EP3224570B1 - Verfahren und vorrichtung zur interferometrischen prüfung - Google Patents

Verfahren und vorrichtung zur interferometrischen prüfung Download PDF

Info

Publication number
EP3224570B1
EP3224570B1 EP15812971.8A EP15812971A EP3224570B1 EP 3224570 B1 EP3224570 B1 EP 3224570B1 EP 15812971 A EP15812971 A EP 15812971A EP 3224570 B1 EP3224570 B1 EP 3224570B1
Authority
EP
European Patent Office
Prior art keywords
optical functional
functional surfaces
wavefronts
test
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15812971.8A
Other languages
English (en)
French (fr)
Other versions
EP3224570A1 (de
Inventor
Matthias Beier
Daniela STUMPF
Andreas Gebhardt
Stefan Risse
Uwe D. Zeitner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Friedrich Schiller Universtaet Jena FSU
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Friedrich Schiller Universtaet Jena FSU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Friedrich Schiller Universtaet Jena FSU filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3224570A1 publication Critical patent/EP3224570A1/de
Application granted granted Critical
Publication of EP3224570B1 publication Critical patent/EP3224570B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02016Interferometers characterised by the beam path configuration contacting two or more objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • G01B9/02038Shaping the wavefront, e.g. generating a spherical wavefront
    • G01B9/02039Shaping the wavefront, e.g. generating a spherical wavefront by matching the wavefront with a particular object surface shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02057Passive reduction of errors by using common path configuration, i.e. reference and object path almost entirely overlapping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02061Reduction or prevention of effects of tilts or misalignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/005Testing of reflective surfaces, e.g. mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/60Reference interferometer, i.e. additional interferometer not interacting with object
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/32Fiducial marks and measuring scales within the optical system
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0033Adaptation of holography to specific applications in hologrammetry for measuring or analysing

