EP3225758A1 - Connection component for thermal isolation between a vertical and horizontal building part - Google Patents

Connection component for thermal isolation between a vertical and horizontal building part Download PDF

Info

Publication number
EP3225758A1
EP3225758A1 EP17160984.5A EP17160984A EP3225758A1 EP 3225758 A1 EP3225758 A1 EP 3225758A1 EP 17160984 A EP17160984 A EP 17160984A EP 3225758 A1 EP3225758 A1 EP 3225758A1
Authority
EP
European Patent Office
Prior art keywords
connection component
connection
pressure element
building
deformation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17160984.5A
Other languages
German (de)
French (fr)
Other versions
EP3225758B1 (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schoeck Bauteile GmbH
Original Assignee
Schoeck Bauteile GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schoeck Bauteile GmbH filed Critical Schoeck Bauteile GmbH
Priority to PL17160984T priority Critical patent/PL3225758T3/en
Priority to SI201730867T priority patent/SI3225758T1/en
Publication of EP3225758A1 publication Critical patent/EP3225758A1/en
Application granted granted Critical
Publication of EP3225758B1 publication Critical patent/EP3225758B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/003Balconies; Decks
    • E04B1/0038Anchoring devices specially adapted therefor with means for preventing cold bridging
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7679Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor

Definitions

  • the present invention relates to a connection component for load-bearing, vertical connection of building parts, which has a heat-insulating base body with two opposite contact surfaces for connection to the building parts and at least one inserted into the heat-insulating body and this penetrating from one to the other contact surface pressure element.
  • load-bearing components are often created from reinforced concrete structures.
  • such building parts can be provided with an externally mounted thermal insulation.
  • the floor slab between basement, such as basement or underground car park, and ground floor is often equipped on the basement side with a heat insulation applied to the ceiling.
  • This results in the difficulty that the load-bearing parts of the building, on which the building rests, such as columns and outer walls, in load-bearing manner with the overlying building parts, in particular the floor ceiling must be connected.
  • This is usually achieved by connecting the floor slab monolithically to the supporting pillars and outer walls with continuous reinforcement.
  • thermal bridges which can be eliminated only by a subsequently attached from the outside thermal insulation.
  • the wall element has a pressure-resistant support structure with arranged in the interstices insulating elements.
  • the support structure may for example consist of a lightweight concrete.
  • Such a wall element is used for thermal insulation masonry exterior walls, for example, by being used as a conventional brick as the first stone layer of the supporting outer wall above the basement ceiling.
  • EP 2 405 065 A1 is a pressure force transmitting and insulating connection element known, which is used for the vertical, load-bearing connection of building sections to be created from concrete. It consists of an insulating body with one or more printing elements embedded therein. By the pressure elements transverse shear reinforcement elements extending for connection to the building concrete parts to be created extend substantially vertically beyond the top and bottom of the insulating body.
  • the insulating body can be made of foam glass or expanded polystyrene rigid foam and the pressure elements made of concrete, fiber concrete or fiber plastic, for example.
  • the operating principle of such a heat-insulating connection element with internal pressure elements is thus to reduce the bearing surface between the building parts in order to reduce heat transfer.
  • Such a space-reduced or selective application of force from a horizontal building structure in a vertical building structure carrying these individual printing elements makes high demands on the stability and load-bearing capacity of the printing elements. Due to the design, eccentricities and uneven loads may occur at the contact points between a horizontal building structure and the underlying vertical building structure at the support points. For example, in the case of a concrete floor slab, too little settling and / or elastic deformation may occur due to the load resting on it. This leads to a force redistribution at the support points. If a floor ceiling is supported by a few printing elements, so it can come by such a Auflagerverloomung to overload a printing element.
  • Object of the present invention is therefore to increase in a heat-insulating connection component with inneredem pressure element, the carrying capacity and to avoid a failure due to eccentric introduction of force.
  • the invention provides that on one of the contact surfaces above or below the pressure element, a deformation element is arranged.
  • a deformation element By installing such a deformation element, a rotational ability is achieved between the mutually load-bearing parts of the building, which allows a balance of eccentricities and uneven loads.
  • the most uniform application of force or centering of the force introduction is achieved, which leads to an increase in the carrying capacity of the printing elements.
  • the deformation element is preferably beyond the associated contact surface of the connection component in the vertical direction. In this way, it can be concreted in with the creation of the associated building part in the fresh in-situ concrete and is thus securely held at the articulated connection point between the building part and pressure element.
  • the deformation element into the heat-insulating base body so that the total height of the pressure element and the deformation element corresponds to the height of the base body.
  • the pressure element can thus also be slightly shorter, that is to say shorter than the height of the base body, that is approximately the thickness of the deformation element So only "essentially” penetrate from one to the other contact surface.
  • An inventive deformation element may preferably be made of an elastomer. Such, formed by the deformation element elastomeric bearing allows by elastic deformation balancing occurring during a Auflagerverrectung of the overlying building part of the building movements of the building.
  • the deformation element can be adapted material technically and / or geometrically in such a way that the eccentricities or uneven loads occurring in the case of a permissible contact rotation are compensated for and a centering of the introduction of force is achieved.
  • the material thickness of the deformation element in its edge regions or the edge regions of the overlying or underlying printing element can be made larger than in its center.
  • the deformation element may be concave on its side remote from the associated contact surface of the connection component. Due to the associated rotational ability, centering of the force introduction on the center of the pressure element is effected.
  • the deformation element only needs to have a comparatively small thickness.
  • the height of the deformation element is less than 20%, preferably less than 10% of the height of the pressure element.
  • the thickness of the deformation element is thus less than 2 cm, preferably less than 1 cm. This small strength is sufficient to compensate for the subsidence movements or bearing twist occurring in a building.
  • connection component can have one or more tensile force reinforcement elements projecting beyond the contact surfaces on both sides, in particular reinforcing bars. These allow a connection to the reinforcement the above and below building parts and thus a continuous reinforcement situation between the vertical and horizontal building parts.
  • the tensile reinforcement elements are passed through the pressure element and the deformation element.
  • the or the tensile reinforcement elements can thus be poured in the production of the pressure element made of high-performance concrete in this with and then plugging the deformation element.
  • the resulting assembly of pressure element, deformation element and tensile reinforcement element ensures favorable static properties and allows a safe introduction of the auflastenden load capacity in the underneath vertical building structure.
  • connection component which has a heat-insulating base body with two opposite contact surfaces for connection to the building parts and at least one inserted into the heat-insulating body and this penetrating from one to the other contact surface pressure element .
  • a first, lower of the building parts made of concrete then connected the connection component with its first contact surface to the first part of the building, and finally created above the connection component, the second building part made of concrete.
  • a deformation element is arranged above or below the pressure element of the connection component, which element is embedded in concrete when the associated first or second building part is created.
  • a heat-insulating connection component which are primarily used for the vertical load-bearing connection of supports in the basement area to the overlying building parts, such as a floor slab.
  • a support is understood to mean a vertical part of a building which absorbs and transmits loads mainly in the direction of its longitudinal axis.
  • the DIN standard 1041-1 defines a support as a rod-shaped pressure member whose larger cross-sectional dimension in contrast to a wall does not exceed four times the smaller dimension.
  • the connection components described can also be used for connecting a retaining wall to the overlying building construction, in particular an overlying floor slab.
  • FIG. 1 shows a cuboid base body 1 of heat-insulating material.
  • thermal insulating material is for example a mineral insulation, a wood wool multi-layer insulation, an expanded polystyrene foam (EPS, XPS) or foam glass into consideration.
  • the base body 1 thus consists of non-bearing material and is used for heat decoupling between the underlying and overlying parts of the building.
  • the upper side 1a of the main body 1 serves as a contact surface for a floor to be created thereon.
  • the bottom 1 b serves as a contact surface and completion for a underlying supporting building part such as a support.
  • a pressure element 2 is centrally used, which extends substantially from the upper to the lower contact surface and the Recording of the load-bearing capacity of a floor slab bearing it above and derivation of the load-bearing forces into the support underneath.
  • a deformation element 3 made of an elastic polymer material.
  • the deformation element 3 is disc-shaped and has a circular base area, which corresponds to the shape and size of the base of the underlying pressure element.
  • the pressure element and the deformation element can naturally have an arbitrarily shaped base surface.
  • the deformation element can also have a slightly larger, that is, protruding base surface or also a slightly smaller base surface than the pressure element.
  • FIG. 2 shows in an exploded view of the main body 1, the pressure element 2 inserted therein and the deformation element located above 3.
  • the pressure element 2 consists of high performance concrete with a compressive strength> 50 N / mm 2 , preferably ultra high-strength concrete (UHPC) with a compressive strength of> 150 N / mm 2 .
  • UHPC ultra high-strength concrete
  • the pressure element 2 is thus able to absorb the load on him bearing forces and pass it on to the underlying support.
  • the considerably reduced cross-sectional area of the pressure element 2 compared to the base area of the entire connection component including the heat-insulating base body or compared to the corresponding base area of the underlying support leads to a considerable reduction in the thermal conductivity of the connection component as a whole.
  • a heat transfer between an underlying support and an overlying floor slab is essentially only by the reduced cross-sectional area of the pressure element 2.
  • the insulating base body 1 ensures with its heat-insulating properties for a
  • the elastic deformation element 3 serves to compensate slight movements of the structure, for example due to a bearing rotation of the floor slab under load, and to center the loading forces on the pressure element 2. Thus, a one-sided or off-center loading of the pressure element 2, which could lead to local overload, avoided.
  • the deformation element 3 generates at this point of articulation a certain rotational capability and thus ensures a balance of eccentricities and uneven loading.
  • the top of the deformation element 3 facing the floor slab is approximately concave or conical, ie the deformation element 3 is thicker in its edge areas than in the middle or the material thickness increases continuously from the inside out.
  • the shaping of the deformation element 3 thereby supports the centering of the introduction of force into the pressure element 2.
  • the deformation element 3 can in principle be used both above and below the pressure element 2 or on both sides of the pressure element 2. Preferably, however, the insert above the pressure element 2, since the static hinge point of the connection of support and floor slab is here.
  • FIG. 3 A development of the connection component from FIG. 1 is in FIG. 3 shown.
  • a tensile reinforcement bar 5 is additionally provided, which leads approximately centrally through the pressure element 2 and the deformation element 3 located above.
  • the reinforcing rod 5 consists, at least in the area in which it passes through the pressure element 2, of a metal alloy with the lowest possible thermal conductivity, such as stainless steel. Since stainless steel is relatively expensive compared to normal structural steel, only the central area can of the reinforcing bar 5 are made of stainless steel, while its ends protruding above and below the terminal member may consist of normal structural steel welded thereto. It is also within the scope of the present invention to use a reinforcing bar 5 made of a non-metallic material such as fiber reinforced plastic (GRP).
  • GRP fiber reinforced plastic
  • the reinforcing bar 5 is passed approximately centrally through the pressure element 2, so that the center of the pressure element 2 can continue to serve as a hinge point and can be considered.
  • the arrangement of a plurality of reinforcing bars outside the center axis of the pressure element 2 in the context of the present invention even if this reduces the joint properties created by the deformation element 3 or partially canceled.
  • FIG. 4 is a plan view of the connection component with its insulating base body 1 and the centrally inserted therein pressure element 2 and the overlying deformation element 3 is shown. In the middle of the connection component runs perpendicular to the plane of the reinforcement bar 5.
  • the in FIG. 4 drawn section line CC shows the cutting guide for the following FIG. 5 illustrated cross-section.
  • FIG. 5 shows in a cross section the installation situation of the connection component for load-bearing connection between a support 6 and an overlying floor slab 4.
  • the floor slab 4 is provided with a horizontally extending reinforcement 4a.
  • the support 6 is provided in a conventional manner with a vertical reinforcement 6a, 6b. This consists of several distributed within the column 6 vertical reinforcing bars 6a and horizontally placed around the reinforcing bars 6a reinforcing bars 6b.
  • the reinforcing bar 5 of the connection component runs upward into the concrete floor 4 and down into the concrete pillar 6 and can preferably be connected to the reinforcement 4a of the floor slab 4 and the reinforcement 6a, 6b of the support 6, for example by means of metal wire.
  • a thermal decoupling between support 6 and floor 4 is achieved by the connection component on the one hand, on the other hand, the reinforcement can be passed from the support 6 to the floor slab 4 and thus support 6 and floor slab 4 monolithically connected to each other.
  • connection component 1 can be inserted into the formwork for the pillar 6 to be concreted and connected to its reinforcement structure 6a, 6b. Subsequently, the formwork for the support 6 can be poured through a filling opening, not shown, with fresh concrete and this compacted.
  • the floor ceiling 4 can be created in a conventional manner above the connection component.
  • connection component can be made in different dimensions, such as 25 x 25 cm or 30 x 30 cm.
  • the height of the connection component typically corresponds to the thickness of an intended insulation layer between 8 and 20 cm, preferably between 10 and 15 cm.
  • the height of the pressure element is adjusted accordingly, either with or without the deformation element.
  • a connection component can also be provided with two or more individual pressure elements which are each equipped with deformation elements in accordance with the invention.
  • An inventive connection component can be used individually for a support. At higher loads but also several connection components can be combined for a larger support. Accordingly, one or more connection components according to the invention can be used as the upper termination of a load-bearing wall below a floor slab.

