EP3224484B1 - Cooling device for a hydraulic assembly and use of a cooling device - Google Patents

Cooling device for a hydraulic assembly and use of a cooling device Download PDF

Info

Publication number
EP3224484B1
EP3224484B1 EP15798064.0A EP15798064A EP3224484B1 EP 3224484 B1 EP3224484 B1 EP 3224484B1 EP 15798064 A EP15798064 A EP 15798064A EP 3224484 B1 EP3224484 B1 EP 3224484B1
Authority
EP
European Patent Office
Prior art keywords
container
heat
cooling
heat pipes
cooling apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15798064.0A
Other languages
German (de)
French (fr)
Other versions
EP3224484A1 (en
Inventor
Andreas Guender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3224484A1 publication Critical patent/EP3224484A1/en
Application granted granted Critical
Publication of EP3224484B1 publication Critical patent/EP3224484B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/26Supply reservoir or sump assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid
    • F15B21/0423Cooling

Definitions

  • the invention is based on a cooling device for a hydraulic unit for cooling a container for hydraulic oil of the hydraulic unit.
  • the invention also relates to a use of the cooling device.
  • pressure medium or hydraulic oil is conveyed from a container via a hydraulic pump, such as an external gear pump, which can be driven by a variable-speed motor.
  • the pressure medium can be branched off via a throttle, which can also be used to set a minimum speed of the pump.
  • Pressure medium branched off via the throttle can emit heat to an environment via a radiator that is cooled by air from a fan.
  • a leak from the pump can be fed to the radiator.
  • the disadvantage here is that the throttle leads to hydraulic losses, which in turn lead to waste heat.
  • a size of a volume flow through the radiator is also disadvantageously dependent on a system pressure on the output side of the pump, which is why there is no constant cooling capacity of the pressure medium.
  • the pressure medium can only be cooled by the radiator while the pump is in operation.
  • the JP S61 116112 A a cooling device with a large number of parallel bundled heat pipes.
  • the heat pipes have a heat absorption section in a tank and a cooling section protruding from the tank. Ribs are provided on both sections to improve heat transfer.
  • the US 2011/0303389 A1 discloses a fluid tank with passively acting cooling fins which protrude inside and outside the tank from a side wall, the outer cooling fins being arranged to be cooled by an air flow of a fan of an active acting heat exchanger, wherein a fluid flow from the heat exchanger into the fluid tank leads.
  • the JP S52 119117 U discloses a fluid tank with a cooling device comprising a plurality of heat pipes which extend through a wall or a lid of the tank, with fins being installed on the heat pipes inside and outside the lid.
  • the JP H06 18608 U discloses a cooling device with hollow tubes connecting two container sections, through which heat pipes extend concentrically in order to be flowed around along a longitudinal axis. It further discloses providing a channel in a bottom area of a tank so that a fluid introduced into the tank washes around bottom sections of a plurality of heat pipes one after the other. It also discloses a tank with heat pipes arranged in it and a baffle plate through which the heat pipes reach at a distance, so that a laminar flow is created along the heat pipes.
  • the invention is based on the object of creating a cooling device for a hydraulic unit that can also cool pressure medium outside of operation of the hydraulic unit or while the hydraulic unit is at a standstill, has an improved degree of efficiency compared to the prior art and requires little space.
  • Another object of the invention is to provide an advantageous use of a cooling device according to the invention.
  • a cooling device for a hydraulic unit has a container or tank for a hydraulic oil of the hydraulic unit.
  • the container has an inlet and an outlet, which can be designed as a return line and suction line.
  • the cooling device has at least two heat pipes, preferably three heat pipes, each heat pipe being immersed with a pipe section in the container. It can thus dissipate heat from the hydraulic oil.
  • This solution has the advantage that such a cooling device can also cool hydraulic oil while the hydraulic unit is at a standstill, in that heat is dissipated via the at least one heat pipe.
  • the cooling device has an improved degree of efficiency compared to the prior art and requires less space.
  • the heat pipe is, for example, a heat pipe or a two-phase thermosiphon.
  • the heat pipe has a refrigerant that evaporates at a point to be cooled, whereby heat is dissipated as heat of vaporization.
  • the gaseous coolant can then distribute itself in the heat pipe and precipitate on a cooled section (heat sink) on an inner wall of the pipe. Due to the force of gravity or a capillary effect, the coolant can then flow back to the cooling point.
  • the heat pipes each protrude with a further pipe section from the container in order to dissipate the heat to the outside.
  • the heat pipes are arranged in the flow path of the hydraulic oil between the inlet and the outlet.
  • the inlet, outlet and heat pipes are arranged approximately in a row.
  • the flow path can preferably extend approximately in one direction between the inlet and the outlet, whereby no or no major changes in direction of the flow path are provided and thus a simple geometric design, in particular of the container, is made possible and flow losses are minimized.
  • the heat pipes are arranged in such a way that, viewed in the direction of the flow path, they are not arranged one behind the other in series. Thus, the heat pipes do not shade each other, causing more heat from the hydraulic oil to the heat pipes can be performed.
  • the two or more heat pipes are preferably arranged approximately transversely to the flow path, viewed in the direction of the flow path, or are provided in a common plane which is angled to the direction of the flow path.
  • the heat pipes can preferably extend approximately parallel to one another.
  • the heat pipes protruding from the container can also extend essentially in the same direction, this being about a vertical direction.
  • a cooling structure can be provided on the heat pipes for improved heat supply and / or heat dissipation.
  • the cooling structure is preferably at least thermally connected to the heat pipe. It is conceivable that the cooling structure is also mechanically connected to the heat pipes or is designed in one piece with them. It is conceivable to provide a cooling structure inside the container and a cooling structure outside the container.
  • the cooling structure has, for example, a plurality or multiplicity of lamellae which can be designed as a lamellae pack.
  • the fins extend approximately perpendicular to the at least one heat pipe. These can be arranged approximately parallel to one another. Two or more heat pipes can share a respective cooling structure.
  • a size of the cooling structure in the container corresponds approximately to a flow cross section of the flow path of the container or the cross section of the container in the flow direction.
  • fins of the heat pipe or the heat pipes within the container can penetrate approximately the full cross section of the container. Due to the geometric arrangement of the inlet on one side of the plate pack and the outlet on the other side of the plate pack, a volume flow can be guided through the plate pack. This increases heat transfer from the hydraulic oil to the fins and thus in turn to the heat pipe or pipes.
  • the cooling structure can be provided on the tube section of the heat pipes provided inside the container. Additionally or alternatively, the cooling structure can be provided on the tube section of the heat pipes provided outside the container.
  • the cooling structure can be designed in such a way that it promotes a degassing process for the hydraulic oil.
  • the heat pipes and / or the cooling structure can be cooled outside the container by forced convection, in particular by a fan.
  • the heat pipes and / or the cooling structure outside the container can be cooled by a heat exchanger.
  • a material flow (cooling water) can then flow through the heat exchanger, for example.
  • the heat exchanger can thus have a cooling water circuit.
  • the heat exchanger can also be thermally and / or mechanically (in particular directly) connected to a housing, in particular a machine housing, in particular the hydraulic unit, in order to give off heat to the housing.
  • a flow cross section of the flow path is advantageously reduced like a throttle in the area of the heat pipes and / or in the area of the cooling structure. This is advantageous if the heat pipes and / or the cooling structure (lamellar pack) do not completely penetrate the cross section of the container, so that the hydraulic oil can then be forced to the heat pipes and / or to the cooling structure.
  • the throttle-like reduction in size can increase a flow rate of the hydraulic oil, which enables an improved flow around the heat pipes and / or the cooling structure.
  • At least the heat pipes and / or the cooling structure can be arranged approximately in the region of the narrowest cross section of the container.
  • the flow cross-section is reduced, for example, by a flow guide.
  • a flow guide This is preferably a ramp or a partition that reduces the flow cross-section. If a ramp is provided, it can be angled starting from a container bottom, in particular extending away in the direction of flow.
