EP3231555B1 - Method and device for determining the abrasive ability of an abrasive tool - Google Patents

Method and device for determining the abrasive ability of an abrasive tool Download PDF

Info

Publication number
EP3231555B1
EP3231555B1 EP17166414.7A EP17166414A EP3231555B1 EP 3231555 B1 EP3231555 B1 EP 3231555B1 EP 17166414 A EP17166414 A EP 17166414A EP 3231555 B1 EP3231555 B1 EP 3231555B1
Authority
EP
European Patent Office
Prior art keywords
grinding
camera
abrasive
image
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17166414.7A
Other languages
German (de)
French (fr)
Other versions
EP3231555A1 (en
Inventor
Bahmann Prof. Dr. -Ing. Azarhoushang
Sebastian LUDWIG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochschule Furtwangen
Original Assignee
Hochschule Furtwangen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochschule Furtwangen filed Critical Hochschule Furtwangen
Publication of EP3231555A1 publication Critical patent/EP3231555A1/en
Application granted granted Critical
Publication of EP3231555B1 publication Critical patent/EP3231555B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means

Definitions

  • the invention relates to a method according to the preamble of claim 1 and a grinding device according to the preamble of claim 10.
  • the last sub-process is often grinding with a geometrically undefined cutting edge. It is used to create functional surfaces (running, sealing and visible surfaces) with a high surface quality and tightest geometrical tolerances. Grinding is often at the end of the production chain. An efficient and at the same time safe process flow is therefore a prerequisite for profitable and reliable production.
  • the micro- and ultimately also the macro-topography of the grinding tool change, for example a grinding wheel with a peripheral surface such as the grinding surface, and the result increased process forces, rising temperatures in the contact zone between the grinding tool and workpiece, and a loss of profile.
  • Conditioning the grinding tool for example by profiling, dressing, structuring, sharpening and cleaning, has a significant influence on the process result.
  • grinding tools With the dressing of grinding tools, clogging is to be removed and an effective grain protrusion with sharp grains is to be produced, the increase in machining forces and temperatures is to be avoided and a loss of shape and profile is to be prevented.
  • grinding tools are often dressed as a precaution at regular short intervals or a specified number of workpieces. These points in time are mostly based on empirical values with calculated safety values and do not create the actual potential of the grinding tools.
  • the aim is to prevent the quality of the workpiece from deteriorating due to a reduction in the grinding ability of the grinding tools and thus lead to rejects, rework and increased process times.
  • DD 297 594 A5 which discloses the preamble of claim 1
  • a radiation source is directed onto the active grinding surface and a radiation profile of the radiation directly reflected and scattered by the active grinding surface and topographical surface of the grinding body is detected by means of the two radiation receivers.
  • a radiation intensity of the radiation source is regulated to a constant reflected value and the radiation intensity of the scattered radiation is evaluated.
  • the scattered radiation is compared with a reference radiation curve and wear from the grinding wheel is indicated from the comparison if a tolerance band is exceeded.
  • the sensor device is delivered without protection from the ambient conditions.
  • the document US 2006/254927 A1 discloses the preamble of claim 10 relates to an image sensor system for use in the manufacture of semiconductor devices.
  • the system includes an electrochemical machining tool and an image sensor.
  • the electrochemical machining tool comprises an electrode which is arranged in a central region of a carrier plate.
  • the electrode is adapted to contact a wafer workpiece during a particular machining of the wafer workpiece using the machining tool. At least part of the electrode is visible from above the carrier plate when the electrochemical machining tool is assembled ready for operation.
  • the image sensor is suitable for taking an image of the visible part of the electrode.
  • the image sensor is positioned above the carrier plate.
  • the image sensor is adapted to be directed towards the electrode when an image of the electrode is to be taken with the image sensor.
  • the object of the invention is the development of a method and a device for determining the grinding ability of a grinding tool. Another object of the invention is to propose a grinding device with improved efficiency.
  • the proposed method serves for the automated determination of the grinding ability of a grinding tool with a geometrically undefined cutting edge integrated in a grinding process of a grinding device.
  • the grinding tool is designed as a rotationally driven grinding wheel which is arranged around an axis of rotation and which has a grinding surface such as a topographical surface on its circumference.
  • the grinding wheel is accommodated on a spindle of a grinding device, which can be rotated and displaced radially, for example by means of a CNC program, so that grinding can be carried out at a correspondingly controlled speed and the grinding wheel can be radially approximated to a workpiece to be ground.
  • the grinding ability of the grinding tool is determined during the grinding process.
  • the grinding ability is determined by means of a grinding device, that is, by means of a machining center working in a grinding device, for example a geometrically indefinite cutting edge, a grinding device or a production or production line with a detection device integrated in the grinding process with an optically at least part the topographical surface, such as abrasive to a surface of the grinding tool that is effective against a workpiece to be machined, and an evaluation device for the radiation detected by the optical sensor system.
  • the detection device is to be understood here as a single camera which, in contrast to a detection of non-spatially resolved radiation, can capture an image of a microscopic section, that is to say a spatially resolved topography of the surface of the grinding tool, in a sufficiently high resolution.
  • a camera as a camera
  • the camera detects at least one predetermined microscopic section of the topographic surface of the grinding tool while irradiating light from a light source arranged coaxially around the optical axis of the camera and determines at least one image therefrom.
  • the at least one determined image is then processed, for example filtered, subjected to noise suppression or the like, using an image processing device provided as an evaluation device, and compared with a reference image.
  • the grinding ability of the grinding tool can be determined automatically, for example, on the basis of the comparison of the at least one determined image with the reference image.
  • a dressing process can be automated in the grinding device initiated, an exchange of the grinding tool and / or a corresponding warning are issued.
  • the determination of a reference image can be provided, for example, when the grinding tool is started up, for example at a reference position to be approached in each case or at several different positions on the surface and / or taken as a general topography pattern or image material.
  • images can be recorded with the surface directed and / or diffuse irradiation directed perpendicular to the optical axis and thus yield different image information, the evaluation of which allows an improved assessment of the grinding ability. For example, improved color rendering can be achieved with diffuse irradiation, so that, for example, clogging of the grinding tool can be better distinguished from the surface.
  • the evaluation of images, which are recorded parallel to the optical axis of the camera when the surface is irradiated enables an improved resolution of the topographical structure, for example of the abrasive grains.
  • the different illumination of the surface in the form of diffuse and direct radiation can be provided by means of a light source which is arranged coaxially around the optical axis and consists of a large number of light-emitting diodes.
  • the light-emitting diodes can be arranged in different beam angles with respect to the optical axis and can be optionally connected.
  • the light emitting diodes can be designed to be controllable with respect to their light angle.
  • a coaxial frame with the light-emitting diodes can be rotated or pivoted with respect to the optical axis.
  • light-emitting diodes can be formed in a single suitable radiation frequency or with different radiation frequencies, images being able to be recorded in each case with light-emitting diodes of the same radiation frequencies and / or with different radiation frequencies to form a frequency spectrum.
  • the grinding ability can be determined as a function of a proportion of reflection surfaces on a predetermined proportion of the surface.
  • flat-ground abrasive grains form reflective surfaces for the directional radiation, so that an increase in the determined reflective surfaces per predetermined proportion of the surface gives a measure of the abrasiveness.
  • the contrast of a captured image can be processed so that only black or white pixels are evaluated.
  • the surface of the grinding tool to be gripped can be shifted to one or more predetermined reference positions.
  • a grinding wheel can be turned on the camera in such a way that the same reference position (s) or reproducibly different reference positions are approached in the intended determination processes of the grinding ability.
  • the detection device can drive a rotatably connected grinding wheel, for example by means of a friction wheel drive that is brought into frictional engagement with the grinding wheel, wherein a stepping motor of the drive can ensure sufficient angular resolution of the rotation.
  • the position of the grinding wheel can be detected, for example, by one or more corresponding markings on the surface of the grinding wheel that are detected by the camera, an inductive sensor that detects one or more markings made on the grinding wheel, or the like.
  • the spindle with the grinding wheel can be displaced radially, for example in a CNC-controlled manner, against the friction wheel of the friction wheel drive.
  • the grinding tool for example the grinding wheel, can be displaced by a drive of the grinding device, for example in a CNC-controlled manner, as in the case of a grinding wheel, to one or more reference positions.
  • the acquisition and evaluation of a single image of part of the surface is sufficient for each determination process of the grinding ability of the grinding tool at a predetermined point in time.
  • a so-called video recording of the surface can be recorded in which images are recorded in a high image sequence with the surface shifted and rotated.
  • a sequence of many images by means of the camera is preferred, the images being synchronized via a surface profile, for example via a rotary movement of the surface of a grinding wheel, so that the images are reproducibly recorded at different positions over different determination sequences and / or multiple revolutions of a grinding wheel will.
  • the grinding tool can be pivoted into an image field of the camera in order to capture the at least one image.
  • a grinding wheel can be brought close to an aperture of the camera by radially displacing the spindle which receives this rotary drive.
  • the surface of the grinding tool to be recorded can be cleaned.
  • coolant oil residues, adhering chips and / or other contaminants can be removed using a compressed air nozzle.
  • a camera opening can be provided in the housing, which can be closed by means of a cover if no recordings are provided with the camera.
  • the cover can be between an open and closed state of the camera opening by means of an actuator device, for example by means of an electric motor, a piezo element, a compressed air control, by means of a magnetic switch or the like be switched. Provision can be made to clean the housing and the cover, for example by means of compressed air, before opening the cover and taking up the at least one image.
  • the proposed grinding device is used to carry out the proposed method.
  • a camera with a light source arranged coaxially to the optical axis is accommodated in a closed housing with a closable camera opening.
  • An image processing device is provided to determine the grinding ability of the grinding tool by means of the images recorded by the camera of the topographic, abrasive surface of a grinding tool.
  • the detection device is integrated into the grinding device by means of the housing, for example screwed to a stationary part of the grinding device.
  • the housing contains a friction wheel drive, which drives the grinding tool, which is designed as a grinding wheel, with a sufficient angular resolution, for example if there is insufficient accuracy in the displacement of the grinding tool.
  • the friction wheel drive can be displaced against a non-radially displaced grinding wheel to form a frictional engagement with the grinding wheel, or the spindle that drives the grinding wheel rotatably can be displaced radially with respect to the friction wheel drive.
  • the friction wheel of the friction wheel drive and the peripheral abrasive surface of the grinding wheel form the friction engagement.
  • the proposed grinding device contains, in particular on a radially displaceable, rotationally driven spindle, a grinding tool designed as a grinding wheel with a peripheral surface covered with grinding particles with the proposed detection device for carrying out the proposed method.
  • the associated image processing device can be provided in the grinding device or at a spatially separate location.
  • wear characteristics of the surface topography of grinding tools can be recognized by means of a preferably completely automated measuring process integrated into the grinding process by means of image processing, and the grinding ability can be evaluated quickly and easily at any point in the grinding process. This allows the bottom potential of grinding tools is fully exploited, the service life is extended and the process is optimized from an economic and ecological point of view.
  • an automated in-process image processing method in which microscopic images of the surface topography of grinding tools are analyzed for wear characteristics. With the help of reflections that are created by suitable lighting, clogging and the degree of flattening of abrasive grains are recognized. This means that the grinding ability can be evaluated by comparing it with limit values and the service life of the grinding tools can be optimized.
  • the method is based on an inexpensive sensor system such as a camera system with a camera, for example a digital microscope.
  • the camera which can be surrounded by a coolant and oil-resistant housing, creates microscopic images such as images of the topography of the grinding tool.
  • the grinding tool can be cleaned of cooling lubricant and oil residues and the like while rotating using a compressed air nozzle, so that no falsification occurs when the picture is taken.
  • at least the top of the housing provided with a camera opening can be cleaned with the same or a further compressed air nozzle in order to prevent cooling lubricant or oil from penetrating into the housing and thus into the camera.
  • the duration of the cleaning steps can, for example, be designed to be less than ten seconds in order to keep the time for the entire measuring process as short as possible.
  • the grinding tool can be brought to a desired angular position such as the reference position with a friction wheel drive driven by a stepper motor.
  • a sealed protective flap can be provided in front of the camera opening, which moves to the side before taking a picture by means of a simple automatic mechanism, so that a picture of the surface can be taken.
  • Images captured by the camera are transmitted by cable or by radio transmission technology, for example WLAN, Bluetooth, via the Internet via a cloud service or the like to an image processing device with an image processing program of a terminal, for example a workstation or a PC, and evaluated.
  • a deployment The measurement data in a cloud service has the advantage that, for example, machine operators, engineers, project managers and the like can access the data. Furthermore, there is the possibility to save the results as test documentation and to make them available again and again.
  • the image processing device uses so-called image processing software.
  • the pictures taken are examined for various characteristics.
  • sizes such as clogging of the grinding wheel surface, flattening of the abrasive grains as well as the number of active abrasive grains and their percentage of a given area of the image can be determined.
  • the area to be considered in the analysis can be specified depending on the grinding wheel width and the concentration of the grains.
  • Various functions of image processing are used to determine the sizes mentioned. These include, for example, the reduction of image noise and, if necessary, the use of filters such as software filters to emphasize certain image features. For example, individual elements of the grinding wheel topography can be recognized and segmented by means of edge detection and object recognition.
  • a single high-resolution microscopic image may be sufficient to analyze an area of the surface.
  • the calculation time can be limited to approximately 0.5 seconds, preferably 0.4 seconds, by means of an appropriate hardware design and the intensity of the calculation steps for image processing for an image.
  • the depth of evaluation can be increased and / or an averaging can advantageously be provided from several, for example three, images at three identical, similar or different positions as reference positions. These positions can be set precisely and reproducibly by the friction wheel drive mentioned above.
  • Different surface features can be weighted by the appropriate choice of diffuse or directed light incidence of the radiation source such as light source. For example, differentiation of different color areas can be better represented under diffuse light. Edges or the reflection of flattened areas, such as worn abrasive grains, can be better represented by means of directed light, for example perpendicular to the optical axis of the camera. For example, a light ring made of light emitting diodes (LED) coaxially attached to the camera can serve as the light source. This offers the possibility of adjusting the light intensity and the angle of incidence on the surface section considered.
  • LED light emitting diodes
  • the embodiment of such a routine is based on the processing of the microscopic image of the surface on a threshold value method, which converts the image or its predetermined area into a one-bit image, which consists only of black or white pixels.
  • the reflections are converted into white pixels, for example, the remaining areas are blackened. This results in an image that only shows the reflections.
  • the routine calculates the percentage area of the reflections in relation to the total area of the image or the area and compares this with a reference image or a reference area, for example in the initial state or state of wear, so that a quantitative assessment of the area of the reflections can take place.
  • the images can be recorded for evaluation in the form of individual images or as an image sequence as a video recording.
  • a camera system with high recording speed is used.
  • the evaluation of the images can be carried out in accordance with the previously described methods with an appropriate image processing device.
  • more images are provided in a short time, so that a higher measurement accuracy, for example an assessment of a grinding surface of a grinding wheel can be achieved over the entire circumference.
  • a friction wheel drive can be provided for grinding devices that do not have exact speed control in the low speed range relevant for video recording.
  • the speed of the grinding wheel is determined by means of the friction wheel drive or the speed control the grinding machine is preferably adapted to the recording speed of the camera.
  • the embodiment of recording images by means of a video camera is in principle an online measurement in which the entire grinding tool can be checked for its condition in a very short time without having to bring it completely to a standstill.
  • a camera with a resolution of at least 1600 x 1200 pixels (2 megapixels) can be advantageous as hardware.
  • CMOS technology can preferably be used as the sensor of the camera, since this enables sufficiently high data rates with simultaneously high image quality.
  • the recording speed can allow the recording of more than 120 frames per second.
  • the video recording can take place with a rotating grinding tool.
  • a complete analysis of the entire surface can be carried out within 10 seconds using the specified recording speed with a recorded area of 1x1 mm per image and a grinding wheel with a diameter of 400 mm and therefore a circumference of 1256 mm. It goes without saying that the measuring times can be reduced with increasing recording speed, smaller disk diameter and larger measuring range.
  • a special illumination of the recording surface is provided for the analysis of the recordings and the recognition of various features. Since some features are better recognizable under directional and others under diffuse light, a variable lighting unit such as a light source is provided, for example, as a dome attachment with variably controllable light-emitting diodes that set different beam angles, with which it is possible to quickly switch between directed and diffuse light. Differentiation of different color areas is easier under diffuse light, whereby a representation of edges or the reflection of flattened areas, such as worn abrasive grains, benefits from vertically directed light.
  • a variable lighting unit such as a light source
  • variably controllable light-emitting diodes that set different beam angles, with which it is possible to quickly switch between directed and diffuse light. Differentiation of different color areas is easier under diffuse light, whereby a representation of edges or the reflection of flattened areas, such as worn abrasive grains, benefits from vertically directed light.
  • the light source can be individually adapted to each grinding tool, since, for example, diamond grains, CBN grains or conventional grain materials such as corundum (Al 2 O 3 ) or silicon carbide (SiC) reflect the radiation in different ways. Furthermore, ceramic, galvanic and metallic bonds or binding agents based on synthetic resin respond differently to light. For this purpose, the number and frequency range of light-emitting diodes serving as the light source can be selected accordingly.
  • the Figures 1 and 2 schematically show in an overview and in detail an embodiment of a possible detection device 1 for recording microscopic images of a topographic surface of an effective abrasive layer of a grinding tool, for example a grinding wheel, which is coated with grinding particles.
  • the detection device 1 has the housing 2, in which — as shown in transparency — the camera 3, for example a digital microscope with the aperture 4 arranged around the optical axis z, is accommodated.
  • the housing 2 contains the camera opening 5 which is aligned with the optical axis z and which can be tightly closed by means of the cover 6 which is automatically actuated by the actuator device 7 via a transmission which cannot be seen.
  • the control panel 10 is used for manual operation of the detection device 1 from the outside.
  • the data captured by the camera 3, such as images, are transmitted wirelessly or by wire to the image processing device (not shown), which processes and evaluates the images.
  • the Figure 3 shows with reference to the Figures 1 and 2 the detection device 1 in a sectional side view during a determination process in which an image of the topographic surface 11 of the grinding tool 13 designed as a grinding wheel 12 is recorded by means of the camera 3.
  • the grinding wheel 12 with its axis of rotation on a spindle of a grinding device, not shown, displaced radially against the friction wheel 9.
  • the grinding wheel 12 is rotated by the friction wheel drive 8 by means of the friction wheel 9 which is in frictional engagement with the surface 11 such that the surface 11 is displaced to the camera opening 5 with a predetermined reference position.
  • one or more reference positions can be approached and in each case one or more images can be recorded by camera 3 and transmitted to the image processing device.
  • the grinding wheel 12 and the top of the housing 2 are cleaned, for example by means of a compressed air nozzle, and the camera opening 5 is opened by moving the cover 6 and closed again after the determination process.
  • the Figure 4 shows that compared to the detection device 1 of the Figures 1 to 3 modified detection device 1a in detail.
  • the detection device 1a is particularly suitable for video recordings of the surface 11a of a grinding tool 13a designed as a grinding wheel 12a.
  • the grinding wheel 12a is driven by a spindle of a grinding device or - as shown here - by the friction wheel 9a of a friction wheel drive at a speed or angular speed synchronized with the recording rate of the camera 3a, so that the camera 3a favors the circumference of the surface 11a of the grinding wheel 12a can consistently take pictures of cutouts 15a of the surface 11a.
  • the surface 11a is cleaned by means of the compressed air nozzle 14a before the images are taken.
  • the Figure 5 shows a modification of the detection device 1a of FIG Figure 4 with the camera 3a, which is provided with the light source 16a coaxially surrounding the aperture.
  • Light-emitting diodes are arranged on the inside of the light source 16a designed as a dome light attachment 17a, which have different radiation angles with respect to the optical axis of the camera 3a. By mutually connecting the light-emitting diodes, a diffuse or directional radiation of the surface 11a of the grinding wheel 12a can be generated.
  • the Figure 6 shows a typical image 18 of the topographic surface 11, 11a of a grinding tool 13, 13a or a grinding wheel 12, 12a Figures 3 to 5 when new or freshly dressed.
  • This for example, by means of cameras 3, 3a Figures 1 to 5 Image 18, for example, magnified 50 times, shows only a small proportion of direct reflections 19 which are due to flattened abrasive grains or particles.
  • the Figure 7 shows the image 18a taken under the same recording conditions of a grinding wheel stressed with a machining volume of, for example, 500 mm 3 / mm.
  • the image shows extensive reflections 19a, which indicate a considerable flattening of abrasive grains, in that perpendicular reflections 19a are radiated into the camera when the radiation is directed onto the surface.
  • the Figure 8 shows an image 18b processed by the image processing device, which consists of, for example, images 18, 18a Figures 6, 7 corresponding image is created.
  • the image 18b shown is created from such images as a one-bit image, in which the reflections 19b are determined as surface structures with a calculable or estimable surface.
  • the sum of the areas determined is set in relation to the remaining image area 20.
  • the grinding ability of the grinding wheel on which the image is based is assessed by comparing the ratio obtained with the ratio of an image of a new or freshly dressed grinding wheel treated under the same conditions.
  • a deviation of the relative area of the reflections 19b by a predetermined tolerance is a measure of a dressing or a replacement of the grinding wheel.
  • the Figure 9 shows the diagram 21 of the reflection component of an image 18b of FIG Figure 8 in percent and the grinding forces against the machining volume Vw in [mm 3 / mm] of a typical grinding wheel.
  • Graph 22 shows the development of the grinding forces
  • Graph 23 shows the development of the reflection component over the machining volume Vw. It becomes clear that the grinding forces essentially increase with the reflection components over the machining volume Vw, so that an immediate assignment can be made. Furthermore, it can be deduced that grinding forces and reflection components detect wear on the surface to the same extent during grinding processes.
  • the diamond shown on the left-hand edge of diagram 21 shows the reflection component (1.8%) of a grinding wheel freshly dressed before the start of the grinding process using the machining volume shown.
  • the triangle on the right-hand edge of diagram 21 shows the proportion of reflection (2.0%) of a grinding wheel dressed again according to the cutting volume shown.
  • the differences are negligible, so that a determination of the grinding state of the grinding wheel over several dressing processes can be determined on the basis of the reflection component. If the proportion of reflection changes over several dressing processes, you can use one History, for example, the grinding behavior can be evaluated up to a necessary replacement of the grinding wheel.
  • the reflection component newly determined for each dressing can serve as a reference value over the entire machining process until the next dressing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1 und eine Schleifvorrichtung nach dem Oberbegriff des Anspruchs 10.The invention relates to a method according to the preamble of claim 1 and a grinding device according to the preamble of claim 10.