Abstract

Bei einem Anschlussbauteil zur lastabtragenden, vertikalen Verbindung von Gebäudeteilen, mit einem wärmedämmenden Grundkörper (1), welcher zwei gegenüberliegende Anlageflächen (1a, 1b) zum Anschluss an die Gebäudeteile aufweist, und mit mindestens einem in den wärmedämmenden Grundkörper (2) eingesetzten und diesen im Wesentlichen von der einen bis zur anderen Anlagefläche durchdringenden Druckelement (3) ist vorgesehen, dass an einer der Anlageflächen ober- oder unterhalb des Druckelements ein Verformungselement angeordnet ist um die Tragfähigkeit des Druckelements zu erhöhen und eine zentrische Krafteinleitung in das Druckelement zu erreichen.

Figure imgaf001
In a connection component for load-bearing, vertical connection of building parts, with a heat-insulating base body (1), which has two opposite bearing surfaces (1a, 1b) for connection to the building parts, and with at least one in the heat-insulating base body (2) used and this in Essentially from one to the other contact surface penetrating pressure element (3) is provided that on one of the contact surfaces above or below the pressure element, a deformation element is arranged to increase the carrying capacity of the pressure element and to achieve a centralized force in the pressure element.
Figure imgaf001

Description

Die vorliegende Erfindung betrifft ein Anschlussbauteil zur lastabtragenden, vertikalen Verbindung von Gebäudeteilen, welches einen wärmedämmenden Grundkörper mit zwei gegenüberliegenden Anlageflächen zum Anschluss an die Gebäudeteile und mindestens ein in den wärmedämmenden Grundkörper eingesetztes und diesen von der einen bis zur anderen Anlagefläche durchdringenden Druckelement aufweist.The present invention relates to a connection component for load-bearing, vertical connection of building parts, which has a heat-insulating base body with two opposite contact surfaces for connection to the building parts and at least one inserted into the heat-insulating body and this penetrating from one to the other contact surface pressure element.

