EP3232976A1 - System zur roboterunterstützten medizinischen behandlung - Google Patents

System zur roboterunterstützten medizinischen behandlung

Info

Publication number
EP3232976A1
EP3232976A1 EP15805132.6A EP15805132A EP3232976A1 EP 3232976 A1 EP3232976 A1 EP 3232976A1 EP 15805132 A EP15805132 A EP 15805132A EP 3232976 A1 EP3232976 A1 EP 3232976A1
Authority
EP
European Patent Office
Prior art keywords
medical
visualization device
manipulator
instrument
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15805132.6A
Other languages
English (en)
French (fr)
Inventor
Thomas Neff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUKA Deutschland GmbH
Original Assignee
KUKA Roboter GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUKA Roboter GmbH filed Critical KUKA Roboter GmbH
Publication of EP3232976A1 publication Critical patent/EP3232976A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/32Surgical robots operating autonomously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2063Acoustic tracking systems, e.g. using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3983Reference marker arrangements for use with image guided surgery

Definitions

  • the present invention relates to a system and method for robot assisted medical treatment of a patient.
  • An example of such a medical treatment is a special biopsy, which is monitored by ultrasound to make the extraction of a tissue sample from lymph nodes of the neck by means of a fine needle for cytological examination in case of suspicion of a tumor (for example Hodgkin's lymphoma).
  • the practicing physician holds the biopsy needle in one hand and the ultrasound probe in the other hand to ultrasonically monitor the reaching of the target region (e.g., suspected tumor), and to protect structures as they approach the target region, e.g. Blood vessels, not to hurt.
  • Robot is guided.
  • a robot system is already known in which a probe is attached to the hand flange of the robot and can be moved by the robot. Compared to manual operation of the probe allows the
  • a robot is described with a medical visualization device (e.g., ultrasound probe).
  • the aim of this application is the representation of a structure of interest inside the body.
  • the system allows the user (doctor) to change the position of the apparatus when it is in the way, and the robot controller will then automatically set the position
  • Ultrasonic probe is attached to a robot and the robot via a joystick o. Manually controlled by the surgeon.
  • a disadvantage of some of the above methods is that while the medical device is positioned with the help of the robot, it is the correct one
  • Transducer on the body surface can change greatly.
  • the implementation of image information in compensatory motion is relatively difficult for a human because a complex transfer step is necessary in the implementation of eye-hand coordination.
  • the invention relates to a system for robot-assisted
  • a manipulator in particular a multi-axis articulated arm robot
  • a medical visualization device which is mounted on the manipulator to be moved by the manipulator.
  • a medical instrument is provided which is provided with at least one marker in order to be able to detect the position of the medical instrument, as well as a control device which is set up to determine the position of the medical instrument with the aid of the marker and around the manipulator to move with the medical visualization device depending on the particular position of the medical instrument.
  • the medical instrument such as a biopsy needle, a catheter, a radiation source, etc., is preferably performed by the surgeon directly by hand, it However, it can also be attached to a further manipulator and guided by means of this further manipulator.
  • the marker on the medical instrument is detected, for example, by a suitable sensor in order to be able to detect the position of the marker in the room, and thus - since the offset of marker and instrument is known - the position of the instrument.
  • the sensor is assigned to the control device, ie, for example part of the control device, so that the position of the instrument can be determined by the control device with the aid of the detected position of the marker.
  • the term "marker" is understood herein in its broadest sense and may, for example, also the
  • the controller moves the manipulator depending on the particular position of the instrument.
  • the manipulator follows a movement of the instrument such that the
  • Visualization always makes a desired area visualizable or visualization device is always a desired area can be visualized.
  • the medical visualization device itself is here to be understood only as an element or device,
  • the data transmission is preferably wireless or wired.
  • the manipulator is moved such that the medical visualization device detects at least a part of the instrument, such as the tip of a biopsy needle.
  • the medical visualization device detects at least a part of the instrument, such as the tip of a biopsy needle.
  • a Transducer is eg the optimal position of the head with respect to the (biopsy) needle within a tolerance range fix.
  • Tolerance range is given by the spatial extent of (biopsy) needle and scarf level. For this (relatively) fixed
  • the optimal position of the ultrasound head can be determined. This position represents the target position of the manipulator and the
  • Manipulator is further preferably controlled so that these
  • Target position is adjusted (changed) when the (biopsy) needle or instrument is moved. That is, the control device is preferably configured to move the manipulator with the medical visualization device such that the medical
  • Visualization device follows a movement of the instrument (trackt).
  • a further marker is assigned to the location of the medical
  • Visualization device to capture and the control device is further set to the location of the medical
  • the location of the visualization device is known per se, since the arrangement of the device is known on the manipulator and thus the spatial coordinates of the device can be determined at any time on the basis of the manipulator position. Sensors are also known, with which the position of the marker in space, and thus in relation to the sensor, can be determined very accurately.
  • An additional marker helps to determine the relative spatial arrangement of visualization device and instrument to each other, especially if the position of the manipulator and / or the sensor with which the marker is detected, not fixed to each other.
  • the use of two markers, ie on the visualization device and on the instrument allows the determination of the relative position of the two markers (and thus of the instrument and instrument) to one another. This is especially the case when both have the same type of marker detected by the same sensors.
  • the system detects, for example, the markers and returns the origin of the marker coordinate systems to the
  • the markers are optical markers
  • the control device is associated with a sensor in the form of a camera device, which is set up to detect the optical markers and their position in space.
  • the markers are optical markers
  • the control device is associated with a sensor in the form of a camera device, which is set up to detect the optical markers and their position in space.
  • the camera device a stereo camera.
  • the stereo camera With the help of the stereo camera, the position and orientation of the instrument, and possibly the
  • Visualization device if this also has a corresponding optical marker, determine in space, so that the position can be calculated.
  • the manipulator is a multi-axis articulated arm robot whose axes are provided with sensors for detecting the forces and / or torques acting on the axles.
  • the sensors it is possible to define force limits for the manipulator, which he must not exceed when, for example, he presses the visualization device against the body of a patient.
  • the control device is set up to control the robot or articulated-arm robot such that the medical visualization device is pressed against the body of the patient with a defined force.
  • the defined force is preferably an area to ensure that the device is indeed conducted with sufficient force against the body of the patient, but certain maximum forces are not exceeded.