Bei der Herstellung hochwertiger, präziser Komponenten für Maschinen und Anlagen erfolgt als letzter Teilprozess oft das Schleifen mit geometrisch unbestimmter Schneide. Es dient zur Erzeugung von Funktionsflächen (Lauf-, Dicht- und Sichtflächen) mit hoher Oberflächengüte und engsten geometrischen Toleranzen. Das Schleifen steht damit oft am Ende der Fertigungskette. Ein leistungsfähiger und gleichzeitig sicherer Prozessablauf ist deshalb Voraussetzung für eine rentable und zuverlässige Produktion.When manufacturing high-quality, precise components for machines and systems, the last sub-process is often grinding with a geometrically undefined cutting edge. It is used to create functional surfaces (running, sealing and visible surfaces) with a high surface quality and tightest geometrical tolerances. Grinding is often at the end of the production chain. An efficient and at the same time safe process flow is therefore a prerequisite for profitable and reliable production.

Mit zunehmender Gebrauchsdauer und dadurch zunehmendem Verschleiß des Schleifwerkzeuges durch Kornanflachung und Zusetzungen der Poren der topografischen, mit Schleifkörnern besetzten Oberfläche des Schleifwerkzeuge ändern sich die Mikro- und letztlich auch die Makrotopografie des Schleifwerkzeugs, beispielsweise einer Schleifscheibe mit umfangsseitiger Oberfläche wie Schleifoberfläche, und es stellen sich erhöhte Prozesskräfte, steigende Temperaturen in der Kontaktzone zwischen Schleifwerkzeug und Werkstück sowie ein Profilverlust ein. Die Konditionierung des Schleifwerkzeuges, beispielsweise durch Profilieren, Abrichten, Strukturieren, Schärfen und Reinigen, hat wesentlichen Einfluss auf das Prozessergebnis.With increasing service life and thereby increasing wear of the grinding tool due to flattening of the grain and clogging of the pores of the topographical surface of the grinding tool, which is covered with abrasive grains, the micro- and ultimately also the macro-topography of the grinding tool change, for example a grinding wheel with a peripheral surface such as the grinding surface, and the result increased process forces, rising temperatures in the contact zone between the grinding tool and workpiece, and a loss of profile. Conditioning the grinding tool, for example by profiling, dressing, structuring, sharpening and cleaning, has a significant influence on the process result.