Im Hochbau werden tragende Bauteile häufig aus mit einer Bewehrung versehenen Betonkonstruktionen erstellt. Aus energetischen Gründen können solche Gebäudeteile mit einer von außen angebrachten Wärmedämmung versehen werden. Insbesondere die Geschossdecke zwischen Tiefgeschoss, wie beispielsweise Keller oder Tiefgarage, und Erdgeschoss wird häufig auf der Tiefgeschossseite mit einer deckenseitig angebrachten Wärmedämmung ausgerüstet. Hierbei ergibt sich die Schwierigkeit, dass die tragenden Gebäudeteile, auf denen das Gebäude ruht, wie etwa Stützen und Außenwände, in lastabtragender Weise mit den darüber befindlichen Gebäudeteilen, insbesondere der Geschossdecke, verbunden sein müssen. Dies wird in der Regel dadurch erreicht, dass die Geschossdecke bei durchgehender Bewehrung monolithisch mit den tragenden Stützen und Außenwänden verbunden wird. Hierdurch entstehen jedoch Wärmebrücken, die sich nur schlecht durch eine nachträglich von außen angebrachte Wärmedämmung beseitigen lassen. In Tiefgaragen wird beispielsweise häufig der obere, zur Geschossdecke weisende Abschnitt der tragenden Betonstützen ebenfalls mit einer Wärmedämmung ummantelt. Dies ist nicht nur aufwendig und optisch weniger ansprechend, sondern führt auch zu unbefriedigenden bauphysikalischen Ergebnissen und vermindert zudem den in der Tiefgarage verfügbaren Parkraum.In structural engineering, load-bearing components are often created from reinforced concrete structures. For energy reasons, such building parts can be provided with an externally mounted thermal insulation. In particular, the floor slab between basement, such as basement or underground car park, and ground floor is often equipped on the basement side with a heat insulation applied to the ceiling. This results in the difficulty that the load-bearing parts of the building, on which the building rests, such as columns and outer walls, in load-bearing manner with the overlying building parts, in particular the floor ceiling must be connected. This is usually achieved by connecting the floor slab monolithically to the supporting pillars and outer walls with continuous reinforcement. As a result, however, thermal bridges, which can be eliminated only by a subsequently attached from the outside thermal insulation. In underground garages, for example, often the upper, facing the floor ceiling section of the load-bearing concrete columns are also covered with a thermal insulation. This is not only complex and visually less appealing, but also leads to unsatisfactory building physics results and also reduces the parking space available in the underground car park.

Aus der Schrift DE 101 06 222 A1 ist ein mauersteinförmiges Wandelement zur Wärmeentkopplung zwischen Wandteilen und Boden- und/oder Deckenteilen beschrieben. Das Wandelement besitzt eine druckfeste Tragstruktur mit in den Zwischenräumen angeordneten Isolierelementen. Die Tragstruktur kann beispielsweise aus einem Leichtbeton bestehen. Ein solches Wandelement dient zur Wärmedämmung gemauerter Außenwände, indem es beispielsweise wie ein herkömmlicher Mauerstein als erste Steinschicht der tragenden Außenwand oberhalb der Kellerdecke eingesetzt wird.From the Scriptures DE 101 06 222 A1 is a brick-shaped wall element for heat decoupling between wall parts and floor and / or ceiling parts described. The wall element has a pressure-resistant support structure with arranged in the interstices insulating elements. The support structure may for example consist of a lightweight concrete. Such a wall element is used for thermal insulation masonry exterior walls, for example, by being used as a conventional brick as the first stone layer of the supporting outer wall above the basement ceiling.

Aus der Schrift EP 2 405 065 A1 ist ein Druckkraft übertragendes und isolierendes Anschlusselement bekannt, welches zur vertikalen, lasttragenden Verbindung von aus Beton zu erstellenden Gebäudeteilen zum Einsatz kommt. Es besteht aus einem Isolationskörper mit einem oder mehreren darin eingebetteten Druckelementen. Durch die Druckelemente verlaufen Querkraftbewehrungselemente, die sich zum Anschluss an die aus Beton zu erstellenden Gebäudeteile im Wesentlichen vertikal über die Oberseite und die Unterseite des Isolationskörpers hinaus erstrecken. Der Isolationskörper kann beispielsweise aus Schaumglas oder expandiertem Polystyrol-Hartschaum und die Druckelemente aus Beton, Faserbeton oder Faserkunststoff hergestellt werden.From the Scriptures EP 2 405 065 A1 is a pressure force transmitting and insulating connection element known, which is used for the vertical, load-bearing connection of building sections to be created from concrete. It consists of an insulating body with one or more printing elements embedded therein. By the pressure elements transverse shear reinforcement elements extending for connection to the building concrete parts to be created extend substantially vertically beyond the top and bottom of the insulating body. The insulating body can be made of foam glass or expanded polystyrene rigid foam and the pressure elements made of concrete, fiber concrete or fiber plastic, for example.

Das Funktionsprinzip eines solchen wärmedämmenden Anschlusselements mit innenliegenden Druckelementen besteht somit darin, die Auflagefläche zwischen den Gebäudeteilen zu verringern, um einen Wärmeübertrag zu reduzieren. Eine solche flächenreduzierte bzw. punktuelle Krafteinleitung von einer horizontalen Gebäudestruktur in eine diese tragende vertikale Gebäudestruktur über einzelne Druckelemente stellt hohe Anforderungen an die Stabilität und Tragfähigkeit der Druckelemente. Konstruktionsbedingt kann es an den Auflagepunkten zwischen einer horizontalen Gebäudestruktur und der darunterliegenden vertikalen Gebäudestruktur an den Auflagepunkten zu Exzentritäten und ungleichmäßigen Belastungen kommen. Beispielsweise kann es bei einer betonierten Geschossdecke durch die auf ihr ruhende Last zu geringfügen Setzungen und/oder einer elastischen Verformung kommen. Dies führt zu einer Kräfteumverteilung an den Auflagerpunkten. Wird eine Geschossdecke von wenigen Druckelementen getragen, so kann es durch eine solche Auflagerverdrehung zu einer Überlastung eines Druckelementes kommen.The operating principle of such a heat-insulating connection element with internal pressure elements is thus to reduce the bearing surface between the building parts in order to reduce heat transfer. Such a space-reduced or selective application of force from a horizontal building structure in a vertical building structure carrying these individual printing elements makes high demands on the stability and load-bearing capacity of the printing elements. Due to the design, eccentricities and uneven loads may occur at the contact points between a horizontal building structure and the underlying vertical building structure at the support points. For example, in the case of a concrete floor slab, too little settling and / or elastic deformation may occur due to the load resting on it. This leads to a force redistribution at the support points. If a floor ceiling is supported by a few printing elements, so it can come by such a Auflagerverdrehung to overload a printing element.

Aufgabe der vorliegenden Erfindung ist es daher, bei einem wärmedämmenden Anschlussbauteil mit inneliegendem Druckelement die Tragfähigkeit zu erhöhen und ein Versagen aufgrund exzentrischer Krafteinleitung zu vermeiden.Object of the present invention is therefore to increase in a heat-insulating connection component with inneliegendem pressure element, the carrying capacity and to avoid a failure due to eccentric introduction of force.

Die Aufgabe wird gelöst durch die Merkmale des Anspruchs 1. Vorteilhafte Ausgestaltungen sind den abhängigen Ansprüchen zu entnehmen.The object is solved by the features of claim 1. Advantageous embodiments are given in the dependent claims.

Bei einem Anschlussbauteil der eingangs genannten Art ist erfindungsgemäß vorgesehen, dass an einer der Anlageflächen ober- oder unterhalb des Druckelements ein Verformungselement angeordnet ist. Durch den Einbau eines solchen Verformungselements wird zwischen den aufeinander lastenden Gebäudeteilen eine Rotationsfähigkeit erreicht, welche einen Ausgleich von Exzentritäten und ungleichmäßigen Belastungen ermöglicht. Somit wird eine möglichst gleichmäßige Krafteinleitung bzw. eine Zentrierung der Krafteinleitung erreicht, die zu einer Erhöhung der Tragfähigkeit der Druckelemente führt. Durch ein solches Verformungselement wird somit eine Gelenkverbindung zwischen einem vertikalen Gebäudeteil und einer darunter liegenden, tragenden, vertikalen Gebäudestruktur geschaffen.In a connection component of the aforementioned type, the invention provides that on one of the contact surfaces above or below the pressure element, a deformation element is arranged. By installing such a deformation element, a rotational ability is achieved between the mutually load-bearing parts of the building, which allows a balance of eccentricities and uneven loads. Thus, the most uniform application of force or centering of the force introduction is achieved, which leads to an increase in the carrying capacity of the printing elements. By such a deformation element thus a hinge connection between a vertical building part and an underlying, supporting, vertical building structure is created.