  • the medical includes or is
  • the surgical instrument comprises or is a needle and in particular a biopsy needle.
  • the present invention further relates to a method for
  • robot-assisted medical treatment of a patient comprising the following steps:
  • Visualization device for example, preferably an ultrasound probe and the medical instrument a (biopsy) needle, a catheter, a radiation source, etc.
  • the method further comprises moving the manipulator in dependence on the relative position of the medical instrument and medical visualization device such that the medical visualization device detects at least a part of the instrument and follows a movement of this part of the instrument.
  • Visualization device or the manipulator "tracks" the instrument so that it is not absolutely necessary that the instrument is completely covered by the image plane of the device, but in practice it is usually sufficient if the essential parts of the instrument, such as Tip of a needle, captured by the visualization device and
  • the method further comprises:
  • Visualization device is aligned to capture the target point in space.
  • a target may be a particular site in the patient's body, such as lymph nodes or a tumor or the like, to be treated.
  • This target point is detected (defined) and stored in e.g. the control device of the manipulator deposited so that the manipulator at any time on command, the visualization device can align so that the target point detected, i. is displayed or visualized.
  • This may be advantageous for certain interventions on the patient, since, for example, with a sufficient approximation of the instrument to the desired target point, focusing the visualization device on this target point is more helpful to the surgeon than focusing on a part of the instrument.
  • the present system and method offer the advantage that the operator is relieved of the orientation and adjustment of the visualization device, as this is taken over by the control device and the manipulator. As a result, the surgeon or doctor can concentrate on his actual task, such as puncturing a structure of interest.
  • the invention offers the possibility of increasing the quality of navigated, image-supported biopsies by using a manipulator which holds the visualization device and moves it so that the information of interest is always visible in the image. 4th embodiment
  • Fig. 1 shows schematically a system according to the invention for
  • FIG. 2 shows the system of Fig. L with the manipulator and the
  • the system includes a controller 10 having a robot controller 11, a computer 12 and a stereo camera 14.
  • the patient 50 lies on an operating table 55 and in the illustration shown 51 is intended to indicate a sectional view through the neck of the patient 50.
  • a target point 52 to be examined or treated such as a tumor or the like.
  • Treatment is intended by means of a surgical instrument 40,
  • a biopsy needle 40 take place, which is performed in the example shown manually by an operator.
  • the biopsy needle 40 could also be guided by a further manipulator.
  • the biopsy needle 40 should be guided to the destination point 52. To facilitate the surgeon the guidance of the biopsy needle 40, or
  • Visualization device 30 in the form of an ultrasound probe 30 (in this case, preferably in conjunction with a computer / a computing unit and an HMI or monitor over which the captured (image) data of the medical visualization device 30 are actually output) used.
  • the robot controller 11 is used to control a multi-axis articulated arm robot 20 (or manipulator 20).
  • the controller 11 and the articulated arm robot 20 are connected via data lines 21 in FIG.
  • the articulated arm robot 20 carries and moves the ultrasound probe 30.
  • the ultrasound probe 30 is pressed by the articulated arm robot 20 against the body of the patient 50 to take ultrasound images of the interior of the patient's body. The ultrasound images are taken over the
  • Transfer data lines 21, processed in the computer 12 and then on Monitor 13 is displayed.
  • the image plane (switching plane) of the ultrasound probe 30 should be displayed.
  • the image or sound plane of the probe is usually only a few millimeters thick, so that the probe must be aligned very accurately to
  • the alignment of the probe and the pressing of the probe is performed by the manipulator or articulated arm robot 20, so that an operator is relieved of these tasks.
  • the robot or articulated arm robot 20 is provided with force sensors and operates in force control, so that it presses the ultrasonic probe 30 with a defined force on the skin surface of the patient 50.
  • the robot controller 11 calculates the path to the target position and orientation with the boundary conditions "maintain skin contact with defined force", “no collision with ultrasound needle", “no collision with marker” etc.
  • the biopsy needle 40 is provided with an optical marker 41.
  • the stereo camera 14 of the control device 10 detects the marker 41 and provides the origin of the
  • Marker coordinate system to the robot controller 11 and to the computer 12 to determine the position of the biopsy needle 40.
  • the robot controller 11 then calculates the optimum position of the
  • Ultrasound probe 30 target position and orientation as a function of the position of the biopsy needle 40th Because the position of the ultrasonic probe 30 due to the current (articulated arm) robot position or
  • Manipulator position is fixed or can be calculated from it, and the course and the orientation of the sound plane 32 is also known, it is thus possible to automatically align the probe 30.
  • the probe 30 is directed onto the tip of the biopsy needle 40 and the needle tip (or biopsy needle tip) is detected by the scarf plane 32.
  • the operator can follow the movement of the needle tip through the body of the patient 50 on the monitor 13 and guide the biopsy needle 40 to the target point 52 accordingly.
  • the biopsy needle 40 punctures the target point 52 in order, for example, to take a tissue sample at this point.
  • the manipulator 20 has moved the probe 30 in accordance with, so that the sound plane 32 is further directed to the needle tip and thus detected, so that the position of the biopsy needle 40 can be displayed on the screen 13.
  • This reversal is made automatically by the robot controller 11 on the basis of the changed position of the biopsy needle 40.
  • the stereo camera 14 detects the marker 41 and thus the changed position of the biopsy needle 40, so that the control device 10 causes the corresponding movements of the articulated arm robot 20.
  • the ultrasound probe 30 is also provided with a further marker 31, which advantageously operates on the same principle as the marker 41.
  • the further marker 31 can be the marker 31
  • the update rate of the system is analogous to the update rate of the tracking system (such as 30-90 Hz, or preferably 40-80 Hz) so that the articulated arm robot or manipulator can maintain the biopsy needle 40 representation in the ultrasound plane throughout the procedure.
  • the articulated arm robot thus follows even the smallest movements of the biopsy needle 40, i.
  • the biopsy needle 40 is tracked by the articulated arm robot and thus the ultrasound probe.
  • the high update rate has the advantage that only small movements of the articulated arm robot are to be expected because strong movements must be prevented for safety reasons.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Robotics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Manipulator (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Die vorliegende Erfindung betrifft ein System (1) und eine Verfahren zur roboterunterstützten medizinischen Behandlung eines Patienten. Das System umfasst einen Manipulator (20), ein medizinisches Visualisierungsgerät (30), welches am Manipulator (20) angebracht ist, um vom Manipulator bewegt zu werden; und ein medizinisches Instrument (40), welches mit zumindest einem Marker (41) versehen ist, um die Lage des medizinischen Instruments (40) erfassen zu können. Der Manipulator soll dabei das Visualisierungsgerät derart bewegen, dass es anhängig von der Lage bzw. Position des medizinischen Instruments orientiert wird.