Definitions

  • the invention relates to a method and a device for interferometric testing of the shape and / or position of at least two optical functional surfaces in a common optical test setup.
  • Aspherical or free-form optics place increased demands on their manufacture, metrological characterization and assembly to form a common optical system.
  • Individual optical components must often have surface deviations of less than ⁇ / 10 or even less than ⁇ / 20 peak-to-valley (p.-v.) in order to implement the optical imaging in demanding systems.
  • the assembly of optically high-quality systems with aspherical or free-form elements is therefore associated with increased expenditure of time and money.
  • Non-contact methods for checking the shape of individual optical surfaces with required shape deviations in the range ⁇ / 10 are known per se and relate in particular to methods of interferometry, optical profilometry and deflectometry. Because of the possibilities for quick and highly precise inspection of the full aperture, above all interferometric measuring test methods as standard measuring method. In this area, Fizeau interferometry deserves special mention, in which the measurement uncertainty that can be achieved depends primarily on the accuracy of a final reference surface. These reference surfaces are usually highly precise flat surfaces (transmission flat) or spherical surfaces (transmission spheres), which enable the shape deviation to be determined with measurement uncertainties ⁇ / 20 (p.-v.).
  • testing of aspherical or free-formed surfaces can only be carried out to a limited extent or, as in most cases, not at all, because only the existing reference surfaces are used, because due to the large deviation from the planar or spherical shape, high stripe densities arise in the interferogram, which the detectors used no longer can capture.
  • Zero optics are therefore used as standard for checking the shape of aspheres, cylinders and freeforms.
  • additional elements such as lenses or optical gratings, which are introduced into the beam path of the optical test set-up and which adapt the measurement wavefront to the specific shape of the test object and thus enable interferometric evaluation.
  • the zero optics introduced must be specially designed and manufactured for each different test specimen geometry.
  • Especially computer generated Holograms (CGH - Computer Generated Hologram) as diffractive zero optics are of particular importance in this context. They enable a wide range of designs and can be manufactured with high precision using modern methods of lithography.
  • a test setup using a CGH is from the document US 5,530,547 A known.
  • both the relative position between the interferometer and the CGH and the relative position between the CGH and the device under test must be set exactly.
  • simple Littrow arrangements are often used, for example in a ring-shaped structure, which reflect back the measurement wave front arriving from the interferometer and bring it into interference with the reference wave front.
  • the complexity of the alignment of the test piece surface to the CGH depends on the specific test piece geometry and the test setup used. Rotationally symmetrical aspherical surfaces or corresponding off-axis segments of a rotationally symmetrical shape, for example, can still be tested at different azimuth angles of the test object in order to distinguish between shape and position errors. The testing of free forms is much more difficult due to the lack of rotational symmetry. For this reason According to the state of the art, additional auxiliary holograms are produced for adjusting the relative position between the CGH and the test specimen, which form the measuring wave front arriving from the interferometer in a targeted manner. The wavefronts are related to further alignment marks, which are either monolithically connected to the optical test object or are located at precisely defined points in the optical test setup.
  • These can be, for example, flat or spherical reference surfaces that reflect back the measurement wavefront arriving from the CGH.
  • position errors in the alignment between the CGH and the test object ⁇ 1 ⁇ m or ⁇ 10 arc seconds can be achieved.
  • Imperfections of the CGH itself arise due to the imperfection of the manufacturing process and affect, among other things, substrate inaccuracies or deviations of the manufactured diffractive microstructures in the lateral and axial direction. The errors lead to inaccuracies in the resulting wavefront and thus impair the measurement result.
  • Various methods for absolute calibration exist in the prior art. So in the publications DE 198 20 785 A1 . WO 2003 048 715 A1 and DE 10 2012 100 311 A1 special test setups are described, in which so-called multiplex CGHs are used for absolute calibration. In addition to the actual aspherical measurement wavefront, the CGHs generate a flat or spherical calibration wavefront, which can be used for absolute calibration of the CGH using a known reference standard. This enables an absolute determination of the error of the CGH, whereby the precision of the measurement can be significantly improved.
  • One problem to be solved is therefore to specify a method and a device for interferometric testing which enable the simultaneous testing of the shape and / or position of at least two optical functional surfaces in a common optical test setup.
  • an interferometric test setup which comprises an interferometer, a beam-shaping optical element which is arranged in the beam path between the interferometer and the optical functional surfaces, and Alignment marks, which are located at defined positions in the interferometric test setup or defined positions in relation to the optical functional surfaces.
  • the alignment marks are preferably designed as reflectors, in particular as flat or spherical mirror surfaces.
  • the alignment marks can, for example, on a support structure of the Optical functional surfaces are arranged and advantageously function as adjustment aids in the method.
  • the beam-shaping optical element advantageously generates a plurality of alignment wave fronts in the method, the alignment wave fronts being transmitted or reflected on the alignment marks and on the optical functional surfaces, and measurement wave fronts are thus generated.
  • the method enables the position of the optical functional surfaces to be measured in relation to one another and in relation to the alignment marks. Adjustment movements for aligning the optical functional surfaces to a desired position can advantageously be carried out subsequently.
  • the steps of measuring the position of the optical functional surfaces and performing adjustment movements to align the optical functional surfaces can, if necessary, be repeated several times until the optical functional surfaces are in the desired position or within a predetermined tolerance range around the desired position.
  • test wave fronts are advantageously generated by the beam-shaping optical element, the test wave fronts being transmitted or reflected on the optical functional surfaces, and further measurement wave fronts are thus generated.
  • shape and / or positional deviations of the optical functional surfaces from a desired geometry or desired position can advantageously be determined.
  • the method simultaneously checks the shape and / or position of at least two optical functional surfaces.
  • the method enables the shape and position of the two optical functional surfaces to be checked relative to one another and to the alignment marks located in the test setup.
  • optical functional surface is to be understood here and in the following to mean a surface manufactured in optical quality, which is important for the functioning of an optical system, such as, for example, a lens or mirror telescope.
  • the at least two optical functional surfaces can be a functionally relevant component of an optical system with a plurality of optical surfaces.
  • the optical functional surfaces can in particular be lens, grating or mirror surfaces, which are preferably manufactured and / or assembled on a common support structure.
  • the optical functional surfaces are, for example, mirror surfaces on which the adjustment wave fronts and test wave fronts are reflected when the method is carried out.
  • the method can be used with particular advantage, for example, for checking the shape and position of monolithically connected mirror surfaces on a common supporting structure.
  • the method and the device can furthermore advantageously be used for the assembly of at least two optical individual components to form a common supporting structure, or an optical individual component to form a component that is monolithically located on a supporting structure.
  • the optical functional surfaces can, for example, be flat, spherical, aspherical or as a free-form surface be trained.
  • the method can be used particularly advantageously on optical functional surfaces which are completely or at least partially aspherical or in the form of a free-form surface.
  • the interferometer used in the interferometric test setup comprises a light source for generating coherent, preferably monochromatic light, which is directed onto the beam-shaping optical element in the interferometric test setup.
  • the interferometer can have a laser as the light source.
  • the interferometer can in particular be designed as a Fizeau interferometer.
  • the measurement wave fronts reflected back into the interferometer from the test setup can be brought to interference in the interferometer, for example by using a beam splitter with a reference wavefront, which is generated by an optical reference surface in the interferometer, and can be evaluated, for example, using an image processing system.
  • the functioning of such an interferometer is known per se to the person skilled in the art and is therefore not explained in more detail here.
  • the beam-shaping optical element is preferably a diffractive optical element.
  • the beam-shaping optical element can be a transmission or reflection grating.
  • the beam-shaping optical element such as one or more actively controlled elements for beam deflection for example, a spatial light modulator (SLM) or a refractive phase plate.
  • the beam-shaping optical element is a computer-generated hologram.
  • the beam-shaping optical element has a plurality of segments which are provided for generating the adjustment wave fronts and test wave fronts from the wave fronts which originate from the interferometer.
  • the wave fronts emanating from the interferometer can be flat or, in particular, spherical, for example a spherical reference surface (transmission sphere) being used on the interferometer.
  • the beam-shaping optical element has at least two test holograms for generating the test wave fronts and a plurality of adjustment holograms for generating the adjustment wave fronts.
  • the test holograms and / or adjustment holograms can in particular each be segments of a beam-shaping optical element designed as a computer-generated hologram.
  • the beam-shaping optical element has at least one calibration hologram for generating calibration wave fronts.
  • known, preferably plane or spherical reference standards can advantageously be measured for the calibration of the interferometric test setup.
  • the testing of the optical functional surfaces can advantageously be carried out as an absolute measurement with advantageously low measurement uncertainty.
  • the at least two optical functional surfaces are arranged monolithically on a common support structure.
  • the optical functional surfaces are inseparably connected to the common support structure.
  • the position of the optical functional surfaces relative to one another and their shape can advantageously be checked in order to carry out an adjustment and / or shape correction if necessary.
  • a first of the at least two optical functional surfaces is monolithically connected to a common support structure.
  • a second, in particular individually manufactured, optical functional surface is preferably adjusted relative to the first optical functional surface and mounted on the common support structure.
  • none of the at least two optical functional surfaces is monolithically connected to a common support structure, the optical functional surfaces being adjusted relative to one another in the method and being mounted on the common support structure.
  • both optical functional surfaces are, for example, separately manufactured elements that are mounted on the common support structure adjusted relative to one another using the method.
  • a further embodiment can relate to the position check and assembly of at least two separately manufactured optical functional surfaces for any assembly structures in an optical test setup.
  • the optical functional surfaces can be, for example, Suitable manipulation techniques, such as hexapods, are aligned to a desired position, a single beam-shaping optical element being used to align both optical functional surfaces.
  • a device suitable for carrying out the method for simultaneous interferometric testing of the shape and / or position of at least two optical functional surfaces comprises, according to one embodiment, an interferometric test set-up which has an interferometer and a beam-shaping optical element which is arranged in the beam path between the interferometer and the optical functional surfaces is.
  • the beam-shaping optical element is advantageously suitable for generating a plurality of test wave fronts and for generating a plurality of adjustment wave fronts.
  • the device advantageously contains alignment marks which are located at defined positions in the interferometric test setup or defined positions in relation to the optical functional surfaces.
  • a single, in particular diffractive, optical element is preferably used as the beam-shaping optical element 1, as is exemplified in FIG Fig. 1 is shown.
  • the method can also be used using other passive or actively regulated beam-shaping optical elements, such as a refractive phase plate or a spatial light modulator (spatial light modulator).
  • the CGH 1 When using a diffractive diffraction grating in the form of a CGH, the CGH 1 is typically produced by lithography processes as a transmission or reflection grating on a suitable substrate.
  • the transmissive CGH 1 shown uses two test holograms 2 and 3 for the interferometric test, which have diffractive microstructures that have the adapts the wave front arriving from an interferometer in accordance with the geometry of the optical functional surfaces to be tested.