Vorzugsweise steht das Verformungselement über die zugehörige Anlagefläche des Anschlussbauteils in vertikaler Richtung hinaus. Auf diese Weise kann es beim Erstellen des zugehörigen Gebäudeteils in den frischen Ortbeton mit einbetoniert werden und wird somit an der gelenkigen Verbindungsstelle zwischen Gebäudeteil und Druckelement sicher gehalten.The deformation element is preferably beyond the associated contact surface of the connection component in the vertical direction. In this way, it can be concreted in with the creation of the associated building part in the fresh in-situ concrete and is thus securely held at the articulated connection point between the building part and pressure element.

Grundsätzlich ist es aber auch möglich, das Verformungselement in den wärmedämmenden Grundkörper mit einzufügen, so dass die Gesamthöhe von Druckelement und Verformungselement der Höhe des Grundkörpers entspricht. Das Druckelement kann also auch geringfügig, d.h. in etwa um die Stärke des Verformungselements, kürzer ausgebildet sein als die Höhe des Grundkörpers, diesen also nur "im Wesentlichen" von der einen bis zur anderen Anlagefläche durchdringen.In principle, however, it is also possible to insert the deformation element into the heat-insulating base body so that the total height of the pressure element and the deformation element corresponds to the height of the base body. The pressure element can thus also be slightly shorter, that is to say shorter than the height of the base body, that is approximately the thickness of the deformation element So only "essentially" penetrate from one to the other contact surface.

Ein erfindungsgemäßes Verformungselement kann vorzugsweise aus einem Elastomer hergestellt sein. Ein solches, durch das Verformungselement gebildetes Elastomerlager ermöglicht durch elastische Verformung einen Ausgleich der bei einer Auflagerverdrehung des darüber lastenden Gebäudeteils auftretenden Bewegungen des Bauwerks.An inventive deformation element may preferably be made of an elastomer. Such, formed by the deformation element elastomeric bearing allows by elastic deformation balancing occurring during a Auflagerverdrehung of the overlying building part of the building movements of the building.

Das Verformungselement kann materialtechnisch und/oder geometrisch so angepasst werden, dass die bei einer zulässigen Auflageverdrehung auftretenden Exzentritäten bzw. ungleichmäßigen Belastungen ausgeglichen und eine Zentrierung der Krafteinleitung erreicht werden. Insbesondere kann die Materialdicke des Verformungselements in seinen Randbereichen bzw. den Randbereichen des darüber- oder darunterliegenden Druckelements größer gewählt werden als in seiner Mitte. Beispielsweise kann das Verformungselement auf seiner von der zugehörigen Anlagefläche des Anschlussbauteils abgewandten Seite konkav geformt sein. Durch die hiermit einhergehende Rotationsfähigkeit wird eine Zentrierung der Krafteinleitung auf die Mitte des Druckelements bewirkt.The deformation element can be adapted material technically and / or geometrically in such a way that the eccentricities or uneven loads occurring in the case of a permissible contact rotation are compensated for and a centering of the introduction of force is achieved. In particular, the material thickness of the deformation element in its edge regions or the edge regions of the overlying or underlying printing element can be made larger than in its center. For example, the deformation element may be concave on its side remote from the associated contact surface of the connection component. Due to the associated rotational ability, centering of the force introduction on the center of the pressure element is effected.

Das Verformungselement braucht nur eine vergleichsweise geringe Dicke aufweisen. Bei einer bevorzugten Ausführungsform beträgt die Höhe des Verformungselements weniger als 20 %, vorzugsweise weniger als 10 % der Höhe des Druckelements. Bei einer typischen Höhe des Druckelements von 10 cm, entsprechend der Schichtdicke einer unterhalb einer Geschossdecke angebrachten Isolierschicht, beträgt somit die Stärke des Verformungselements weniger als 2 cm, vorzugsweise weniger als 1 cm. Diese geringe Stärke ist ausreichend, um die in einem Gebäude auftretenden Setzungsbewegungen bzw. Auflageverdrehung auszugleichen.The deformation element only needs to have a comparatively small thickness. In a preferred embodiment, the height of the deformation element is less than 20%, preferably less than 10% of the height of the pressure element. With a typical height of the printing element of 10 cm, corresponding to the layer thickness of an insulating layer applied below a floor slab, the thickness of the deformation element is thus less than 2 cm, preferably less than 1 cm. This small strength is sufficient to compensate for the subsidence movements or bearing twist occurring in a building.

Außerdem kann das Anschlussbauteil ein oder mehrere beidseitig über die Anlageflächen hinausstehende Zugkraftbewehrungselemente, insbesondere Bewehrungsstäbe, aufweisen. Diese ermöglichen einen Anschluss an die Bewehrung der darüber und darunterliegenden Gebäudeteile und somit eine durchgehende Bewehrungssituation zwischen den vertikalen und horizontalen Gebäudeteilen.In addition, the connection component can have one or more tensile force reinforcement elements projecting beyond the contact surfaces on both sides, in particular reinforcing bars. These allow a connection to the reinforcement the above and below building parts and thus a continuous reinforcement situation between the vertical and horizontal building parts.

Insbesondere ist es im Rahmen der vorliegenden Erfindung vorgesehen, dass die Zugkraftbewehrungselemente durch das Druckelement und das Verformungselement hindurchgeführt sind. Das bzw. die Zugkraftbewehrungselemente können somit bei der Herstellung des Druckelements aus Hochleistungsbeton in dieses mit eingegossen und anschließend das Verformungselement aufgesteckt werden. Die so entstehende Baueinheit von Druckelement, Verformungselement und Zugkraftbewehrungselement gewährleistet günstige statische Eigenschaften und ermöglicht eine sichere Einleitung der auflastenden Tragkräfte in die darunter befindliche vertikale Gebäudestruktur.In particular, it is provided in the context of the present invention that the tensile reinforcement elements are passed through the pressure element and the deformation element. The or the tensile reinforcement elements can thus be poured in the production of the pressure element made of high-performance concrete in this with and then plugging the deformation element. The resulting assembly of pressure element, deformation element and tensile reinforcement element ensures favorable static properties and allows a safe introduction of the auflastenden load capacity in the underneath vertical building structure.

Bei einem Verfahren zur Erstellung einer lastabtragenden, vertikalen Verbindung von Gebäudeteilen unter Verwendung eines Anschlussbauteils, welches einen wärmedämmenden Grundkörper mit zwei gegenüberliegenden Anlageflächen zum Anschluss an die Gebäudeteile und mindestens ein in den wärmedämmenden Grundkörper eingesetztes und diesen von der einen bis zur anderen Anlagefläche durchdringendes Druckelement aufweist, wird ein erstes, unteres der Gebäudeteile aus Beton erstellt, anschließend das Anschlussbauteil mit seiner ersten Anlagefläche an das erste Gebäudeteil angeschlossen, und schließlich oberhalb des Anschlussbauteils das zweite Gebäudeteil aus Beton erstellt. Hierbei wird erfindungsgemäß ober- oder unterhalb des Druckelements des Anschlussbauteils ein Verformungselement angeordnet, welches beim Erstellen des zugehörigen ersten oder zweiten Gebäudeteils mit einbetoniert wird.In a method for creating a load-bearing, vertical connection of building parts using a connection component, which has a heat-insulating base body with two opposite contact surfaces for connection to the building parts and at least one inserted into the heat-insulating body and this penetrating from one to the other contact surface pressure element , A first, lower of the building parts made of concrete, then connected the connection component with its first contact surface to the first part of the building, and finally created above the connection component, the second building part made of concrete. Here, according to the invention, a deformation element is arranged above or below the pressure element of the connection component, which element is embedded in concrete when the associated first or second building part is created.