Description

System zur roboterunterstützten medizinischen
Behandlung
1. Technischer Bereich Die vorliegende Erfindung betrifft ein System und ein Verfahren zur roboterunterstützten medizinischen Behandlung eines Patienten.
2. Technischer Hintergrund
Mit medizinischen Visualisierungsgeräten, wie z.B. Ultraschallgeräten, gestützte medizinische Untersuchungen bzw. Behandlungen zählen heute zu den Standardeingriffen in der Medizin. Ein Beispiel für eine derartige medizinische Behandlung ist eine spezielle Biopsie, welche mit Ultraschall überwacht wird, um die Entnahme einer Gewebeprobe aus Lymphknoten des Halses mittels einer Feinnadel zwecks zytologischer Untersuchung bei Verdacht auf ein Geschwulst (z.B. Hodgkin- Lymphom) vorzunehmen. Bei diesem Eingriff hält der durchführende Arzt in einer Hand die Biopsienadel und in der anderen Hand die Ultraschallsonde, um das Erreichen der Zielregion (z.B. vermuteter Tumor) mittels Ultraschallbild zu überwachen und bei der Annäherung an die Zielregion zu schonende Strukturen, wie z.B. Blutgefäße, nicht zu verletzen.
Das Problem ist hierbei, dass die darstellbare Schallebene nur wenige Millimeter dick ist. Damit das Instrument in der Ultraschallebene sichtbar ist, muss es genau in dieser Ebene liegen. Die wichtigen
Informationen, nämlich wie die Nadelspitze in Lage und Orientierung zur Zielregion steht, ist relativ schwer darzustellen. Dazu muss der Schallkopf in der richtigen Position und Orientierung auf der
Körperoberfläche bewegt werden. Intraoperativ ist es, insbesondere für ungeübte Anwender, sehr schwierig Ultraschallkopf und Nadel so zu halten, dass die gesamte Nadel oder jedenfalls exakt die Spitze der Nadel dargestellt wird. Aus dem Stand der Technik sind Verfahren bekannt, bei denen der Ultraschallkopf mittels eines Manipulators, insbesondere eines
Roboters, geführt wird. Beispielsweise ist aus der US 7,753,851 ein Robotersystem vorbekannt, bei dem eine Sonde am Handflansch des Roboters angebracht ist, und vom Roboter bewegt werden kann. Im Vergleich zum manuellen Bedienen der Sonde erlaubt die
roboterunterstützte Behandlung eine besonders präzise Orientierung der Sonde.
In der US 2004/0010190 Ai wird ein Roboter mit einem medizinischen Visualisierungsgerät (z.B. Ultraschallsonde bzw. Ultraschallkopf) beschrieben. Das Ziel dieser Applikation ist die Darstellung einer interessierenden Struktur im Körperinneren. Das System erlaubt es dem Benutzer (Arzt) die Position des Apparates zu verändern, wenn dieser im Weg ist, und die Robotersteuerung stellt dann automatisch die
Orientierung des Apparates derart ein, dass die interessierende Struktur weiter dargestellt wird.
Aus der US 6,425,865 ist zudem eine roboterunterstützte
Ultraschalluntersuchung eines Patienten bekannt, bei der die
Ultraschallsonde an einem Roboter angebracht ist und der Roboter über einen Joystick o.ä. vom Operateur manuell gesteuert wird.
Ein Nachteil von einigen der obigen Verfahren ist, dass das medizinische Gerät zwar mit Hilfe des Roboters positioniert wird, die richtige
Positionierung jedoch immer noch dem Anwender überlassen bleibt. Die roboterunterstützten Verfahren, bei denen der Roboter die
Neuorientierung des medizinischen Apparats übernimmt, wenn der Anwender den Apparat z.B. zur Seite geschoben hat, ist wenig flexibel, da der Roboter immer nur einen vorher definierten Punkt anvisieren kann. Grundsätzlich ist es zudem ein Problem von insbesondere
Ultraschallanwendungen, dass es selbst mit Hilfe des Roboters für den Anwender nicht immer leicht ist, die Bildebene korrekt auszurichten, um die benötigten Bildinformationen zu erhalten. Der Grund ist hier die dünne Schallebene, die sich selbst bei kleinen Bewegungen des
Schallkopfes an der Körperoberfläche stark verändern kann. Die Umsetzung der Bildinformationen in ausgleichende Bewegung ist für einen Menschen relativ schwierig, da ein komplexer Transferschritt bei der Umsetzung der Auge-Hand- Koordination notwendig ist.
Es ist daher die Aufgabe der vorliegenden Erfindung ein verbessertes System und Verfahren zur roboterunterstützten medizinischen
Behandlung eines Patienten bereitzustellen, mit dem die Nachteile des Standes der Technik vermieden oder vermindert werden können. Es ist insbesondere eine Aufgabe der vorliegenden Erfindung die Ausrichtung eines medizinischen Visualisierungsgeräts, wie etwa einer
Ultraschallsonde, zu vereinfachen, um den Operateur zu entlasten.
Diese und weitere Aufgaben, welche aus der folgenden detaillierten Beschreibung deutlicher werden, werden durch den Gegenstand der unabhängigen Ansprüche 1 und 9 gelöst.
3. Inhalt der Erfindung
Die Erfindung betrifft ein System zur roboterunterstützten
medizinischen Behandlung eines Patienten, welches System einen Manipulator, insbesondere einen mehrachsigen Gelenkarmroboter, umfasst, sowie ein medizinisches Visualisierungsgerät, welches am Manipulator angebracht ist, um vom Manipulator bewegt zu werden. Weiter ist ein medizinisches Instrument vorgesehen, welches mit zumindest einem Marker versehen ist, um die Lage des medizinischen Instruments erfassen zu können, sowie eine Steuereinrichtung, die eingerichtet ist, um die Lage des medizinischen Instruments mit Hilfe des Markers zu bestimmen, und um den Manipulator mit dem medizinischen Visualisierungsgerät in Abhängigkeit von der bestimmten Lage des medizinischen Instruments zu bewegen. Das medizinische Instrument, wie z.B. eine Biopsienadel, ein Katheter, eine Strahlenquelle etc., wird vorzugsweise durch den Operateur direkt von Hand geführt, es kann aber auch an einem weiteren Manipulator angebracht sein und mittels dieses weiteren Manipulators geführt werden. Der Marker am medizinischen Instrument wird bspw. von einem geeigneten Sensor erfasst, um die Lage des Markers im Raum, und damit - da der Offset von Marker und Instrument bekannt ist - die Lage des Instruments erfassen zu können. Der Sensor ist dabei der Steuereinrichtung zugeordnet, d.h. z.B. Teil der Steuereinrichtung, so dass die Lage des Instruments von der Steuereinrichtung mit Hilfe der erfassten Lage des Markers bestimmt werden kann. Der Begriff„Marker" wird hierin in seinem breitesten Sinn verstanden und kann bspw. auch die
vorgegebene Kinematik eines Manipulators umfassen, wenn das Instrument nicht von Hand geführt wird, sondern mit Hilfe eines weiteren Manipulators. Wichtig ist lediglich, dass die Steuerung die Lage des Instruments bestimmen kann.
Die Steuerung bewegt den Manipulator in Abhängigkeit von der bestimmten Lage des Instruments. Vorzugsweise folgt dabei der Manipulator einer Bewegung des Instruments derart, dass das
Visualisierungsgerät immer einen gewünschten Bereich visualisierbar macht bzw. durch das Visualisierungsgerät immer ein gewünschter Bereich visualisierbar ist. Das medizinische Visualisierungsgerät selbst ist hierbei nur als Element bzw. Vorrichtung zu verstehen,