  • the exemplary CGH 1 has adjustment holograms 4, 5, 6 and 7, which are also diffractive microstructures.
  • the adjustment holograms 4 and 5 convert the incoming wavefront, for example, into a flat wavefront for testing two plane surfaces in the test set-up, which act as alignment marks. In accordance with the measured interference fringe pattern, the adjustment holograms 4 and 5 can thus determine a tilt of the appropriate plane surfaces with respect to the CGH 1 around the coordinate axes X and Y.
  • the further adjustment holograms 6 and 7 convert the incoming wave front, for example, into two converging spherical wave fronts, which check the position of two spherical retroreflectors functioning as adjustment marks in the interferometric test setup.
  • a deviation of the spherical retroreflectors from their desired position leads to an interference fringe pattern in the two adjustment holograms 6 and 7, which makes it possible to check the displacements and tiltings between CGH 1 and the spherical adjustment marks in all six degrees of freedom.
  • Another hologram structure on the in Fig. 1 CGH 1 shown as an example is a retroreflector 8 designed as a ring, which serves to adjust the CGH 1 to the interferometer.
  • the incident wavefront for example, is reflected back in a Littrow arrangement and used to adjust the CGH 1.
  • Fig. 2 shows an embodiment of the interferometric test setup in side view, comprising a Fizeau interferometer 9 with a transmission sphere 10 as the final reference surface, corresponding to a CGH 1 Fig. 1 and two optical functional surfaces 13 and 14 manufactured monolithically on a common support structure 12, which are mirror surfaces in the exemplary embodiment shown here.
  • the spherical wave emanating from the transmission sphere 10 of the interferometer first converges to a focal point 11 and then continues to diverge in a spherical form up to the CGH 1, at which the wave is diffracted and preferably changed in shape in the test holograms 2, 3 contained therein that it strikes the optical functional surfaces 13, 14 to be measured perpendicularly.
  • Fig. 3 shows the test setup according to the embodiment of Fig. 2 in isometric representation for improved clarity.
  • the exemplary Fizeau interferometer 9 uses a transmission sphere 10 to generate a spherical measurement wavefront.
  • the CGH 1 contains various test holograms 2, 3 and adjustment holograms 4, 5, 6, 7.
  • a mirror module is formed by a support structure 12 with two optical functional surfaces 13, 14 arranged thereon, which are mirror surfaces.
  • the optical functional surfaces 13, 14 are located together with alignment marks 15, 16, 17 and 18 on the common support structure 12.
  • the alignment marks 15, 16 are two plane surfaces made in optical quality, which allow reflection of the incident light and with the alignment marks 17, 18 around two spherical spherical caps, which act as retroreflectors.
  • the interferometric shape and position check is usually carried out in the first positive or negative diffraction order of the CGH, but a test in another diffraction order is also possible.
  • To align the mirror module it usually has to be aligned with the CGH 1 in all six degrees of freedom. This is done, for example, by the adjustment holograms 4, 5, 6, 7 contained in the CGH, in particular by means of the observed interference fringe patterns.
  • the adjustment holograms 4 and 5 convert the incoming spherical wavefront into an emerging flat wavefront, which is reflected on the flat reference surfaces of the alignment marks 15, 16.
  • the evaluation of the interferogram enables an exact adjustment of the mirror module in the rotations around the X and Y coordinate axes to the CGH 1.
  • the adjustment holograms 6, 7 convert the incoming diverging spherical wave front into two emerging spherically converging wave fronts, which have their focus at the center of curvature of the adjustment marks 17, 18 designed as concave adjustment spheres.
  • the wave fronts are reflected on the alignment marks 17, 18 and the resulting interference fringe pattern is evaluated on the interferometer 9.
  • the mirror module can be adjusted in all six degrees of freedom compared to the CGH 1.
  • Different alignment holograms or alignment marks generally have different sensitivities to different positional deviations between the CGH and the test object. According to the design possibilities of the CGH, a multitude of different optical alignment marks are conceivable.
  • the alignment marks do not have to be connected monolithically to the supporting structure 12 of the test specimen but can also be located at defined positions within the interferometric test setup.
  • the arrangement of the alignment marks 15, 16, 17, 18 on the common support structure 12 of the optical functional surfaces is particularly advantageous, since the combined production of the optically relevant functional surfaces 13, 14 together with the alignment marks 15, 16, 17, 18 in only one single machine clamping guarantees an exact position after manufacture.
  • Fig. 4 shows a possible one using the CGH 1 and the test setup from the previous ones Figures 2 and 3 measured interferogram.
  • the measured interference fringe pattern 8 'on the retroreflector ring 8 shows, due to a shift in the X and Y directions between the CGH 1 and the transmission sphere 10, portions of interference fringes running at a straight line at 45 ° and additionally a rotationally symmetrical portion due to a remaining misalignment in Z.
  • the in The interference fringe patterns 4 ', 5' measured in the adjustment holograms 4 and 5 show, above all, portions of a tilt of the mirror module with respect to the CGH 1 about the X axis and, in addition, a minimal shift in the Z direction. The same portions of the misalignment can be observed with different sensitivity in the adjustment holograms 6 and 7 as interference fringe patterns 6 ', 7'.
  • test holograms 2 and 3 show the measured shape deviation 2 ', 3' of the two optical functional surfaces 13, 14 with the remaining misalignment, which is already visible in the adjustment holograms 4, 5, 6 and 7. According to the shape accuracy of the alignment marks 15, 16, 17, 18 used, the interference fringe patterns 4 ', 5', 6 ', 7' in the Adjustment holograms 4, 5, 6, 7 are still overlaid by the measured strips due to the shape deviations of the adjustment marks 15, 16, 17, 18.
  • test, adjustment or calibration holograms can be arranged at any position of a transmissive or reflective CGH and interact with optically functionally relevant surfaces, alignment marks or reference standards.
  • Interferometric test arrangements are also conceivable, which check several individually manufactured CGHs for testing the shape and position of optically functionally relevant surfaces to form a single common supporting structure. It is advantageous for the exact measurement of the shape and position deviation to use the same adjustment structures according to which the measurement setup is adjusted.
  • Fig. 5a shows an interferometric test arrangement using the in Fig. 1 shown CGH 1.
  • the test object is a mechanical support structure 19 with a monolithically manufactured mirror surface as an optical functional surface 20.
  • alignment marks 15, 16, 17, 18 are used, which in turn are optically represented by the CGH 1 through the adjustment holograms 4, 5, 6, 7 can be appropriate and thus enable an exact positioning of the test object in the interferometric test setup.
  • a Fizeau interferometer 9 with a spherical reference surface 10 in turn serves as the measuring instrument.
  • Fig. 5b shows the advantage of the method in the assembly of a second, individually manufactured optical functional surface 21, which is also a mirror surface, on the common supporting structure 19.
  • the optical functional surface 21 is for this purpose by means of suitable receiving structures in relation to the first optical functional surface 20 or the common supporting structure 19 assembled and / or adjusted. Active position control of the second optical functional surface in relation to the first optical functional surface 20 is also possible when using suitable manipulation kinematics.
  • the assembly is then carried out using suitable reference surfaces, adjustment structures, tuning dimensions etc. with interferometric testing according to the method described here. Both optical functional surfaces 20, 21 may already have been brought into their final optical shape by appropriate manufacturing processes.
  • 6a and 6b show a further advantageous exemplary embodiment of the method, in which two individually manufactured optical functional surfaces 23, 24 are mounted on a common support structure 22 with interferometric control of the shape and position.
  • Fig. 6a an interferometric test setup similar to Fig. 3 respectively.
  • 5a, 5b which uses a Fizeau interferometer 9 with a spherical reference surface 10 as an example.
  • a CGH 1 By means of diffraction, a CGH 1 generates a plurality of measurement, adjustment, and possibly calibration wave fronts, which match the shape of the optical functional surfaces 23, 24 Fig. 6b or the shape of the alignment marks 15, 16, 17, 18 are adapted.
  • adjustment marks 15, 16, 17, 18 can be used, which can be used to control the position of the support structure 22 by means of the adjustment holograms 4, 5, 6, 7.
  • Fig. 6b the assembly of the two optical functional surfaces 23, 24, which are, for example, mirror surfaces, is shown to form the common support structure 22.
  • the optical functional surfaces 23, 24 may already have been manufactured beforehand by a shaping manufacturing process in accordance with their specification or may be manufactured by Check the shape error in the interferometric test setup Fig. 6b checked in their form and then processed. Analogous to Fig. 5b By checking the interference fringe patterns in the adjustment holograms 4, 5, 6, 7, a clear distinction can be made between shape and position errors of the optical functional surfaces 23, 24. The minimization of the shape and position deviations of the optical functional surfaces 23, 24 is then carried out iteratively.
  • the in the Figures 1 to 6 The exemplary embodiments of the method and the device described describe an interferometric examination of the shape and position of optically function-relevant reflecting mirror surfaces in relation to a common supporting structure. It was shown that the method for checking the shape and position of two monolithically connected mirror surfaces, a mirror surface monolithically connected to a common supporting structure and a single-made mirror body, as well as for two individually manufactured mirror bodies and a common supporting structure, can be advantageously used. For this purpose, the method uses at least one shared diffractive element for the generation of suitable measuring, adjusting and possibly calibration wave fronts.
  • interferometric test method also applies to other test geometries and arrangements, different alignment marks and different types of optical functional surfaces, e.g. optically transmissive lens elements is applicable.
  • An advantageous feature of the method is the use of at least one shared, preferably diffractive element and shared adjustment marks, which are located at defined positions in the interferometric test setup, for testing the shape and / or position of the at least two optical functional surfaces.
  • the adjustment of mounted lenses to a common support structure is a possible application example of the method.
  • more than two optical functional surfaces can be tested in shape and / or position on a common support structure.
  • an active position control of at least two optical functional surfaces in the room is also possible if a common diffractive element and shared adjustment marks are used accordingly. Further applications with different types of interferometric test setups, alignment marks and test geometries therefore do not represent any restrictions for the applicability of the method.
  • Fig. 7 shows a further embodiment of a CGH 25, which can be used in the method and the device.
  • the CGH 25 is operated as a diffractive zero element in an interferometric test setup with a preferably Fizeau interferometer and corresponding high-precision reference surface.
  • the CGH 25 has various adjustment holograms 28, 29, 30, 31, 32 for aligning the CGH 25 and the test object in the optical test setup.
  • the adjustment hologram 32 can be used as a retro reflector ring in a Littrow arrangement in order to make the CGH 25 the reference element of the interferometer based on the measured interference fringe pattern.
  • Additional alignment holograms 28, 29, 30, 31 generate, for example, spherical alignment wavefronts which are reflected on suitable alignment marks and thus also the alignment of the alignment marks or a support structure which mechanically fixes the optical functional surfaces to be checked enables interferometric accuracy in all six degrees of freedom.
  • the CGH 25 shown here uses two test holograms 26, 27 which, in addition to the mostly aspherical or free-formed test wave front, generate a further preferably plane or spherical calibration wave front.
  • FIG. 8a and 8b show an embodiment of a device for interferometric testing using the in Fig. 7 CGH 25 shown with the possibility of absolute calibration.
  • two known, preferably spherical, reference standards 33, 34 are first mounted in the optical test setup.
  • the reference standards 33, 34 should be based on the curvature of the optically function-relevant surfaces 36, 37 to be measured later and can also contain alignment marks which are used in the same way by the CGH 25 or the alignment holograms 28, 29, 30, 31 contained thereon to determine the Position of the normal can be optically appropriate.
  • different reference standards 33, 34 are used for the calibration of the wavefront error of the CGH 25 depending on the shape of the optical functional surfaces 36, 37 to be tested.
  • the use of a single reference standard for both optical functional surfaces 36, 37 to be tested does not constitute a restriction for the method shown.
  • the areas of the CGH 25 relevant for the measurement are calibrated by reflecting the generated calibration wavefront on the known reference standards 33, 34 and below Knowledge of their shape accuracy.