  • the reduction in the flow cross section is preferably carried out continuously, as a result of which the flow properties of the hydraulic oil are improved.
  • the hydraulic oil can be conveyed from the outlet via a hydraulic machine which can be driven by a drive unit.
  • the drive unit can have its own cooling device, which is also simple in terms of device technology is used to cool the heat pipes and / or the cooling structure.
  • the cooling device of the drive unit is preferably a fan, the air flow of which is used for cooling.
  • the drive unit and the hydraulic machine can then advantageously form a motor-pump unit or a motor-pump group.
  • An arrangement with the cooling device according to the invention and the motor-pump unit can then preferably be provided.
  • the motor-pump unit is preferably arranged directly or adjacent to the at least one outer heat pipe and / or its outer cooling structure.
  • a further heat pipe can advantageously be provided for a further component of the hydraulic unit.
  • the further heat pipe can then be arranged with at least one pipe section adjacent to the pipe section of the at least one heat pipe of the container.
  • the heat pipes can then bundle both the heat of the container and the heat of a further component or further components, such as the drive unit or other “hotspots”.
  • a temperature of the entire hydraulic unit can be kept constant and / or heat can be dissipated together. With this concept, the thermal energy can be bundled and used alternatively for further processes.
  • the heat pipes of the container and at least one further component are preferably cooled together.
  • the waste heat of at least one heat pipe of the container and / or the component can be provided for at least one further process.
  • the heat pipes for the container together with the cooling structure are preferably designed in such a way that an approximately constant temperature is provided on both heat absorption surfaces and heat emission surfaces.
  • a temperature difference to the hydraulic oil or to the environment can be approximately the same over an entire area be great.
  • the heat dissipation capacity is comparatively high for the same area, and the cooling device can be designed more compact.
  • the cooling device it is provided that it is used for a hydraulic unit which has a comparatively low cooling requirement and can be a so-called "small unit".
  • the hydraulic unit or the container of the hydraulic unit preferably has a cooling capacity of max. 1000 watts, preferably of max. 300 to 500 watts.
  • the cooling device for small units, it is therefore advantageously possible to use products from the computer industry, since modern graphics cards, for example, have a similar cooling capacity. For example, heat pipes from the computer industry are technically well developed and usually inexpensive.
  • the cooling device 1 has a container 2 for hydraulic oil. Hydraulic oil 6 is fed to the container 2 from a hydraulic unit via an inlet 4 in the form of an inlet line. Hydraulic oil 10 is then led out of the container 2 via a drain 8 in the form of a drain line.
  • the Inlet 4 and outlet 8 are arranged approximately parallel to one another.
  • the container 2 has an approximately cuboid design. Between the inlet 4 and the outlet 8, three heat pipes 12, 14 and 16 are provided. These are approximately rod-shaped and immersed into the container 2 with a pipe section 18 and protrude from the container 2 with a further pipe section 20.
  • the heat pipes 12 to 16 extend approximately in a vertical direction and are arranged parallel to one another.
  • the heat pipes 12 to 16 here extend approximately in a common plane.
  • a cooling structure in the form of a laminated core 22 is arranged on the inner pipe sections 18 of the heat pipes 12 to 16. This is arranged together with the heat pipes 12 to 16 in the plane.
  • the plate pack 22 has a plurality of plates extending approximately parallel to one another. The slats extend approximately in the horizontal direction.
  • a flow path 24 within the container 2 leads from the inlet 4 to the outlet 8 approximately in a single direction.
  • the disk pack 22 is then arranged within the flow path 24.
  • the plane in which the lamella pack 22 and the heat pipes 12 to 16 are arranged extends approximately transversely to the flow path 24.
  • the lamella pack 22 extends approximately over an entire cross section of the container 2, which means that it extends approximately from the entire from the inlet 4 to the outlet 8 flowing hydraulic oil flows through or around it.
  • a heat 26 can thus be supplied to the heat pipes 12 to 16 directly or via the lamella pack 22 from the pressure medium in the container 2.
  • a cooling structure in the form of a lamella pack 28 is also assigned to the pipe sections 20 outside the container 2. This is according to Figure 1 designed in accordance with the disk pack 22. Heat 30 can then be given off from the pipe sections 20 of the heat pipes 12 to 16 directly via the lamella pack 28 to an environment. In addition, a fan 32 is provided, which increases the flow of air through the lamella set 28.
  • the container 2 is thus shown, the cross section of which is penetrated by the lamella pack 22.
  • the plate pack 22 is thermally connected to several heat pipes 12 to 16.
  • the outlet 8 is here on one side of the lamella set 22 and the inlet 4 on the other side. This means that during the During operation, the resulting volume flow of hydraulic oil in container 2 increases the heat transfer from the hydraulic oil to the inner disk pack 22.
  • the heat pipes 12 to 16 then transport the thermal energy to the outer lamella pack 28, the heat transfer to the ambient air being increased here by means of the fan 32.
  • a cooling device 34 is shown.
  • this has no fan 32 and no outer disk pack 28.
  • a heat exchanger 36 is provided. This is arranged at the end of the heat pipes 12 to 16.
  • the thermal energy can be given off, for example, via a cooling water circuit or to a thermally inert mass of a machine housing.
  • the thermal energy of the hydraulic unit is bundled in one area and can be made available for further processes if necessary, especially when using several hydraulic units.
  • FIG. 3 has a cooling device 38 compared to the embodiment in FIG Figure 1 a reduced inner lamella pack 40. Furthermore, the heat pipes 12 to 16 in the container 2 are shortened. The lamellar pack 40 with the heat pipes 12 to 16 therefore has a smaller cross section within the container 2 and thus does not penetrate the entire cross section of the container 2.
  • a flow guide 42 is provided here to increase the heat transfer. This prevents the hydraulic oil from flowing past the plate pack 40 or the heat pipes 12 to 16. Furthermore, the heat transfer is increased by a higher flow rate of the hydraulic oil.
  • the flow guide 42 is designed as a ramp which extends from the container bottom 44 to the lamella pack 40 or the heat pipes 12 to 16. The lamella pack 40 with the heat pipes 12 to 16 is then arranged in the narrowest cross section of the container 2.
  • FIG 4 has the cooling device 46 in contrast to Figure 1 no fan 32. Instead, a motor fan 48 of a motor 50 is used.
  • the motor fan 48 thus serves to cool the motor 50 and to cool the outer lamella set 28 with the heat pipes 12 to 16.
  • a pump 52 is driven by the motor 50. This conveys hydraulic oil via the outlet 8 from the container 2 Figure 4
  • the motor 50 with the pump 52 which form a motor-pump unit, is arranged or mounted directly next to the outer disk pack 28, and one of the motor fan 48 The volume flow generated can then increase the heat transfer to the plate pack 28 or to the heat pipes 12 to 16.
  • a cooling device 54 in Figure 5 has in addition to the heat exchanger 36, see Figure 2 , further heat pipes 56 and 58.
  • the heat pipe 56 is used to cool the motor 50 and the heat pipe 58 is used to cool the pump 52.
  • further heat pipes can be provided for further sections or components of a hydraulic unit to be cooled.
  • the heat pipes 56, 58 and 12 to 16 are bundled together in the heat exchanger 36 and can be cooled in a targeted manner by a cooling water circuit or can give off heat to the thermally inert mass of the machine housing. The thermal energy is thus bundled and can be used for further processes if required.
  • the heat pipes 12 to 16 and / or 56, 58 and / or the cooling structure can be components from the computer industry.
  • the heat pipes 12 to 16 with their cooling structure are designed for cooling capacities between 300 and 500 watts, for example.
  • a temperature distribution of a lamellar core 60 with heat pipes is shown as an example. It can be seen that a temperature of the lamella set 60 lies in approximately the same temperature range. Heat can thus be given off and / or absorbed over the entire plate pack 60 with approximately the same temperature gradient.
  • a cooling device for a hydraulic unit which has a container for hydraulic oil. Two heat pipes are provided for cooling the container. Hydraulic oil in the container flows approximately in a straight line from an inlet to an outlet. The at least two heat pipes are then arranged between the inlet and the outlet.

Description

Die Erfindung geht aus von einer Kühlvorrichtung für ein Hydraulikaggregat zur Kühlung eines Behälters für Hydrauliköl des Hydraulikaggregats. Des Weiteren betrifft die Erfindung eine Verwendung der Kühlvorrichtung.The invention is based on a cooling device for a hydraulic unit for cooling a container for hydraulic oil of the hydraulic unit. The invention also relates to a use of the cooling device.