Weitere Vorteile und Eigenschaften der vorliegenden Erfindung werden im Folgenden anhand von Ausführungsbeispielen erläutert. Dabei zeigt:

Figur 1
eine isometrische Ansicht eines erfindungsgemäßen Anschlussbauteils,
Figur 2
eine Explosionszeichnung des Anschlussbauteils aus Figur 1,
Figur 3
eine isometrische Darstellung eines Anschlussbauteils mit zusätzlichem Zugkraftbewehrungselement,
Figur 4
eine Draufsicht auf das Anschlussbauteil aus Figur 3 und
Figur 5
einen Schnitt durch das Anschlussbauteil entlang der Schnittlinie C-C in Figur 4 in einer Einbausituation.
Further advantages and properties of the present invention are explained below with reference to exemplary embodiments. Showing:
FIG. 1
an isometric view of a connection component according to the invention,
FIG. 2
an exploded view of the connection component FIG. 1 .
FIG. 3
an isometric view of a connection component with additional tensile reinforcement element,
FIG. 4
a plan view of the connection component FIG. 3 and
FIG. 5
a section through the connection component along the section line CC in FIG. 4 in a mounting situation.

Im Folgenden werden Ausführungsbeispiele für ein wärmedämmendes Anschlussbauteil beschrieben, welches vorrangig zur vertikalen, lastabtragenden Anbindung von Stützen im Untergeschossbereich an die darüber liegenden Gebäudeteile wie etwa eine Geschossdecke Anwendung findet. Unter einer Stütze wird ein vertikales Gebäudeteil verstanden, das Lasten hauptsächlich in Richtung seiner Längsachse aufnimmt und weiterleitet. Die DIN-Norm 1041-1 definiert eine Stütze als stabförmiges Druckglied, dessen größere Querschnittsabmessung in Abgrenzung zu einer Wand das Vierfache der kleineren Abmessung nicht übersteigt. Daneben können die beschriebenen Anschlussbauteile aber auch zum Anschluss einer Stützwand an die darüberliegende Gebäudekonstruktion, insbesondere einer darüberliegenden Geschossdecke, eingesetzt werden.In the following, exemplary embodiments of a heat-insulating connection component are described which are primarily used for the vertical load-bearing connection of supports in the basement area to the overlying building parts, such as a floor slab. A support is understood to mean a vertical part of a building which absorbs and transmits loads mainly in the direction of its longitudinal axis. The DIN standard 1041-1 defines a support as a rod-shaped pressure member whose larger cross-sectional dimension in contrast to a wall does not exceed four times the smaller dimension. In addition, however, the connection components described can also be used for connecting a retaining wall to the overlying building construction, in particular an overlying floor slab.

Figur 1 zeigt einen quaderförmigen Grundkörper 1 aus wärmedämmendem Material. Als wärmedämmendes Material kommt beispielsweise ein Mineraldämmstoff, ein Holzwolle-Mehrschichtdämmstoff, ein expandierter Polystyrol-Hartschaum (EPS, XPS) oder Schaumglas in Betracht. Der Grundkörper 1 besteht somit aus nichttragendem Material und dient zur Wärmeentkopplung zwischen den darunter und darüber liegenden Gebäudeteilen. Die obere Seite 1a des Grundkörpers 1 dient als Anlagefläche für eine darüber zu erstellende Geschossdecke. Die Unterseite 1 b dient als Anlagefläche und Abschluss für ein darunter befindliches tragendes Gebäudeteil wie etwa eine Stütze. In dem wärmedämmenden Grundkörper 1 ist mittig ein Druckelement 2 eingesetzt, das sich im Wesentlichen von der oberen bis zur unteren Anlagefläche erstreckt und zur Aufnahme der Tragkräfte einer darüber lastenden Geschossdecke und Ableitung der Tragkräfte in die darunter befindliche Stütze dient. Oberhalb des Druckelements und dieses in Figur 1 verdeckend befindet sich ein Verformungselement 3 aus einem elastischen Polymermaterial. Das Verformungselement 3 ist scheibenförmig ausgebildet und hat eine kreisrunde Grundfläche, die von Form und Größe der Grundfläche des darunterliegenden Druckelements entspricht. Allgemein können Druckelement und Verformungselement natürlich eine beliebig geformte Grundfläche aufweisen. Das Verformungselement kann auch etwas größere, also überstehende Grundfläche oder auch eine etwas kleinere Grundfläche als das Druckelement haben. FIG. 1 shows a cuboid base body 1 of heat-insulating material. As thermal insulating material is for example a mineral insulation, a wood wool multi-layer insulation, an expanded polystyrene foam (EPS, XPS) or foam glass into consideration. The base body 1 thus consists of non-bearing material and is used for heat decoupling between the underlying and overlying parts of the building. The upper side 1a of the main body 1 serves as a contact surface for a floor to be created thereon. The bottom 1 b serves as a contact surface and completion for a underlying supporting building part such as a support. In the heat-insulating base body 1, a pressure element 2 is centrally used, which extends substantially from the upper to the lower contact surface and the Recording of the load-bearing capacity of a floor slab bearing it above and derivation of the load-bearing forces into the support underneath. Above the pressure element and this in FIG. 1 Concealing there is a deformation element 3 made of an elastic polymer material. The deformation element 3 is disc-shaped and has a circular base area, which corresponds to the shape and size of the base of the underlying pressure element. Of course, the pressure element and the deformation element can naturally have an arbitrarily shaped base surface. The deformation element can also have a slightly larger, that is, protruding base surface or also a slightly smaller base surface than the pressure element.

Figur 2 zeigt in einer Explosionszeichnung den Grundkörper 1, das darin eingesetzte Druckelement 2 sowie das darüber befindliche Verformungselement 3. Das Druckelement 2 besteht aus Hochleistungsbeton mit einer Druckfestigkeit > 50 N/mm2, vorzugsweise ultrahochfestem Beton (UHPC) mit einer Druckfestigkeit von > 150 N/mm2. Das Druckelement 2 ist somit in der Lage, die auf ihm lastenden Tragkräfte aufzunehmen und in die darunterliegende Stütze weiterzugeben. Die im Vergleich zur Grundfläche des gesamten Anschlussbauteils einschließlich des wärmedämmenden Grundkörpers bzw. im Vergleich zu der entsprechenden Grundfläche der darunter befindlichen Stütze erheblich reduzierte Querschnittsfläche des Druckelements 2 führt zu einer erheblichen Verringerung der Wärmeleitfähigkeit des Anschlussbauteils als Ganzem. Ein Wärmeübertrag zwischen einer darunterliegenden Stütze und einer darüber befindlichen Geschossdecke erfolgt im Wesentlichen nur durch die verringerte Querschnittsfläche des Druckelements 2. Der isolierende Grundkörper 1 sorgt mit seinen wärmedämmenden Eigenschaften für eine Wärmeentkopplung zwischen den Gebäudeteilen. FIG. 2 shows in an exploded view of the main body 1, the pressure element 2 inserted therein and the deformation element located above 3. The pressure element 2 consists of high performance concrete with a compressive strength> 50 N / mm 2 , preferably ultra high-strength concrete (UHPC) with a compressive strength of> 150 N / mm 2 . The pressure element 2 is thus able to absorb the load on him bearing forces and pass it on to the underlying support. The considerably reduced cross-sectional area of the pressure element 2 compared to the base area of the entire connection component including the heat-insulating base body or compared to the corresponding base area of the underlying support leads to a considerable reduction in the thermal conductivity of the connection component as a whole. A heat transfer between an underlying support and an overlying floor slab is essentially only by the reduced cross-sectional area of the pressure element 2. The insulating base body 1 ensures with its heat-insulating properties for a heat decoupling between the building parts.