  • the measured calibration wave fronts are then stored as a calibration file and used to determine the shape error of the optical functional surfaces 36, 37. That way an absolute statement on the contribution of the CGH 25 to the measured wavefront error can be made.
  • several reference standards with different geometries are generally necessary.
  • Fig. 8b shows the measurement of the optical functional surfaces 36, 37 using the CGH 25 and its previously determined wavefront error.
  • the optical functional surfaces 36, 37 have, for example, an aspherical or free-formed geometry. Other optical functional surfaces, such as flat surfaces or spheres, can also be checked interferometrically using the CGH 25.
  • Both optical functional surfaces 36, 37 are in the embodiment of the Fig. 8b arranged on a common support structure 35.
  • the test can also relate to freely manipulable individual components or combinations of monolithically manufactured and separately assembled components. After the interferometric check of the optical functional surfaces 36, 37 has been carried out, the stored calibration file is used and offset against the measurement result. In this way, the measurement uncertainty during the form inspection can be reduced again.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur interferometrischen Prüfung der Form und/oder Lage von mindestens zwei optischen Funktionsflächen in einem gemeinsamen optischen Prüfaufbau.
  • Diese Patentanmeldung beansprucht die Priorität der deutschen Patentanmeldung 10 2014 117 511. 5 .
  • Hochqualitative optische Instrumente im Bereich der Erdbeobachtung, Astronomie, Lithographie und Präzisionsmesstechnik nutzen zunehmend optische Designs mit asphärisch oder freigeformten optischen Elementen. Die Erhöhung der Designvielfalt infolge der steigenden Anzahl an Freiheitsgraden bei der Verwendung asphärischer oder freigeformter Linsen- oder Spiegelgeometrien ermöglicht eine Verringerung der Baugröße der optischen Systeme bei gleichzeitigem Erhalt oder sogar einer Verbesserung der Abbildungsqualität.
  • Asphärische oder freigeformte Optiken stellen jedoch erhöhte Anforderungen hinsichtlich ihrer Herstellung, messtechnischen Charakterisierung und der Montage zu einem gemeinsamen optischen System. Einzelne optische Bauelemente müssen zur Realisierung der optischen Abbildung bei anspruchsvollen Systemen oftmals Oberflächenabweichungen kleiner als λ/10 oder sogar kleiner als λ/20 peak-to-valley (p.-v.) aufweisen. Gleichzeitig sind die einzelnen optischen Elemente mit Genauigkeiten im einstelligen Mikrometer-, respektive Winkelsekundenbereich, im Strahlengang des optischen Systems anzuordnen und zu justieren. Der Zusammenbau von optisch hochqualitativen Systemen mit asphärisch oder freigeformten Elementen ist daher mit einem erhöhtem Zeit- und Kostenaufwand verbunden.
  • Mit steigenden Anforderungen an die Qualität der optischen Einzelflächen hinsichtlich Formabweichung und Rauheit nehmen im Allgemeinen auch die Anforderungen an den Fertigungs- und Montageprozess zu. Dies betrifft insbesondere hochqualitativ abbildende Systeme für den ultravioletten bzw. sichtbaren Bereich des elektromagnetischen Spektrums. Zum Erreichen der geforderten Toleranzen der Einzelflächen kommen hier spezielle Formgebungs- und Glättprozesse, wie verschiedenste Sub-Apertur-Politurtechniken, zum Einsatz. Entsprechend dem zu bearbeitenden optischen Material kann dies z.B. die lokale Bearbeitung mittels Ionenstrahl oder magnetorheologischen Polierflüssigkeiten betreffen. Diese Prozesse entfernen lokal Material von der optischen Oberfläche basierend auf der vorherigen Ermittlung der Formabweichung über die zu korrigierende Apertur. Für den Korrekturprozess sind somit die messtechnische Erfassung der Formabweichung der optisch funktionsrelevanten Flächen mit möglichst hoher und gleichmäßiger Lateralauflösung, sowie die berührungslose Messung zur Vermeidung von Oberflächendefekten infolge des Messprozesses, von entscheidender Bedeutung.
  • Berührunglos messende Verfahren zur Formprüfung von optischen Einzelflächen mit geforderten Formabweichungen im Bereich < λ/10 (p.-v.) sind an sich bekannt und betreffen insbesondere Methoden der Interferometrie, optischer Profilometrie und Deflektometrie. Aufgrund der Möglichkeiten zur schnellen und hochpräzisen Prüfung der vollen Apertur, haben sich vor allem interferometrisch messende Prüfverfahren als Standardmessmethode durchgesetzt. In diesem Bereich ist vor allem die Fizeau-Interferometrie zu erwähnen, bei der die erreichbare Messunsicherheit vor allem von der Genauigkeit einer finalen Referenzfläche abhängig ist. Diese Referenzflächen sind meist hochgenaue Planflächen (Transmission Flat) oder sphärische Flächen (Transmission Sphere), welche eine Bestimmung der Formabweichung mit Messunsicherheiten < λ/20 (p.-v.) ermöglichen. Eine direkte Bestimmung der Formabweichung von optischen Bauteilen ist aufgrund der verwendeten Referenzflächen allerdings in der Regel auf plane und sphärische Prüflinge beschränkt. Für diese Geometrien existieren weiterhin spezielle Kalibrierverfahren, mit denen die Messunsicherheit auf wenige Nanometer Oberflächenabweichung reduziert werden kann.
  • Die Prüfung asphärischer oder freigeformter Oberflächen kann durch die alleinige Verwendung der vorhandenen Referenzflächen nur bedingt oder wie in den meisten Fällen gar nicht durchgeführt werden, da infolge der hohen Abweichung zur planen bzw. sphärischen Form hohe Streifendichten im Interferogramm entstehen, welche die verwendeten Detektoren nicht mehr erfassen können.
  • Zur Formprüfung von Asphären, Zylindern und Freiformen werden daher standardmäßig sog. Nulloptiken eingesetzt. Dies sind zusätzlich in den Strahlengang des optischen Prüfaufbaus eingebrachte Elemente, wie Linsen oder optische Gitter, welche die Messwellenfront an die spezifische Form des Prüflings anpassen und so eine interferometrische Auswertung ermöglichen. Die eingebrachten Nulloptiken müssen speziell für jede unterschiedliche Prüflingsgeometrie designt und gefertigt werden. Insbesondere computergenerierten Hologrammen (CGH - Computer Generated Hologram) als diffraktive Nulloptiken kommt in diesem Zusammenhang eine besondere Bedeutung zu. Sie ermöglichen eine hohe Designvielfalt und können durch moderne Methoden der Lithographie in hoher Präzision gefertigt werden.
  • Durch Einbringung eines CGH in den optischen Prüfaufbau werden jedoch auch Messfehler durch Abweichungen des CGH selbst bei der eigentlichen Formprüfung induziert. Die Fehler entstehen insbesondere durch Positionsungenauigkeiten der Elemente im Prüfaufbau und zum anderen durch Imperfektionen in der Herstellung des CGH.
  • Ein Prüfaufbau, bei dem ein CGH verwendet wird, ist aus der Druckschrift US 5 530 547 A bekannt. Bei der Ausrichtung des CGH im Prüfaufbau müssen sowohl die Relativposition zwischen Interferometer und CGH, als auch die Relativposition zwischen CGH und Prüfling, exakt eingestellt werden. Zur Ausrichtung des CGH zum Interferometer werden oftmals einfache Littrow-Anordnungen in beispielsweise ringförmiger Struktur verwendet, welche die vom Interferometer eintreffende Messwellenfront rückreflektieren und mit der Referenzwellenfront zur Interferenz bringen.
  • Die Komplexität der Ausrichtung der Prüflingsfläche zum CGH ist abhängig von der konkreten Prüflingsgeometrie und dem verwendeten Prüfaufbau. Rotationssymmetrisch asphärische Flächen oder entsprechende Off-Axis-Segmente einer rotationssymmetrischen Form beispielsweise können noch unter verschiedenen Azimuthalwinkeln des Prüflings geprüft werden, um zwischen Form- und Lagefehler zu unterscheiden. Die Prüfung von Freiformen ist durch das Fehlen der Rotationssymmetrie deutlich schwieriger. Aus diesem Grund werden gemäß dem Stand der Technik zur Justage der Relativposition zwischen CGH und Prüfling weitere Hilfshologramme gefertigt, welche die vom Interferometer eintreffende Messwellenfront in gezielter Weise formen. Die Wellenfronten stehen in Bezug zu weiteren Justiermarken, welche entweder monolithisch mit dem optischen Prüfling verbunden sind, oder sich an genau definierten Stellen im optischen Testaufbau befinden. Dies können z.B. plane oder sphärische Referenzflächen sein, welche die vom CGH eintreffende Messwellenfront rückreflektieren. Bei Verwendung von entsprechend hochwertigen Justiermarken mit geringer Formabweichung, können Positionsfehler in der Ausrichtung zwischen CGH und Prüfling < 1 µm, respektive < 10 Bogensekunden erreicht werden.
  • Imperfektionen des CGH selbst entstehen infolge der Unvollkommenheit des Herstellungsprozesses und betreffen u.a. Substratungenauigkeiten oder Abweichungen der gefertigten diffraktiven Mikrostrukturen in lateraler und axialer Richtung. Die Fehler führen zu Ungenauigkeiten der entstehenden Wellenfront und beeinträchtigen so das Messergebnis. Verschiedene Methoden zur Absolutkalibrierung existieren im Stand der Technik. So werden in den Druckschriften DE 198 20 785 A1 , WO 2003 048 715 A1 und DE 10 2012 100 311 A1 spezielle Prüfaufbauten beschrieben, bei denen sog. Multiplex-CGHs zur Absolutkalibrierung verwendet werden. Die CGHs generieren neben der eigentlichen asphärischen Messwellenfront eine plane oder sphärische Kalibrierwellenfront, welche unter Nutzung eines bekannten Referenznormals zur Absolutkalibrierung des CGH verwendet werden kann. Dies ermöglicht eine absolute Ermittlung des Fehlers des CGH, wodurch die Präzision der Messung deutlich verbessert werden kann.
  • Während die Verwendung eines CGH eine große Designvielfalt hinsichtlich der Messung von Justiermarken oder Kalibriernormalen bietet, so beziehen sich die im Stand der Technik beschriebenen interferometrischen Prüftechniken stets auf die Prüfung von nur einer einzigen für das optische System funktionsrelevanten Fläche.
  • Eine weitere Prüfvorrichtung, die ein CGH verwendet, ist in "Freeform mirror fabrication and metrology using a high performance test CGH and advanced alignemnt features" von S. Scheiding et al. in Proc. of SPIE Vol.8613 (2013) zu finden. Weiterhin bekannt ist das taktile oder interferometrische Prüfen der Form und Lage zweier optischer Funktionsflächen aus der DE 10 2009 041 501 B3 .
  • Eine zu lösende Aufgabe besteht somit darin, ein Verfahren und eine Vorrichtung zur interferometrischen Prüfung anzugeben, welche die gleichzeitige Prüfung von Form und/oder Lage von mindestens zwei optischen Funktionsflächen in einem gemeinsamen optischen Prüfaufbau ermöglichen.
  • Diese Aufgabe wird durch ein Verfahren und eine Vorrichtung gemäß den unabhängigen Patentansprüchen gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Gemäß zumindest einer Ausgestaltung des Verfahrens zur gleichzeitigen interferometrischen Messung von Form und/oder Lage von mindestens zwei optischen Funktionsflächen wird ein interferometrischer Prüfaufbau verwendet, der ein Interferometer, ein strahlformendes optisches Element, das im Strahlengang zwischen dem Interferometer und den optischen Funktionsflächen angeordnet ist, und Justiermarken, welche sich auf definierten Positionen im interferometrischen Prüfaufbau oder definierten Positionen in Relation zu den optischen Funktionsflächen befinden, umfasst. Die Justiermarken sind vorzugsweise als Reflektoren, insbesondere als plane oder sphärische Spiegelflächen, ausgebildet. Die Justiermarken können zum Beispiel an einer Tragstruktur der optischen Funktionsflächen angeordnet sein und fungieren bei dem Verfahren vorteilhaft als Justierhilfen.
  • Durch das strahlformende optische Element werden bei dem Verfahren vorteilhaft mehrere Justierwellenfronten erzeugt, wobei die Justierwellenfronten an den Justiermarken und an den optischen Funktionsflächen transmittiert oder reflektiert werden und so Messwellenfronten erzeugt werden. Durch Auswertung der Messwellenfronten im Interferometer ermöglicht das Verfahren ein Vermessen der Lage der optischen Funktionsflächen in Bezug zueinander und in Bezug zu den Justiermarken. Nachfolgend können vorteilhaft Justierbewegungen zur Ausrichtung der optischen Funktionsflächen zu einer Sollposition durchgeführt werden. Die Schritte des Vermessens der Lage der optischen Funktionsflächen und der Durchführung von Justierbewegungen zur Ausrichtung der optischen Funktionsflächen können gegebenenfalls mehrfach wiederholt werden, bis sich die optischen Funktionsflächen in der Sollposition oder innerhalb eines vorgegebenen Toleranzbereichs um die Sollposition befinden.
  • Weiterhin werden bei dem Verfahren vorteilhaft mindestens zwei Prüfwellenfronten von dem strahlformenden optischen Element erzeugt, wobei die Prüfwellenfronten an den optischen Funktionsflächen transmittiert oder reflektiert werden und so weitere Messwellenfronten erzeugt werden. Durch Auswertung der weiteren Messwellenfronten im Interferometer können vorteilhaft Form- und/oder Lageabweichungen der optischen Funktionsflächen von einer Sollgeometrie oder Sollposition bestimmt werden.
  • Durch das Verfahren wird auf diese Weise eine gleichzeitige Prüfung der Form und/oder Lage mindestens zweier optischer Funktionsflächen erreicht. Insbesondere ermöglicht das Verfahren eine Überprüfung der Form und Lage beider optischen Funktionsflächen zueinander und zu den sich im Prüfaufbau befindlichen Justiermarken.
  • Unter einer "optischen Funktionsfläche" soll hier und im Folgenden eine in optischer Qualität gefertigte Oberfläche verstanden werden, welche für die Funktionsweise eines optischen Systems, wie beispielsweise eines Linsen- oder Spiegelteleskops, von Bedeutung ist. Insbesondere können die mindestens zwei optischen Funktionsflächen ein funktionsrelevanter Bestandteil eines optischen Systems mit mehreren optischen Flächen sein. Die optischen Funktionsflächen können insbesondere Linsen-, Gitter- oder Spiegelflächen sein, welche vorzugsweise auf einer gemeinsamen Tragstruktur gefertigt und/oder montiert werden. Die optischen Funktionsflächen sind zum Beispiel Spiegelflächen, an denen die Justierwellenfronten und Prüfwellenfronten bei der Durchführung des Verfahrens reflektiert werden. Mit besonderem Vorteil ist das Verfahren beispielsweise für die Form- und Lageprüfung von monolithisch verbundenen Spiegelflächen auf einer gemeinsamen Tragstruktur anwendbar. Das Verfahren und die Vorrichtung können weiterhin vorteilhaft für die Montage von mindestens zwei optischen Einzelbauelementen zu einer gemeinsamen Tragstruktur, oder einem optischen Einzelbauelement zu einem sich monolithisch auf einer Tragstruktur befindlichen Bauelement, genutzt werden.