Aus dem Stand der Technik ist beispielsweise bekannt, dass Druckmittel beziehungsweise Hydrauliköl aus einem Behälter über eine hydraulische Pumpe, wie beispielsweise eine Außenzahnradpumpe, gefördert wird, die von einem drehzahlvariablen Motor antreibbar ist. Ausgangsseitig der Pumpe kann das Druckmittel über eine Drossel abgezweigt werden, die auch dazu dienen kann, eine Minimaldrehzahl der Pumpe einzustellen. Über die Drossel abgezweigtes Druckmittel kann über einen Radiator, der von Luft eines Lüfters gekühlt ist, Wärme an eine Umgebung abgeben. Zusätzlich kann eine Leckage der Pumpe dem Radiator zugeführt werden. Nachteilig hierbei ist, dass die Drossel zu hydraulischen Verlusten führt, die wiederum zu einer Abwärme führen. Eine Größe eines Volumenstroms durch den Radiator ist des Weiteren nachteilig abhängig von einem Systemdruck ausgangsseitig der Pumpe, weswegen keine konstante Kühlleistung des Druckmittels vorliegt. Außerdem ist eine Kühlung des Druckmittels durch den Radiator nur während des Betriebs der Pumpe möglich.It is known from the prior art, for example, that pressure medium or hydraulic oil is conveyed from a container via a hydraulic pump, such as an external gear pump, which can be driven by a variable-speed motor. On the output side of the pump, the pressure medium can be branched off via a throttle, which can also be used to set a minimum speed of the pump. Pressure medium branched off via the throttle can emit heat to an environment via a radiator that is cooled by air from a fan. In addition, a leak from the pump can be fed to the radiator. The disadvantage here is that the throttle leads to hydraulic losses, which in turn lead to waste heat. A size of a volume flow through the radiator is also disadvantageously dependent on a system pressure on the output side of the pump, which is why there is no constant cooling capacity of the pressure medium. In addition, the pressure medium can only be cooled by the radiator while the pump is in operation.

Des Weiteren ist aus dem Stand der Technik bekannt, Druckmittel aus dem Behälter über zwei Pumpen (Doppelpumpe) zu fördern, die gemeinsam von einem drehzahlvariablen Motor antreibbar sind. Eine der Pumpen kann hierbei einen Volumenstrom für einen Kühlkreislauf fördern, der optional einen Filter aufweisen kann. Nachteilig hierbei ist, dass für die Kühlung somit eine zusätzliche Pumpe erforderlich ist, was zu einem höheren vorrichtungstechnischen Aufwand und somit insbesondere auch zu höheren Herstellungskosten führt. Des Weiteren handelt es sich bei der zusätzlichen Pumpe um eine zusätzliche Schallquelle. Ein Verrohrungsaufwand ist nachteilig ebenfalls vergleichsweise hoch, wodurch außerdem die Gefahr einer Leckage steigt. Des Weiteren kann die Ausfallwahrscheinlichkeit durch den Einsatz der Doppelpumpe steigen, da erfahrungsgemäß die Pumpe das verschleißbehaftetste Bauteil in einem hydraulischen System ist. Zudem führt die zusätzliche Pumpe zu hydraulischen Verlusten und somit zu einer zusätzlichen Wärmebelastung. Da die Pumpen miteinander gekoppelt sind, ist der Volumenstrom des Kühlkreislaufs abhängig vom Volumenstrom eines Primärkreislaufs der ersten Pumpe. Außerdem erfolgt eine Kühlung ebenfalls nachteilig nur während eines Betriebs der Pumpen.Furthermore, it is known from the prior art to convey pressure medium from the container via two pumps (double pumps) which can be driven jointly by a variable-speed motor. One of the pumps can convey a volume flow for a cooling circuit, which can optionally have a filter. The disadvantage here is that an additional pump is required for cooling, which results in a higher outlay in terms of device technology and thus in particular also in higher costs Manufacturing costs leads. Furthermore, the additional pump is an additional sound source. The expense of piping is also comparatively high, which also increases the risk of leakage. Furthermore, the probability of failure can increase through the use of the double pump, since experience has shown that the pump is the component in a hydraulic system that is prone to wear. In addition, the additional pump leads to hydraulic losses and thus to additional heat load. Since the pumps are coupled to one another, the volume flow of the cooling circuit is dependent on the volume flow of a primary circuit of the first pump. In addition, there is also disadvantageous cooling only during operation of the pumps.

Aus den Druckschriften JP S58 196301 A und JP S61 116112 A sind Kühlvorrichtungen für Behälter bekannt, die Wärmerohre in Form von Heatpipes aufweisen.From the pamphlets JP S58 196301 A and JP S61 116112 A cooling devices for containers are known which have heat pipes in the form of heat pipes.

So offenbart die JP S61 116112 A eine Kühlvorrichtung mit einer Vielzahl parallel angeordnet gebündelter Heatpipes. Die Heatpipes weisen einen Wärmeaufnahmeabschnitt in einem Tank und einen aus dem Tank auskragenden Kühlabschnitt auf. An beiden Abschnitten sind Rippen zum Verbessern eines Wärmeübergangs vorgesehen.So reveals the JP S61 116112 A a cooling device with a large number of parallel bundled heat pipes. The heat pipes have a heat absorption section in a tank and a cooling section protruding from the tank. Ribs are provided on both sections to improve heat transfer.

Die US 2011/0303389 A1 offenbart einen Fluidtank mit passiv wirkenden Kühlrippen, die innerhalb und außerhalb des Tanks von einer Seitenwand aus auskragen, wobei die äußeren Kühlrippen angeordnet sind, um durch einen Luftstrom eines Ventilators eines aktiven wirkenden Wärmetauschers gekühlt zu werden, wobei ein Fluidstrom aus dem Wärmetauscher in den Fluidtank führt.The US 2011/0303389 A1 discloses a fluid tank with passively acting cooling fins which protrude inside and outside the tank from a side wall, the outer cooling fins being arranged to be cooled by an air flow of a fan of an active acting heat exchanger, wherein a fluid flow from the heat exchanger into the fluid tank leads.

Die JP S52 119117 U offenbart einen Fluidtank mit einer Kühlvorrichtung umfassend eine Vielzahl von Heatpipes, die durch eine Wand oder einen Deckel des Tanks hindurch reichen, wobei Rippen an den Heatpipes innerhalb und außerhalb des Deckels installiert sind.The JP S52 119117 U discloses a fluid tank with a cooling device comprising a plurality of heat pipes which extend through a wall or a lid of the tank, with fins being installed on the heat pipes inside and outside the lid.

Die JP H06 18608 U offenbart eine Kühlvorrichtung mit zwei Behälterabschnitte verbindenden Hohlrohren, durch welche Heatpipes konzentrisch hindurch reichen, um entlang einer Längsachse umströmt zu werden. Sie offenbart ferner, in einem Bodenbereich eines Tanks einen Kanal vorzusehen, sodass ein in den Tank eingeleitetes Fluid Bodenabschnitte einer Vielzahl von Heatpipes nacheinander umspült. Sie offenbart darüber hinaus einen Tank mit darin angeordneten Heatpipes und einem Leitblech, durch welches die Heatpipes mit Abstand hindurch reichen, sodass eine laminare Strömung entlang der Heatpipes entsteht.The JP H06 18608 U discloses a cooling device with hollow tubes connecting two container sections, through which heat pipes extend concentrically in order to be flowed around along a longitudinal axis. It further discloses providing a channel in a bottom area of a tank so that a fluid introduced into the tank washes around bottom sections of a plurality of heat pipes one after the other. It also discloses a tank with heat pipes arranged in it and a baffle plate through which the heat pipes reach at a distance, so that a laminar flow is created along the heat pipes.

Demgegenüber liegt der Erfindung die Aufgabe zugrunde, eine Kühlvorrichtung für ein Hydraulikaggregat zu schaffen, das auch außerhalb eines Betriebs des Hydraulikaggregats beziehungsweise während eines Stillstands des Hydraulikaggregats Druckmittel kühlen kann, einen verbesserten Wirkungsgrad im Vergleich zum Stand der Technik aufweist und einen geringen Bauraumbedarf hat. Des Weiteren ist es Aufgabe der Erfindung, eine vorteilhafte Verwendung einer erfindungsgemäßen Kühlvorrichtung vorzusehen.In contrast, the invention is based on the object of creating a cooling device for a hydraulic unit that can also cool pressure medium outside of operation of the hydraulic unit or while the hydraulic unit is at a standstill, has an improved degree of efficiency compared to the prior art and requires little space. Another object of the invention is to provide an advantageous use of a cooling device according to the invention.

Die Aufgabe hinsichtlich der Kühlvorrichtung wird gelöst gemäß den Merkmalen des Anspruchs 1 und hinsichtlich der Verwendung gemäß den Merkmalen des Anspruchs 14.The object with regard to the cooling device is achieved according to the features of claim 1 and with regard to the use according to the features of claim 14.