Mit dem Abrichten von Schleifwerkzeugen sollen Zusetzungen entfernt und ein effektiver Kornüberstand mit scharfen Körnern hergestellt werden, die Erhöhung der Bearbeitungskräfte und -temperaturen vermieden, sowie einem Form- und Profilverlust vorgebeugt werden. In der industriellen Praxis werden Schleifwerkzeuge oft vorsichtshalber in regelmäßigen kurzen Intervallen oder einer festgelegten Anzahl an Werkstücken abgerichtet. Diese Zeitpunkte basieren meist auf Erfahrungswerten mit einberechneten Sicherheitswerten und schöpfen nicht das eigentliche Potential der Schleifwerkzeuge aus. Es soll dadurch verhindert werden, dass es durch Minderung der Schleiffähigkeit der Schleifwerkzeuge zu Qualitätsminderung des Werkstücks und somit zu Ausschuss, Nacharbeit und erhöhten Prozesszeiten kommt.With the dressing of grinding tools, clogging is to be removed and an effective grain protrusion with sharp grains is to be produced, the increase in machining forces and temperatures is to be avoided and a loss of shape and profile is to be prevented. In industrial practice, grinding tools are often dressed as a precaution at regular short intervals or a specified number of workpieces. These points in time are mostly based on empirical values with calculated safety values and do not create the actual potential of the grinding tools. The aim is to prevent the quality of the workpiece from deteriorating due to a reduction in the grinding ability of the grinding tools and thus lead to rejects, rework and increased process times.

Zur besseren Ausnutzung der Qualität und Standfestigkeit von Schleifwerkzeugen wird beispielsweise in der DD 297 594 A5 , die den Oberbegriff des Anspruchs 1 offenbart, eine Erfassung von Reflexsignalen der Schleifkörperwirkfläche mittels eines optischen Sensorsystems mit einer Strahlungsquelle und zwei Strahlungsempfängern mittels in-process- oder post-process-Messungen vorgeschlagen. Hierbei wird eine Strahlungsquelle auf die Schleifkörperwirkfläche gerichtet und ein Strahlungsverlauf der von der Schleifkörperwirkfläche wie topografischen Oberfläche des Schleifkörpers direkt reflektierten und gestreuten Strahlung mittels der beiden Strahlungsempfänger erfasst. Hierbei wird eine Strahlungsintensität der Strahlungsquelle auf einen konstanten reflektierten Wert geregelt und die Strahlungsintensität der Streustrahlung ausgewertet. Die gestreute Strahlung wird mit einem Referenzstrahlungsverlauf verglichen und aus dem Vergleich bei Überschreiten eines Toleranzbandes ein Verschleiß des Schleifkörpers angezeigt. Dabei ist die Sensoreinrichtung den Umgebungsbedingungen schutzlos ausgeliefert.For better utilization of the quality and stability of grinding tools, for example, in DD 297 594 A5 , which discloses the preamble of claim 1, suggests detection of reflex signals of the effective grinding surface by means of an optical sensor system with a radiation source and two radiation receivers by means of in-process or post-process measurements. Here, a radiation source is directed onto the active grinding surface and a radiation profile of the radiation directly reflected and scattered by the active grinding surface and topographical surface of the grinding body is detected by means of the two radiation receivers. Here, a radiation intensity of the radiation source is regulated to a constant reflected value and the radiation intensity of the scattered radiation is evaluated. The scattered radiation is compared with a reference radiation curve and wear from the grinding wheel is indicated from the comparison if a tolerance band is exceeded. The sensor device is delivered without protection from the ambient conditions.

Das Dokument US 2006/254927 A1 , das den Oberbegriff des Anspruchs 10 offenbart, betrifft ein Bildsensorsystem zur Verwendung bei einer Herstellung von Halbleiterbauteilen. Das System umfasst ein elektrochemisches Bearbeitungswerkzeug und einen Bildsensor. Das elektrochemische Bearbeitungswerkzeug umfasst eine Elektrode, die in einem zentralen Bereich einer Trägerplatte angeordnet ist. Die Elektrode ist angepasst, um ein Wafer-Werkstück während einer bestimmten Bearbeitung des Wafer-Werkstücks unter Verwendung des Bearbeitungswerkzeugs zu kontaktieren. Wenigstens ein Teil der Elektrode ist von oberhalb der Trägerplatte sichtbar, wenn das elektrochemische Bearbeitungswerkzeug betriebsfähig zusammengebaut ist. Der Bildsensor ist dazu geeignet, ein Bild des sichtbaren Teils der Elektrode aufzunehmen. Der Bildsensor ist oberhalb der Trägerplatte positioniert. Der Bildsensor ist dazu angepasst, auf die Elektrode gerichtet zu sein, wenn ein Bild der Elektrode mit den Bildsensor aufzunehmen ist. Aufgabe der Erfindung ist die Weiterbildung eines Verfahrens und einer Vorrichtung zur Ermittlung der Schleiffähigkeit eines Schleifwerkzeugs. Weiterhin ist Aufgabe der Erfindung, eine Schleifvorrichtung mit verbesserter Effizienz vorzuschlagen.The document US 2006/254927 A1 discloses the preamble of claim 10 relates to an image sensor system for use in the manufacture of semiconductor devices. The system includes an electrochemical machining tool and an image sensor. The electrochemical machining tool comprises an electrode which is arranged in a central region of a carrier plate. The electrode is adapted to contact a wafer workpiece during a particular machining of the wafer workpiece using the machining tool. At least part of the electrode is visible from above the carrier plate when the electrochemical machining tool is assembled ready for operation. The image sensor is suitable for taking an image of the visible part of the electrode. The image sensor is positioned above the carrier plate. The image sensor is adapted to be directed towards the electrode when an image of the electrode is to be taken with the image sensor. The object of the invention is the development of a method and a device for determining the grinding ability of a grinding tool. Another object of the invention is to propose a grinding device with improved efficiency.

Die Aufgabe wird durch die Gegenstände der Ansprüche 1 und 10 gelöst. Die von den Ansprüchen 1 und 10 abhängigen Ansprüche geben vorteilhafte Ausführungsformen der Gegenstände dieser Ansprüche wieder. The object is solved by the subjects of claims 1 and 10. The claims dependent on claims 1 and 10 reflect advantageous embodiments of the subject matter of these claims.

Das vorgeschlagene Verfahren dient der automatisierten Ermittlung der Schleiffähigkeit eines in einen Schleifprozess einer Schleifvorrichtung integrierten Schleifwerkzeugs mit geometrisch unbestimmter Schneide. In besonders vorteilhafter Weise ist das Schleifwerkzeug als um eine Drehachse angeordnete und drehangetriebene Schleifscheibe ausgebildet, welches eine Schleiffläche wie topografische Oberfläche an ihrem Umfang aufweist. Die Schleifscheibe ist auf einer Spindel einer Schleifvorrichtung aufgenommen, die beispielsweise mittels eines CNC-Programms drehangetrieben und radial verlagerbar ist, so dass mit entsprechend geregelter Drehzahl geschliffen und die Schleifscheibe radial an ein zu schleifendes Werkstück angenähert werden kann.The proposed method serves for the automated determination of the grinding ability of a grinding tool with a geometrically undefined cutting edge integrated in a grinding process of a grinding device. In a particularly advantageous manner, the grinding tool is designed as a rotationally driven grinding wheel which is arranged around an axis of rotation and which has a grinding surface such as a topographical surface on its circumference. The grinding wheel is accommodated on a spindle of a grinding device, which can be rotated and displaced radially, for example by means of a CNC program, so that grinding can be carried out at a correspondingly controlled speed and the grinding wheel can be radially approximated to a workpiece to be ground.

Die Ermittlung der Schleiffähigkeit des Schleifwerkzeugs erfolgt während des Schleifprozesses.The grinding ability of the grinding tool is determined during the grinding process.

Die Ermittlung der Schleiffähigkeit erfolgt mittels einer in den Schleifprozess, das heißt, mittels einer in eine Schleifvorrichtung, beispielsweise ein mit geometrisch unbestimmter Schneide arbeitendes Bearbeitungszentrum, eine Schleifvorrichtung oder eine Fertigungs- oder Produktionsstraße mit einer in den Schleifprozess integrierten Erfassungsvorrichtung mit einem optisch zumindest einen Teil der topografischen Oberfläche wie abrasiv gegenüber einem zu bearbeitenden Werkstück wirksamen Oberfläche des Schleifwerkzeugs erfassenden Sensorsystem und einer Auswerteeinrichtung der mittels des optischen Sensorsystems erfassten Strahlung.The grinding ability is determined by means of a grinding device, that is, by means of a machining center working in a grinding device, for example a geometrically indefinite cutting edge, a grinding device or a production or production line with a detection device integrated in the grinding process with an optically at least part the topographical surface, such as abrasive to a surface of the grinding tool that is effective against a workpiece to be machined, and an evaluation device for the radiation detected by the optical sensor system.

Unter der Erfassungsvorrichtung ist hierbei eine einzige Kamera zu verstehen, die in genügend hoher Auflösung im Gegensatz zu einer Erfassung nicht ortsaufgelöster Strahlung eine Bilderfassung eines mikroskopischen Ausschnitts, das heißt eine ortsaufgelöste Topografie der Oberfläche des Schleifwerkzeugs erfassen kann. Beispielsweise kann als Kamera einThe detection device is to be understood here as a single camera which, in contrast to a detection of non-spatially resolved radiation, can capture an image of a microscopic section, that is to say a spatially resolved topography of the surface of the grinding tool, in a sufficiently high resolution. For example, as a camera

Digitalmikroskop dienen. Die Kamera erfasst als optisches Sensorsystem während des Schleifprozesses zumindest einen vorgegebenen mikroskopischen Ausschnitt der topografischen Oberfläche des Schleifwerkzeugs unter Bestrahlung von Licht einer koaxial um die optische Achse der Kamera angeordneten Lichtquelle und ermittelt daraus zumindest ein Bild. Das zumindest eine ermittelte Bild wird anschließend mittels einer als Auswerteeinrichtung vorgesehenen Bildbearbeitungseinrichtung bearbeitet, beispielsweise gefiltert, einer Rauschunterdrückung oder dergleichen unterzogen und mit einem Referenzbild verglichen. Anhand des Vergleichs des zumindest einen ermittelten Bilds mit dem Referenzbild kann beispielsweise automatisiert die Schleiffähigkeit des Schleifwerkzeugs ermittelt werden. Überschreitet eine vorgegebene Differenz, beispielsweise eine ortsaufgelöste Differenz zwischen dem Bild und dem Referenzbild, welches beispielsweise einen Idealzustand wiedergibt, eine vorgegebene Schwelle oder unterschreitet eine Differenz zwischen Bild und Referenzbild, welches einen Verschleißzustand wiedergibt, eine vorgegebene Schwelle, kann in der Schleifvorrichtung automatisiert ein Abrichtvorgang eingeleitet, ein Austausch des Schleifwerkzeugs und/oder eine entsprechende Warnung ausgegeben werden. Die Ermittlung eines Referenzbildes kann beispielsweise bei Inbetriebnahme des Schleifwerkzeugs beispielsweise an einer jeweils anzufahrenden Referenzposition oder an mehreren unterschiedlichen Positionen der Oberfläche vorgesehen werden und/oder als allgemeines Topografiemuster oder Bildmaterial entnommen werden.Serve digital microscope. As an optical sensor system, the camera detects at least one predetermined microscopic section of the topographic surface of the grinding tool while irradiating light from a light source arranged coaxially around the optical axis of the camera and determines at least one image therefrom. The at least one determined image is then processed, for example filtered, subjected to noise suppression or the like, using an image processing device provided as an evaluation device, and compared with a reference image. The grinding ability of the grinding tool can be determined automatically, for example, on the basis of the comparison of the at least one determined image with the reference image. If a predetermined difference, for example a spatially resolved difference between the image and the reference image, which, for example, represents an ideal state, exceeds a predetermined threshold or if a difference between the image and reference image, which represents a state of wear, falls below a predetermined threshold, a dressing process can be automated in the grinding device initiated, an exchange of the grinding tool and / or a corresponding warning are issued. The determination of a reference image can be provided, for example, when the grinding tool is started up, for example at a reference position to be approached in each case or at several different positions on the surface and / or taken as a general topography pattern or image material.