  • Die optischen Funktionsflächen können jeweils zum Beispiel plan, sphärisch, asphärisch oder als Freiformfläche ausgebildet sein. Besonders vorteilhaft ist das Verfahren an optischen Funktionsflächen anwendbar, die ganz oder zumindest bereichsweise asphärisch oder als Freiformfläche ausgebildet sind. Durch Anwendung des Verfahrens können insbesondere Informationen zur nötigen Korrektur der Oberflächenform und/oder Position der optischen Funktionsflächen gewonnen werden, welche in nachfolgenden Formkorrektur- oder Montageprozessen Anwendung finden können.
  • Das in dem interferometrischen Prüfaufbau verwendete Interferometer umfasst eine Lichtquelle zur Erzeugung von kohärentem, vorzugsweise monochromatischem Licht, das in dem interferometrischen Prüfaufbau auf das strahlformende optische Element gerichtet ist. Beispielsweise kann das Interferometer einen Laser als Lichtquelle aufweisen. Das Interferometer kann insbesondere als Fizeau-Interferometer ausgeführt sein. Die aus dem Prüfaufbau in das Interferometer zurückreflektierten Messwellenfronten können in dem Interferometer beispielsweise durch Verwendung eines Strahlteilers mit einer Referenzwellenfront, die von einer optischen Referenzfläche im Interferometer erzeugt wird, zur Interferenz gebracht und beispielsweise unter Verwendung eines Bildverarbeitungssystems ausgewertet werden. Die Funktionsweise eines solchen Interferometers ist dem Fachmann an sich bekannt und wird deshalb hier nicht näher erläutert.
  • Das strahlformende optische Element ist vorzugsweise ein diffraktives optisches Element. Insbesondere kann das strahlformende optische Element ein Transmissions- oder Reflexionsgitter sein. Weiterhin ist es aber auch möglich, dass das strahlformende optische Element ein oder mehrere aktiv gesteuerte Elemente zur Strahlablenkung wie beispielsweise einen räumlichen Lichtmodulator (Spatial Light Modulator, SLM) oder eine refraktive Phasenplatte aufweist. Bei einer besonders bevorzugten Ausgestaltung ist das strahlformende optische Element ein computergeneriertes Hologramm. Das strahlformende optische Element weist mehrere Segmente auf, die zur Erzeugung der Justierwellenfronten und Prüfwellenfronten aus den Wellenfronten, welche von dem Interferometer ausgehen, vorgesehen sind. Die von dem Interferometer ausgehenden Wellenfronten können plan oder insbesondere sphärisch sein, wobei am Interferometer zum Beispiel eine sphärische Referenzfläche (Transmission Sphere) verwendet wird.
  • Das strahlformende optische Element weist mindestens zwei Prüfhologramme zur Erzeugung der Prüfwellenfronten und mehrere Justierhologramme zur Erzeugung der Justierwellenfronten auf. Die Prüfhologramme und/oder Justierhologramme können insbesondere jeweils Segmente eines als computergeneriertes Hologramm ausgeführten strahlformenden optischen Elements sein.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung weist das strahlformende optische Element mindestens ein Kalibrierhologramm zur Erzeugung von Kalibrierwellenfronten auf. Mittels der durch das mindestens eine Kalibrierhologramm erzeugten Kalibrierwellenfront können vorteilhaft bekannte, vorzugsweise plane oder sphärische Referenznormale zur Kalibrierung des interferometrischen Prüfaufbaus vermessen werden. Auf diese Weise kann die Prüfung der optischen Funktionsflächen vorteilhaft als Absolutmessung mit vorteilhaft geringer Messunsicherheit durchgeführt werden.
  • Die mindestens zwei optischen Funktionsflächen sind bei einer bevorzugten Ausführungsform monolithisch auf einer gemeinsamen Tragstruktur angeordnet. Mit anderen Worten sind die optischen Funktionsflächen untrennbar mit der gemeinsamen Tragstruktur verbunden. Bei dem Verfahren können vorteilhaft die Lage der optischen Funktionsflächen zueinander und deren Form überprüft werden, um gegebenenfalls eine Justierung und/oder Formkorrektur vorzunehmen.
  • Bei einer weiteren Ausgestaltung ist eine erste der mindestens zwei optischen Funktionsflächen monolithisch mit einer gemeinsamen Tragstruktur verbunden. Bei dieser Ausgestaltung wird bei dem Verfahren vorzugsweise eine zweite, insbesondere einzeln gefertigte, optische Funktionsfläche relativ zu der ersten optischen Funktionsfläche justiert und auf der gemeinsamen Tragstruktur montiert.
  • Weiterhin kann vorgesehen sein, dass keine der mindestens zwei optischen Funktionsflächen monolithisch mit einer gemeinsamen Tragstruktur verbunden ist, wobei die optischen Funktionsflächen bei dem Verfahren relativ zueinander justiert und auf der gemeinsamen Tragstruktur montiert werden. Bei dieser Ausgestaltung sind beispielsweise beide optischen Funktionsflächen separat gefertigte Elemente, die unter Verwendung des Verfahrens relativ zueinander justiert auf der gemeinsamen Tragstruktur montiert werden.
  • Eine weitere Ausgestaltung kann die Lageprüfung und Montage von mindestens zwei separat gefertigten optischen Funktionsflächen zu beliebigen Montagestrukturen in einem optischen Prüfaufbau betreffen. Bei dieser Ausgestaltung können die optischen Funktionsflächen zum Beispiel durch geeignete Manipulationstechniken, wie beispielsweise Hexapoden, zu einer Sollposition ausgerichtet werden, wobei ein einziges strahlformendes optische Element zum Ausrichten beider optischer Funktionsflächen genutzt wird.
  • Eine zur Durchführung des Verfahrens geeignete Vorrichtung zur gleichzeitigen interferometrischen Prüfung der Form und/oder Lage von mindestens zwei optischen Funktionsflächen umfasst gemäß einer Ausgestaltung einen interferometrischen Prüfaufbau, der ein Interferometer und ein strahlformendes optisches Element, das im Strahlengang zwischen dem Interferometer und den optischen Funktionsflächen angeordnet ist, aufweist. Das strahlformende optische Element ist vorteilhaft zur Erzeugung von mehreren Prüfwellenfronten und zur Erzeugung von mehreren Justierwellenfronten geeignet. Weiterhin enthält die Vorrichtung vorteilhaft Justiermarken, welche sich auf definierten Positionen im interferometrischen Prüfaufbau oder definierten Positionen in Relation zu den optischen Funktionsflächen befinden.
  • Weitere vorteilhafte Ausführungen der Vorrichtung ergeben sich aus der vorherigen Beschreibung des Verfahrens und den nachfolgend beschriebenen Ausführungsbeispielen.
  • Das Verfahren und die Vorrichtung zur interferometrischen Prüfung werden im Folgenden anhand von Ausführungsbeispielen im Zusammenhang mit den Figuren 1 bis 8 näher erläutert.
  • Es zeigen:
    • Fig. 1 ein beispielhaftes computergeneriertes Hologramm (CGH), das bei einem Ausführungsbeispiel des Verfahrens als strahlformendes Element verwendbar ist,
    • Fig. 2 ein Ausführungsbeispiel einer Vorrichtung zur interferometrischen Prüfung in einer Seitenansicht zur Messung von Form und Lage eines monolithisch gefertigten Spiegelmoduls unter Verwendung von Referenzstrukturen, umfassend ein CGH entsprechend Fig. 1,
    • Fig. 3 den bereits in Fig. 2 dargestellten Prüfaufbau in isometrischer Darstellung zur weiteren Erläuterung eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens,
    • Fig. 4 ein mit der Vorrichtung gemäß Fig. 2 und Fig. 3 beispielhaft gemessenes Interferenzstreifenmuster zur Erläuterung der optischen Funktion des computergenerierten Hologramms,
    • Fig. 5a und Fig. 5b ein weiteres Ausführungsbeispiel einer Vorrichtung zur interferometrischen Prüfung zur Montage eines gefertigten Einzelspiegels zu einem sich monolithisch auf einer Tragstruktur befindlichen weiteren Spiegels unter interferometrischer Kontrolle und der Nutzung weiterer Referenzstrukturen,
    • Fig. 6a und Fig. 6b ein weiteres Ausführungsbeispiel einer Vorrichtung zur interferometrischen Prüfung zur Montage zweier gefertigter Einzelspiegel zu einer gemeinsamen Tragstruktur,
    • Fig. 7 ein Beispiel eines computergenerierten Hologramms, welches neben der Prüfwellenfront eine weitere, vorzugsweise plane oder sphärische Kalibrierwellenfront generiert, wodurch eine Absolutkalibrierung beider Prüfhologramme ermöglicht wird, und
    • Fig. 8a und Fig. 8b ein Ausführungsbeispiel eines möglichen Aufbaus zur Absolutkalibrierung des in Fig. 7 dargestellten Hologramms unter Nutzung sphärischer Referenznormale.
  • Gleiche oder gleich wirkende Bestandteile sind in den Figuren jeweils mit den gleichen Bezugszeichen versehen. Die dargestellten Bestandteile sowie die Größenverhältnisse der Bestandteile untereinander sind nicht als maßstabsgerecht anzusehen.
  • Bei dem Verfahren und der Vorrichtung zur simultanen Prüfung von Form und/oder Lage mindestens zweier optischer funktionsrelevanter Flächen wird vorzugsweise ein einzelnes, insbesondere diffraktives optisches Element als strahlformendes optisches Element 1 genutzt, wie es beispielhaft in Fig. 1 dargestellt ist. Es sei bemerkt, dass sich alle folgenden Beispiele auf die Verwendung eines diffraktiven Beugungsgitters, insbesondere eines computergenerierten Hologramms (CGH), als strahlformendes optisches Element 1 beziehen. Das Verfahren ist jedoch auch unter Verwendung von anderen passiven oder aktiv geregelten strahlformenden optischen Elementen, wie einer refraktiven Phasenplatte oder eines räumlichen Lichtmodulators (Spatial Light Modulator), anwendbar.
  • Bei Verwendung eines diffraktiven Beugungsgitters in Form eines CGHs wird das CGH 1 typischerweise durch Lithographieprozesse als Transmissions- oder Reflexionsgitter auf einem dafür geeigneten Substrat gefertigt. Das in Fig. 1 dargestellte transmissiv wirkende CGH 1 nutzt zur interferometrischen Prüfung zwei Prüfhologramme 2 und 3, welche diffraktiv wirkende Mikrostrukturen aufweisen, die die von einem Interferometer eintreffende Wellenfront entsprechend der Geometrie der zu prüfenden optischen Funktionsflächen anpasst. Neben den für die Form- und Lageprüfung relevanten Prüfhologrammen 2 und 3, besitzt das beispielhafte CGH 1 Justierhologramme 4, 5, 6 und 7, bei denen es sich ebenfalls um diffraktiv wirkende Mikrostrukturen handelt.
  • Die Justierhologramme 4 und 5 überführen die eintreffende Wellenfront zum Beispiel in eine plane Wellenfront zur Prüfung zweier sich im Prüfaufbau befindlichen Planflächen, die als Justiermarken fungieren. Entsprechend des gemessenen Interferenzstreifenmusters kann durch die Justierhologramme 4 und 5 so eine Verkippung der angemessenen Planflächen gegenüber dem CGH 1 um die Koordinatenachsen X und Y ermittelt werden. Die weiteren Justierhologramme 6 und 7 überführen die eintreffende Wellenfront zum Beispiel in zwei konvergierende sphärische Wellenfronten, welche die Lage zweier als Justiermarken fungierenden sphärischen Retroreflektoren im interferometrischen Prüfaufbau überprüfen. Eine Abweichung der sphärischen Retroreflektoren von ihrer Solllage führt zu einem Interferenzstreifenmuster in den beiden Justierhologrammen 6 und 7, wodurch eine Überprüfung der Verschiebungen und Verkippungen zwischen CGH 1 und den sphärischen Justiermarken in allen sechs Freiheitsgraden möglich ist. Eine weitere Hologrammstruktur auf dem in Fig. 1 beispielhaft dargestellten CGH 1 ist ein als Ring ausgebildeter Retroreflektor 8, welcher zur Justierung des CGH 1 zum Interferometer dient. Die einfallende Wellenfront wird beispielsweise in einer Littrow-Anordnung in sich rückreflektiert und zur Justierung des CGH 1 genutzt.
  • Fig. 2 zeigt ein Ausführungsbeispiel des interferometrischen Prüfaufbaus in Seitenansicht, umfassend ein Fizeau-Interferometer 9 mit einer Transmission Sphere 10 als finale Referenzfläche, ein CGH 1 entsprechend Fig. 1 und zwei monolithisch auf einer gemeinsamen Tragstruktur 12 gefertigten optischen Funktionsflächen 13 und 14, die bei dem hier dargestellten Ausführungsbeispiel Spiegelflächen sind. Die von der Transmission Sphere 10 des Interferometers ausgehende Kugelwelle konvergiert zunächst bis zu einem Fokuspunkt 11 und divergiert dann weiter in sphärischer Form bis zum CGH 1, an dem die Welle an den darin enthaltenen Prüfhologrammen 2, 3 gebeugt und vorzugsweise so in ihrer Form verändert wird, dass sie senkrecht auf die zu messenden optischen Funktionsflächen 13, 14 trifft.
  • Fig. 3 zeigt den Prüfaufbau gemäß dem Ausführungsbeispiel der Fig. 2 in isometrischer Darstellung zur verbesserten Anschaulichkeit. Das beispielhafte Fizeau-Interferometer 9 nutzt eine Transmission Sphere 10 zur Generierung einer sphärischen Messwellenfront. Das CGH 1 enthält verschiedene Prüfholgramme 2, 3 und Justierhologramme 4, 5, 6, 7. Ein Spiegelmodul wird durch eine Tragstruktur 12 mit zwei monolithisch darauf angeordneten optischen Funktionsflächen 13, 14, bei denen es sich um Spiegelflächen handelt, gebildet. Die optischen Funktionsflächen 13, 14 befinden sich zusammen mit Justiermarken 15, 16, 17 und 18 auf der gemeinsamen Tragstruktur 12. Im Einzelnen handelt es sich bei den Justiermarken 15, 16 um zwei in optischer Qualität gefertigte Planflächen, welche eine Reflektion des einfallenden Lichts ermöglichen und bei den Justiermarken 17, 18 um zwei sphärische Kugelkalotten, welche als Retroreflektoren wirken.
  • Die interferometrische Form- und Lageprüfung erfolgt üblicherweise in der ersten positiven oder negativen Beugungsordnung des CGH, eine Prüfung in einer anderen Beugungsordnung ist aber auch möglich. Zur Ausrichtung des Spiegelmoduls muss dieses üblicherweise in allen sechs Freiheitsgraden zum CGH 1 ausgerichtet werden. Dies erfolgt beispielsweise durch die in dem CGH enthaltenen Justierhologramme 4, 5, 6, 7, insbesondere mittels der beobachteten Interferenzstreifenmuster. Dabei überführen die Justierhologramme 4 und 5 die eintreffende sphärische Wellenfront in eine austretende plane Wellenfront, welche an den planen Referenzflächen der Justiermarken 15, 16 reflektiert wird. Die Auswertung des Interferogramms ermöglicht eine exakte Justierung des Spiegelmoduls in den Rotationen um die X- und Y-Koordinatenachsen zum CGH 1.
  • Weiterhin überführen die Justierhologramme 6, 7 die eintreffende divergierende sphärische Wellenfront in zwei austretende sphärisch konvergierende Wellenfronten, welche ihren Fokus im Krümmungsmittelpunkt der als konkave Justiersphären ausgebildeten Justiermarken 17, 18 haben. Die Wellenfronten werden an den Justiermarken 17, 18 reflektiert und das entstehende Interferenzstreifenmuster am Interferometer 9 ausgewertet. Anhand des Interferogramms kann das Spiegelmodul so in allen sechs Freiheitsgraden gegenüber dem CGH 1 einjustiert werden. Unterschiedliche Justierhologramme respektive Justiermarken haben im Allgemeinen unterschiedliche Empfindlichkeiten gegenüber verschiedenen Lageabweichungen zwischen dem CGH und dem Prüfling. Entsprechend der Designmöglichkeiten des CGH ist somit eine Vielzahl verschiedener optischer Justiermarken denkbar. Die Justiermarken müssen des Weiteren auch nicht monolithisch mit der Tragstruktur 12 des Prüflings verbunden sein, sondern können sich ebenso an definierten Positionen innerhalb des interferometrischen Prüfaufbaus befinden. Die Anordnung der Justiermarken 15, 16, 17, 18 auf der gemeinsamen Tragstruktur 12 der optischen Funktionsflächen ist jedoch besonders von Vorteil, da die kombinierte Fertigung der optisch relevanten Funktionsflächen 13, 14 zusammen mit den Justiermarken 15, 16, 17, 18 in nur einer einzigen Maschinenaufspannung einen exakten Lagebezug nach der Herstellung garantiert.