Sonstige vorteilhafte Weiterbildungen der Erfindung sind Gegenstand weiterer Unteransprüche.Other advantageous developments of the invention are the subject of further subclaims.

Erfindungsgemäß ist eine Kühlvorrichtung für ein Hydraulikaggregat vorgesehen. Die Kühlvorrichtung weist hierbei einen Behälter beziehungsweise Tank für ein Hydrauliköl des Hydraulikaggregats auf. Der Behälter weist einen Zulauf und einen Ablauf auf, die als Rücklaufleitung und Saugleitung ausgestaltet sein können. Die Kühlvorrichtung hat zumindest zwei Wärmerohre, vorzugsweise drei Wärmerohre, wobei jedes Wärmerohr mit einem Rohrabschnitt in den Behälter eingetaucht ist. Somit kann es Wärme aus dem Hydrauliköl abführen. Diese Lösung hat den Vorteil, dass eine derartige Kühlvorrichtung auch während eines Stillstands des Hydraulikaggregats Hydrauliköl kühlen kann, indem Wärme über das zumindest eine Wärmerohr abgeführt wird. Außerdem weist die Kühlvorrichtung im Vergleich zum Stand der Technik einen verbesserten Wirkungsgrad auf und hat einen geringeren Bauraumbedarf.According to the invention, a cooling device for a hydraulic unit is provided. The cooling device here has a container or tank for a hydraulic oil of the hydraulic unit. The container has an inlet and an outlet, which can be designed as a return line and suction line. The cooling device has at least two heat pipes, preferably three heat pipes, each heat pipe being immersed with a pipe section in the container. It can thus dissipate heat from the hydraulic oil. This solution has the advantage that such a cooling device can also cool hydraulic oil while the hydraulic unit is at a standstill, in that heat is dissipated via the at least one heat pipe. In addition, the cooling device has an improved degree of efficiency compared to the prior art and requires less space.

Bei dem Wärmerohr handelt es sich beispielsweise um eine Heatpipe oder um einen ZweiPhasen-Thermosiphon. Das Wärmerohr hat ein Kältemittel, das an einer zu kühlenden Stelle verdampft, wodurch Wärme als Verdampfungswärme abgeführt wird. Das gasförmige Kühlmittel kann sich dann in dem Wärmerohr verteilen und sich an einem gekühlten Abschnitt (Wärmesenke) an einer Rohrinnenwandung niederschlagen. Aufgrund einer Schwerkraft oder eine Kapillarwirkung kann das Kühlmittel dann wieder zurück zur kühlenden Stelle fließen.The heat pipe is, for example, a heat pipe or a two-phase thermosiphon. The heat pipe has a refrigerant that evaporates at a point to be cooled, whereby heat is dissipated as heat of vaporization. The gaseous coolant can then distribute itself in the heat pipe and precipitate on a cooled section (heat sink) on an inner wall of the pipe. Due to the force of gravity or a capillary effect, the coolant can then flow back to the cooling point.

Die Wärmerohre kragen jeweils mit einem weiteren Rohrabschnitt aus dem Behälter, um die Wärme nach außen abzuführen.The heat pipes each protrude with a further pipe section from the container in order to dissipate the heat to the outside.

Die Wärmerohre sind im Strömungspfad des Hydrauliköls zwischen dem Zulauf und dem Ablauf angeordnet. Der Zulauf, der Ablauf und die Wärmerohre sind etwa in einer Reihe angeordnet. Durch die Anordnung der Wärmerohre in dem genannten Strömungspfad wird dieses vorteilhafterweise vom Hydrauliköl, das vom Zulauf zum Ablauf strömt, im Betrieb des Hydraulikaggregats umströmt.The heat pipes are arranged in the flow path of the hydraulic oil between the inlet and the outlet. The inlet, outlet and heat pipes are arranged approximately in a row. As a result of the arrangement of the heat pipes in the named flow path, the hydraulic oil flowing from the inlet to the outlet flows around this during operation of the hydraulic unit.

Auf vorrichtungstechnisch einfache Weise kann sich der Strömungspfad vorzugsweise zwischen dem Zulauf und dem Ablauf etwa in einer Richtung erstrecken, wodurch keine oder keine größeren Richtungsänderungen des Strömungspfads vorgesehen sind und somit eine einfache geometrische Ausgestaltung, insbesondere des Behälters, ermöglicht ist und Strömungsverluste minimiert sind.In a device-technically simple manner, the flow path can preferably extend approximately in one direction between the inlet and the outlet, whereby no or no major changes in direction of the flow path are provided and thus a simple geometric design, in particular of the container, is made possible and flow losses are minimized.

Die Wärmerohre sind derart angeordnet, dass sie in Richtung des Strömungspfads gesehen nicht hintereinander in Reihe angeordnet sind. Somit schatten sich die Wärmerohre nicht gegenseitig ab, wodurch mehr Wärme von dem Hydrauliköl zu den Wärmerohren geführt werden kann. Vorzugsweise sind die zwei oder mehrere Wärmerohre in Richtung des Strömungspfads gesehen etwa quer zu diesem angeordnet oder in einer gemeinsamen Ebene vorgesehen, die angewinkelt zur Richtung des Strömungspfads ist. Die Wärmerohre können sich zueinander vorzugsweise etwa im Parallelabstand erstrecken. Die aus dem Behälter auskragenden Wärmerohre können sich auch im Wesentlichen in eine gleiche Richtung erstrecken, wobei es sich hierbei etwa um eine Vertikalrichtung handelt.The heat pipes are arranged in such a way that, viewed in the direction of the flow path, they are not arranged one behind the other in series. Thus, the heat pipes do not shade each other, causing more heat from the hydraulic oil to the heat pipes can be performed. The two or more heat pipes are preferably arranged approximately transversely to the flow path, viewed in the direction of the flow path, or are provided in a common plane which is angled to the direction of the flow path. The heat pipes can preferably extend approximately parallel to one another. The heat pipes protruding from the container can also extend essentially in the same direction, this being about a vertical direction.

Zur verbesserten Wärmezufuhr und/oder Wärmeabfuhr kann an den Wärmerohren eine Kühlstruktur vorgesehen sein. Die Kühlstruktur ist vorzugsweise zumindest thermisch mit dem Wärmerohr verbunden. Es ist denkbar, dass die Kühlstruktur auch mechanisch mit den Wärmerohren verbunden ist oder einstückig mit diesen ausgestaltet ist. Es ist denkbar, eine Kühlstruktur innerhalb des Behälters und eine Kühlstruktur außerhalb des Behälters vorzusehen. Die Kühlstruktur hat beispielsweise eine Mehrzahl oder Vielzahl von Lamellen, die als Lamellenpaket ausgebildet sein können. Beispielsweise erstrecken sich die Lamellen etwa senkrecht zu dem zumindest einen Wärmerohr. Diese können etwa im Parallelabstand zueinander angeordnet sein. Zwei oder mehrere Wärmerohre können sich eine jeweilige Kühlstruktur teilen.A cooling structure can be provided on the heat pipes for improved heat supply and / or heat dissipation. The cooling structure is preferably at least thermally connected to the heat pipe. It is conceivable that the cooling structure is also mechanically connected to the heat pipes or is designed in one piece with them. It is conceivable to provide a cooling structure inside the container and a cooling structure outside the container. The cooling structure has, for example, a plurality or multiplicity of lamellae which can be designed as a lamellae pack. For example, the fins extend approximately perpendicular to the at least one heat pipe. These can be arranged approximately parallel to one another. Two or more heat pipes can share a respective cooling structure.

Eine Größe der Kühlstruktur in dem Behälter entspricht etwa einem Strömungsquerschnitt des Strömungspfads des Behälters oder dem Querschnitt des Behälters in Strömungsrichtung. Somit können Lamellen des Wärmerohrs oder der Wärmerohre innerhalb des Behälters etwa den vollen Querschnitt des Behälters durchsetzen. Durch die geometrische Anordnung des Zulaufs auf der einen Seite des Lamellenpakets und des Ablaufs auf der anderen Seite des Lamellenpakets kann ein Volumenstrom durch das Lamellenpaket geführt werden. Hierdurch ist ein Wärmeübergang vom Hydrauliköl an die Lamellen und somit wiederum an das Wärmerohr oder die Wärmerohre erhöht.A size of the cooling structure in the container corresponds approximately to a flow cross section of the flow path of the container or the cross section of the container in the flow direction. Thus, fins of the heat pipe or the heat pipes within the container can penetrate approximately the full cross section of the container. Due to the geometric arrangement of the inlet on one side of the plate pack and the outlet on the other side of the plate pack, a volume flow can be guided through the plate pack. This increases heat transfer from the hydraulic oil to the fins and thus in turn to the heat pipe or pipes.