Gemäß einer vorteilhaften Ausführungsform des Verfahrens können Bilder bei senkrecht zur optischen Achse gerichteter und/oder diffuser Bestrahlung der Oberfläche aufgenommen werden und damit unterschiedliche Bildinformationen ergeben, deren Auswertung eine verbesserte Beurteilung der Schleiffähigkeit erlaubt. Beispielsweise lässt sich bei diffuser Bestrahlung eine verbesserte Farbwiedergabe erzielen, so dass beispielsweise Zusetzungen des Schleifwerkzeugs besser von der Oberfläche unterschieden werden können. Die Auswertung von Bildern, die bei gerichteter Bestrahlung der Oberfläche parallel zur optischen Achse der Kamera aufgenommen sind, ermöglicht eine verbesserte Auflösung der topografischen Struktur, beispielsweise der Schleifkörner. Die unterschiedliche Beleuchtung der Oberfläche in Form von diffuser und direkter Bestrahlung kann mittels einer um die optische Achse koaxial angeordnete Lichtquelle aus einer Vielzahl von Leuchtdioden vorgesehen sein. Die Leuchtdioden können hierzu bezogen auf die optische Achse in unterschiedlichem Strahlwinkel angeordnet sein und wahlweise beschaltet werden. Alternativ oder zusätzlich können die Leuchtdioden bezügliche ihres Lichtwinkels steuerbar ausgebildet sein. Hierzu kann ein koaxialer Rahmen mit den Leuchtdioden gegenüber der optischen Achse verdreht oder verschwenkt werden. Alternativ oder zusätzlich können Leuchtdioden in einer einzigen geeigneten Strahlungsfrequenz oder mit unterschiedlichen Strahlungsfrequenzen ausgebildet sein, wobei Bilder jeweils mit Leuchtdioden derselben Strahlungsfrequenzen und/oder mit unterschiedlichen Strahlungsfrequenzen zur Bildung eines Frequenzspektrums aufgenommen werden können.According to an advantageous embodiment of the method, images can be recorded with the surface directed and / or diffuse irradiation directed perpendicular to the optical axis and thus yield different image information, the evaluation of which allows an improved assessment of the grinding ability. For example, improved color rendering can be achieved with diffuse irradiation, so that, for example, clogging of the grinding tool can be better distinguished from the surface. The evaluation of images, which are recorded parallel to the optical axis of the camera when the surface is irradiated, enables an improved resolution of the topographical structure, for example of the abrasive grains. The different illumination of the surface in the form of diffuse and direct radiation can be provided by means of a light source which is arranged coaxially around the optical axis and consists of a large number of light-emitting diodes. For this purpose, the light-emitting diodes can be arranged in different beam angles with respect to the optical axis and can be optionally connected. Alternatively or additionally the light emitting diodes can be designed to be controllable with respect to their light angle. For this purpose, a coaxial frame with the light-emitting diodes can be rotated or pivoted with respect to the optical axis. Alternatively or additionally, light-emitting diodes can be formed in a single suitable radiation frequency or with different radiation frequencies, images being able to be recorded in each case with light-emitting diodes of the same radiation frequencies and / or with different radiation frequencies to form a frequency spectrum.

Insbesondere bei der Aufnahme von Bildern mit gerichteter Reflexion der Strahlung kann die Schleiffähigkeit abhängig von einem Anteil von Reflexionsflächen an einem vorgegebenen Flächenanteil der Oberfläche ermittelt werden. Hierbei bilden beispielsweise flach geschliffene Schleifkörner Reflexflächen für die gerichtete Strahlung, so dass eine Zunahme der ermittelten Reflexflächen pro vorgegebenem Flächenanteil der Oberfläche ein Maß für die Schleiffähigkeit ergibt. Hierbei kann ein aufgenommenes Bild bezüglich seines Kontrasts so bearbeitet werden, dass lediglich schwarze oder weiße Bildpunkte ausgewertet werden.In particular when recording images with directed reflection of the radiation, the grinding ability can be determined as a function of a proportion of reflection surfaces on a predetermined proportion of the surface. Here, for example, flat-ground abrasive grains form reflective surfaces for the directional radiation, so that an increase in the determined reflective surfaces per predetermined proportion of the surface gives a measure of the abrasiveness. The contrast of a captured image can be processed so that only black or white pixels are evaluated.

Gemäß einer vorteilhaften Ausführungsform des Verfahrens kann die zu erfassende Oberfläche des Schleifwerkzeugs an eine oder mehrere vorgegebene Referenzpositionen verlagert werden. Beispielsweise kann eine Schleifscheibe so an die Kamera verdreht werden, dass bei den vorgesehenen Ermittlungsvorgängen der Schleiffähigkeit dieselben Referenzposition(en) oder reproduzierbar jeweils andere Referenzpositionen angefahren werden. Hierbei kann die Erfassungsvorrichtung eine verdrehbar geschaltete Schleifscheibe beispielsweise mittels eines hierzu in Reibeingriff zur Schleifscheibe gebrachten Reibradantriebs angetrieben werden, wobei ein Schrittmotor des Antriebs für eine ausreichende Winkelauflösung der Verdrehung sorgen kann. Die Position der Schleifscheibe kann beispielsweise durch eine oder mehrere entsprechende von der Kamera erfasste Markierungen auf der Oberfläche der Schleifscheibe, einen induktiven Sensor, der eine oder mehrere an der Schleifscheibe angebrachte Markierungen erfasst, oder dergleichen erfasst werden. Zur Ausbildung des Reibeingriffs kann die Spindel mit der Schleifscheibe beispielsweise CNC-gesteuert gegen das Reibrad des Reibradantriebs radial verlagert werden. In alternativer Weise kann das Schleifwerkzeug, beispielsweise die Schleifscheibe von einem Antrieb der Schleifvorrichtung beispielsweise CNC-gesteuert verlagert wie im Falle einer Schleifscheibe an eine oder mehrere Referenzpositionen verdreht werden.According to an advantageous embodiment of the method, the surface of the grinding tool to be gripped can be shifted to one or more predetermined reference positions. For example, a grinding wheel can be turned on the camera in such a way that the same reference position (s) or reproducibly different reference positions are approached in the intended determination processes of the grinding ability. In this case, the detection device can drive a rotatably connected grinding wheel, for example by means of a friction wheel drive that is brought into frictional engagement with the grinding wheel, wherein a stepping motor of the drive can ensure sufficient angular resolution of the rotation. The position of the grinding wheel can be detected, for example, by one or more corresponding markings on the surface of the grinding wheel that are detected by the camera, an inductive sensor that detects one or more markings made on the grinding wheel, or the like. To form the frictional engagement, the spindle with the grinding wheel can be displaced radially, for example in a CNC-controlled manner, against the friction wheel of the friction wheel drive. Alternatively, the grinding tool, for example the grinding wheel, can be displaced by a drive of the grinding device, for example in a CNC-controlled manner, as in the case of a grinding wheel, to one or more reference positions.

Prinzipiell ist für jeden Ermittlungsvorgang der Schleiffähigkeit des Schleifwerkzeugs zu einem vorgegebenen Zeitpunkt jeweils die Aufnahme und Auswertung eines einzigen Bilds von einem Teil der Oberfläche ausreichend. Insbesondere zur Erhöhung der Qualität und/oder Reproduzierbarkeit des Ermittlungsvorgangs kann vorteilhaft sein, wenn während eines Ermittlungsvorgangs mehrere Bilder desselben Teils der Oberfläche bei gleichen oder geänderten Aufnahmebedingungen oder Bilder unterschiedlicher Teile bei denselben oder unterschiedlichen Aufnahmebedingungen aufgenommen beziehungsweise diese Teile durch die Kamera als Bilder erfasst werden und anschließend in bevorzugter Weise gemittelt werden.In principle, the acquisition and evaluation of a single image of part of the surface is sufficient for each determination process of the grinding ability of the grinding tool at a predetermined point in time. In particular, in order to increase the quality and / or reproducibility of the determination process, it can be advantageous if, during a determination process, several images of the same part of the surface are recorded under the same or changed recording conditions or images of different parts under the same or different recording conditions, or these parts are recorded as images by the camera and then averaged in a preferred manner.

Gemäß einer weiteren vorteilhaften Ausführungsform des Verfahrens kann eine sogenannte Videoaufnahme der Oberfläche aufgenommen werden, in dem in hoher Bildfolge bei verlagerter wie verdrehter Oberfläche Bilder aufgenommen werden. Bevorzugt ist hierbei eine Abfolge von vielen Bildern mittels der Kamera, wobei die Bilder über einen Oberflächenverlauf, beispielsweise über eine Drehbewegung der Oberfläche einer Schleifscheibe synchronisiert sind, so dass die Bilder über verschiedene Ermittlungsfolgen und/oder mehrfachen Umläufen einer Schleifscheibe jeweils reproduzierbar an denselben Positionen aufgenommen werden.According to a further advantageous embodiment of the method, a so-called video recording of the surface can be recorded in which images are recorded in a high image sequence with the surface shifted and rotated. A sequence of many images by means of the camera is preferred, the images being synchronized via a surface profile, for example via a rotary movement of the surface of a grinding wheel, so that the images are reproducibly recorded at different positions over different determination sequences and / or multiple revolutions of a grinding wheel will.

Zur Verbesserung der Auflösung eines Bilds kann das Schleifwerkzeug zur Erfassung des zumindest einen Bilds in ein Bildfeld der Kamera verschwenkt werden. Beispielsweise kann eine Schleifscheibe durch radiales Verlagern der diese drehangetrieben aufnehmenden Spindel nahe an eine Apertur der Kamera gebracht werden.To improve the resolution of an image, the grinding tool can be pivoted into an image field of the camera in order to capture the at least one image. For example, a grinding wheel can be brought close to an aperture of the camera by radially displacing the spindle which receives this rotary drive.

Zur Erhöhung der Reproduzierbarkeit der aufzunehmenden Bilder kann die zu erfassende Oberfläche des Schleifwerkzeugs gereinigt werden. Beispielsweise können Kühlmittel- Ölreste, anhaftende Späne und/oder andere Verunreinigungen mittels einer Druckluftdüse entfernt werden.To increase the reproducibility of the images to be recorded, the surface of the grinding tool to be recorded can be cleaned. For example, coolant oil residues, adhering chips and / or other contaminants can be removed using a compressed air nozzle.

Es hat sich weiterhin als vorteilhaft gezeigt, die Kamera in einem Gehäuse unterzubringen, welches die Kamera vor den rauen Umgebungsbedingungen der Schleifvorrichtung vor Verschmutzung schützt. Hierbei kann in dem Gehäuse eine Kameraöffnung vorgesehen sein, die mittels eines Deckels verschließbar ist, wenn keine Aufnahmen mit der Kamera vorgesehen sind. Der Deckel kann mittels einer Aktoreinrichtung, beispielsweise mittels eines Elektromotors, eines Piezoelements, einer Druckluftsteuerung, mittels eines Magnetschalters oder dergleichen zwischen einem geöffneten und geschlossenen Zustand der Kameraöffnung ge schaltet werden. Es kann dabei vorgesehen sein, vor einem Öffnen des Deckels und einem Aufnahmevorgang des zumindest einen Bildes das Gehäuse und den Deckel beispielsweise mittels Druckluft zu reinigen.It has also been shown to be advantageous to accommodate the camera in a housing which protects the camera from the harsh environmental conditions of the grinding device from contamination. In this case, a camera opening can be provided in the housing, which can be closed by means of a cover if no recordings are provided with the camera. The cover can be between an open and closed state of the camera opening by means of an actuator device, for example by means of an electric motor, a piezo element, a compressed air control, by means of a magnetic switch or the like be switched. Provision can be made to clean the housing and the cover, for example by means of compressed air, before opening the cover and taking up the at least one image.

Die vorgeschlagene Schleifvorrichtung dient der Durchführung des vorgeschlagenen Verfahrens. Hierzu ist in einem geschlossenen Gehäuse mit einer verschließbaren Kameraöffnung eine Kamera mit einer koaxial zur optischen Achse angeordneten Lichtquelle untergebracht. Zur Ermittlung der Schleiffähigkeit des Schleifwerkzeugs mittels der von der Kamera aufgenommenen Bilder von der topografischen, abrasiv wirksamen Oberfläche eines Schleifwerkzeugs ist eine Bildbearbeitungseinrichtung vorgesehen. Die Erfassungsvorrichtung ist mittels des Gehäuses in die Schleifvorrichtung integriert, beispielsweise mit einem ortsfesten Teil der Schleifvorrichtung verschraubt.The proposed grinding device is used to carry out the proposed method. For this purpose, a camera with a light source arranged coaxially to the optical axis is accommodated in a closed housing with a closable camera opening. An image processing device is provided to determine the grinding ability of the grinding tool by means of the images recorded by the camera of the topographic, abrasive surface of a grinding tool. The detection device is integrated into the grinding device by means of the housing, for example screwed to a stationary part of the grinding device.

