet blank inside the second field guide element (102) is pushed axially onto the third field guide element (103).
  14. Method according to one of the preceding claims, characterized in that the exciter magnet (110) executes a movement in the circumferential direction (1) around the second field guide element (102) until the exciter magnet (110) is positioned in the magnetization position (210), wherein the magnetic field (120) flows through the field guide elements (101, 102, 103) and the magnet blank when in the magnetization position (210) and, as a result, the magnet blank is magnetized to form the permanent magnet (201).
  15. Method according to one of the preceding claims, characterized in that the exciter magnet (110) executes a movement until it is in a short-circuit position (211), in which the magnetic field (120) flows through the first and second field guide element (101, 103) but does not flow through the third field guide element (103) and the permanent magnet (201).
  16. Method according to one of the preceding claims, characterized in that the permanent magnet (201) is removed from the apparatus (10) and/or inserted when the exciter magnet (110) is in the short-circuit position (211) .
EP15781646.3A 2014-12-15 2015-10-19 Apparatus and method for magnetizing permanent magnets Active EP3234967B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RS20220333A RS63092B1 (en) 2014-12-15 2015-10-19 Apparatus and method for magnetizing permanent magnets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014225900.2A DE102014225900A1 (en) 2014-12-15 2014-12-15 Apparatus and method for magnetizing permanent magnets
PCT/EP2015/074076 WO2016096190A1 (en) 2014-12-15 2015-10-19 Apparatus and method for magnetizing permanent magnets

Publications (2)

Publication Number Publication Date
EP3234967A1 EP3234967A1 (en) 2017-10-25
EP3234967B1 true EP3234967B1 (en) 2022-02-16

Family

ID=54330763

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15781646.3A Active EP3234967B1 (en) 2014-12-15 2015-10-19 Apparatus and method for magnetizing permanent magnets

Country Status (6)

Country Link
EP (1) EP3234967B1 (en)
KR (1) KR20170094219A (en)
CN (1) CN107004490B (en)
DE (1) DE102014225900A1 (en)
RS (1) RS63092B1 (en)
WO (1) WO2016096190A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3270389B1 (en) * 2016-07-12 2019-04-10 Ncte Ag Magnetising of a hollow shaft
EP3785626B8 (en) 2017-04-27 2022-08-31 Bard Access Systems, Inc. Magnetizing system for needle assemblies
CN110277214A (en) * 2019-07-26 2019-09-24 宁波尼兰德磁业股份有限公司 Superelevation magnetic field magnetic loop
EP3799086B1 (en) * 2019-09-25 2024-03-27 Grundfos Holding A/S Permanent magnet based magnetiser
US11911140B2 (en) 2020-11-09 2024-02-27 Bard Access Systems, Inc. Medical device magnetizer
CN216562658U (en) 2020-11-10 2022-05-17 巴德阿克塞斯系统股份有限公司 Magnetizer cap and magnetizing system for magnetizing a medical device while maintaining sterility of the medical device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155450A (en) * 1988-12-05 1990-06-14 Tdk Corp Magnetizing device for assembling small-sized motor
JP3474152B2 (en) * 2000-08-10 2003-12-08 三菱電機株式会社 Permanent magnet rotor magnetizing device
JP2002199669A (en) * 2000-12-22 2002-07-12 Hitachi Ltd Magnetizing method for permanent magnet
CN2598108Y (en) * 2002-11-26 2004-01-07 刘吉科 Electric rotary magnetizer
WO2011126026A1 (en) * 2010-04-05 2011-10-13 愛知製鋼株式会社 Case-body bonded magnet, and method for producing same
DE102011105324A1 (en) * 2011-06-03 2012-12-06 Minebea Co., Ltd. Injection molding tool for manufacturing ring magnet that is molded on shaft, has orientation magnets aligning magnetic material particles in molding material, where magnets are aligned in accordance with two-piece halbach arrangement

Also Published As

Publication number Publication date
WO2016096190A1 (en) 2016-06-23
EP3234967A1 (en) 2017-10-25
CN107004490A (en) 2017-08-01
CN107004490B (en) 2019-12-20
DE102014225900A1 (en) 2016-06-16
KR20170094219A (en) 2017-08-17
RS63092B1 (en) 2022-04-29

Similar Documents

Publication Publication Date Title
EP3234967B1 (en) Apparatus and method for magnetizing permanent magnets
EP1843454B1 (en) Drive unit and tool holder with such a drive unit
EP2374199B1 (en) Electric machine having a rotor
DE102015121102B4 (en) Rotor device for an electric motor and / or generator, rotor and motor with such a rotor device and manufacturing method
DE102011075548A1 (en) Bearing with an energy detection unit, in particular spherical roller bearings for supporting a roller
DE102009031609A1 (en) Warehouse with power generation unit
DE102016012696A1 (en) Rotation detecting device
DE1538992C3 (en) DC motor with a cylindrical rotor and a single permanent magnet in the stator
DE2906795A1 (en) PULSER
DE2650510B2 (en) DC motor
DE102016214838A1 (en) Determining a direction of rotation of a rotor of a rotating electrical machine
EP3560084B1 (en) Production method and disassembly method for a rotary permanently excited electrical machine
DE102016212328A1 (en) Rotor arrangement of an electrical machine
DE10247228B4 (en) Method and device for magnetizing a permanent magnet ring magnet with an even number of poles
DE4417903C2 (en) Magnetizing device for electrical machines with permanent magnet rotor
DE10055080C2 (en) Electric linear machine
DE202020104661U1 (en) Motor for use in an external magnetic field
DE1009277B (en) Magnet-electric alternator
EP2991205A1 (en) Rotor-stator assembly and induction generator
DE102018121062A1 (en) Method and device for producing a spoke rotor for an electrical machine
WO2015058747A1 (en) Rolling bearing with electric generator
EP2909921A2 (en) Rotor arrangement for a permanent magnet electric machine
EP3679641B1 (en) Rotating electric machine
DE2744979C2 (en) engine
DE1766930A1 (en) Display device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190625

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211005

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUEYUEKASIK, DIYAP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015015640

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1469401

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220516

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220516

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E058363

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220517

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015015640

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221019

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221019

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1469401

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RS

Payment date: 20231017

Year of fee payment: 9

Ref country code: HU

Payment date: 20231018

Year of fee payment: 9

Ref country code: FR

Payment date: 20231023

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231218

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216