Die Kühlstruktur kann an dem innerhalb des Behälters vorgesehenen Rohrabschnitts der Wärmerohre vorgesehen sein. Zusätzlich oder alternativ kann die Kühlstruktur an dem außerhalb des Behälters vorgesehenen Rohrabschnitts der Wärmerohre vorgesehen sein. Die Kühlstruktur kann derart ausgestaltet sein, dass sie einen Entgasungsprozess des Hydrauliköls fördert.The cooling structure can be provided on the tube section of the heat pipes provided inside the container. Additionally or alternatively, the cooling structure can be provided on the tube section of the heat pipes provided outside the container. The cooling structure can be designed in such a way that it promotes a degassing process for the hydraulic oil.

Die Wärmerohre und/oder die Kühlstruktur kann außerhalb des Behälters durch erzwungene Konvektion, insbesondere durch einen Lüfter gekühlt werden. Alternativ oder zusätzlich können die Wärmerohre und/oder die Kühlstruktur außerhalb des Behälters durch einen Wärmetauscher gekühlt sein. Der Wärmetauscher ist dann beispielsweise von einem Stoffstrom (Kühlwasser) durchströmbar. Somit kann der Wärmetauscher einen Kühlwasserkreislauf aufweisen. Alternativ oder zusätzlich kann der Wärmetauscher auch mit einem Gehäuse, insbesondere einem Maschinengehäuse, insbesondere des Hydraulikaggregats, thermisch und/oder mechanisch (insbesondere unmittelbar) verbunden sein, um an das Gehäuse Wärme abzugeben.The heat pipes and / or the cooling structure can be cooled outside the container by forced convection, in particular by a fan. Alternatively or in addition, the heat pipes and / or the cooling structure outside the container can be cooled by a heat exchanger. A material flow (cooling water) can then flow through the heat exchanger, for example. The heat exchanger can thus have a cooling water circuit. Alternatively or additionally, the heat exchanger can also be thermally and / or mechanically (in particular directly) connected to a housing, in particular a machine housing, in particular the hydraulic unit, in order to give off heat to the housing.

Ein Strömungsquerschnitt des Strömungspfads ist vorteilhafterweise im Bereich der Wärmerohre und/oder im Bereich der Kühlstruktur drosselartig verkleinert. Dies ist vorteilhaft, falls die Wärmerohre und/oder die Kühlstruktur (Lamellenpaket) nicht vollständig den Querschnitt des Behälters durchsetzt, womit das Hydrauliköl dann erzwungen zu den Wärmerohren und/oder zur Kühlstruktur geführt werden kann. Außerdem kann durch die drosselartige Verkleinerung eine Strömungsgeschwindigkeit des Hydrauliköls erhöht werden, wodurch eine verbesserte Umströmung der Wärmerohre und/oder der Kühlstruktur ermöglicht ist.A flow cross section of the flow path is advantageously reduced like a throttle in the area of the heat pipes and / or in the area of the cooling structure. This is advantageous if the heat pipes and / or the cooling structure (lamellar pack) do not completely penetrate the cross section of the container, so that the hydraulic oil can then be forced to the heat pipes and / or to the cooling structure. In addition, the throttle-like reduction in size can increase a flow rate of the hydraulic oil, which enables an improved flow around the heat pipes and / or the cooling structure.

Es kann zumindest die Wärmerohre und/oder die Kühlstruktur etwa im Bereich des engsten Querschnitts des Behälters angeordnet sein.At least the heat pipes and / or the cooling structure can be arranged approximately in the region of the narrowest cross section of the container.

Die Verkleinerung des Strömungsquerschnitts erfolgt beispielsweise durch eine Strömungsführung. Bei dieser handelt es sich vorzugsweise um eine Rampe oder um eine Trennwand, die den Strömungsquerschnitt verkleinert. Ist eine Rampe vorgesehen, so kann sich diese etwa ausgehend von einem Behälterboden angewinkelt, insbesondere etwa in Strömungsrichtung wegerstrecken. Die Verkleinerung des Strömungsquerschnitts erfolgt vorzugsweise stetig, wodurch die Durchströmungseigenschaften des Hydrauliköls verbessert sind.The flow cross-section is reduced, for example, by a flow guide. This is preferably a ramp or a partition that reduces the flow cross-section. If a ramp is provided, it can be angled starting from a container bottom, in particular extending away in the direction of flow. The reduction in the flow cross section is preferably carried out continuously, as a result of which the flow properties of the hydraulic oil are improved.

In weiterer Ausgestaltung der Erfindung ist das Hydrauliköl vom Ablauf über eine Hydromaschine förderbar, die von einer Antriebseinheit antreibbar ist. Die Antriebseinheit kann eine eigene Kühleinrichtung aufweisen, die vorrichtungstechnisch einfach zusätzlich zur Kühlung der Wärmerohre und/oder der Kühlstruktur eingesetzt ist. Vorzugsweise handelt es sich bei der Kühleinrichtung der Antriebseinheit um einen Lüfter, dessen Luftstrom zur Kühlung verwendet wird. Somit kann durch geometrische Anordnung des Lamellenpakets außerhalb des Behälters hinter dem Motorlüfter eine Erhöhung des Wärmeübergangs an die Umgebung durch den hierdurch erzeugten Luftvolumenstrom erfolgen.In a further embodiment of the invention, the hydraulic oil can be conveyed from the outlet via a hydraulic machine which can be driven by a drive unit. The drive unit can have its own cooling device, which is also simple in terms of device technology is used to cool the heat pipes and / or the cooling structure. The cooling device of the drive unit is preferably a fan, the air flow of which is used for cooling. Thus, by geometrically arranging the lamella pack outside of the container behind the motor fan, the heat transfer to the environment can be increased by the air volume flow generated thereby.

Mit Vorteil können die Antriebseinheit und die Hydromaschine dann eine Motor-Pumpen-Einheit bilden oder eine Motor-Pumpen-Gruppe. Vorzugsweise kann dann eine Anordnung mit der erfindungsgemäßen Kühlvorrichtung und der Motor-Pumpen-Einheit vorgesehen sein. Die Motor-Pumpen-Einheit ist vorzugsweise unmittelbar oder benachbart an dem zumindest einen äußeren Wärmerohr und/oder dessen äußerer Kühlstruktur angeordnet.The drive unit and the hydraulic machine can then advantageously form a motor-pump unit or a motor-pump group. An arrangement with the cooling device according to the invention and the motor-pump unit can then preferably be provided. The motor-pump unit is preferably arranged directly or adjacent to the at least one outer heat pipe and / or its outer cooling structure.

Mit Vorteil kann zusätzlich zu den Wärmerohren für den Behälter ein weiteres Wärmerohr für eine weitere Komponente des Hydraulikaggregats vorgesehen sein. Das weitere Wärmerohr kann dann zumindest mit einem Rohrabschnitt benachbart zum Rohrabschnitt des zumindest einen Wärmerohrs des Behälters angeordnet sein. Die Wärmerohre können dann sowohl die Wärme des Behälters als auch die Wärme einer weiteren Komponente oder weiterer Komponenten, wie beispielsweise der Antriebseinheit oder sonstigen "Hotspots", bündeln. Hierdurch kann eine Temperatur des gesamten Hydraulikaggregats konstant gehalten werden und/oder eine Wärme gemeinsam abgeführt sein. Somit kann bei diesem Konzept die Wärmeenergie gebündelt abgegeben und alternativ für weitere Prozesse weiter verwendet werden.In addition to the heat pipes for the container, a further heat pipe can advantageously be provided for a further component of the hydraulic unit. The further heat pipe can then be arranged with at least one pipe section adjacent to the pipe section of the at least one heat pipe of the container. The heat pipes can then bundle both the heat of the container and the heat of a further component or further components, such as the drive unit or other “hotspots”. As a result, a temperature of the entire hydraulic unit can be kept constant and / or heat can be dissipated together. With this concept, the thermal energy can be bundled and used alternatively for further processes.

Die Wärmerohre des Behälters und zumindest einer weiteren Komponente sind vorzugsweise gemeinsam gekühlt.The heat pipes of the container and at least one further component are preferably cooled together.