Das Gehäuse enthält einen Reibradantrieb, welcher das als Schleifscheibe ausgebildete Schleifwerkzeug mit einer ausreichenden Winkelauflösung antreibt, beispielsweise wenn eine ausreichende Genauigkeit der Verlagerung des Schleifwerkzeugs nicht gegeben ist. Während eines Ermittlungsvorgangs der Schleiffähigkeit kann der Reibradantrieb gegen eine nicht radial verlagerte Schleifscheibe zur Bildung eines Reibeingriffs mit der Schleifscheibe verlagert werden oder die die Schleifscheibe drehantreibende Spindel radial gegenüber dem Reibradantrieb verlagerbar ausgebildet sein. Gemäß der Erfindung bilden das Reibrad des Reibradantriebs und die umfangsseitige abrasiv wirksame Oberfläche der Schleifscheibe den Reibeingriff.The housing contains a friction wheel drive, which drives the grinding tool, which is designed as a grinding wheel, with a sufficient angular resolution, for example if there is insufficient accuracy in the displacement of the grinding tool. During a determination process of the grinding ability, the friction wheel drive can be displaced against a non-radially displaced grinding wheel to form a frictional engagement with the grinding wheel, or the spindle that drives the grinding wheel rotatably can be displaced radially with respect to the friction wheel drive. According to the invention, the friction wheel of the friction wheel drive and the peripheral abrasive surface of the grinding wheel form the friction engagement.

Die vorgeschlagene Schleifvorrichtung enthält ein insbesondere auf einer radial verlagerbaren, drehangetrieben Spindel angeordneten, als Schleifscheibe ausgebildetes Schleifwerkzeug mit einer umfangsseitigen, mit Schleifpartikeln besetzte Oberfläche mit der vorgeschlagenen Erfassungsvorrichtung zur Durchführung des vorgeschlagenen Verfahrens. In der Schleifvorrichtung oder an einem räumlich getrennten Ort kann die zugehörige Bildbearbeitungseinrichtung vorgesehen sein.The proposed grinding device contains, in particular on a radially displaceable, rotationally driven spindle, a grinding tool designed as a grinding wheel with a peripheral surface covered with grinding particles with the proposed detection device for carrying out the proposed method. The associated image processing device can be provided in the grinding device or at a spatially separate location.

Mit anderen Worten können Verschleißmerkmale der Oberflächentopographie von Schleifwerkzeugen mittels eines bevorzugt vollständig automatisierten und in den Schleifprozess integrierten Messverfahrens durch Bildverarbeitung erkannt und die Schleiffähigkeit, zu jedem Zeitpunkt des Schleifprozesses schnell und einfach, bewertet werden. Dadurch kann das Po tential von Schleifwerkzeugen voll ausgenutzt, die Standzeit verlängert und der Prozess aus ökonomischer und ökologischer Sicht optimiert werden.In other words, wear characteristics of the surface topography of grinding tools can be recognized by means of a preferably completely automated measuring process integrated into the grinding process by means of image processing, and the grinding ability can be evaluated quickly and easily at any point in the grinding process. This allows the bottom potential of grinding tools is fully exploited, the service life is extended and the process is optimized from an economic and ecological point of view.

Hierzu ist ein automatisiertes in-process-Bildverarbeitungsverfahren vorgesehen, bei dem mikroskopische Aufnahmen der Oberflächentopographie von Schleifwerkzeugen auf Verschleißmerkmale hin analysiert werden. Anhand von Reflektionen, die durch geeignete Beleuchtung entstehen, werden Zusetzungen und der Grad der Anflachung von abrasiven Körnern erkannt. Somit kann die Schleiffähigkeit durch einen Vergleich mit Grenzwerten bewertet und die Standzeit der Schleifwerkzeuge optimiert werden.For this purpose, an automated in-process image processing method is provided, in which microscopic images of the surface topography of grinding tools are analyzed for wear characteristics. With the help of reflections that are created by suitable lighting, clogging and the degree of flattening of abrasive grains are recognized. This means that the grinding ability can be evaluated by comparing it with limit values and the service life of the grinding tools can be optimized.

Das Verfahren stützt sich dabei auf ein kostengünstiges Sensorsystem wie Kamerasystem mit einer Kamera, beispielsweise ein Digitalmikroskop. Die Kamera, welche von einem kühlmittel- und ölfesten Gehäuse umgeben sein kann, erstellt mikroskopische Aufnahmen wie Bilder der Topographie des Schleifwerkzeugs. Vor der Anfertigung der Bilder kann das Schleifwerkzeug unter Rotation mittels einer Druckluftdüse von Kühlschmierstoff- und Ölrückständen und dergleichen gesäubert werden, sodass bei der Bildaufnahme keine Verfälschung auftritt. Zusätzlich, beispielsweise anschließend kann mit derselben oder einer weiteren Druckluftdüse zumindest die mit einer Kameraöffnung versehene Oberseite des Gehäuses gesäubert werden, um ein Eindringen von Kühlschmierstoff oder Öl in das Gehäuse und damit in die Kamera zu verhindern. Die Dauer der Reinigungsschritte kann beispielsweise auf unter zehn Sekunden ausgelegt werden, um die Zeit für den gesamten Messprozess so gering wie möglich zu halten.The method is based on an inexpensive sensor system such as a camera system with a camera, for example a digital microscope. The camera, which can be surrounded by a coolant and oil-resistant housing, creates microscopic images such as images of the topography of the grinding tool. Before the pictures are taken, the grinding tool can be cleaned of cooling lubricant and oil residues and the like while rotating using a compressed air nozzle, so that no falsification occurs when the picture is taken. In addition, for example subsequently, at least the top of the housing provided with a camera opening can be cleaned with the same or a further compressed air nozzle in order to prevent cooling lubricant or oil from penetrating into the housing and thus into the camera. The duration of the cleaning steps can, for example, be designed to be less than ten seconds in order to keep the time for the entire measuring process as short as possible.

Um ein Bild der Oberfläche anzufertigen, kann das Schleifwerkzeug mit einem über einen Schrittmotor angetriebenen Reibradantrieb auf eine gewünschte Winkelposition wie Referenzposition gebracht werden. Es kann vor der Kameraöffnung eine abgedichtete Schutzklappe vorgesehen sein, die vor einer Aufnahme eines Bilds mittels eines einfachen automatischen Mechanismus auf die Seite fährt, so dass ein Bild der Oberfläche aufgenommen werden kann.In order to take a picture of the surface, the grinding tool can be brought to a desired angular position such as the reference position with a friction wheel drive driven by a stepper motor. A sealed protective flap can be provided in front of the camera opening, which moves to the side before taking a picture by means of a simple automatic mechanism, so that a picture of the surface can be taken.

Durch die hohe Winkelgenauigkeit des Schrittmotors des Reibradantriebs ist es möglich, Bilder jeder beliebigen Stelle der Oberfläche mit einer sehr hohen Wiederholgenauigkeit herzustellen, was für die Auswertung und Bewertung der Ergebnisse einen wichtigen Faktor darstellt.Due to the high angular accuracy of the stepper motor of the friction wheel drive, it is possible to produce images of any point on the surface with a very high repeatability, which is an important factor for the evaluation and evaluation of the results.

Von der Kamera erfasste Bilder werden kabelgebunden oder per Funkübertragungstechnik, beispielsweise WLAN, Bluetooth, per Internet über einen Cloud-Service oder dergleichen auf eine Bildverarbeitungseinrichtung mit einem Bildverarbeitungsprogramm eines Endgeräts, beispielsweise einer Workstation oder eines PC's übertragen und ausgewertet. Eine Bereitstellung der Messdaten in einem Cloud-Service hat den Vorteil, dass beispielsweise Maschinenbediener, Ingenieure, Projektleiter und dergleichen auf die Daten zugreifen können. Desweiteren besteht die Möglichkeit, die Resultate als Versuchsdokumentation zu speichern und diese immer wieder zur Verfügung zu stellen.Images captured by the camera are transmitted by cable or by radio transmission technology, for example WLAN, Bluetooth, via the Internet via a cloud service or the like to an image processing device with an image processing program of a terminal, for example a workstation or a PC, and evaluated. A deployment The measurement data in a cloud service has the advantage that, for example, machine operators, engineers, project managers and the like can access the data. Furthermore, there is the possibility to save the results as test documentation and to make them available again and again.

Die Bildverarbeitungseinrichtung bedient sich einer sogenannten Image Processing Software. Die angefertigten Bilder werden auf verschiedene Merkmale hin untersucht. Mit der digitalen Bildverarbeitung können Größen wie beispielsweise Zusetzungen der Schleifscheibenoberfläche, Abflachungen der Schleifkörner sowie die Anzahl der aktiven Schleifkörner und deren prozentualer Anteil zu einer vorgegebenen Fläche des Bildes ermittelt werden. Die Fläche, die bei der Analyse betrachtet werden soll, kann abhängig von der Schleifscheibenbreite und der Konzentration der Körner vorgegeben werden. Um die genannten Größen zu ermitteln, werden verschiedene Funktionen des Image Processing angewendet. Dazu gehören beispielsweise die Reduktion von Bildrauschen und gegebenenfalls die Anwendung von Filtern wie Softwarefiltern, um bestimmte Bildmerkmale hervorzuheben. Beispielsweise können mittels einer Kantendetektion und Objekterkennung einzelne Elemente der Schleifscheibentopographie erkannt und segmentiert werden. Für die Analyse eines Bereichs der Oberfläche kann ein einziges hochauflösendes mikroskopisches Bild ausreichend sein. Durch die Minimierung der Anzahl der Bilder während eines Ermittlungsvorgangs kann dieser beschleunigt werden. Beispielsweise kann die Berechnungszeit mittels einer entsprechenden Auslegung der Hardware und die Intensität der Rechenschritte der Bildbearbeitung für ein Bild auf ca. 0,5 Sekunden, bevorzugt 0,4 Sekunden beschränkt werden. Um die Messgenauigkeit zu erhöhen, kann die Auswertungstiefe erhöht und/oder in vorteilhafter Weise eine Mittelwertbildung aus mehreren, beispielsweise drei Bildern an drei identischen, ähnlichen oder verschiedenen Positionen wie Referenzpositionen vorgesehen sein. Diese Positionen können durch den oben genannten Reibradantrieb exakt einstellbar und reproduzierbar angefahren werden.The image processing device uses so-called image processing software. The pictures taken are examined for various characteristics. With digital image processing, sizes such as clogging of the grinding wheel surface, flattening of the abrasive grains as well as the number of active abrasive grains and their percentage of a given area of the image can be determined. The area to be considered in the analysis can be specified depending on the grinding wheel width and the concentration of the grains. Various functions of image processing are used to determine the sizes mentioned. These include, for example, the reduction of image noise and, if necessary, the use of filters such as software filters to emphasize certain image features. For example, individual elements of the grinding wheel topography can be recognized and segmented by means of edge detection and object recognition. A single high-resolution microscopic image may be sufficient to analyze an area of the surface. By minimizing the number of images during a discovery process, this can be accelerated. For example, the calculation time can be limited to approximately 0.5 seconds, preferably 0.4 seconds, by means of an appropriate hardware design and the intensity of the calculation steps for image processing for an image. In order to increase the measuring accuracy, the depth of evaluation can be increased and / or an averaging can advantageously be provided from several, for example three, images at three identical, similar or different positions as reference positions. These positions can be set precisely and reproducibly by the friction wheel drive mentioned above.

Durch die geeignete Wahl von diffusem oder gerichtetem Lichteinfall der Strahlungsquelle wie Lichtquelle können verschiedene Oberflächenmerkmale gewichtet werden. Beispielsweise kann eine Differenzierung verschiedener Farbbereiche unter diffusem Licht besser dargestellt werden. Kanten oder die Reflexion von abgeflachten Bereichen wie etwa bei verschlissenen Schleifkörnern sind mittels gerichtetem, beispielsweise senkrecht zur optischen Achse der Kamera gerichtetem Licht besser darstellbar. Als Lichtquelle kann beispielsweise ein koaxial an der Kamera befestigter Lichtring aus Leuchtdioden (LED) dienen. Dieser bietet die Möglichkeit, die Lichtintensität und den Einfallswinkel auf den betrachteten Oberflächenausschnitt einzustellen.Different surface features can be weighted by the appropriate choice of diffuse or directed light incidence of the radiation source such as light source. For example, differentiation of different color areas can be better represented under diffuse light. Edges or the reflection of flattened areas, such as worn abrasive grains, can be better represented by means of directed light, for example perpendicular to the optical axis of the camera. For example, a light ring made of light emitting diodes (LED) coaxially attached to the camera can serve as the light source. This offers the possibility of adjusting the light intensity and the angle of incidence on the surface section considered.