Das elastische Verformungselement 3 dient dazu, geringfügige Bewegungen des Bauwerks, beispielsweise aufgrund einer Auflagerverdrehung der Geschossdecke unter Belastung, auszugleichen und die auflastenden Kräfte auf das Druckelement 2 zu zentrierten. Somit wird eine einseitige oder außermittige Belastung des Druckelements 2, die zur lokalen Überlastung führen könnte, vermieden. Hierbei wird ausgenutzt, dass die Verbindungsstelle zwischen einer Stütze und einer darüberliegenden Gebäudekonstruktion statisch als gelenkiger Anschlusspunkt betrachtet und gerechnet wird. Bei einer Geschossdecke liegt der Gelenkpunkt hierbei an der Unterkante der Decke. Das Verformungselement 3 erzeugt an diesem Gelenkpunkt eine gewisse Rotationsfähigkeit und sorgt damit für einen Ausgleich von Exzentritäten und ungleichmäßiger Belastung. Da die in einem Gebäude auftretenden Bewegungen lediglich im Millimeterbereich liegen, reicht für das Verformungselement 3 zu diesem Zweck eine relativ dünne Materialstärke von lediglich 1 - 2 cm im Ausführungsbeispiel aus. Je nach Materialeigenschaften wie Elastizität und Verformbarkeit des Verformungselements 3 liegen jedoch auch größere Materialstärken im Rahmen der vorliegenden Erfindung.The elastic deformation element 3 serves to compensate slight movements of the structure, for example due to a bearing rotation of the floor slab under load, and to center the loading forces on the pressure element 2. Thus, a one-sided or off-center loading of the pressure element 2, which could lead to local overload, avoided. This exploits the fact that the connection point between a support and an overlying building construction is statically regarded and calculated as an articulated connection point. In the case of a floor slab, the hinge point is at the lower edge of the ceiling. The deformation element 3 generates at this point of articulation a certain rotational capability and thus ensures a balance of eccentricities and uneven loading. Since the movements occurring in a building are only in the millimeter range, sufficient for the deformation element 3 for this purpose, a relatively thin material thickness of only 1 - 2 cm in the embodiment. Depending on the material properties such as elasticity and deformability of the deformation element 3, however, also larger material thicknesses are within the scope of the present invention.

Um außerdem das Abrollen einer Geschossdecke an dem durch das Verformungselement gebildeten Gelenkpunkt zu verbessern, ist die zur Geschossdecke weisende Oberseite des Verformungselementes 3 in etwa konkav oder konisch ausgeformt, das heißt das Verformungselement 3 ist in seinen Randbereichen dicker als in der Mitte bzw. die Materialstärke nimmt von innen nach außen kontinuierlich zu. Die Formgebung des Verformungselements 3 unterstützt hierdurch die Zentrierung der Krafteinleitung in das Druckelement 2.In order to additionally improve the rolling of a floor slab at the hinge point formed by the deformation element, the top of the deformation element 3 facing the floor slab is approximately concave or conical, ie the deformation element 3 is thicker in its edge areas than in the middle or the material thickness increases continuously from the inside out. The shaping of the deformation element 3 thereby supports the centering of the introduction of force into the pressure element 2.

Das Verformungselement 3 kann grundsätzlich sowohl oberhalb als auch unterhalb des Druckelements 2 oder auch beidseitig des Druckelements 2 eingesetzt werden. Bevorzugt ist jedoch der Einsatz oberhalb des Druckelements 2, da hier der statische Gelenkpunkt der Verbindung aus Stütze und Geschossdecke liegt.The deformation element 3 can in principle be used both above and below the pressure element 2 or on both sides of the pressure element 2. Preferably, however, the insert above the pressure element 2, since the static hinge point of the connection of support and floor slab is here.

Eine Weiterbildung des Anschlussbauteils aus Figur 1 ist in Figur 3 gezeigt. Hierbei ist zusätzlich ein Zugkraftbewehrungsstab 5 vorgesehen, der in etwa mittig durch das Druckelement 2 und das darüber befindliche Verformungselement 3 führt. Der Bewehrungsstab 5 besteht zumindest in dem Bereich, in welchem er das Druckelement 2 durchquert, aus einer Metalllegierung mit möglichst niedriger Wärmeleitfähigkeit wie beispielsweise Edelstahl. Da Edelstahl im Vergleich zu normalen Baustahl relativ teuer ist, kann auch nur der mittige Bereich des Bewehrungsstabs 5 aus Edelstahl bestehen, während dessen oberhalb und unterhalb des Anschlussbauteils hinausweisende Enden aus daran angeschweißtem normalem Baustahl bestehen können. Ebenso liegt es im Rahmen der vorliegenden Erfindung, einen Bewehrungsstab 5 aus einem nichtmetallischen Material wie beispielsweise faserverstärktem Kunststoff (GFK) zu verwenden.A development of the connection component from FIG. 1 is in FIG. 3 shown. Here, a tensile reinforcement bar 5 is additionally provided, which leads approximately centrally through the pressure element 2 and the deformation element 3 located above. The reinforcing rod 5 consists, at least in the area in which it passes through the pressure element 2, of a metal alloy with the lowest possible thermal conductivity, such as stainless steel. Since stainless steel is relatively expensive compared to normal structural steel, only the central area can of the reinforcing bar 5 are made of stainless steel, while its ends protruding above and below the terminal member may consist of normal structural steel welded thereto. It is also within the scope of the present invention to use a reinforcing bar 5 made of a non-metallic material such as fiber reinforced plastic (GRP).

Der Bewehrungsstab 5 ist in etwa mittig durch das Druckelement 2 hindurchgeführt, sodass die Mitte des Druckelements 2 weiterhin als Gelenkpunkt dienen und betrachtet werden kann. Alternativ wäre es möglich, mehrere sich im Mittelpunkt des Druckelements 2 kreuzende und sich im Bereich oberhalb und unterhalb des Anschlussbauteils senkrecht nach oben bzw. unten erstreckende Bewehrungsstäbe zu verwenden. Ebenso liegt jedoch auch die Anordnung von mehreren Bewehrungsstäben außerhalb der Mittelachse des Druckelements 2 im Rahmen der vorliegenden Erfindung, auch wenn hierdurch die durch das Verformungselement 3 geschaffenen Gelenkeigenschaften vermindert bzw. teilweise aufgehoben werden.The reinforcing bar 5 is passed approximately centrally through the pressure element 2, so that the center of the pressure element 2 can continue to serve as a hinge point and can be considered. Alternatively, it would be possible to use a plurality of reinforcing rods crossing at the center of the pressure element 2 and extending vertically upwards or downwards in the area above and below the connection component. Likewise, however, the arrangement of a plurality of reinforcing bars outside the center axis of the pressure element 2 in the context of the present invention, even if this reduces the joint properties created by the deformation element 3 or partially canceled.

In Figur 4 ist eine Draufsicht auf das Anschlussbauteil mit seinem isolierenden Grundkörper 1 und dem mittig darin eingesetzten Druckelement 2 sowie dem darüberliegenden Verformungselement 3 gezeigt. In der Mitte des Anschlussbauteils verläuft senkrecht zur Zeichnungsebene der Bewehrungsstab 5. Die in Figur 4 eingezeichnete Schnittlinie C-C zeigt die Schnittführung für den in der nachfolgenden Figur 5 dargestellten Querschnitt.In FIG. 4 is a plan view of the connection component with its insulating base body 1 and the centrally inserted therein pressure element 2 and the overlying deformation element 3 is shown. In the middle of the connection component runs perpendicular to the plane of the reinforcement bar 5. The in FIG. 4 drawn section line CC shows the cutting guide for the following FIG. 5 illustrated cross-section.