Wie vorstehend bereits erläutert, kann die Abwärme zumindest eines Wärmerohrs des Behälters und/oder der Komponente für zumindest einen weiteren Prozess vorgesehen sein.As already explained above, the waste heat of at least one heat pipe of the container and / or the component can be provided for at least one further process.

Die Wärmerohre für den Behälter zusammen mit der Kühlstruktur sind vorzugsweise derart ausgestaltet, dass eine etwa konstante Temperatur an sowohl Wärmeaufnahmeflächen als auch an Wärmeabgabeflächen vorgesehen ist. Hierdurch kann eine Temperaturdifferenz zum Hydrauliköl beziehungsweise zur Umgebung auf einer gesamten Fläche etwa gleich groß sein. Hierdurch ist eine Wärmeabgabefähigkeit bei gleicher Fläche vergleichsweise hoch, und die Kühlvorrichtung kann kompakter ausgestaltet sein.The heat pipes for the container together with the cooling structure are preferably designed in such a way that an approximately constant temperature is provided on both heat absorption surfaces and heat emission surfaces. As a result, a temperature difference to the hydraulic oil or to the environment can be approximately the same over an entire area be great. As a result, the heat dissipation capacity is comparatively high for the same area, and the cooling device can be designed more compact.

Bei einer vorteilhaften Verwendung der Kühlvorrichtung ist es vorgesehen, diese für ein Hydraulikaggregat einzusetzen, das einen vergleichsweise geringen Kühlbedarf aufweist und ein sogenanntes "Kleinaggregat" sein kann. Vorzugsweise hat das Hydraulikaggregat oder der Behälter des Hydraulikaggregats eine Kühlleistung von max. 1000 Watt, vorzugsweise von max. 300 bis 500 Watt. Bei dem Einsatz der Kühlvorrichtung für Kleinaggregate ist es somit vorteilhafterweise möglich, auf Produkte aus der Computerindustrie zurückzugreifen, da beispielsweise moderne Grafikkarten eine ähnliche Kühlleistung aufweisen. Beispielsweise sind Wärmerohre aus der Computerindustrie technisch weit entwickelt und üblicherweise kostengünstig.In an advantageous use of the cooling device, it is provided that it is used for a hydraulic unit which has a comparatively low cooling requirement and can be a so-called "small unit". The hydraulic unit or the container of the hydraulic unit preferably has a cooling capacity of max. 1000 watts, preferably of max. 300 to 500 watts. When using the cooling device for small units, it is therefore advantageously possible to use products from the computer industry, since modern graphics cards, for example, have a similar cooling capacity. For example, heat pipes from the computer industry are technically well developed and usually inexpensive.

Sonstige vorteilhafte Weiterbildung sind Gegenstand weitere Unteransprüche.Other advantageous developments are the subject of further subclaims.

Im Folgenden werden bevorzugte Ausführungsformen der Erfindung anhand von Zeichnungen näher erläutert. Es zeigen:

  • Figur 1 in einer schematischen Darstellung eine Kühlvorrichtung gemäß einem ersten Ausführungsbeispiel,
  • Figur 2 in einer schematischen Darstellung die Kühlvorrichtung gemäß einem zweiten Ausführungsbeispiel,
  • Figur 3 in einer schematischen Darstellung die Kühlvorrichtung gemäß einem dritten Ausführungsbeil,
  • Figur 4 in einer schematischen Darstellung die Kühlvorrichtung gemäß einem vierten Ausführungsbeispiel,
  • Figur 5 in einer schematischen Darstellung die Kühlvorrichtung gemäß einem fünften Ausführungsbeispiel und
  • Figur 6 in einer schematischen Darstellung eine Temperaturverteilung der Kühlvorrichtung.
Preferred embodiments of the invention are explained in more detail below with reference to drawings. Show it:
  • Figure 1 in a schematic representation a cooling device according to a first embodiment,
  • Figure 2 in a schematic representation the cooling device according to a second embodiment,
  • Figure 3 in a schematic representation the cooling device according to a third exemplary embodiment,
  • Figure 4 in a schematic representation the cooling device according to a fourth embodiment,
  • Figure 5 in a schematic representation the cooling device according to a fifth embodiment and
  • Figure 6 a schematic representation of a temperature distribution of the cooling device.

Gemäß Figur 1 hat die die Kühlvorrichtung 1 einen Behälter 2 für Hydrauliköl. Über einen Zulauf 4 in Form einer Zulaufleitung wird Hydrauliköl 6 aus einem Hydraulikaggregat dem Behälter 2 zugeführt. Über einen Ablauf 8 in Form einer Ablaufleitung wird Hydrauliköl 10 dann aus dem Behälter 2 herausgeführt. Gemäß der Ausführungsform in Figur 1 sind der Zulauf 4 und der Ablauf 8 etwa in Parallelabstand zueinander angeordnet. Der Behälter 2 hat eine etwa quaderförmige Ausgestaltung. Zwischen dem Zulauf 4 und dem Ablauf 8 sind drei Wärmerohre 12, 14 und 16 vorgesehen. Diese sind etwa stabförmig ausgestaltet und mit einem Rohrabschnitt 18 in den Behälter 2 eingetaucht und kragen mit einem weiteren Rohrabschnitt 20 aus dem Behälter 2 aus. Die Wärmerohre 12 bis 16 erstrecken sich etwa in einer Vertikalrichtung und sind im Parallelabstand zueinander angeordnet. Die Wärmerohre 12 bis 16 erstrecken sich hierbei etwa in einer gemeinsamen Ebene. An den inneren Rohrabschnitten 18 der Wärmerohre 12 bis 16 ist eine Kühlstruktur in Form eines Lamellenpakets 22 angeordnet. Dieses ist gemeinsam mit den Wärmerohren 12 bis 16 in der Ebene angeordnet. Das Lamellenpaket 22 weist eine Vielzahl von sich etwa in Parallelabstand zueinander erstreckender Lamellen auf. Die Lamellen erstrecken sich hierbei etwa in Horizontalrichtung.According to Figure 1 the cooling device 1 has a container 2 for hydraulic oil. Hydraulic oil 6 is fed to the container 2 from a hydraulic unit via an inlet 4 in the form of an inlet line. Hydraulic oil 10 is then led out of the container 2 via a drain 8 in the form of a drain line. According to the embodiment in Figure 1 are the Inlet 4 and outlet 8 are arranged approximately parallel to one another. The container 2 has an approximately cuboid design. Between the inlet 4 and the outlet 8, three heat pipes 12, 14 and 16 are provided. These are approximately rod-shaped and immersed into the container 2 with a pipe section 18 and protrude from the container 2 with a further pipe section 20. The heat pipes 12 to 16 extend approximately in a vertical direction and are arranged parallel to one another. The heat pipes 12 to 16 here extend approximately in a common plane. A cooling structure in the form of a laminated core 22 is arranged on the inner pipe sections 18 of the heat pipes 12 to 16. This is arranged together with the heat pipes 12 to 16 in the plane. The plate pack 22 has a plurality of plates extending approximately parallel to one another. The slats extend approximately in the horizontal direction.

Ein Strömungspfad 24 innerhalb des Behälters 2 führt vom Zulauf 4 zum Ablauf 8 etwa in einer einzigen Richtung. Das Lamellenpaket 22 ist dann innerhalb des Strömungspfads 24 angeordnet. Gemäß Figur 1 erstreckt sich die Ebene, in der das Lamellenpaket 22 und die Wärmerohre 12 bis 16 angeordnet sind, etwa quer zum Strömungspfad 24. Das Lamellenpaket 22 erstreckt sich etwa über einen gesamten Querschnitt des Behälters 2, womit es etwa vom gesamten vom Zulauf 4 zum Ablauf 8 strömenden Hydrauliköl durchströmt beziehungsweise umströmt wird. Eine Wärme 26 kann somit den Wärmerohren 12 bis 16 direkt oder über das Lamellenpaket 22 vom Druckmittel in dem Behälter 2 zugeführt werden.A flow path 24 within the container 2 leads from the inlet 4 to the outlet 8 approximately in a single direction. The disk pack 22 is then arranged within the flow path 24. According to Figure 1 the plane in which the lamella pack 22 and the heat pipes 12 to 16 are arranged extends approximately transversely to the flow path 24. The lamella pack 22 extends approximately over an entire cross section of the container 2, which means that it extends approximately from the entire from the inlet 4 to the outlet 8 flowing hydraulic oil flows through or around it. A heat 26 can thus be supplied to the heat pipes 12 to 16 directly or via the lamella pack 22 from the pressure medium in the container 2.