Die sich mit zunehmendem Zerspanungsvolumen abflachenden Schleifkörner reflektieren senkrecht auftreffendes Licht, sodass die Schleiffähigkeit unter anderem anhand dieses Merkmals beurteilt werden kann. Beispielsweise kann hierzu eine 50-fache Vergrößerung der Oberfläche vorgesehen sein. Zur Analyse derartiger Reflexionen und damit der Schleiffähigkeit kann in der Bildverarbeitungseinrichtung beispielsweise folgende, automatisiert durchführbare Routine abgearbeitet werden:

  • von der Kamera aufgenommenes Bild laden,
  • Bild auf einen vorgegebenen Bereich zuschneiden,
  • Vergleich des Bereichs mit einem vorgegebenen Referenzbereich,
  • Vorgabe eines Schwellwerts für den Bereich des aufgenommenen Bilds,
  • Filtern von Objekten kleiner als der vorgegebene Schwellwert,
  • Ermitteln einer Differenz zwischen Bereich und Referenzbereich,
  • Speichern des Ergebnisses,
  • Reset mit Löschen der aktuellen Bilder und Ergebnisse.
The abrasive grains, which flatten with increasing machining volume, reflect perpendicularly incident light, so that the grinding ability can be assessed based on this characteristic, among other things. For example, a 50-fold enlargement of the surface can be provided for this. To analyze such reflections and thus the ability to grind, the following, for example, the following, automatically performed routine can be processed in the image processing device:
  • load the image captured by the camera,
  • Crop image to a given area,
  • Comparison of the area with a predetermined reference area,
  • Specification of a threshold value for the area of the recorded image,
  • Filtering objects smaller than the specified threshold,
  • Determining a difference between the range and the reference range,
  • Save the result,
  • Reset by deleting the current images and results.

Im Detail basiert die Ausführungsform einer derartigen Routine auf der Bearbeitung des mikroskopischen Bilds der Oberfläche auf einem Schwellwertverfahren, welches das Bild beziehungsweise dessen vorgegebenen Bereich in ein Ein-Bit-Bild, welches nur aus schwarzen oder weißen Pixeln besteht, umwandelt. Die Reflektionen werden beispielsweise in weiße Pixel umgewandelt, die übrigen Bereiche werden geschwärzt. Dies führt dazu, dass ein Bild entsteht auf dem nur noch die Reflektionen abgebildet sind. Die Routine berechnet die prozentuale Fläche der Reflektionen in Bezug auf die Gesamtfläche des Bildes beziehungsweise des Bereichs und vergleicht diese mit einem Referenzbild beziehungsweise einem Referenzbereich beispielsweise im Anfangszustand oder Verschleißzustand, so dass eine quantitative Beurteilung der Fläche der Reflexionen erfolgen kann.In detail, the embodiment of such a routine is based on the processing of the microscopic image of the surface on a threshold value method, which converts the image or its predetermined area into a one-bit image, which consists only of black or white pixels. The reflections are converted into white pixels, for example, the remaining areas are blackened. This results in an image that only shows the reflections. The routine calculates the percentage area of the reflections in relation to the total area of the image or the area and compares this with a reference image or a reference area, for example in the initial state or state of wear, so that a quantitative assessment of the area of the reflections can take place.

Die Aufnahme der Bilder für die Auswertung kann alternativ in Form von Einzelbildern oder als Bilderfolge als Videoaufnahme erfolgen. Hierbei kommt ein Kamerasystem mit hoher Aufnahmegeschwindigkeit zum Einsatz. Die Auswertung der Bilder kann entsprechend der vorher beschriebenen Verfahren mit einer entsprechenden Bildbearbeitungseinrichtung erfolgen. In der Ausführungsform als Videoaufnahme werden mehr Bilder in kurzer Zeit bereitgestellt, so dass eine höhere Messgenauigkeit, beispielsweise eine Beurteilung eines Schleifbelags einer Schleifscheibe über den gesamten Umfang erzielt werden kann. Ein Reibradantrieb kann hierbei für Schleifvorrichtungen vorgesehen sein, die über keine exakte Drehzahlsteuerung im niedrigen, für die Videoaufnahme relevanten Drehzahlbereich verfügen. Die Drehzahl der Schleifscheibe wird dabei mittels des Reibradantriebs oder der Drehzahlsteuerung der Schleifmaschine bevorzugt an die Aufnahmegeschwindigkeit der Kamera angepasst.Alternatively, the images can be recorded for evaluation in the form of individual images or as an image sequence as a video recording. Here, a camera system with high recording speed is used. The evaluation of the images can be carried out in accordance with the previously described methods with an appropriate image processing device. In the embodiment as a video recording, more images are provided in a short time, so that a higher measurement accuracy, for example an assessment of a grinding surface of a grinding wheel can be achieved over the entire circumference. A friction wheel drive can be provided for grinding devices that do not have exact speed control in the low speed range relevant for video recording. The speed of the grinding wheel is determined by means of the friction wheel drive or the speed control the grinding machine is preferably adapted to the recording speed of the camera.

Die Ausführungsform einer Aufnahme von Bildern mittels einer Videokamera stellt im Prinzip eine Onlinemessung dar, bei der das gesamte Schleifwerkzeug in sehr kurzer Zeit auf seinen Zustand hin untersucht werden kann, ohne es dabei vollständig zum Stillstand bringen zu müssen.The embodiment of recording images by means of a video camera is in principle an online measurement in which the entire grinding tool can be checked for its condition in a very short time without having to bring it completely to a standstill.

Als Hardware kann eine Kamera mit einer Auflösung von mindestens 1600 x 1200 Bildpunkten (2 Megapixel) vorteilhaft sein. Als Sensor der Kamera kann vorzugsweise die CMOS-Technik eingesetzt werden, da diese ausreichend hohe Datenraten bei gleichzeitig hoher Bildqualität ermöglicht. Die Aufnahmegeschwindigkeit kann beispielsweise die Aufnahme von mehr als 120 Bildern pro Sekunde ermöglichen. Die Videoaufnahme kann dadurch bei rotierendem Schleifwerkzeug erfolgen. Beispielsweise kann mit der vorgegebenen Aufnahmegeschwindigkeit bei einer aufgenommenen Fläche von 1x1 mm pro Bild und einer Schleifscheibe mit einem Durchmesser von 400 mm und daher einem Umfang von 1256 mm innerhalb von 10 Sekunden eine komplette Analyse der gesamten Oberfläche erfolgen. Es versteht sich, dass mit zunehmender Aufnahmegeschwindigkeit, kleinerem Scheibendurchmesser und größerem Messbereich die Messzeiten verringert werden können.A camera with a resolution of at least 1600 x 1200 pixels (2 megapixels) can be advantageous as hardware. CMOS technology can preferably be used as the sensor of the camera, since this enables sufficiently high data rates with simultaneously high image quality. For example, the recording speed can allow the recording of more than 120 frames per second. The video recording can take place with a rotating grinding tool. For example, a complete analysis of the entire surface can be carried out within 10 seconds using the specified recording speed with a recorded area of 1x1 mm per image and a grinding wheel with a diameter of 400 mm and therefore a circumference of 1256 mm. It goes without saying that the measuring times can be reduced with increasing recording speed, smaller disk diameter and larger measuring range.

Für die Analyse der Aufnahmen und die Erkennung verschiedener Merkmale ist eine spezielle Beleuchtung der Aufnahmefläche vorgesehen. Da manche Merkmale unter gerichtetem und andere unter diffusem Licht besser erkennbar sind, wird eine variable Beleuchtungseinheit wie Lichtquelle beispielsweise als Domaufsatz mit variabel steuerbaren Leuchtdioden, die unterschiedliche Strahlungswinkel einstellen, vorgesehen, mit der schnell zwischen gerichtetem und diffusem Licht gewechselt werden kann. Eine Differenzierung verschiedener Farbbereiche ist unter diffusem Licht einfacher, wobei eine Darstellung von Kanten oder die Reflexion von abgeflachten Bereichen, wie etwa bei verschlissenen Schleifkörnern, von senkrecht gerichtetem Licht profitiert. Hierbei kann die Lichtquelle an jedes Schleifwerkzeug individuell angepasst sein, da beispielsweise Diamantkörner, CBN-Körner oder konventionelle Kornwerkstoffe wie Korund (Al2O3) oder Siliciumkarbid (SiC) die Strahlung auf unterschiedliche Weise reflektieren. Weiterhin sprechen keramische, galvanische und metallische Bindungen oder Bindungsstoffe auf Kunstharzbasis auf Licht unterschiedlich an. Hierzu können Anzahl und Frequenzbereich von als Lichtquelle dienenden Leuchtdioden entsprechend ausgewählt werden.A special illumination of the recording surface is provided for the analysis of the recordings and the recognition of various features. Since some features are better recognizable under directional and others under diffuse light, a variable lighting unit such as a light source is provided, for example, as a dome attachment with variably controllable light-emitting diodes that set different beam angles, with which it is possible to quickly switch between directed and diffuse light. Differentiation of different color areas is easier under diffuse light, whereby a representation of edges or the reflection of flattened areas, such as worn abrasive grains, benefits from vertically directed light. The light source can be individually adapted to each grinding tool, since, for example, diamond grains, CBN grains or conventional grain materials such as corundum (Al 2 O 3 ) or silicon carbide (SiC) reflect the radiation in different ways. Furthermore, ceramic, galvanic and metallic bonds or binding agents based on synthetic resin respond differently to light. For this purpose, the number and frequency range of light-emitting diodes serving as the light source can be selected accordingly.

Die Erfindung wird anhand der in den Figuren 1 bis 9 dargestellten Ausführungsbeispiele näher erläutert. Dabei zeigen:

Figur 1
eine Erfassungsvorrichtung zur Aufnahme von Bildern eines Schleifwerkzeugs in schematischer Darstellung,
Figur 2
ein Detail der Erfassungsvorrichtung der Figur 1 mit einer verschließbaren Abdeckung einer Kameraöffnung,
Figur 3
eine Seitenansicht der Erfassungsvorrichtung der Figuren 1 und 2,
Figur 4
eine gegenüber der Erfassungsvorrichtung der Figuren 1 bis 3 abgeänderte Erfassungsvorrichtung in schematischer Darstellung,
Figur 5
ein Detail der Erfassungsvorrichtung der Figur 4,
Figur 6
eine mikroskopische Aufnahme eines Schleifkörpers im Neuzustand,
Figur 7
eine mikroskopische Aufnahme des Schleifkörpers im Verschleißzustand,
Figur 8
ein von einer Bildbearbeitungseinrichtung überarbeitetes Ein-Bit-Bild einer mikroskopischen Aufnahme einer Schleifscheibe und
Figur 9
ein Diagramm zur Darstellung des Zusammenhangs einer Flächenzunahme angeflachter Schleifpartikel zu Schleifkräften abhängig von einem Schleifvolumen.
The invention is based on the in the Figures 1 to 9 illustrated embodiments explained in more detail. Show:
Figure 1
a detection device for recording images of a grinding tool in a schematic representation,
Figure 2
a detail of the detection device of the Figure 1 with a lockable cover of a camera opening,
Figure 3
a side view of the detection device of the Figures 1 and 2 ,
Figure 4
one opposite the detection device of Figures 1 to 3 modified detection device in a schematic representation,
Figure 5
a detail of the detection device of the Figure 4 ,
Figure 6
a microscopic picture of a grinding wheel in new condition,
Figure 7
a microscopic picture of the grinding wheel in the state of wear,
Figure 8
a one-bit image of a microscopic image of a grinding wheel and revised by an image processing device
Figure 9
a diagram to illustrate the relationship of an increase in area of flattened grinding particles to grinding forces depending on a grinding volume.