Figur 5 zeigt in einem Querschnitt die Einbausituation des Anschlussbauteils zur lastabtragenden Verbindung zwischen einer Stütze 6 und einer darüberliegenden Geschossdecke 4. Die Geschossdecke 4 ist mit einer horizontal verlaufenden Bewehrung 4a versehen. Die Stütze 6 ist in an sich üblicher Weise mit einer vertikalen Bewehrung 6a, 6b versehen. Diese besteht aus mehreren innerhalb der Säule 6 verteilten vertikalen Bewehrungsstäben 6a sowie horizontal um die Bewehrungsstäbe 6a gelegten Bewehrungsbügeln 6b. Der Bewehrungsstab 5 des Anschlussbauteils verläuft nach oben in die betonierte Geschossdecke 4 und nach unten in die betonierte Säule 6 hinein und kann vorzugsweise mit der Bewehrung 4a der Geschossdecke 4 bzw. der Bewehrung 6a, 6b der Stütze 6 beispielsweise mittels Rödeldraht verbunden werden. Somit wird durch das Anschlussbauteil einerseits eine thermische Entkopplung zwischen Stütze 6 und Geschossdecke 4 erreicht, andererseits kann die Bewehrung von der Stütze 6 bis in die Geschossdecke 4 hindurchgeführt und somit Stütze 6 und Geschossdecke 4 monolithisch miteinander verbunden werden. FIG. 5 shows in a cross section the installation situation of the connection component for load-bearing connection between a support 6 and an overlying floor slab 4. The floor slab 4 is provided with a horizontally extending reinforcement 4a. The support 6 is provided in a conventional manner with a vertical reinforcement 6a, 6b. This consists of several distributed within the column 6 vertical reinforcing bars 6a and horizontally placed around the reinforcing bars 6a reinforcing bars 6b. The reinforcing bar 5 of the connection component runs upward into the concrete floor 4 and down into the concrete pillar 6 and can preferably be connected to the reinforcement 4a of the floor slab 4 and the reinforcement 6a, 6b of the support 6, for example by means of metal wire. Thus, a thermal decoupling between support 6 and floor 4 is achieved by the connection component on the one hand, on the other hand, the reinforcement can be passed from the support 6 to the floor slab 4 and thus support 6 and floor slab 4 monolithically connected to each other.

Um Stütze 6 und Geschossdecke 4 herzustellen, kann das Anschlussbauteil 1 in die Schalung für die zu betonierende Stütze 6 eingesetzt und an dessen Bewehrungskonstruktion 6a, 6b angeschlossen werden. Anschließend kann die Schalung für die Stütze 6 durch eine nicht gezeigte Verfüllöffnung mit Frischbeton ausgegossen und dieser verdichtet werden. Alternativ ist es auch möglich, zunächst die Stütze 6 bis zur vorbeschriebenen Höhe aus Beton zu erstellen und das Anschlussbauteil anschließend von oben in die Schalung der Stütze 6 und den noch flüssigen Frischbeton einzudrücken. Erforderlichenfalls kann der Frischbeton unterhalb des Anschlussbauteils nochmals nachverdichtet werden. Nach dem Abbinden des Betons der Stütze 6 kann oberhalb des Anschlussbauteils in herkömmlicher Weise die Geschossdecke 4 erstellt werden.In order to produce support 6 and floor slab 4, the connection component 1 can be inserted into the formwork for the pillar 6 to be concreted and connected to its reinforcement structure 6a, 6b. Subsequently, the formwork for the support 6 can be poured through a filling opening, not shown, with fresh concrete and this compacted. Alternatively, it is also possible to first create the support 6 to the prescribed height of concrete and then press the connection component from above into the formwork of the support 6 and the still liquid fresh concrete. If necessary, the fresh concrete can be recompressed below the connection component again. After setting the concrete of the support 6, the floor ceiling 4 can be created in a conventional manner above the connection component.

Das Anschlussbauteil kann in unterschiedlichen Abmessungen wie etwa 25 x 25 cm oder 30 x 30 cm ausgeführt werden. Die Höhe des Anschlussbauteils entspricht typischerweise der Stärke einer vorgesehenen Dämmstoffschicht zwischen 8 und 20 cm, vorzugsweise zwischen 10 und 15 cm. Die Höhe des Druckelements ist entsprechend angepasst, und zwar entweder mit oder ohne das Verformungselement. Ein Anschlussbauteil kann auch zwei oder mehr Einzeldruckelemente, die jeweils in erfindungsgemäßer Weise mit Verformungselementen ausgestattet sind, versehen werden. Ein erfindungsgemäßes Anschlussbauteil kann einzeln für eine Stütze verwendet werden. Bei höheren Belastungen können aber auch mehrere Anschlussbauteile für eine größere Stütze kombiniert werden. Entsprechend können ein oder mehrere erfindungsgemäße Anschlussbauteile als oberer Abschluss einer tragenden Wand unterhalb einer Geschossdecke eingesetzt werden.The connection component can be made in different dimensions, such as 25 x 25 cm or 30 x 30 cm. The height of the connection component typically corresponds to the thickness of an intended insulation layer between 8 and 20 cm, preferably between 10 and 15 cm. The height of the pressure element is adjusted accordingly, either with or without the deformation element. A connection component can also be provided with two or more individual pressure elements which are each equipped with deformation elements in accordance with the invention. An inventive connection component can be used individually for a support. At higher loads but also several connection components can be combined for a larger support. Accordingly, one or more connection components according to the invention can be used as the upper termination of a load-bearing wall below a floor slab.

Claims (8)

Anschlussbauteil zur lastabtragenden, vertikalen Verbindung von Gebäudeteilen, mit einem wärmedämmenden Grundkörper, welcher zwei gegenüberliegende Anlageflächen zum Anschluss an die Gebäudeteile aufweist, und mit mindestens einem in den wärmedämmenden Grundkörper eingesetzten und diesen im Wesentlichen von der einen bis zur anderen Anlagefläche durchdringenden Druckelement,
dadurch gekennzeichnet, dass
an einer der Anlageflächen ober- oder unterhalb des Druckelements ein Verformungselement angeordnet ist.
Connecting component for load-bearing, vertical connection of building parts, with a heat-insulating body, which has two opposing contact surfaces for connection to the building parts, and with at least one inserted into the heat-insulating body and this substantially penetrating from one to the other contact surface pressure element,
characterized in that
on one of the contact surfaces above or below the pressure element, a deformation element is arranged.
Anschlussbauteil nach Anspruch 1, bei dem das Verformungselement über die zugehörige Anlagefläche in vertikaler Richtung hinaussteht.Connecting component according to claim 1, wherein the deformation element projects beyond the associated contact surface in the vertical direction. Anschlussbauteil nach Anspruch 1 oder 2, bei dem das Verformungselement aus einem Elastomer hergestellt ist.Connection component according to claim 1 or 2, wherein the deformation element is made of an elastomer. Anschlussbauteil nach einem der vorangehenden Ansprüche, bei dem das Verformungselement auf seiner von der zugehörigen Anlagefläche hinausweisenden Seite konkav geformt ist.Connecting component according to one of the preceding claims, wherein the deformation element is concave on its side facing away from the associated contact surface. Anschlussbauteil nach einem der vorangehenden Ansprüche, bei dem die Höhe des Verformungselements weniger als 20%, vorzugsweise weniger als 10% der Höhe des Druckelements entspricht.Connection component according to one of the preceding claims, in which the height of the deformation element corresponds to less than 20%, preferably less than 10%, of the height of the pressure element. Anschlussbauteil nach einem der vorangehenden Ansprüche, welches ein oder mehrere über die Anlageflächen hinausstehende Zugkraftbewehrungselemente, insbesondere Bewehrungsstäbe, aufweist.Connecting component according to one of the preceding claims, which has one or more over the contact surfaces protruding tensile force reinforcing elements, in particular reinforcing bars. Anschlussbauteil nach Anspruch 6, bei dem die Zugkraftbewehrungselemente durch das Druckelement und das Verformungselement durchgeführt sind.Connection component according to claim 6, wherein the tensile reinforcement elements are performed by the pressure element and the deformation element. Verfahren zur Erstellung einer lastabtragenden, vertikalen Verbindung von Gebäudeteilen unter Verwendung eines Anschlussbauteil mit einem wärmedämmenden Grundkörper, welcher zwei gegenüberliegende Anlageflächen zum Anschluss an die Gebäudeteile aufweist, und mit mindestens einem in den wärmedämmenden Grundkörper eingesetzten und diesen im Wesentlichen von der einen bis zur anderen Anlagefläche durchdringenden Druckelement, bei dem ein erstes, unteres der Gebäudeteile aus Beton erstellt wird, bei dem das Anschlussbauteil mit seiner ersten Anlagefläche an das erste Gebäudeteil angeschlossen wird, und bei dem oberhalb des Anschlussbauteils ein zweites der Gebäudeteile aus Beton erstellt wird,
dadurch gekennzeichnet, dass
ober- oder unterhalb des Druckelements des Anschlussbauteils ein Verformungselement angeordnet wird, welches beim Erstellen des zugehörigen ersten oder zweiten Gebäudeteils mit einbetoniert wird.
A method for creating a load-bearing, vertical connection of building parts using a connection component with a heat-insulating body, which has two opposing contact surfaces for connection to the building parts, and with at least one inserted into the heat-insulating body and this substantially from one to the other contact surface penetrating pressure element, in which a first, lower of the building parts is made of concrete, in which the connection component is connected with its first bearing surface to the first part of the building, and in which above the connection component, a second of the building parts is made of concrete,
characterized in that
above or below the pressure element of the connection component, a deformation element is arranged, which is cast in with the creation of the associated first or second building part.
EP17160984.5A 2016-04-01 2017-03-15 Connection component for thermal isolation between a vertical and horizontal building part Active EP3225758B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL17160984T PL3225758T3 (en) 2016-04-01 2017-03-15 Connection component for thermal isolation between a vertical and horizontal building part
SI201730867T SI3225758T1 (en) 2016-04-01 2017-03-15 Connection component for thermal isolation between a vertical and horizontal building part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016106036.4A DE102016106036A1 (en) 2016-04-01 2016-04-01 Connection component for heat dissipation between a vertical and a horizontal building part