welches/welche die Daten zur Visualisierung liefert. Diese Daten werden dann an einen Rechner bzw. Computer gesendet und entsprechend von diesem Computer verarbeitet und an einem Mensch-Maschinen- Interface bzw. einem Monitor angezeigt, sodass ein behandelnder Arzt dies deuten/ aufnehmen kann. Hierbei ist die Datenübertragung bevorzugt kabellos oder kabelgebunden.
Besonders bevorzugt wird der Manipulator derart bewegt, dass das medizinische Visualisierungsgerät zumindest einen Teil des Instruments erfasst, wie z.B. die Spitze einer Biopsienadel. Bei der Verwendung eines Schallkopfes ist z.B. die optimale Lage des Kopfes in Bezug auf die (Biopsie-)Nadel innerhalb eines Toleranzbereiches fix. Der
Toleranzbereich ist gegeben durch die räumliche Ausdehnung von (Biopsie-)Nadel und Schallebene. Aus diesem (relativ) fixen
Zusammenhang zwischen (Biopsie-)Nadel und optimaler Schallebene, lässt sich die optimale Position des Ultraschallkopfes ermitteln. Diese Position stellt die Zielposition des Manipulators dar und der
Manipulator wird weiter bevorzugt derart gesteuert, dass diese
Zielposition angepasst (verändert) wird, wenn die (Biopsie-)Nadel oder das Instrument bewegt wird. Das heißt, die Steuereinrichtung ist bevorzugt so eingerichtet, um den Manipulator mit dem medizinischen Visualisierungsgerät derart zu bewegen, dass das medizinische
Visualisierungsgerät einer Bewegung des Instruments folgt (trackt).
Vorzugsweise ist dem medizinischen Visualisierungsgerät ein weiterer Marker zugeordnet, um die Lage des medizinischen
Visualisierungsgeräts erfassen zu können, und die Steuereinrichtung ist weiter eingerichtet, um die Lage des medizinischen
Visualisierungsgeräts mit Hilfe des weiteren Markers zu bestimmen. Die Lage des Visualisierungsgeräts ist an sich bekannt, da die Anordnung des Geräts am Manipulator bekannt ist und damit die Raumkoordinaten des Geräts jederzeit anhand der Manipulatorposition bestimmt werden können. Auch sind Sensoren bekannt, mit denen die Position des Markers im Raum, und damit im Verhältnis zum Sensor, sehr exakt bestimmt werden kann. Ein zusätzlicher Marker hilft jedoch darin, die relative räumliche Anordnung von Visualisierungsgerät und Instrument zueinander zu bestimmen, und zwar insbesondere dann, wenn die Lage des Manipulators und/oder des Sensors, mit dem der Marker erfasst wird, nicht fix zueinander ist. Die Verwendung von zwei Markern, d.h. am Visualisierungsgerät und am Instrument, erlaubt in derartigen Fällen die Bestimmung der relativen Lage der beiden Marker (und damit von Gerät und Instrument) zueinander. Dies ist insbesondere dann der Fall, wenn beide dieselbe Art von Marker aufweisen, die von denselben Sensoren erfasst werden. Das System erfasst bspw. die Marker und liefert den Ursprung der Markerkoordinatensysteme an die
Steuereinrichtung. Diese kann dann die notwendigen
Transformationsrechnungen durchführen.
Besonders bevorzugt sind die Marker optische Marker, und der Steuereinrichtung ist ein Sensor in Form einer Kamera- Vorrichtung zugeordnet, die eingerichtet ist, um die optischen Marker und Ihre Lage im Raum zu erfassen. Beispielsweise können die Marker
infrarotlichtreflektierende Kugeln sein, und die Kamera- Vorrichtung eine Stereokamera. Mit Hilfe der Stereokamera lassen sich die Position und Orientierung des Instruments, und gegebenenfalls des
Visualisierungsgeräts wenn dieses ebenfalls über einen entsprechenden optischen Marker verfügt, im Raum ermitteln, wodurch die Lage berechnet werden kann.
Vorzugsweise ist der Manipulator ein mehrachsiger Gelenkarmroboter, dessen Achsen mit Sensoren zur Erfassung der an den Achsen wirkenden Kräfte und/oder Drehmomente versehen sind. Mit Hilfe der Sensoren lassen sich für den Manipulator Kraft-Grenzen definieren, die er nicht überschreiten darf, wenn er bspw. das Visualisierungsgerät gegen den Körper eines Patienten drückt. In diesem Zusammenhang ist es besonders bevorzugt, dass die Steuereinrichtung so eingerichtet ist, um den Roboter bzw. Gelenkarmroboter derart zu steuern, dass das medizinische Visualisierungsgerät mit einer definierten Kraft gegen den Körper des Patienten gepresst wird. Die definierte Kraft ist dabei vorzugweise ein Bereich, um sicherzustellen, dass das Gerät zwar mit hinreichender Kraft gegen den Körper des Patienten geführt wird, aber bestimmte Maximalkräfte nicht überschritten werden.
Generell bevorzugt umfasst bzw. ist das medizinische
Visualisierungsgerät eine Ultraschallsonde. Weiter generell bevorzugt umfasst bzw. ist das chirurgische Instrument eine Nadel und insbesondere eine Biopsienadel. Die vorliegende Erfindung betrifft weiter ein Verfahren zur
roboterunterstützten medizinischen Behandlung eines Patienten, umfassend die folgenden Schritte:
- Bestimmen der Lage eines medizinischen Visualisierungsgeräts, welches an einem Manipulator, insbesondere einem mehrachsigen Gelenkarmroboter, angebracht ist, um vom Manipulator bewegt zu werden;
- Bestimmen der Lage eines medizinischen Instruments relativ zu der Lage des medizinischen Visualisierungsgeräts;
- Bewegen des Manipulator mit dem medizinischen Visualisierungsgerät in Abhängigkeit von der relativen Lage von medizinischem Instrument und medizinischem Visualisierungsgerät.
Die obigen Angaben, technischen Erläuterungen, Beispiele und Vorteile, die im Zusammenhang mit dem System gegeben wurden, gelten alle uneingeschränkt auch für das Verfahren. So umfasst bzw. ist das
Visualisierungsgerät bspw. vorzugweise eine Ultraschallsonde und das medizinische Instrument eine (Biopsie-)Nadel, ein Katheter, eine Strahlungsquelle etc.
Bevorzugt umfasst das Verfahren weiter das Bewegen des Manipulators in Abhängigkeit von der relativen Lage von medizinischem Instrument und medizinischem Visualisierungsgerät derart, dass das medizinische Visualisierungsgerät zumindest einen Teil des Instruments erfasst und einer Bewegung dieses Teils des Instruments folgt. Das
Visualisierungsgerät bzw. der Manipulator„trackt" also das Instrument. Dabei ist es nicht unbedingt notwendig, dass das Instrument vollständig von der Bildebene des Geräts erfasst wird, sondern in der Praxis genügt es in der Regel wenn die wesentlichen Teile des Instruments, wie etwa die Spitze einer Nadel, vom Visualisierungsgerät erfasst und
vorzugsweise getrackt werden. Vorzugsweise weist das Verfahren weiter auf:
- Definieren eines Zielpunkts im Raum, und - automatisches Bewegen des Manipulators, wenn sich das medizinische Instrument dem Zielpunkt nähert, so dass das medizinische