Den Rohrabschnitten 20 außerhalb des Behälters 2 ist ebenfalls eine Kühlstruktur in Form eines Lamellenpakets 28 zugeordnet. Dieses ist gemäß Figur 1 entsprechend dem Lamellenpaket 22 ausgebildet. Eine Wärme 30 kann dann von den Rohrabschnitten 20 der Wärmerohre 12 bis 16 direkt über das Lamellenpaket 28 an eine Umgebung abgegeben werden. Zusätzlich ist ein Lüfter 32 vorgesehen, der eine Durchströmung des Lamellenpakets 28 mit Luft erhöht.A cooling structure in the form of a lamella pack 28 is also assigned to the pipe sections 20 outside the container 2. This is according to Figure 1 designed in accordance with the disk pack 22. Heat 30 can then be given off from the pipe sections 20 of the heat pipes 12 to 16 directly via the lamella pack 28 to an environment. In addition, a fan 32 is provided, which increases the flow of air through the lamella set 28.

Gemäß Figur 1 ist somit der Behälter 2 dargestellt, dessen Querschnitt vom Lamellenpaket 22 durchsetzt ist. Das Lamellenpaket 22 ist hierbei mit mehreren Wärmerohren 12 bis 16 thermisch verbunden. Der Ablauf 8 befindet sich hierbei auf der einen Seite des Lamellenpakets 22 und der Zulauf 4 auf der anderen Seite. Hierdurch wird während des Betriebs durch den sich einstellenden Volumenstrom des Hydrauliköls im Behälter 2 der Wärmeübergang vom Hydrauliköl an das innere Lamellenpaket 22 erhöht. Die Wärmerohre 12 bis 16 transportieren dann die Wärmeenergie zum äußeren Lamellenpaket 28, wobei hier der Wärmeübergang zur Umgebungsluft mittels des Lüfters 32 erhöht ist.According to Figure 1 the container 2 is thus shown, the cross section of which is penetrated by the lamella pack 22. The plate pack 22 is thermally connected to several heat pipes 12 to 16. The outlet 8 is here on one side of the lamella set 22 and the inlet 4 on the other side. This means that during the During operation, the resulting volume flow of hydraulic oil in container 2 increases the heat transfer from the hydraulic oil to the inner disk pack 22. The heat pipes 12 to 16 then transport the thermal energy to the outer lamella pack 28, the heat transfer to the ambient air being increased here by means of the fan 32.

Gemäß Figur 2 ist eine Kühlvorrichtung 34 dargestellt. Im Unterschied zur Figur 1 weist diese keinen Lüfter 32 und kein äußeres Lamellenpaket 28 auf. Stattdessen ist ein Wärmetauscher 36 vorgesehen. Dieser ist endseitig der Wärmerohre 12 bis 16 angeordnet. Bei dem Wärmetauscher kann die Wärmeenergie beispielsweise über einen Kühlwasserkreislauf oder an eine thermisch träge Masse eines Maschinengehäuses abgegeben werden. Hierbei wird die Wärmeenergie des Hydraulikaggregats in einem Bereich gebündelt und kann bei Bedarf für weitere Prozesse zur Verfügung gestellt werden, insbesondere bei Verwendung von mehreren Hydraulikaggregaten.According to Figure 2 a cooling device 34 is shown. In contrast to the Figure 1 if this has no fan 32 and no outer disk pack 28. Instead, a heat exchanger 36 is provided. This is arranged at the end of the heat pipes 12 to 16. In the case of the heat exchanger, the thermal energy can be given off, for example, via a cooling water circuit or to a thermally inert mass of a machine housing. Here, the thermal energy of the hydraulic unit is bundled in one area and can be made available for further processes if necessary, especially when using several hydraulic units.

Gemäß Figur 3 hat eine Kühlvorrichtung 38 im Vergleich zur Ausführungsform in Figur 1 ein verkleinertes inneres Lamellenpaket 40. Des Weiteren sind die Wärmerohre 12 bis 16 im Behälter 2 verkürzt. Somit nimmt das Lamellenpaket 40 mit den Wärmerohren 12 bis 16 innerhalb des Behälters 2 einen geringeren Querschnitt ein und durchsetzt somit nicht den kompletten Querschnitt des Behälters 2. Zur Erhöhung des Wärmeübergangs ist hierbei eine Strömungsführung 42 vorgesehen. Hierdurch wird verhindert, dass das Hydrauliköl an dem Lamellenpaket 40 beziehungsweise den Wärmerohren 12 bis 16 vorbeifließt. Des Weiteren wird der Wärmeübergang durch eine höhere Fließgeschwindigkeit des Hydrauliköls erhöht. Die Strömungsführung 42 ist als Rampe ausgebildet, die sich vom Behälterboden 44 aus hin zum Lamellenpaket 40 beziehungsweise den Wärmerohren 12 bis 16 erstreckt. Im engsten Querschnitt des Behälters 2 ist dann das Lamellenpaket 40 mit den Wärmerohren 12 bis 16 angeordnet.According to Figure 3 has a cooling device 38 compared to the embodiment in FIG Figure 1 a reduced inner lamella pack 40. Furthermore, the heat pipes 12 to 16 in the container 2 are shortened. The lamellar pack 40 with the heat pipes 12 to 16 therefore has a smaller cross section within the container 2 and thus does not penetrate the entire cross section of the container 2. A flow guide 42 is provided here to increase the heat transfer. This prevents the hydraulic oil from flowing past the plate pack 40 or the heat pipes 12 to 16. Furthermore, the heat transfer is increased by a higher flow rate of the hydraulic oil. The flow guide 42 is designed as a ramp which extends from the container bottom 44 to the lamella pack 40 or the heat pipes 12 to 16. The lamella pack 40 with the heat pipes 12 to 16 is then arranged in the narrowest cross section of the container 2.

In Figur 4 hat die Kühlvorrichtung 46 im Unterschied zur Figur 1 keinen Lüfter 32. Stattdessen wird ein Motorlüfter 48 eines Motors 50 eingesetzt. Der Motorlüfter 48 dient somit zur Kühlung des Motors 50 und zur Kühlung des äußeren Lamellenpakets 28 mit den Wärmerohren 12 bis 16. Mit dem Motor 50 wird eine Pumpe 52 angetrieben. Diese fördert Hydrauliköl über den Ablauf 8 aus dem Behälter 2. Gemäß Figur 4 wird somit der Motor 50 mit der Pumpe 52, die eine Motor-Pumpen-Einheit bilden, direkt neben dem äußeren Lamellenpaket 28 angeordnet beziehungsweise montiert, und ein von dem Motorlüfter 48 erzeugter Volumenstrom kann dann den Wärmeübergang an dem Lamellenpaket 28 beziehungsweise an den Wärmerohren 12 bis 16 erhöhen.In Figure 4 has the cooling device 46 in contrast to Figure 1 no fan 32. Instead, a motor fan 48 of a motor 50 is used. The motor fan 48 thus serves to cool the motor 50 and to cool the outer lamella set 28 with the heat pipes 12 to 16. A pump 52 is driven by the motor 50. This conveys hydraulic oil via the outlet 8 from the container 2 Figure 4 Thus, the motor 50 with the pump 52, which form a motor-pump unit, is arranged or mounted directly next to the outer disk pack 28, and one of the motor fan 48 The volume flow generated can then increase the heat transfer to the plate pack 28 or to the heat pipes 12 to 16.

Eine Kühlvorrichtung 54 in Figur 5 weist zusätzlich zum Wärmetauscher 36, siehe Figur 2, weitere Wärmerohre 56 und 58 auf. Das Wärmerohr 56 dient zur Kühlung des Motors 50 und das Wärmerohre 58 zur Kühlung der Pumpe 52. Zusätzlich können weitere Wärmerohre für weitere zu kühlende Abschnitte oder Komponenten eines Hydraulikaggregats vorgesehen sein. Die Wärmerohre 56, 58 und 12 bis 16 sind gemeinsam in dem Wärmetauscher 36 gebündelt und können gezielt durch einen Kühlwasserkreislauf gekühlt werden oder Wärme an die thermisch träge Masse des Maschinengehäuses abgeben. Die Wärmeenergie wird somit gebündelt und kann bei Bedarf für weitere Prozesse verwendet werden.A cooling device 54 in Figure 5 has in addition to the heat exchanger 36, see Figure 2 , further heat pipes 56 and 58. The heat pipe 56 is used to cool the motor 50 and the heat pipe 58 is used to cool the pump 52. In addition, further heat pipes can be provided for further sections or components of a hydraulic unit to be cooled. The heat pipes 56, 58 and 12 to 16 are bundled together in the heat exchanger 36 and can be cooled in a targeted manner by a cooling water circuit or can give off heat to the thermally inert mass of the machine housing. The thermal energy is thus bundled and can be used for further processes if required.