Die Figuren 1 und 2 zeigen in Übersicht und im Detail schematisch eine Ausführungsform einer möglichen Erfassungsvorrichtung 1 zur Aufnahme von mikroskopischen Bildern einer topografischen Oberfläche einer wirksamen abrasiven, mit Schleifpartikeln besetzten Schicht eines Schleifwerkzeugs, beispielsweise einer Schleifscheibe. Die Erfassungsvorrichtung 1 weist das Gehäuse 2 auf, in der- in Durchsicht dargestellt - die Kamera 3, beispielsweise ein Digitalmikroskop mit der um die optische Achse z angeordneten Apertur 4 untergebracht ist. Das Gehäuse 2 enthält die mit der optischen Achse z fluchtende Kameraöffnung 5, die mittels des von der Aktoreinrichtung 7 über ein nicht einsehbares Getriebe automatisiert betätigten Deckels 6 dicht verschließbar ist. In dem Gehäuse 2 ist weiterhin der Reibradantrieb 8 untergebracht, dessen Reibrad 9 von einem Schrittmotor mit hoher Winkelgenauigkeit angetrieben wird. Das Bedienfeld 10 dient der manuellen Bedienung der Erfassungsvorrichtung 1 von außen. Die von der Kamera 3 erfassten Daten wie Bilder werden drahtlos oder drahtgebunden an die nicht dargestellte Bildbearbeitungseinrichtung übertragen, die die Bilder bearbeitet und bewertet.The Figures 1 and 2 schematically show in an overview and in detail an embodiment of a possible detection device 1 for recording microscopic images of a topographic surface of an effective abrasive layer of a grinding tool, for example a grinding wheel, which is coated with grinding particles. The detection device 1 has the housing 2, in which — as shown in transparency — the camera 3, for example a digital microscope with the aperture 4 arranged around the optical axis z, is accommodated. The housing 2 contains the camera opening 5 which is aligned with the optical axis z and which can be tightly closed by means of the cover 6 which is automatically actuated by the actuator device 7 via a transmission which cannot be seen. The friction wheel drive 8, whose friction wheel 9 is driven by a stepping motor with high angular accuracy, is also accommodated in the housing 2. The control panel 10 is used for manual operation of the detection device 1 from the outside. The data captured by the camera 3, such as images, are transmitted wirelessly or by wire to the image processing device (not shown), which processes and evaluates the images.

Die Figur 3 zeigt unter Bezugnahme auf die Figuren 1 und 2 die Erfassungsvorrichtung 1 in geschnittener Seitenansicht während eines Ermittlungsvorgangs, bei dem mittels der Kamera 3 ein Bild von der topografischen Oberfläche 11 des als Schleifscheibe 12 ausgebildeten Schleifwerkzeugs 13 aufgenommen wird. Hierzu ist die Schleifscheibe 12 mit ihrer Drehachse auf einer nicht dargestellten Spindel einer Schleifvorrichtung radial gegen das Reibrad 9 verlagert. Die Schleifscheibe 12 wird von dem Reibradantrieb 8 mittels dem mit der Oberfläche 11 in Reibeingriff befindlichen Reibrad 9 so verdreht, dass die Oberfläche 11 mit einer vorgegebenen Referenzposition an die Kameraöffnung 5 verlagert wird. Auf diese Weise können eine oder mehrere Referenzpositionen angefahren und jeweils von der Kamera 3 ein einziges oder mehrere Bilder aufgenommen und auf die Bildverarbeitungseinrichtung übertragen werden. Vor dem Ermittlungsvorgang wird die Schleifscheibe 12 und die Oberseite des Gehäuses 2 beispielsweise mittels einer Druckluftdüse gereinigt und die Kameraöffnung 5 durch Verlagern des Deckels 6 geöffnet und nach dem Ermittlungsvorgang wieder geschlossen.The Figure 3 shows with reference to the Figures 1 and 2 the detection device 1 in a sectional side view during a determination process in which an image of the topographic surface 11 of the grinding tool 13 designed as a grinding wheel 12 is recorded by means of the camera 3. For this purpose, the grinding wheel 12 with its axis of rotation on a spindle of a grinding device, not shown, displaced radially against the friction wheel 9. The grinding wheel 12 is rotated by the friction wheel drive 8 by means of the friction wheel 9 which is in frictional engagement with the surface 11 such that the surface 11 is displaced to the camera opening 5 with a predetermined reference position. In this way, one or more reference positions can be approached and in each case one or more images can be recorded by camera 3 and transmitted to the image processing device. Before the determination process, the grinding wheel 12 and the top of the housing 2 are cleaned, for example by means of a compressed air nozzle, and the camera opening 5 is opened by moving the cover 6 and closed again after the determination process.

Die Figur 4 zeigt die gegenüber der Erfassungsvorrichtung 1 der Figuren 1 bis 3 abgeänderte Erfassungsvorrichtung 1a im Detail. Die Erfassungsvorrichtung 1a eignet sich insbesondere für Videoaufnahmen der Oberfläche 11a eines als Schleifscheibe 12a ausgebildeten Schleifwerkzeugs 13a. Hierzu wird die Schleifscheibe 12a von einer Spindel einer Schleifvorrichtung oder - wie hier gezeigt - von dem Reibrad 9a eines Reibradantriebs mit auf die Aufnahmerate der Kamera 3a synchronisierter Drehzahl beziehungsweise Winkelgeschwindigkeit angetrieben, so dass die Kamera 3a über den Umfang der Oberfläche 11a der Schleifscheibe 12a bevorzugt lückenlos Bilder von Ausschnitten 15a der Oberfläche 11a aufnehmen kann. Mittels der Druckluftdüse 14a ist eine Reinigung der Oberfläche 11a vor der Aufnahme der Bilder vorgesehen.The Figure 4 shows that compared to the detection device 1 of the Figures 1 to 3 modified detection device 1a in detail. The detection device 1a is particularly suitable for video recordings of the surface 11a of a grinding tool 13a designed as a grinding wheel 12a. For this purpose, the grinding wheel 12a is driven by a spindle of a grinding device or - as shown here - by the friction wheel 9a of a friction wheel drive at a speed or angular speed synchronized with the recording rate of the camera 3a, so that the camera 3a favors the circumference of the surface 11a of the grinding wheel 12a can consistently take pictures of cutouts 15a of the surface 11a. The surface 11a is cleaned by means of the compressed air nozzle 14a before the images are taken.

Die Figur 5 zeigt eine Abwandlung der Erfassungsvorrichtung 1a der Figur 4 mit der Kamera 3a, die mit der die Apertur koaxial umgebenden Lichtquelle 16a versehen ist. An der Innenseite der als Domlichtaufsatz 17a ausgebildeten Lichtquelle 16a sind Leuchtdioden angeordnet, die unterschiedliche Strahlungswinkel gegenüber der optischen Achse der Kamera 3a aufweisen. Durch wechselseitige Beschaltung der Leuchtdioden kann eine diffuse oder entlang der optischen Achse gerichtete Bestrahlung der Oberfläche 11a der Schleifscheibe 12a erzeugt werden.The Figure 5 shows a modification of the detection device 1a of FIG Figure 4 with the camera 3a, which is provided with the light source 16a coaxially surrounding the aperture. Light-emitting diodes are arranged on the inside of the light source 16a designed as a dome light attachment 17a, which have different radiation angles with respect to the optical axis of the camera 3a. By mutually connecting the light-emitting diodes, a diffuse or directional radiation of the surface 11a of the grinding wheel 12a can be generated.

Die Figur 6 zeigt ein typisches Bild 18 der topografischen Oberfläche 11, 11a eines Schleifwerkzeugs 13, 13a beziehungsweise einer Schleifscheibe 12, 12a der Figuren 3 bis 5 im Neuzustand oder frisch abgerichteten Zustand. Das beispielsweise mittels der Kameras 3, 3a der Figuren 1 bis 5 in einer beispielsweise 50-fachen Vergrößerung aufgenommene Bild 18 zeigt lediglich einen geringen Anteil an direkten Reflexionen 19, die auf abgeflachte Schleifkörner oder -partikel zurückzuführen sind.The Figure 6 shows a typical image 18 of the topographic surface 11, 11a of a grinding tool 13, 13a or a grinding wheel 12, 12a Figures 3 to 5 when new or freshly dressed. This, for example, by means of cameras 3, 3a Figures 1 to 5 Image 18, for example, magnified 50 times, shows only a small proportion of direct reflections 19 which are due to flattened abrasive grains or particles.

Die Figur 7 zeigt das unter denselben Aufnahmebedingungen aufgenommene Bild 18a einer mit einem Zerspanungsvolumen von beispielsweise 500 mm3/mm beanspruchten Schleifscheibe. Das Bild zeigt umfangreiche Reflexionen 19a, die auf eine erhebliche Abflachung von Schleifkörnern hindeuten, indem bei auf die Oberfläche gerichteter Strahlung senkrechte Reflexionen 19a in die Kamera eingestrahlt werden.The Figure 7 shows the image 18a taken under the same recording conditions of a grinding wheel stressed with a machining volume of, for example, 500 mm 3 / mm. The image shows extensive reflections 19a, which indicate a considerable flattening of abrasive grains, in that perpendicular reflections 19a are radiated into the camera when the radiation is directed onto the surface.

Die Figur 8 zeigt ein von der Bildverarbeitungseinrichtung verarbeitetes Bild 18b, welches aus einem beispielsweise den Bildern 18, 18a der Figuren 6, 7 entsprechenden Bild erstellt ist. Durch Filterung und Schwellwertbehandlung wird aus derartigen Bildern das gezeigte Bild 18b als Ein-Bit-Bild erstellt, bei dem die Reflexionen 19b als Flächenstrukturen mit berechenbarer beziehungsweise abschätzbarer Fläche ermittelt werden. Die Summe der ermittelten Flächen wird dabei in Verhältnis zu dem restlichen Bildbereich 20 gesetzt. Die Beurteilung der Schleiffähigkeit der dem Bild zugrunde liegenden Schleifscheibe wird durch Vergleich des gewonnenen Verhältnisses mit dem Verhältnis eines unter denselben Bedingungen behandelten Bilds einer neuen oder frisch abgerichteten Schleifscheibe erzielt. Hierbei ist eine Abweichung der relativen Fläche der Reflexionen 19b um eine vorgegebene Toleranz ein Maß für eine Abrichtung oder einen Ersatz der Schleifscheibe. Im umgekehrten Fall kann ein Annähern der relativen Fläche der Reflexionen 19b an die relative Fläche einer Schleifscheibe an der Verschleißgrenze als Maß für deren Bedarf zur Abrichtung oder Ersatz dienen. Es versteht sich, dass unter Einhaltung einer vorzugebenden Toleranz der relativen Flächenabweichung auch Bilder von Schleifscheiben zwischen dem Neuzustand und dem verschlissenen Zustand als Referenz dienen können.The Figure 8 shows an image 18b processed by the image processing device, which consists of, for example, images 18, 18a Figures 6, 7 corresponding image is created. By filtering and threshold value treatment, the image 18b shown is created from such images as a one-bit image, in which the reflections 19b are determined as surface structures with a calculable or estimable surface. The sum of the areas determined is set in relation to the remaining image area 20. The grinding ability of the grinding wheel on which the image is based is assessed by comparing the ratio obtained with the ratio of an image of a new or freshly dressed grinding wheel treated under the same conditions. Here, a deviation of the relative area of the reflections 19b by a predetermined tolerance is a measure of a dressing or a replacement of the grinding wheel. Conversely, approximating the relative area of the reflections 19b to the relative area of a grinding wheel at the wear limit can serve as a measure of its need for dressing or replacement. It goes without saying that, provided that a tolerance of the relative area deviation is specified, images of grinding wheels between the new condition and the worn condition can also serve as a reference.