  • Fig. 4 zeigt ein mögliches unter Verwendung des CGH 1 und des Prüfaufbaus aus den vorherigen Figuren 2 und 3 gemessenes Interferogramm. Das gemessene Interferenzstreifenmuster 8' am Retroreflektor-Ring 8 zeigt aufgrund einer Verschiebung in X- und Y-Richtung zwischen CGH 1 und Transmission Sphere 10 Anteile von geradlinig unter 45° verlaufenden Interferenzstreifen und zusätzlich einen rotationssymmetrischen Anteil aufgrund einer verbleibenden Dejustierung in Z. Die in den Justierhologrammen 4 und 5 gemessenen Interferenzstreifenmuster 4', 5' zeigen vor allem Anteile einer Kippung des Spiegelmoduls gegenüber dem CGH 1 um die X-Achse und zusätzlich eine minimale Verschiebung in Z-Richtung. Die gleichen Anteile der Dejustierung können mit unterschiedlicher Sensitivität in den Justierhologrammen 6 und 7 als Interferenzstreifenmuster 6', 7' beobachtet werden.
  • Die Prüfhologramme 2 und 3 zeigen die gemessene Formabweichung 2', 3' der beiden optischen Funktionsflächen 13, 14 mit der verbleibenden Dejustierung, welche bereits in den Justierhologrammen 4, 5, 6 und 7 sichtbar ist. Entsprechend der erreichten Formgenauigkeit der verwendeten Justiermarken 15, 16, 17, 18 werden die Interferenzstreifenmuster 4', 5', 6', 7' in den Justierhologrammen 4, 5, 6, 7 noch von den gemessenen Streifen infolge der Formabweichungen der Justiermarken 15, 16, 17, 18 überlagert.
  • Im Einzelnen kann eine interferometrische Form- und Lageprüfung entsprechend einem Ausführungsbeispiel des Verfahrens beispielhaft anhand Fig. 3 und Fig. 4 wie folgt ablaufen:
    • Einrichten des Interferometers 9 und der Transmission Sphere 10.
    • Ungefähres Einrichten des CGH 1 und des Prüflings 12 durch geeignete mechanische Verstelleinrichtungen (nicht explizit dargestellt). Die Positionen sind aus dem optischen Design des Prüfaufbaus hinreichend genau bekannt.
    • Justierung der Relativposition zwischen CGH 1 und Transmission Sphere 10 anhand des im Justierhologramm 8 gemessenen Interferenzstreifenmusters 8'. Das Justierhologramm 8 reflektiert die eintretende sphärische Wellenfront in sich selbst und erzeugt am Interferometer 9 ein Interferenzstreifenmuster 8', welches zur Justierung des CGH 1 durch entsprechende Feinjustierungsmöglichkeiten in den Translationen in X, Y, Z bzw. den Rotationen um X und Y genutzt wird. Das CGH 1 ist zum Interferometer ausgerichtet, wenn die Anzahl der Interferenzstreifen minimal ist. Nach der Einrichtung ist das CGH 1 zum Interferometer 9 bzw. der Transmission Sphere 10 ausgerichtet.
    • Justierung der Kippung des Prüflings 12 gegenüber den Koordinatenachsen X und Y unter Beobachtung des Interferenzstreifenbildes 4', 5' in der Justierhologrammen 4, 5. Der Prüfling 12 ist justiert, wenn die Anzahl der gemessenen Interferenzstreifen 4', 5' minimal wird bzw. nur noch der Formfehler der verwendeten planen Justierflächen 15, 16 als Interferogramm sichtbar wird.
    • Justierung der verbleibenden Positionsabweichungen (Lateralversatz in X, Y, Z, Rotation um Z) zwischen Prüfling und CGH 1 durch Beobachtung der Interferenzstreifenmuster 6', 7' in den Justierhologrammen 6, 7. Der Prüfling ist wiederum justiert, wenn die Anzahl der gemessenen Interferenzstreifen 6', 7' minimal wird, bzw. nur noch der Formfehler der sphärischen Justiermarken 17, 18 als Interferogramm sichtbar wird.
    • Bestimmung des Formfehlers der ersten optischen Funktionsfläche 13 durch interferometrische Auswertung des Interferogramms 2', gemessen im Prüfhologramm 2.
    • Bestimmung des Formfehlers der zweiten optischen Funktionsfläche 14 durch interferometrische Auswertung des Interferogramms 3', gemessen im Prüfhologramm 3.
  • Die Form und Art der verwendeten Prüf- und Justierhologramme richtet sich nach den konkreten Anforderungen des optischen Systems. So können Prüf-, Justier- oder Kalibrierhologramme auf beliebigen Positionen eines transmissiv oder reflektiv wirkenden CGHs angeordnet werden und in Wechselwirkung mit darauf abgestimmten optisch funktionsrelevanten Flächen, Justiermarken oder Referenznormalen treten. Denkbar sind weiterhin interferometrische Prüfanordnungen, welche mehrere einzeln gefertigte CGHs zur Prüfung der Form und Lage von optisch funktionsrelevanten Flächen zu einer einzelnen gemeinsamen Tragstruktur überprüfen. Vorteilhaft für die exakte Messung der Form- und Positionsabweichung ist jeweils die Verwendung der gleichen Justierstrukturen, nach denen der Messaufbau justiert wird.
  • Im Folgenden sollen anhand der Figuren 5 bis 8 weitere Anwendungsbeispiele gezeigt werden, bei denen das Verfahren und die Vorrichtung zur interferometrischen Prüfung mit besonderem Vorteil anwendbar ist.
  • Fig. 5a zeigt eine interferometrische Prüfanordnung mit Verwendung des in Fig. 1 dargestellten CGH 1. Der Prüfling ist in diesem Fall eine mechanische Tragstruktur 19 mit einer monolithisch gefertigten Spiegelfläche als optischer Funktionsfläche 20. Wie bei den vorherigen Ausführungsbeispielen werden Justiermarken 15, 16, 17, 18 genutzt, welche wiederum durch das CGH 1 optisch durch die Justierhologramme 4, 5, 6, 7 angemessen werden können und so eine exakte Positionierung des Prüflings im interferometrischen Prüfaufbau ermöglichen. Als Messinstrument dient wiederum ein Fizeau-Interferometer 9 mit sphärischer Referenzfläche 10.
  • Fig. 5b zeigt den Vorteil des Verfahrens bei der Montage einer zweiten, einzeln gefertigten optischen Funktionsfläche 21, die ebenfalls eine Spiegelfläche ist, auf der gemeinsamen Tragstruktur 19. Die optische Funktionsfläche 21 wird dazu durch geeignete Aufnahmestrukturen in Relation zur ersten optischen Funktionsfläche 20 bzw. der gemeinsamen Tragstruktur 19 montiert und/oder justiert. Auch eine aktive Lagerregelung der zweiten optischen Funktionsfläche in Relation zur ersten optischen Funktionsfläche 20 ist bei Verwendung einer geeigneten Manipulationskinematik möglich. Die Montage erfolgt dann unter Nutzung von geeigneten Referenzflächen, Justierstrukturen, Abstimmmaßen etc. unter interferometrischer Prüfung gemäß dem hierin beschriebenen Verfahren. Dabei können beide optischen Funktionsflächen 20, 21 bereits durch entsprechende Fertigungsverfahren in ihre finale optische Form gebracht worden sein. Es ist aber auch möglich, einen iterativen Formgebungsprozess anhand der interferometrisch ermittelten Messdaten nach Montage und Demontage der zweiten optischen Funktionsfläche 21 durchzuführen. Durch die Kontrolle der Interferenzstreifenmuster in den Justierhologrammen 4, 5, 6, 7 kann eindeutig zwischen Form- und Lagefehler der optischen Funktionsflächen 20, 21 unterschieden werden. Die Minimierung der Form- und Lageabweichungen der beiden optischen Funktionsflächen 20, 21 erfolgt dann iterativ.
  • Fig. 6a und Fig. 6b zeigen ein weiteres vorteilhaftes Ausführungsbeispiel des Verfahrens, bei dem eine Montage zweier einzeln gefertigter optischer Funktionsflächen 23, 24 auf einer gemeinsamen Tragstruktur 22 unter interferometrischer Kontrolle der Form und Lage erfolgt.
  • Dazu zeigt Fig. 6a einen interferometrischen Prüfaufbau analog zu Fig. 3 bzw. Fig. 5a, Fig. 5b, welcher beispielhaft ein Fizeau-Interferometer 9 mit sphärischer Referenzfläche 10 nutzt. Ein CGH 1 erzeugt durch Beugung mehrere Mess-, Justier-, und ggf. Kalibrierwellenfronten, welche an die Form der optischen Funktionsflächen 23, 24 aus Fig. 6b bzw. die Form der Justiermarken 15, 16, 17, 18 angepasst sind. Wie bei den zuvor beschriebenen Ausführungsbeispielen können Justiermarken 15, 16, 17, 18 eingesetzt werden, welche zur Kontrolle der Position der Tragstruktur 22 durch die Justierhologramme 4, 5, 6, 7 angemessen werden können.
  • In Fig. 6b ist die Montage der zwei optischen Funktionsflächen 23, 24, die beispielsweise Spiegelflächen sind, zur gemeinsamen Tragstruktur 22 dargestellt. Die optischen Funktionsflächen 23, 24 können dabei bereits vorher durch formgebende Herstellungsprozess entsprechend ihrer Spezifikation gefertigt worden sein oder werden durch Kontrolle des Formfehlers im interferometrischen Prüfaufbau nach Fig. 6b in ihrer Form geprüft und anschließend bearbeitet. Analog zu Fig. 5b kann durch die Kontrolle der Interferenzstreifenmuster in den Justierhologrammen 4, 5, 6, 7 eindeutig zwischen Form- und Lagefehler der optischen Funktionsflächen 23, 24 unterschieden werden. Die Minimierung der Form- und Lageabweichungen der optischen Funktionsflächen 23, 24 erfolgt dann iterativ.
  • Die in den Figuren 1 bis 6 dargestellten Ausführungsbeispiele des Verfahrens bzw. der Vorrichtung beschreiben eine interferometrische Prüfung der Form und Lage von optisch funktionsrelevanten reflektierenden Spiegelflächen zu einer gemeinsamen Tragstruktur. Dabei wurde gezeigt, dass das Verfahren für die Prüfung der Form und Lage von zwei monolithisch verbundenen Spiegelflächen, einer monolithisch mit einer gemeinsamen Tragstruktur verbundenen Spiegelfläche und einem einzeln gefertigten Spiegelkörper, sowie für zwei einzeln gefertigte Spiegelkörper und einer gemeinsamen Tragstruktur, vorteilhaft anwendbar ist. Das Verfahren nutzt dazu mindestens ein gemeinsam genutztes diffraktives Element zur Erzeugung von geeigneten Mess-, Justier- und ggf. Kalibrierwellenfronten.
  • Es soll an dieser Stelle darauf hingewiesen werden, dass das interferometrische Prüfverfahren ebenfalls auf andere Prüfgeometrien und -anordnungen, verschiedene Justiermarken und verschiedenartige optische Funktionsflächen, wie z.B. optisch transmissiv wirkende Linsenelemente, anwendbar ist.
  • Ein vorteilhaftes Merkmal des Verfahrens ist die Verwendung mindestens eines gemeinsam genutzten vorzugsweise diffraktiven Elements und gemeinsam genutzter Justiermarken, welche sich an definierten Positionen im interferometrischen Prüfaufbau befinden, zur Prüfung von Form und/oder Lage der mindestens zwei optischen Funktionsflächen. So ist z.B. die Justierung von gefassten Linsen zu einer gemeinsamen Tragstruktur ein mögliches Anwendungsbeispiel des Verfahrens. Ebenso können mehr als zwei optische Funktionsflächen auf einer gemeinsamen Tragstruktur in Form und/oder Lage geprüft werden. Weiterhin ist ebenfalls eine aktive Lageregelung von mindestens zwei optischen Funktionsflächen im Raum möglich, wenn ein gemeinsames diffraktives Element und gemeinsam genutzte Justiermarken entsprechend verwendet werden. Weitere Anwendungen mit verschiedenartigen interferometrischen Prüfaufbauten, Justiermarken, sowie Prüfgeometrien stellen daher keine Einschränkung für die Anwendbarkeit des Verfahrens dar.
  • Fig. 7 zeigt ein weiteres Ausführungsbeispiel eines CGH 25, das bei dem Verfahren und der Vorrichtung verwendbar ist. Das CGH 25 wird analog zu den vorherigen Ausführungsbeispielen als diffraktives Nullelement in einem interferometrischen Prüfaufbau mit einem vorzugsweise Fizeau-Interferometer und entsprechender hochgenauer Referenzfläche betrieben. Zur Ausrichtung von CGH 25 und Prüfling im optischen Prüfaufbau besitzt das CGH 25 verschiedene Justierhologramme 28, 29, 30, 31, 32. Das Justierhologramm 32 kann als Retro-Reflektorring in einer Littrow-Anordnung genutzt werden, um das CGH 25 zum Referenzelement des Interferometers anhand des gemessenen Interferenzstreifenmusters auszurichten. Weitere Justierhologramme 28, 29, 30, 31 erzeugen beispielsweise sphärische Justierwellenfronten, welche an geeigneten Justiermarken reflektiert werden und so die Ausrichtung der Justiermarken bzw. einer Tragstruktur, welche die zu prüfenden optischen Funktionsflächen mechanisch fixiert, mit interferometrischer Genauigkeit in allen sechs Freiheitsgraden ermöglicht. Im Gegensatz zu den vorherigen Ausführungsbeispielen nutzt das hier dargestellte CGH 25 zwei Prüfhologramme 26, 27, welche neben der meist asphärisch oder freigeformten Prüfwellenfront, eine weitere vorzugsweise plane oder sphärische Kalibrierwellenfront erzeugen.
  • Fig. 8a und Fig. 8b zeigen ein Ausführungsbeispiel einer Vorrichtung zur interferometrischen Prüfung unter Nutzung des in Fig. 7 dargestellten CGH 25 mit Möglichkeit zur Absolutkalibrierung. Zur Vermessung des absoluten, vom CGH 25 erzeugten Wellenfrontfehlers werden zunächst zwei bekannte vorzugsweise sphärische Referenznormale 33, 34 in den optischen Prüfaufbau montiert. Die Referenznormale 33, 34 sollten sich an der Krümmung der später zu vermessenden optisch funktionsrelevanten Flächen 36, 37 orientieren und können ebenfalls Justiermarken enthalten, welche in gleicher Weise vom CGH 25 bzw. den darauf enthaltenen Justierhologrammen 28, 29, 30, 31 zur Ermittlung der Position der Normale optisch angemessen werden können. Im Allgemeinen werden entsprechend der Form der zu prüfenden optischen Funktionsflächen 36, 37 verschiedene Referenznormale 33, 34 für die Kalibrierung des Wellenfrontfehlers des CGHs 25 verwendet werden. Die Nutzung eines einzigen Referenznormals für beide zu prüfenden optischen Funktionsflächen 36, 37 stellt aber keine Einschränkung für das gezeigte Verfahren dar. Die Kalibrierung der für die Messung relevanten Bereiche des CGH 25 geschieht durch Reflexion der erzeugten Kalibrierwellenfront an den bekannten Referenznormalen 33, 34 und unter Kenntnis deren Formgenauigkeit. Die gemessenen Kalibrierwellenfronten werden dann als Kalibrierdatei hinterlegt und zur Ermittlung des Formfehlers der optischen Funktionsflächen 36, 37 herangezogen. Auf diese Weise kann eine absolute Aussage zum Beitrag des CGH 25 zum gemessenen Wellenfrontfehler getroffen werden. Bei der Prüfung von mehreren optischen Funktionsflächen sind im allgemeinen Fall mehrere Referenznormale mit unterschiedlicher Geometrie nötig.
  • In Fig. 8b ist die Messung der optischen Funktionsflächen 36, 37 unter Nutzung des CGH 25 und dessen vorher ermittelten Wellenfrontfehlers dargestellt. Die optischen Funktionsflächen 36, 37 weisen zum Beispiel eine asphärische oder freigeformte Geometrie auf. Andere optische Funktionsflächen, wie Planflächen oder Sphären, können aber ebenfalls unter Verwendung des CGH 25 interferometrisch geprüft werden. Beide optischen Funktionsflächen 36, 37 sind im Ausführungsbeispiel der Fig. 8b auf einer gemeinsamen Tragstruktur 35 angeordnet. Die Prüfung kann sich aber auch auf frei manipulierbare Einzelbauelemente, oder Kombinationen von monolithisch gefertigten und separat montierten Bauelementen beziehen. Nach erfolgter interferometrischer Prüfung der optischen Funktionsflächen 36, 37 wird die gespeicherte Kalibrierdatei herangezogen und mit dem Messergebnis verrechnet. So kann die Messunsicherheit bei der Formprüfung nochmals verringert werden.