Visualisierungsgerät ausgerichtet wird, um den Zielpunkt im Raum zu erfassen. Ein Zielpunkt kann bspw. eine bestimmte Stelle im Körper des Patienten sein, wie etwa Lymphknoten oder ein Tumor o.ä., die zu behandeln ist. Dieser Zielpunkt wird erfasst (definiert) und in z.B. der Steuereinrichtung des Manipulators hinterlegt, so dass der Manipulator jederzeit auf Befehl das Visualisierungsgerät so ausrichten kann, dass der Zielpunkt erfasst, d.h. abgebildet oder visualisiert wird. Dies kann bei bestimmten Eingriffen am Patienten vorteilhaft sein, da bspw. bei einer ausreichenden Näherung des Instruments an den gewünschten Zielpunkt ein Fokussieren des Visualisierungsgeräts auf diesen Zielpunkt für den Operateur hilfreicher ist, als eine Fokussierung (Ausrichtung) auf einen Teil des Instruments. Das vorliegende System und das Verfahren bieten den Vorteil, dass der Operateur von der Ausrichtung und Justierung des Visualisierungsgeräts entlastet wird, da dies von der Steuereinrichtung und dem Manipulator übernommen wird. Hierdurch kann sich der Operateur oder Arzt auf seine eigentliche Aufgabe konzentrieren, wie z.B. das Punktieren einer interessierenden Struktur. Die Erfindung bietet die Möglichkeit einer Qualitätssteigerung navigierter, bildgestützter Biopsien durch den Einsatz eines Manipulators, welcher das Visualisierungsgerät hält und dieses so bewegt, dass immer die interessierende Information im Bild zu sehen ist. 4. Ausführungsbeispiel
Im Folgenden wird die vorliegende Erfindung anhand der beiliegenden Figur näher beschrieben. Es zeigt:
Fig. 1 schematisch ein erfindungsgemäßes System zum
roboterunterstützten Behandeln eines Patienten; und Fig. 2 das System von Fig. l mit dem Manipulator und dem
Visualisierungsgerät in einer anderen Position.
In den Figuren l und 2 ist schematisch und beispielhaft ein
erfindungsgemäßes System l zum roboterunterstützten Behandeln eines Patienten 50 illustriert. Das System umfasst eine Steuereinrichtung 10, die eine Robotersteuerung 11, einen Computer 12 und eine Stereokamera 14 aufweist. Der Patient 50 liegt auf einem Operationstisch 55 und in der gezeigten Darstellung soll 51 eine Schnittdarstellung durch den Hals des Patienten 50 andeuten. Im Hals 51 befindet sich ein zu untersuchender bzw. zu behandelnder Zielpunkt 52, wie etwa ein Tumor o.ä. Die
Behandlung soll mittels eines chirurgischen Instruments 40,
insbesondere einer Biopsienadel 40 stattfinden, die im gezeigten Beispiel händisch von einem Operateur geführt wird. Alternativ könnte die Biopsienadel 40 auch von einem weiteren Manipulator geführt werden. Die Biopsienadel 40 soll zum Zielpunkt 52 geführt werden. Um dem Operateur die Führung der Biopsienadel 40 zu erleichtern, bzw.
überhaupt zu ermöglichen, kommt ein medizinisches
Visualisierungsgerät 30 in Form einer Ultraschallsonde 30 (hierbei bevorzugt in Verbindung mit einem Computer/einer Recheneinheit und einem HMI bzw. Monitor, über welche die erfassten (Bild-)Daten des medzinischen Visualisierungsgeräts 30 tatsächlich ausgegeben werden) zum Einsatz.
Die Robotersteuerung 11 dient zur Steuerung eines mehrachsigen Gelenkarmroboters 20 (bzw. Manipulators 20). Die Steuerung 11 und der Gelenkarmroboter 20 sind über Datenleitungen 21 in
Kommunikation miteinander. Weitere Datenleitungen 21 dienen der Kommunikation mit den weiteren Bestandteilen der Steuereinrichtung 10. Der Gelenkarmroboter 20 trägt und bewegt die Ultraschallsonde 30. Die Ultraschallsonde 30 wird vom Gelenkarmroboter 20 an den Körper des Patienten 50 gepresst, um Ultraschallbilder des Inneren des Körpers des Patienten zu machen. Die Ultraschallbilder werden über die
Datenleitungen 21 übertragen, im Computer 12 verarbeitet und dann am Monitor 13 angezeigt. Mit dem Bezugsweichen 32 soll die Bildebene (Schallebene) der Ultraschallsonde 30 angezeigt werden. Die Bild- oder Schallebene der Sonde ist üblicherweise nur wenige Millimeter dick, so dass die Sonde sehr genau ausgerichtet werden muss, um
aussagekräftige Bilder zu liefern.
Das Ausrichten der Sonde und das Anpressen der Sonde erfolgt durch den Manipulator bzw. Gelenkarmroboter 20, so dass ein Operateur von diesen Aufgaben entlastet ist. Zu diesem Zweck ist es vorteilhaft, wenn der Roboter bzw. Gelenkarmroboter 20 mit Kraftsensoren versehen ist und in Kraftregelung arbeitet, so dass er die Ultraschallsonde 30 mit einer definierten Kraft auf die Hautoberfläche des Patienten 50 presst. Die Robotersteuerung 11 berechnet hierfür die Bahn zur Zielposition und -Orientierung mit den Randbedingungen„Hautkontakt mit definierter Kraft beibehalten",„keine Kollision mit Ultraschallnadel" ,„keine Kollision mit Marker" etc.
Im Ausführungsbeispiel ist die Biopsienadel 40 mit einem optischen Marker 41 versehen. Die Stereokamera 14 der Steuereinrichtung 10 erfasst den Marker 41 und liefert den Ursprung des
Markerkoordinatensystems an die Robotersteuerung 11 bzw. an den Computer 12, um die Lage der Biopsienadel 40 zu bestimmen. Die Robotersteuerung 11 berechnet dann die optimale Lage der
Ultraschallsonde 30 (Zielposition und -Orientierung) in Abhängigkeit von der Lage der Biopsienadel 40. Da die Lage der Ultraschallsonde 30 aufgrund der aktuellen (Gelenkarm-)Roboterposition bzw.
Manipulatorposition feststeht bzw. daraus berechnet werden kann, und der Verlauf und die Orientierung der Schallebene 32 ebenfalls bekannt ist, ist es somit möglich, die Sonde 30 automatisch auszurichten. In Figur 1 ist die Sonde 30 auf die Spitze der Biopsienadel 40 gerichtet und die Nadelspitze (bzw. Biopsienadelspitze) wird durch die Schallebene 32 erfasst. Der Operateur kann auf dem Monitor 13 die Bewegung der Nadelspitze durch den Körper des Patienten 50 verfolgen und die Biopsienadel 40entsprechend zielgerichtet zum Zielpunkt 52 führen. In Figur 2 punktiert die Biopsienadel 40 den Zielpunkt 52, um bspw. an dieser Stelle eine Gewebeprobe zu entnehmen. Der Manipulator 20 hat die Sonde 30 entsprechend umbewegt, so dass die Schallebene 32 weiterhin auf die Nadelspitze gerichtet ist und diese somit erfasst, so dass die Position der Biopsienadel 40 am Bildschirm 13 dargestellt werden kann. Diese Umbewegung wird von der Robotersteuerung 11 anhand der geänderten Lage der Biopsienadel 40 automatisch vorgenommen. Die Stereokamera 14 erfasst den Marker 41 und damit die geänderte Lage der Biopsienadel 40, so dass die Steuereinrichtung 10 die entsprechenden Bewegungen des Gelenkarmroboters 20 veranlasst.
Im gezeigten Beispiel ist auch die Ultraschallsonde 30 mit einem weiteren Marker 31 versehen, der vorteilhaft auf demselben Prinzip funktioniert wie der Marker 41. Der weitere Marker 31 kann die
Bestimmung der relativen räumlichen Lage von Biopsienadel 40 und Sonde 30 zueinander erleichtern.
Vorzugsweise ist die Updaterate des Systems analog zur Updaterate des Trackingsystems (wie z.B. 30-90 Hz oder bevorzugt 40 bis 80 Hz), so dass der Gelenkarmroboter bzw. Manipulatordie Darstellung der Biopsienadel 40 in der Ultraschallebene während des gesamten Eingriffs aufrecht erhalten kann. Der Gelenkarmroboter folgt somit auch kleinsten Bewegungen der Biopsienadel 40 , d.h. die Biopsienadel 40 wird vom Gelenkarmroboter und damit der Ultraschallsonde getrackt. Die hohe Updaterate hat den Vorteil das nur kleine Bewegungen des Gelenkarmroboters zu erwarten sind, da starke Bewegungen aus Sicherheitsaspekten unterbunden werden müssen.
Referenzzeichenliste :
I System
10 Steuereinrichtung
II Robotersteuerung Computer
Bildschirm
Stereokamera
Roboter
Datenleitung
Ultraschallsonde Marker
Schallebene
Biopsienadel
Marker
Patient
Querschnitt durch Hals Zielpunkt
Operationstisch