Die Figur 9 zeigt das Diagramm 21 des Reflexionsanteils eine Bilds 18b der Figur 8 in Prozent und der Schleifkräfte gegen das Zerspanungsvolumen Vw in [mm3/mm] einer typischen Schleifscheibe. Dabei zeigt der Graph 22 die Entwicklung der Schleifkräfte und der Graph 23 die Entwicklung des Reflexionsanteils über das Zerspanungsvolumen Vw. Es wird deutlich, dass die Schleifkräfte im Wesentlichen mit den Reflexionsanteilen über das Zerspanungsvolumen Vw ansteigen, so dass eine unmittelbare Zuordnung erfolgen kann. Weiterhin kann abgeleitet werden, dass Schleifkräfte und Reflexionsanteile in gleichem Maße den Verschleiß der Oberfläche während Schleifvorgängen detektieren. Zur Reproduzierbarkeit der Reflexionsanteile über einen Abrichtvorgang zeigt die am linken Rand des Diagramms 21 dargestellte Raute den Reflexionsanteil (1,8%) einer frisch vor Beginn des Schleifvorgangs über das dargestellte Zerspanungsvolumen abgerichteten Schleifscheibe. Das Dreieck am rechten Rand des Diagramms 21 zeigt den Reflexionsanteil (2,0 %) einer nach dem dargestellten Zerspanungsvolumen erneut abgerichteten Schleifscheibe. Die Unterschiede sind vernachlässigbar, so dass eine Erfassung des Schleifzustands der Schleifscheibe über mehrere Abrichtungsvorgänge anhand des Reflexionsanteils ermittelt werden kann. Bei sich über mehrere Abrichtvorgänge ändernden Reflexionsanteilen kann anhand einer erstellten Historie beispielsweise das Schleifverhalten weiter bis hin zu einer notwendigen Auswechslung der Schleifscheibe ausgewertet werden. Der bei jeder Abrichtung neu ermittelte Reflexionsanteil kann als Referenzwert über den gesamten Zerspanungsprozess bis zur nächsten Abrichtung dienen.The Figure 9 shows the diagram 21 of the reflection component of an image 18b of FIG Figure 8 in percent and the grinding forces against the machining volume Vw in [mm 3 / mm] of a typical grinding wheel. Graph 22 shows the development of the grinding forces and Graph 23 shows the development of the reflection component over the machining volume Vw. It becomes clear that the grinding forces essentially increase with the reflection components over the machining volume Vw, so that an immediate assignment can be made. Furthermore, it can be deduced that grinding forces and reflection components detect wear on the surface to the same extent during grinding processes. For the reproducibility of the reflection components via a dressing process, the diamond shown on the left-hand edge of diagram 21 shows the reflection component (1.8%) of a grinding wheel freshly dressed before the start of the grinding process using the machining volume shown. The triangle on the right-hand edge of diagram 21 shows the proportion of reflection (2.0%) of a grinding wheel dressed again according to the cutting volume shown. The differences are negligible, so that a determination of the grinding state of the grinding wheel over several dressing processes can be determined on the basis of the reflection component. If the proportion of reflection changes over several dressing processes, you can use one History, for example, the grinding behavior can be evaluated up to a necessary replacement of the grinding wheel. The reflection component newly determined for each dressing can serve as a reference value over the entire machining process until the next dressing.

BezugszeichenlisteReference symbol list

  • 1 Erfassungsvorrichtung1 detection device
  • 1a Erfassungsvorrichtung1a detection device
  • 2 Gehäuse2 housings
  • 3 Kamera3 camera
  • 3a Kamera3a camera
  • 4 Apertur4 aperture
  • 5 Kameraöffnung5 camera opening
  • 6 Deckel6 lids
  • 7 Aktoreinrichtung7 actuator device
  • 8 Reibradantrieb8 friction wheel drive
  • 9 Reibrad9 friction wheel
  • 9a Reibrad9a friction wheel
  • 10 Bedienfeld10 control panel
  • 11 Oberfläche11 surface
  • 11a Oberfläche11a surface
  • 12 Schleifscheibe12 grinding wheel
  • 12a Schleifscheibe12a grinding wheel
  • 13 Schleifwerkzeug13 grinding tool
  • 13a Schleifwerkzeug13a grinding tool
  • 14a Druckluftdüse14a compressed air nozzle
  • 15a Ausschnitt15a cutout
  • 16a Lichtquelle16a light source
  • 17a Domlichtaufsatz17a dome light attachment
  • 18 Bild18 picture
  • 18a Bild18a picture
  • 18b Bild18b picture
  • 19 Reflexion19 reflection
  • 19a Reflexion19a reflection
  • 19b Reflexion19b reflection
  • 20 Bildbereich20 image area
  • 21 Diagramm21 diagram
  • 22 Graph22 graph
  • 23 Graph23 graph
  • Vw ZerspanungsvolumenVw machining volume
  • z optische Achsez optical axis

Claims (13)

  1. Method for automatically detecting the abrasiveness of an abrasive tool (13, 13a) integrated into an abrasive process of an abrasive device having a geometrically undefined cutting edge, in particular a grinding wheel (12, 12a) arranged and rotary drive about an axis of rotation by means of a capturing device (1, 1a) integrated into the grinding process with a sensor system detecting optically at least a portion of the topographical surface (11, 11a) of the abrasive tool (13, 13a) and an evaluation device of the radiation detected by means of the optical sensor system, characterised in that during the grinding process of at least one predefined microscopic section (15a) of the topographical surface (11, 11a) of the grinding tool (13, 13a) at least one image (18, 18a) is captured by a single camera (3, 3a) provided as an optical sensor system under light radiation from a light source (16a) arranged coaxially about the optical axis (z) of the camera (3, 3a) and by means of an image processing device provided as an evaluation device the at least one captured image (18, 18a) is compared with a reference image and the abrasiveness of the grinding tool (13, 13a) is determined by means of the comparison.
  2. Method according to claim 1, characterised in that different image information is determined and evaluated by means of radiation on the surface (11, 11a), the radiation being diffuse and/or directed perpendicular to the optical axis (z).
  3. Method according to claim 2, characterised in that the abrasiveness is determined as a function of a proportion of reflection surfaces on a predefined segment of the surface (11, 11a).
  4. Method according to claim 1 or 2, characterised in that the surface (11, 11a) of the abrasive tool (13, 13a) is transferred by the capturing device (1, 1a) or by a drive associated with the grinding device to at least one intended reference position.
  5. Method according to any of claims 1 to 4, characterised in that for a process for determining the abrasiveness an individual image (18, 18a) of part of the surface (11, 11a) or several images (18, 18a) of the same part or different parts of the surface (11, 11a) are captured and averaged.
  6. Method according to any of claims 1 to 4, characterised in that by means of the camera (3) a sequence of many images (18, 18a) is taken which is synchronised over a surface contour.
  7. Method according to any of claims 1 to 6, characterised in that the abrasive tool (13, 13a) is pivoted for capturing the at least one image in a field of view of the camera.
  8. Method according to any of claims 1 to 7, characterised in that the surface (11, 11a) of the abrasive tool to be detected is cleaned before capturing the at least one image (18, 18b).
  9. Method according to any of claims 1 to 8, characterised in that a housing (2) mounting the camera (3) with a closable camera opening (5) is cleaned before the capturing process of the at least one image (18, 18a).
  10. Abrasive device with an abrasive tool and a capturing device (1, 1a) for performing the method according to any of claims 1 to 9, wherein in a closed housing (2) of the capturing device (1, 1a) with a closable camera opening (5) a camera (3, 3a) (16a) is accommodated and for determining the abrasiveness of the abrasive tool (13, 13a) an image processing device is provided for the images (18, 18a) of the surface (11, 11a) of the abrasive tool (13, 13a) captured by the camera (3, 3a), wherein the housing (2) is integrated into the abrasive device, characterised in that the camera (3, 3a) has a light source arranged coaxially to the optical axis (z) and on the housing (2) a friction wheel drive (8) is provided for driving an abrasive tool (13, 13a), which is designed as an abrasive wheel (12, 12a) and is lowered radially to a spindle provided as a drive of the abrasive wheel (12, 12a) up to frictional contact between the peripheral surface (11, 11a) and a friction wheel (9, 9a) of the friction wheel drive (8).
  11. Abrasive device according to claim 10, characterised in that the housing (2) has a cover (6) closing the camera opening (5) by means of an actuator device (7).
  12. Abrasive device according to any of claims 10 to 11, characterised in that the light source (16a) is formed by light-emitting diodes which are arranged distributed about the optical axis of the camera (3, 3a) and generate light radiation which is diffuse or directed to the optical axis (z) of the camera (3, 3a).
  13. Abrasive device according to at least one of claims 10 to 12, characterised in that the abrasive tool (13, 13a) is arranged on a radially displaceable rotary driven spindle and is designed with a peripheral surface (11, 11a) filled with grinding particles and designed to be topographical.
EP17166414.7A 2016-04-14 2017-04-13 Method and device for determining the abrasive ability of an abrasive tool Active EP3231555B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016106898.5A DE102016106898A1 (en) 2016-04-14 2016-04-14 Method and device for determining the grinding ability of a grinding tool

Publications (2)

Publication Number Publication Date
EP3231555A1 EP3231555A1 (en) 2017-10-18
EP3231555B1 true EP3231555B1 (en) 2020-05-27

Family

ID=58547394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17166414.7A Active EP3231555B1 (en) 2016-04-14 2017-04-13 Method and device for determining the abrasive ability of an abrasive tool

Country Status (2)

Country Link
EP (1) EP3231555B1 (en)
DE (1) DE102016106898A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3511101B1 (en) 2018-01-10 2020-09-23 Klingelnberg GmbH Method for testing a grinding tool and corresponding device
EP3881968A1 (en) * 2020-03-17 2021-09-22 Fraisa SA Method for determining the wear state of a tool

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3827752A1 (en) * 1988-08-16 1990-02-22 Harald Dipl Ing Gosebruch Method and apparatus for detecting the surface of grinding wheels
DD297594A5 (en) 1990-09-03 1992-01-16 Friedrich-Schiller-Universitaet,De METHOD FOR DETECTING THE CONDITION OF GRINDING POINTERFLAKES
US7416648B2 (en) * 2005-05-12 2008-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. Image sensor system for monitoring condition of electrode for electrochemical process tools
US20070152064A1 (en) * 2005-12-30 2007-07-05 Laurens Nunnink Diffuse light ring for reading encoded symbols
JP2009231760A (en) * 2008-03-25 2009-10-08 Tokyo Seimitsu Co Ltd Device for detecting breakage/abrasion of blade
US7782513B1 (en) * 2009-07-30 2010-08-24 Mitutoyo Corporation Fast variable angle of incidence illumination for a machine vision inspection system
JP5569883B2 (en) * 2011-06-10 2014-08-13 独立行政法人国立高等専門学校機構 Grinding tool surface inspection system and method
WO2014160180A1 (en) * 2013-03-13 2014-10-02 Alcoa Inc. System and method for inspection of roll surface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3231555A1 (en) 2017-10-18
DE102016106898A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
EP3118575B1 (en) Device for determining the sharpness level of a blade edge
DE102015216194A1 (en) Wafer test method and grinding and polishing device
EP2234778B1 (en) Machine tool device and method with such a machine tool device
DE102005042367B4 (en) Apparatus for generating 3-D images of a sample
DE102016208606A1 (en) processing system
DE102004025707B4 (en) Method of dividing a non-metallic substrate
EP2768630B1 (en) Method and device for machining a rotary tool with a plurality of cutting bodies
DE102017206401A1 (en) METHOD FOR PROCESSING A SIC AND WAFERS
EP3231555B1 (en) Method and device for determining the abrasive ability of an abrasive tool
DE102011100482A1 (en) "Device for grinding hand knives"
EP0985493A2 (en) Machine tool with automatic process control/monitoring
EP3453486A1 (en) Device for treating a workpiece with a tool
EP1250979A2 (en) Method for edge processing of ophtalmic lenses
DE112017002245T5 (en) TOOL MACHINE SYSTEM AND SURFACE TREATMENT ACQUISITION METHOD
DE102016125803A1 (en) Machine tool, in particular grinding machine, and method for determining an actual state of a machine tool
EP2234755A1 (en) Machine tool device with monitoring unit
DE10333810A1 (en) Process for processing a semiconductor wafer including grinding the back
DE102017208498A1 (en) Method for determining a state of an abrasive and grinding device
EP3624978A1 (en) Measurement of characteristic variables of a precision machining tool
EP3335834A1 (en) Grinding machine with levelling device
DE102007003891A1 (en) Workpiece contour e.g. chamfer, processing method, involves automatically determining processing parameters based on geometrical data, and implementing processing cycle for processing workpiece contour using processing parameters
DE112010006049T5 (en) A method of removing an end surface burr of a forming groove and a mold cutting tool to be touched
DE3784989T2 (en) METHOD AND DEVICE FOR TESTING THE SURFACE OF SEMICONDUCTOR WAFERS BY LASER SCANING.
EP2591495B1 (en) Method and device for producing an edge structure of a semiconductor component
DE102006007356A1 (en) Tool holding and measuring and setting apparatus with means for clamping a tool having a cutting edge and a unit for treating the cutting edge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180416

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190606

RIC1 Information provided on ipc code assigned before grant

Ipc: B24B 49/12 20060101AFI20191203BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200117

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1274077

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017005418

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200827

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200928

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200927

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200828

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200827

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017005418

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210413

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170413

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1274077

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220413

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230323

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527