Claims (13)

  1. Verfahren zur gleichzeitigen interferometrischen Prüfung der Form und/oder Lage von mindestens zwei optischen Funktionsflächen (13, 14), durch Nutzung eines interferometrischen Prüfaufbaus umfassend
    - ein Interferometer (9),
    - ein strahlformendes optisches Element (1), das im Strahlengang zwischen dem Interferometer (9) und den optischen Funktionsflächen (13, 14) angeordnet ist, und
    - Justiermarken (15, 16, 17, 18) welche sich auf definierten Positionen im interferometrischen Prüfaufbau oder definierten Positionen in Relation zu den optischen Funktionsflächen (13, 14) befinden,
    mit den Schritten:
    - Erzeugen von mehreren Justierwellenfronten durch das strahlformende optische Element (1), wobei die Justierwellenfronten an den Justiermarken (15, 16, 17, 18) und an den optischen Funktionsflächen (13, 14) transmittiert oder reflektiert werden und so Messwellenfronten erzeugt werden,
    - Vermessen der Lage der optischen Funktionsflächen (13, 14) in Bezug zueinander und in Bezug zu den Justiermarken (15, 16, 17, 18) durch Auswertung der Messwellenfronten im Interferometer (9),
    - Durchführen von Justierbewegungen zur Ausrichtung der optischen Funktionsflächen (13, 14) zu einer Sollposition,
    - Erzeugen von mindestens zwei Prüfwellenfronten durch das strahlformende optische Element (1), wobei die Prüfwellenfronten an den optischen Funktionsflächen (13, 14) transmittiert oder reflektiert werden und so weitere Messwellenfronten erzeugt werden, und
    - Bestimmung von Form- und/oder Lageabweichungen der optischen Funktionsflächen (13, 14) zu ihrer Sollgeometrie und/oder -position durch Auswertung der weiteren Messwellenfronten im Interferometer (9), wobei das strahlformende optische Element (1) mindestens zwei Prüfholgramme (2, 3) zur Erzeugung der Prüfwellenfronten und mehrere Justierhologramme (4, 5, 6, 7) zur Erzeugung der Justierwellenfronten aufweist.
  2. Verfahren nach Anspruch 1,
    wobei die optischen Funktionsflächen (13, 14) zumindest bereichsweise asphärisch oder als Freiformfläche ausgebildet sind.
  3. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei das strahlformende optische Element (1) ein Transmissions- oder Reflexionsgitter, ein oder mehrere aktiv gesteuerte Elemente zur Strahlablenkung oder eine refraktive Phasenplatte umfasst.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei das strahlformende optische Element (1) ein computergeneriertes Hologramm ist.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei das strahlformende optische Element (1) mindestens ein Kalibrierholgramm (26, 27) zur Erzeugung von Kalibrierwellenfronten aufweist.
  6. Verfahren nach einem der vorhergehenden Ansprüche,
    wobei die mindestens zwei optischen Funktionsflächen (13, 14) monolithisch auf einer gemeinsamen Tragstruktur (12) angeordnet sind.
  7. Verfahren nach einem der Ansprüche 1 bis 5,
    wobei mindestens eine erste der mindestens zwei optischen Funktionsflächen (20) monolithisch mit einer gemeinsamen Tragstruktur (19) verbunden ist, und eine zweite, insbesondere einzeln gefertigte, optische Funktionsfläche (21) relativ zu der ersten optischen Funktionsfläche (20) justiert und auf der gemeinsamen Tragstruktur montiert wird.
  8. Verfahren nach einem der Ansprüche 1 bis 5,
    wobei keine der mindestens zwei optischen Funktionsflächen (23, 24) monolithisch mit einer gemeinsamen Tragstruktur(22) verbunden ist, und wobei die optischen Funktionsflächen (23, 24) relativ zueinander justiert und auf der gemeinsamen Tragstruktur (22) montiert werden.
  9. Verfahren nach einem der Ansprüche 6 bis 8,
    wobei die Justiermarken (15, 16, 17, 18) auf der gemeinsamen Tragstruktur (12, 19, 22) angeordnet sind.
  10. Vorrichtung zur gleichzeitigen interferometrischen Prüfung der Form und/oder Lage von mindestens zwei optischen Funktionsflächen (13, 14) mit einem interferometrischen Prüfaufbau, umfassend:
    - ein Interferometer (9),
    - ein strahlformendes optisches Element (1), das im Strahlengang zwischen dem Interferometer (9) und den optischen Funktionsflächen (13, 14) angeordnet ist, wobei das das strahlformende optische Element (1) zur Erzeugung von mehreren Prüfwellenfronten und zur Erzeugung von mehreren Justierwellenfronten geeignet ist und mindestens zwei Prüfholgramme (2, 3) zur Erzeugung der Prüfwellenfronten und mehrere Justierhologramme (4, 5, 6, 7) zur Erzeugung der Justierwellenfronten aufweist, und
    - Justiermarken (15, 16, 17, 18) welche sich auf definierten Positionen im interferometrischen Prüfaufbau oder definierten Positionen in Relation zu den optischen Funktionsflächen (13, 14) befinden.
  11. Vorrichtung nach Anspruch 10,
    wobei das strahlformende optische Element (1) ein Transmissions- oder Reflexionsgitter, ein oder mehrere aktiv gesteuerte Elemente zur Strahlablenkung oder eine refraktive Phasenplatte umfasst.
  12. Vorrichtung nach einem der Ansprüche 10 oder 11,
    wobei das strahlformende optische Element (1) ein computergeneriertes Hologramm ist.
  13. Vorrichtung nach einem der Ansprüche 10 bis 12,
    wobei das strahlformende optische Element (1) mindestens ein Kalibrierholgramm (26, 27) zur Erzeugung von Kalibrierwellenfronten aufweist.
EP15812971.8A 2014-11-28 2015-11-26 Verfahren und vorrichtung zur interferometrischen prüfung Active EP3224570B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014117511.5A DE102014117511A1 (de) 2014-11-28 2014-11-28 Verfahren und Vorrichtung zur interferometrischen Prüfung
PCT/EP2015/077817 WO2016083528A1 (de) 2014-11-28 2015-11-26 Verfahren und vorrichtung zur interferometrischen prüfung