Claims

Ansprüche l bis 12
1. Ein System (1) zur roboterunterstützten medizinischen
Behandlung eines Patienten; umfassend:
- einen Manipulator (20), insbesondere einen mehrachsigen Gelenkarmroboter,
- ein medizinisches Visualisierungsgerät (30), welches am Manipulator (20) angebracht ist, um vom Manipulator bewegt zu werden;
- ein medizinisches Instrument (40), welches mit zumindest einem Marker (41) versehen ist, um die Lage des medizinischen Instruments(40) erfassen zu können;
- eine Steuereinrichtung (10), die eingerichtet ist, um die Lage des medizinischen Instruments (40) mit Hilfe des Markers (41) zu bestimmen, und um den Manipulator (20) mit dem medizinischen Visualisierungsgerät (30) in Abhängigkeit von der bestimmten Lage des medizinischen Instruments zu bewegen.
2. Das System nach Anspruch 1, wobei die Steuereinrichtung (10) eingerichtet ist, um den Manipulator (20) mit dem medizinischen Visualisierungsgerät (30) in Abhängigkeit der Lage des medizinischen Instruments (40) derart zu bewegen, dass das medizinische
Visualisierungsgerät (30) zumindest einen Teil des Instruments (40) erfasst.
3. Das System nach Anspruch 2, wobei die Steuereinrichtung (10) eingerichtet ist, um den Manipulator (20) mit dem medizinischen Visualisierungsgeräts (30) derart zu bewegen, dass das medizinische Visualisierungsgerät (30) einer Bewegung des Instruments (40) folgt (trackt).
4. Das System nach einem der vorhergehenden Ansprüche, wobei dem medizinischen Visualisierungsgerät (30) ein weiterer Marker (31) zugeordnet ist, um die Lage des medizinischen Visualisierungsgeräts (30) erfassen zu können, und die Steuereinrichtung (10) weiter eingerichtet ist, um die Lage des medizinischen Visualisierungsgeräts (30) mit Hilfe des weiteren Markers (31) zu bestimmen.
5. Das System nach einem der vorhergehenden Ansprüche, wobei der Manipulator (20) ein mehrachsiger Gelenkarmroboter (20) ist, und wobei die Achsen des Gelenkarmroboters (20) mit Sensoren zur
Erfassung der an den Achsen wirkenden Kräfte und/oder Drehmomente versehen sind.
6. Das System nach Anspruch 5, wobei die Steuereinrichtung (10) eingerichtet ist, um den Gelenkarmroboter (20) derart zu steuern, dass das medizinische Visualisierungsgerät (30) mit einer definierten Kraft gegen den Körper des Patienten gepresst wird.
7. Das System nach einem der vorhergehenden Ansprüche, wobei die Marker (31, 41) optische Marker sind, und der Steuereinrichtung (10) weiter eine Kamera- Vorrichtung (14) zugeordnet ist, die eingerichtet ist, um die optischen Marker und Ihre Lage im Raum zu erfassen.
8. Das System nach einem der vorhergehenden Ansprüche, wobei das medizinische Visualisierungsgerät (30) eine Ultraschallsonde (30) ist.
9. Das System nach einem der vorhergehenden Ansprüche, wobei das chirurgische Instrument (40) eine Biopsienadel (40) ist.
10. Verfahren zur roboterunterstützten medizinischen Behandlung eines Patienten, umfassend die folgenden Schritte:
- Bestimmen der Lage eines medizinischen Visualisierungsgeräts (30), welches an einem Manipulator (20), insbesondere einem mehrachsigen Gelenkarmroboter, angebracht ist, um vom Manipulator (20) bewegt zu werden; - Bestimmen der Lage eines medizinischen Instruments (40) relativ zu der Lage des medizinischen Visualisierungsgeräts (30);
- Bewegen des Manipulators (20) mit dem medizinischen Visualisierungsgerät (30) in Abhängigkeit von der relativen Lage von medizinischem Instrument und medizinischem Visualisierungsgerät.
11. Das Verfahren nach Anspruch 10, wobei das Bewegen des Manipulators (20) in Abhängigkeit von der relativen Lage von medizinischem Instrument (40) und medizinischem
Visualisierungsgerät (30) derart erfolgt, dass das medizinische Visualisierungsgerät (30) zumindest einen Teil des Instruments (40) erfasst und einer Bewegung dieses Teils des Instruments folgt.
12. Das Verfahren nach Anspruch 10 oder 11, weiter aufweisend:
Definieren eines Zielpunkts im Raum, und
automatisches Bewegen des Manipulators (20), wenn sich das medizinische Instrument (40) dem Zielpunkt nähert, so dass das medizinische Visualisierungsgerät (30) ausgerichtet wird, um den Zielpunkt im Raum zu erfassen.
EP15805132.6A 2014-12-17 2015-11-26 System zur roboterunterstützten medizinischen behandlung Withdrawn EP3232976A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014226240.2A DE102014226240A1 (de) 2014-12-17 2014-12-17 System zur roboterunterstützten medizinischen Behandlung
PCT/EP2015/077779 WO2016096366A1 (de) 2014-12-17 2015-11-26 System zur roboterunterstützten medizinischen behandlung