Publications (2)

Publication Number Publication Date
EP3225758A1 true EP3225758A1 (en) 2017-10-04
EP3225758B1 EP3225758B1 (en) 2021-07-14

Family

ID=58358384

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17160984.5A Active EP3225758B1 (en) 2016-04-01 2017-03-15 Connection component for thermal isolation between a vertical and horizontal building part

Country Status (6)

Country Link
EP (1) EP3225758B1 (en)
DE (1) DE102016106036A1 (en)
DK (1) DK3225758T3 (en)
HU (1) HUE055341T2 (en)
PL (1) PL3225758T3 (en)
SI (1) SI3225758T1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT17361U1 (en) * 2020-12-11 2022-02-15 Porr Bau Gmbh Building construction, method of forming the same and functional part
US11451121B2 (en) 2018-07-13 2022-09-20 Siemens Aktiengesellschaft Method for producing a material layer and a material layer structure for a dynamoelectric rotary machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10106222A1 (en) 2001-02-10 2002-08-14 Schoeck Entwicklungsgmbh Brick-shaped thermal insulation element
WO2008113347A2 (en) * 2007-03-22 2008-09-25 Bert Kolpatzik Constructional element for thermal insulation
EP2405065A1 (en) 2010-11-19 2012-01-11 Georg Koch Insulating connection element for bearing compressive loads

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10106222A1 (en) 2001-02-10 2002-08-14 Schoeck Entwicklungsgmbh Brick-shaped thermal insulation element
WO2008113347A2 (en) * 2007-03-22 2008-09-25 Bert Kolpatzik Constructional element for thermal insulation
EP2405065A1 (en) 2010-11-19 2012-01-11 Georg Koch Insulating connection element for bearing compressive loads

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11451121B2 (en) 2018-07-13 2022-09-20 Siemens Aktiengesellschaft Method for producing a material layer and a material layer structure for a dynamoelectric rotary machine
AT17361U1 (en) * 2020-12-11 2022-02-15 Porr Bau Gmbh Building construction, method of forming the same and functional part

Also Published As

Publication number Publication date
HUE055341T2 (en) 2021-11-29
PL3225758T3 (en) 2021-11-22
EP3225758B1 (en) 2021-07-14
DK3225758T3 (en) 2021-08-16
SI3225758T1 (en) 2021-10-29
DE102016106036A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
EP3085843B1 (en) Device and method for heat decoupling of concreted parts of buildings
EP3112542B1 (en) Device and method for heat decoupling of concreted parts of buildings
CH676615A5 (en)
EP2486196B1 (en) Method and device for subsequently attaching a protruding outer part to an existing load-bearing building part
EP0059171B1 (en) Dowel and sleeve for the absorption and transfer of a shearing force
EP1040238B1 (en) Shearing reinforcement for flat ceilings and dowel strip
DE4037438C2 (en) Transportable reinforced concrete foundation for a column
EP3225758B1 (en) Connection component for thermal isolation between a vertical and horizontal building part
EP3336269B1 (en) Structural element for heat insulation
EP2993279B1 (en) Building with a reinforcing element made of high-strength concrete for increasing puncture resistance
WO2011012483A1 (en) Reinforced concrete component reinforced with l-shaped sheet metal pieces
EP3106581B1 (en) Thermal insulation system for vertical, load-bearing connection of parts of buildings made from concrete
DE202009004195U1 (en) Reinforcement device for producing a prefabricated component
EP0875635B1 (en) Composite element primarily designed for vertically supporting constructive elements of buildings
EP2516761B1 (en) Device for connecting two components separated by a gap and for absorbing transverse forces that occur between the components
EP2754766A1 (en) Device for connecting a first supporting building part with a second supported building part in a manner that transfers force
DE102012110184A1 (en) Centrifugal concrete column for use with ceiling connector for structure of building, is made of ultra high performance concrete, where cylinder compressive strength of ultra high performance concrete is thundered mega Pascal
EP2816168B1 (en) Cladding stone for connection with a concrete ceiling
EP2459812A1 (en) Reinforced concrete component reinforced with z-shaped sheet metal pieces
DE10258833A1 (en) Construction of node points between a steel concrete protector and a flat cover made from steel concrete in floor structure
EP2998454A1 (en) Device for interconnecting two parts of a building separated by a joint
EP3492665A1 (en) Finished concrete part with at least one load-absorbing component and connection plate for assembly in the gap between same and load-absorbing component
EP3225759B1 (en) Connection component for thermal isolation between vertically connected building sections
EP3728756B1 (en) Column-ceiling node for a reinforced concrete ceiling and two concrete columns in storey construction
EP3835501B1 (en) Arrangement for connecting a structural part with a frontal exterior part

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180404

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200421

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210318

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010880

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1410769

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210810

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210714

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 37949

Country of ref document: SK

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E055341

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211014

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211115

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010880

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

26N No opposition filed

Effective date: 20220419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220315

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230321

Year of fee payment: 7

Ref country code: FR

Payment date: 20230321

Year of fee payment: 7

Ref country code: FI

Payment date: 20230320

Year of fee payment: 7

Ref country code: DK

Payment date: 20230323

Year of fee payment: 7

Ref country code: CZ

Payment date: 20230303

Year of fee payment: 7

Ref country code: AT

Payment date: 20230317

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230302

Year of fee payment: 7

Ref country code: SI

Payment date: 20230303

Year of fee payment: 7

Ref country code: SE

Payment date: 20230315

Year of fee payment: 7

Ref country code: PL

Payment date: 20230308

Year of fee payment: 7

Ref country code: HU

Payment date: 20230307

Year of fee payment: 7

Ref country code: BE

Payment date: 20230321

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230322

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230331

Year of fee payment: 7

Ref country code: CH

Payment date: 20230402

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240318

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240319

Year of fee payment: 8

Ref country code: DE

Payment date: 20240123

Year of fee payment: 8

Ref country code: GB

Payment date: 20240322

Year of fee payment: 8