Publications (2)

Publication Number Publication Date
EP3224570A1 EP3224570A1 (de) 2017-10-04
EP3224570B1 true EP3224570B1 (de) 2020-01-08

Family

ID=54883992

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15812971.8A Active EP3224570B1 (de) 2014-11-28 2015-11-26 Verfahren und vorrichtung zur interferometrischen prüfung

Country Status (4)

Country Link
EP (1) EP3224570B1 (de)
CN (1) CN107250714B (de)
DE (1) DE102014117511A1 (de)
WO (1) WO2016083528A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022170160A1 (en) * 2021-02-07 2022-08-11 Arizona Optical Metrology Llc Alignment of a measurement optical system and a sample under test

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330460B2 (en) * 2017-06-13 2019-06-25 Raytheon Company Calibration method and system for a fast steering mirror
DE102018209175B4 (de) * 2018-06-08 2024-01-04 Carl Zeiss Smt Gmbh Computer-generiertes Hologramm (CGH), interferometrische Prüfanordnung, sowie Verfahren zur Charakterisierung der Oberflächenform eines optischen Elements
DE102019212614A1 (de) 2019-08-22 2021-02-25 Carl Zeiss Smt Gmbh Verfahren zum Kalibrieren einer Messvorrichtung
DE102019214979A1 (de) * 2019-09-30 2021-04-01 Carl Zeiss Smt Gmbh Messvorrichtung zur interferometrischen Bestimmung einer Oberflächenform
DE102020213762B3 (de) 2020-11-02 2021-09-23 Carl Zeiss Smt Gmbh Diffraktives optisches Element für eine interferometrische Messvorrichtung
DE102021202909A1 (de) 2021-03-25 2022-09-29 Carl Zeiss Smt Gmbh Messvorrichtung zum interferometrischen Vermessen einer Oberflächenform
DE102021205202A1 (de) * 2021-05-21 2022-11-24 Carl Zeiss Smt Gmbh Messanordnung und Verfahren zur Vermessung der Oberflächenform eines optischen Elements

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414555A (en) * 1992-01-13 1995-05-09 Aerojet-General Corporation Method for the manufacture of a three-mirror optical system and the optical system resulting therefrom
US5530547A (en) 1994-08-04 1996-06-25 Arnold; Steven M. Method and apparatus for aligning optical elements and testing aspheric optical components
DE19820785A1 (de) 1998-04-17 1999-10-21 Johannes Schwider Absolutprüfung von asphärischen Flächen unter Zuhilfenahme von diffraktiven Normalelementen und planen sowie sphärischen Referenzflächen
EP1316789A1 (de) 2001-12-03 2003-06-04 Universität Stuttgart Kalibrierung eines diffraktiven Kompensations- oder Absolutnormal-Elementes ( twin oder dual CGH ) über Wellenfrontfehler der sphärischen Hilfswelle
DE102005036166B4 (de) * 2005-08-02 2007-09-13 Carl Zeiss Smt Ag Interferometrische Messvorrichtung
US7605926B1 (en) * 2005-09-21 2009-10-20 Carl Zeiss Smt Ag Optical system, method of manufacturing an optical system and method of manufacturing an optical element
DE102006035022A1 (de) * 2006-07-28 2008-01-31 Carl Zeiss Smt Ag Verfahren zum Herstellen einer optischen Komponente, Interferometeranordnung und Beugungsgitter
DE102006055070B4 (de) * 2006-11-22 2008-07-31 Carl Zeiss Smt Ag Verfahren und Vorrichtung zum interferometrischen Vermessen einer Form eines Testobjekts
DE102009041501B3 (de) * 2009-09-14 2011-09-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Fertigung einer optischen Anordnung mit mindestens zwei optischen Funktionsflächen, optisches Gerät und Vorrichtung zur Durchführung des Verfahrens
DE102012100311B4 (de) 2012-01-13 2015-07-30 Jenoptik Optical Systems Gmbh Verfahren und Anordnung zur Kalibrierung des Wellenfrontfehlers eines computergenerierten Hologramms für die Prüfung optischer Oberflächen
DE102012217800A1 (de) * 2012-09-28 2014-04-03 Carl Zeiss Smt Gmbh Diffraktives optisches Element sowie Messverfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022170160A1 (en) * 2021-02-07 2022-08-11 Arizona Optical Metrology Llc Alignment of a measurement optical system and a sample under test
US11774236B2 (en) 2021-02-07 2023-10-03 Arizona Optical Metrology Llc Alignment of a measurement optical system and a sample under test

Also Published As

Publication number Publication date
WO2016083528A1 (de) 2016-06-02
DE102014117511A1 (de) 2016-06-02
CN107250714B (zh) 2020-10-16
EP3224570A1 (de) 2017-10-04
CN107250714A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
EP3224570B1 (de) Verfahren und vorrichtung zur interferometrischen prüfung
EP3256835B1 (de) Prüfvorrichtung sowie verfahren zum prüfen eines spiegels
EP0370229B1 (de) Interferometrisches Verfahren zur Prüfung von asphärische Wellenfronten erzeugenden optischen Elementen
DE102015202676B4 (de) Interferometrische Messvorrichtung
WO2019063437A1 (de) Kompensationsoptik für ein interferometrisches messsystem
EP3298446A2 (de) Messverfahren und messanordnung für ein abbildendes optisches system
EP3084344B1 (de) Verfahren zum vermessen einer sphärisch-astigmatischen optischen fläche mit fizeau interferometrie
CH693968A5 (de) Verfahren und Vorrichtung fuer die Topographiepruefung von Oberflaechen.
DE102008048844A1 (de) Verfahren und System zum Vermessen einer Oberfläche eines Objektes
DE102008030664A1 (de) Optische Abbildungseinrichtung mit Bestimmung von Abbildungsfehlern
DE102009019140A1 (de) Verfahren und Kalibriermaske zum Kalibrieren einer Positionsmessvorrichtung
DE102010038748A1 (de) Verfahren zur Herstellung eines Spiegels mit wenigstens zwei Spiegelflächen, Spiegel einer Projektionsbelichtungsanlage der Mikrolithographie und Projektionsbelichtungsanlage
DE102015220588A1 (de) Messverfahren und Messanordnung für ein abbildendes optisches System
WO2015150301A1 (de) Verfahren zum justieren eines spiegels einer mikrolithographischen projektionsbelichtungsanlage
DE102012100311B4 (de) Verfahren und Anordnung zur Kalibrierung des Wellenfrontfehlers eines computergenerierten Hologramms für die Prüfung optischer Oberflächen
DE102021202909A1 (de) Messvorrichtung zum interferometrischen Vermessen einer Oberflächenform
WO2021063766A1 (de) Messvorrichtung zur interferometrischen bestimmung einer oberflächenform
DE102018111466B4 (de) Verfahren zur justage einer messvorrichtung mittels eines justagekörpers, justagekörper und verfahren zur justage eines justagekörpers
DE102015209489A1 (de) Interferometrische Messvorrichtung
DE102005013903A1 (de) Verfahren zum Vermessen und Herstellen eines optischen Elements und optischer Apparat
DE102022210369A1 (de) Messanordnung zur Positionsbestimmung einer bewegbaren Komponente, optisches System, insbesondere mikrolithographische Projektionsbelichtungsanlage
WO2003048715A1 (de) Kalibrierung eines diffraktiven kompensations- oder absolutnormal-elementes (twin oder dual cgh) über wellenfrontfehler der sphärischen hilfswelle
DE102021202911A1 (de) Messvorrichtung zum interferometrischen Vermessen einer Oberflächenform
EP0079981B1 (de) Phasen-Symmetrisierung optischer Wellenflächen
DE102005013571A1 (de) Verfahren zum Herstellen eines optischen Elements

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190715

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RISSE, STEFAN

Inventor name: BEIER, MATTHIAS

Inventor name: GEBHARDT, ANDREAS

Inventor name: STUMPF, DANIELA

Inventor name: ZEITNER, UWE D.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011495

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1223233

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200531

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200409

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200508

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015011495

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201126

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201126

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1223233

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231130

Year of fee payment: 9

Ref country code: FR

Payment date: 20231124

Year of fee payment: 9

Ref country code: DE

Payment date: 20231120

Year of fee payment: 9