Publications (1)

Publication Number Publication Date
EP3232976A1 true EP3232976A1 (de) 2017-10-25

Family

ID=54783575

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15805132.6A Withdrawn EP3232976A1 (de) 2014-12-17 2015-11-26 System zur roboterunterstützten medizinischen behandlung

Country Status (6)

Country Link
US (1) US20170319289A1 (de)
EP (1) EP3232976A1 (de)
KR (1) KR20170093200A (de)
CN (1) CN106999250A (de)
DE (1) DE102014226240A1 (de)
WO (1) WO2016096366A1 (de)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9232959B2 (en) 2007-01-02 2016-01-12 Aquabeam, Llc Multi fluid tissue resection methods and devices
JP5506702B2 (ja) 2008-03-06 2014-05-28 アクアビーム エルエルシー 流体流れ内を伝達される光学エネルギーによる組織切除および焼灼
US20120191083A1 (en) 2011-01-20 2012-07-26 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
JP6080872B2 (ja) 2012-02-29 2017-02-15 プロセプト バイオロボティクス コーポレイション 自動化された画像誘導組織切除および治療
US10231867B2 (en) 2013-01-18 2019-03-19 Auris Health, Inc. Method, apparatus and system for a water jet
US10744035B2 (en) 2013-06-11 2020-08-18 Auris Health, Inc. Methods for robotic assisted cataract surgery
US10426661B2 (en) 2013-08-13 2019-10-01 Auris Health, Inc. Method and apparatus for laser assisted cataract surgery
US20160287279A1 (en) 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
US10639108B2 (en) 2015-10-30 2020-05-05 Auris Health, Inc. Process for percutaneous operations
US9955986B2 (en) 2015-10-30 2018-05-01 Auris Surgical Robotics, Inc. Basket apparatus
US9949749B2 (en) 2015-10-30 2018-04-24 Auris Surgical Robotics, Inc. Object capture with a basket
WO2017181136A1 (en) * 2016-04-14 2017-10-19 Focal Therapeutics Inc. Tissue localization device and method of use thereof
EP3599979A4 (de) 2017-03-28 2021-01-06 Auris Health, Inc. Schaftbetätigungsgriff
EP4032459A1 (de) 2017-04-07 2022-07-27 Auris Health, Inc. Ausrichtung einer patienteneinführvorrichtung
US10285574B2 (en) 2017-04-07 2019-05-14 Auris Health, Inc. Superelastic medical instrument
CN107736897A (zh) * 2017-09-04 2018-02-27 北京航空航天大学 一种基于六自由度并联平台的超声配准及长骨复位装置及方法
KR102085588B1 (ko) * 2018-02-09 2020-03-06 고려대학교 산학협력단 시술도구 위치 추적 시스템
CN110384555B (zh) * 2018-04-19 2021-03-12 中国科学院深圳先进技术研究院 基于远端中心运动机构的持镜手术机器人
JP7267309B2 (ja) 2018-06-07 2023-05-01 オーリス ヘルス インコーポレイテッド 高力器具を有するロボット医療システム
CN108814691B (zh) * 2018-06-27 2020-06-02 无锡祥生医疗科技股份有限公司 针的超声引导辅助装置及系统
WO2020005854A1 (en) 2018-06-28 2020-01-02 Auris Health, Inc. Medical systems incorporating pulley sharing
WO2020036685A1 (en) 2018-08-15 2020-02-20 Auris Health, Inc. Medical instruments for tissue cauterization
CN112566567A (zh) 2018-08-17 2021-03-26 奥瑞斯健康公司 双极医疗器械
US11864849B2 (en) 2018-09-26 2024-01-09 Auris Health, Inc. Systems and instruments for suction and irrigation
US11576738B2 (en) 2018-10-08 2023-02-14 Auris Health, Inc. Systems and instruments for tissue sealing
US11364084B2 (en) * 2018-11-21 2022-06-21 Biosense Webster (Israel) Ltd. Contact force compensation in a robot manipulator
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
EP3870075A4 (de) 2018-12-20 2022-08-03 Auris Health, Inc. Abschirmung für handgelenkinstrumente
CN110946653B (zh) * 2018-12-29 2021-05-25 华科精准(北京)医疗科技有限公司 一种手术导航系统
US11589913B2 (en) 2019-01-25 2023-02-28 Auris Health, Inc. Vessel sealer with heating and cooling capabilities
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US20200297357A1 (en) 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
CN113613566A (zh) 2019-03-25 2021-11-05 奥瑞斯健康公司 用于医疗缝合的系统和方法
EP3733112A1 (de) * 2019-05-03 2020-11-04 Globus Medical, Inc. System für robotische trajektorieführung für navigierte biopsienadel
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US11369386B2 (en) 2019-06-27 2022-06-28 Auris Health, Inc. Systems and methods for a medical clip applier
US11109928B2 (en) 2019-06-28 2021-09-07 Auris Health, Inc. Medical instruments including wrists with hybrid redirect surfaces
US11896330B2 (en) 2019-08-15 2024-02-13 Auris Health, Inc. Robotic medical system having multiple medical instruments
CN114502094A (zh) 2019-09-26 2022-05-13 奥瑞斯健康公司 用于碰撞检测和避免的系统和方法
WO2021064536A1 (en) 2019-09-30 2021-04-08 Auris Health, Inc. Medical instrument with capstan
US11737835B2 (en) 2019-10-29 2023-08-29 Auris Health, Inc. Braid-reinforced insulation sheath
WO2021137071A1 (en) 2019-12-31 2021-07-08 Auris Health, Inc. Advanced basket drive mode
CN111167020A (zh) * 2019-12-31 2020-05-19 冯丽娟 一种肿瘤内照射插植方法及其光学引导装置
CN114901188A (zh) 2019-12-31 2022-08-12 奥瑞斯健康公司 动态滑轮系统
DE102020109593B3 (de) 2020-04-06 2021-09-23 Universität Zu Lübeck Ultraschall-Erweiterte Realität-Peripher Endovaskulär Intervention-Navigationsverfahren sowie zugehörige Ultraschall-Erweiterte Realität-Peripher Endovaskulär Intervention-Navigationsanordnung
DE102020204985A1 (de) * 2020-04-21 2021-10-21 Siemens Healthcare Gmbh Steuerung eines robotisch bewegten medizinischen Objekts
CN115802975A (zh) 2020-06-29 2023-03-14 奥瑞斯健康公司 用于检测连杆与外部对象之间的接触的系统和方法
US11931901B2 (en) 2020-06-30 2024-03-19 Auris Health, Inc. Robotic medical system with collision proximity indicators
US11357586B2 (en) 2020-06-30 2022-06-14 Auris Health, Inc. Systems and methods for saturated robotic movement
US20220192767A1 (en) * 2020-12-21 2022-06-23 Ethicon Llc Dynamic trocar positioning for robotic surgical system
CN114652449A (zh) * 2021-01-06 2022-06-24 深圳市精锋医疗科技股份有限公司 手术机器人及其引导手术臂移动的方法、控制装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762458A (en) * 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6425865B1 (en) 1998-06-12 2002-07-30 The University Of British Columbia Robotically assisted medical ultrasound
US8944070B2 (en) * 1999-04-07 2015-02-03 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
AU2001243237A1 (en) 2000-02-25 2001-09-03 The Board Of Trustees Of The Leland Stanford Junior University Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body
WO2006043859A1 (en) 2004-10-18 2006-04-27 Mobile Robotics Sweden Ab Robot for ultrasonic examination
US8398541B2 (en) * 2006-06-06 2013-03-19 Intuitive Surgical Operations, Inc. Interactive user interfaces for robotic minimally invasive surgical systems
CN101193603B (zh) * 2005-06-06 2010-11-03 直观外科手术公司 腹腔镜的超声机器人外科手术系统
CN100464720C (zh) * 2005-12-22 2009-03-04 天津市华志计算机应用技术有限公司 基于光学跟踪闭环控制的脑外科机器人系统及实现方法
US9782229B2 (en) * 2007-02-16 2017-10-10 Globus Medical, Inc. Surgical robot platform
DE102007045075B4 (de) * 2007-09-21 2010-05-12 Siemens Ag Interventionelles medizinisches Diagnose- und/oder Therapiesystem
DE102007046700A1 (de) * 2007-09-28 2009-04-16 Siemens Ag Ultraschallvorrichtung
US8340379B2 (en) * 2008-03-07 2012-12-25 Inneroptic Technology, Inc. Systems and methods for displaying guidance data based on updated deformable imaging data
WO2010036746A1 (en) * 2008-09-24 2010-04-01 St. Jude Medical System and method of automatic detection of obstructions for a robotic catheter system
US9386983B2 (en) * 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8935003B2 (en) * 2010-09-21 2015-01-13 Intuitive Surgical Operations Method and system for hand presence detection in a minimally invasive surgical system
EP2521507B1 (de) * 2010-01-08 2015-01-14 Koninklijke Philips N.V. Unkalibriertes visual servoing mit echtzeit-geschwindigkeitsoptimierung
US20140039314A1 (en) * 2010-11-11 2014-02-06 The Johns Hopkins University Remote Center of Motion Robot for Medical Image Scanning and Image-Guided Targeting
JP2012176232A (ja) * 2011-02-04 2012-09-13 Toshiba Corp 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
DE102011005917A1 (de) * 2011-03-22 2012-09-27 Kuka Laboratories Gmbh Medizinischer Arbeitsplatz
WO2013013142A1 (en) * 2011-07-21 2013-01-24 The Research Foundation Of State University Of New York System and method for ct-guided needle biopsy
CN104168837A (zh) * 2011-10-10 2014-11-26 神经束公司 用手持图像设备对组织进行全面检查的方法、装置和系统
DE102012220116A1 (de) * 2012-06-29 2014-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mobil handhabbare Vorrichtung, insbesondere zur Bearbeitung oder Beobachtung eines Körpers, und Verfahren zur Handhabung, insbesondere Kalibrierung, einer Vorrichtung
US10105186B2 (en) * 2014-06-09 2018-10-23 The Johns Hopkins University Virtual rigid body optical tracking system and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2016096366A1 *

Also Published As

Publication number Publication date
WO2016096366A1 (de) 2016-06-23
KR20170093200A (ko) 2017-08-14
US20170319289A1 (en) 2017-11-09
CN106999250A (zh) 2017-08-01
DE102014226240A1 (de) 2016-06-23

Similar Documents

Publication Publication Date Title
EP3232976A1 (de) System zur roboterunterstützten medizinischen behandlung
EP2449997B1 (de) Medizinischer Arbeitsplatz
DE102012110190B4 (de) Manuell betätigte Robotersteuerung und Verfahren zum Steuern eines Robotersystems
EP0900055B1 (de) Instrument zur kompensation des handzitterns bei der manipulation feiner strukturen
EP2502558B1 (de) Medizinischer Arbeitsplatz
EP3271118B1 (de) Robotersystem und verfahren zum betrieb eines teleoperativen prozesses
DE102007045075B4 (de) Interventionelles medizinisches Diagnose- und/oder Therapiesystem
DE102009010263B4 (de) Verfahren zur Navigation eines endoskopischen Instruments bei der technischen Endoskopie und zugehörige Vorrichtung
DE112017001645T5 (de) Steuervorrichtung und Steuerverfahren
DE102010029275A1 (de) Verfahren zum Bewegen eines Instrumentenarms eines Laparoskopierobotors in einer vorgebbare Relativlage zu einem Trokar
WO2015049095A1 (de) Steuervorrichtung und verfahren zum steuern eines robotersystems mittels gestensteuerung
DE19914455A1 (de) Verfahren zur Bestimmung der Bewegung eines Organs oder Therapiegebiets eines Patienten sowie hierfür geeignetes System
WO2008058520A2 (de) Vorrichtung zur bereitstellung von bildern für einen operateur
EP1312317B1 (de) Schwenkbarer Arm mit passiven Aktuatoren
EP3363358A2 (de) Vorrichtung zum festlegen und wiederauffinden eines bezugspunkts während eines chirurgischen eingriffs
DE112016006299T5 (de) Medizinische Sicherheitssteuerungsvorrichtung, medizinisches Sicherheitssteuerungsverfahren und medizinisches Unterstützungssystem
EP3054888A1 (de) Assistenzeinrichtung zur bildgebenden unterstützung eines operateurs während eines chirurgischen eingriffs
WO2017186414A1 (de) Operations-assistenz-system und verfahren zur erzeugung von steuersignalen zur ansteuerung einer motorisch gesteuerten bewegbaren roboterkinematik eines derartigen operations-assistenz-systems
DE102019134352B4 (de) Chirurgieroboter für endoskopische Anwendungen
DE102020204985A1 (de) Steuerung eines robotisch bewegten medizinischen Objekts
DE102014210056A1 (de) Verfahren zur Ansteuerung eines chirurgischen Geräts sowie chirurgisches Gerät
DE102020205546A1 (de) Überwachungsverfahren und medizinisches System
DE102015207119A1 (de) Interventionelle Positionierungskinematik
DE102006045100B4 (de) Navigationseinrichtung für ein medizinisches Instrument
DE102005029002A1 (de) Verfahren und Vorrichtung zur berührenden Messung einer Kraft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: NEFF, THOMAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KUKA DEUTSCHLAND GMBH

17Q First examination report despatched

Effective date: 20190904

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200121

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528