Bei den Wärmerohren 12 bis 16 und/oder 56, 58 und/oder bei der Kühlstruktur kann es sich um Bauteile aus der Computerindustrie handeln. Die Wärmerohre 12 bis 16 mit ihrer Kühlstruktur sind beispielsweise für Kühlleistungen zwischen 300 bis 500 Watt ausgelegt.The heat pipes 12 to 16 and / or 56, 58 and / or the cooling structure can be components from the computer industry. The heat pipes 12 to 16 with their cooling structure are designed for cooling capacities between 300 and 500 watts, for example.

In Figur 6 ist beispielhaft eine Temperaturverteilung eines Lamellenpakets 60 mit Wärmerohren dargestellt. Es ist ersichtlich, dass eine Temperatur des Lamellenpakets 60 in einem etwa gleichen Temperaturbereich liegt. Somit kann mit einem etwa gleichen Temperaturgradienten über das gesamte Lamellenpaket 60 Wärme abgegeben und/oder aufgenommen werden.In Figure 6 a temperature distribution of a lamellar core 60 with heat pipes is shown as an example. It can be seen that a temperature of the lamella set 60 lies in approximately the same temperature range. Heat can thus be given off and / or absorbed over the entire plate pack 60 with approximately the same temperature gradient.

Offenbart ist eine Kühlvorrichtung für ein Hydraulikaggregat, das einen Behälter für Hydrauliköl aufweist. Zur Kühlung des Behälters sind zwei Wärmerohre vorgesehen. Hydrauliköl in dem Behälter strömt hierbei etwa geradlinig von einem Zulauf zu einem Ablauf. Zwischen dem Zulauf und dem Ablauf sind dann die zumindest zwei Wärmerohre angeordnet.Disclosed is a cooling device for a hydraulic unit, which has a container for hydraulic oil. Two heat pipes are provided for cooling the container. Hydraulic oil in the container flows approximately in a straight line from an inlet to an outlet. The at least two heat pipes are then arranged between the inlet and the outlet.

BezuaszeichenlisteReference list

11
KühlvorrichtungCooling device
22
Behältercontainer
44th
ZulaufIntake
66th
HydraulikölHydraulic oil
88th
Ablaufprocedure
1010
HydraulikölHydraulic oil
1212
WärmerohrHeat pipe
1414th
WärmerohrHeat pipe
1616
WärmerohrHeat pipe
1818th
RohrabschnittPipe section
2020th
RohrabschnittPipe section
2222nd
LamellenpaketDisk pack
2424
StrömungspfadFlow path
2626th
Wärmewarmth
2828
LamellenpaketDisk pack
3030th
Wärmewarmth
3232
LüfterFan
3434
KühlvorrichtungCooling device
3636
WärmetauscherHeat exchanger
3838
KühlvorrichtungCooling device
4040
LamellenpaketDisk pack
4242
StrömungsführungFlow guidance
4444
BehälterbodenContainer bottom
4646
KühlvorrichtungCooling device
4848
MotorlüfterMotor fan
5050
Motorengine
5252
Pumpepump
5454
KühlvorrichtungCooling device
5656
WärmerohrHeat pipe
5858
WärmerohrHeat pipe
6060
LamellenpaketDisk pack

Claims (14)

  1. Cooling apparatus for a hydraulic assembly, the cooling apparatus having a container (2) for hydraulic oil, which container (2) has an inlet (4) and an outlet (8), at least two heat pipes (12, 14, 16) being arranged in the flow path (24) of the hydraulic oil between the inlet (4) and the outlet (8), each heat pipe (12, 14, 16) having a coolant, and each heat pipe (12, 14, 16) being immersed with one pipe section (20) into the container (2), in order to dissipate heat from the hydraulic oil as heat of evaporation, by the coolant evaporating at a location to be cooled, the heat pipes (12, 14, 16) not being arranged in series as viewed in the direction of the flow path (24).
  2. Cooling apparatus according to Claim 1, the flow path (24) extending approximately in one direction between the inlet (4) and the outlet (8).
  3. Cooling apparatus according to either of the preceding claims, at least one cooling structure (22, 28) being provided on the at least two heat pipes (12, 14, 16) .
  4. Cooling apparatus according to Claim 3, the at least two heat pipes (12, 14, 16) sharing a respective cooling structure (22, 28).
  5. Cooling apparatus according to either of Claims 3 and 4, the at least one cooling structure (22, 28) having a multiplicity of cooling fins which are configured as a fin set (22, 28) and which are arranged approximately at a parallel spacing from one another.
  6. Cooling apparatus according to one of Claims 3 to 5, a size of the at least one cooling structure (22) in the container (2) corresponding approximately to a flow cross section of the container (2).
  7. Cooling apparatus according to one of Claims 3 to 6, the at least one cooling structure (22) being provided on those pipe sections (18) of the at least two heat pipes (12, 14, 16) which are provided within the container (2), and/or the at least one cooling structure (28) being provided on those pipe sections (20) of the at least two heat pipes (12, 14, 16) which are provided outside the container (2).
  8. Cooling apparatus according to one of the preceding claims, the at least two heat pipes (12, 14, 16) being cooled outside the container (2) by way of forced convection.
  9. Cooling apparatus according to one of the preceding claims, the at least two heat pipes (12, 14, 16) being cooled outside the container (2) by way of a heat exchanger (36).
  10. Cooling apparatus according to one of the preceding claims, a flow cross section of the container (2) being reduced in a throttle-like manner in the region of the at least two heat pipes (12, 14, 16).
  11. Cooling apparatus according to one of the preceding claims with a hydraulic machine and a drive unit which has a cooling device, it being possible for hydraulic oil to be conveyed from the outlet (8) via the hydraulic machine (52) which can be driven by the drive unit (50), the cooling device of the drive unit (50) being additionally used for cooling of the at least two heat pipes (12, 14, 16).
  12. Cooling apparatus according to one of the preceding claims, the cooling apparatus having at least one further heat pipe (56, 58) for a further component (50, 52) of the hydraulic assembly, the at least one further heat pipe (56, 58) being arranged with one pipe section adjacently with respect to the outer pipe section (20) of the at least two heat pipes (12, 14, 16) of the container (2).
  13. Cooling apparatus according to one of the preceding claims, the waste heat of at least one heat pipe (12, 14, 16, 56, 58) being provided for at least one further process.
  14. Use of the cooling apparatus according to one of the preceding claims for a hydraulic assembly which is configured in such a way that at least the container has a cooling capacity of at most approximately 1000 Watts, preferably of at most from 300 to 500 Watts.
EP15798064.0A 2014-11-25 2015-11-20 Cooling device for a hydraulic assembly and use of a cooling device Active EP3224484B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014223947.8A DE102014223947A1 (en) 2014-11-25 2014-11-25 Cooling device for a hydraulic unit and use of a cooling device
PCT/EP2015/077176 WO2016083249A1 (en) 2014-11-25 2015-11-20 Cooling device for a hydraulic assembly and use of a cooling device

Publications (2)

Publication Number Publication Date
EP3224484A1 EP3224484A1 (en) 2017-10-04
EP3224484B1 true EP3224484B1 (en) 2020-09-02

Family

ID=54695717

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15798064.0A Active EP3224484B1 (en) 2014-11-25 2015-11-20 Cooling device for a hydraulic assembly and use of a cooling device

Country Status (5)

Country Link
EP (1) EP3224484B1 (en)
JP (1) JP6570635B2 (en)
CN (1) CN107002712A (en)
DE (1) DE102014223947A1 (en)
WO (1) WO2016083249A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110230477A (en) * 2019-06-25 2019-09-13 临沂矿业集团菏泽煤电有限公司 Hydraulic drill rig for coal mine dust-extraction unit
CN110529440B (en) * 2019-09-24 2020-09-15 哈尔滨工业大学 Hydraulic oil tank for oil return power driving belt graphene heat conduction fan
CN110617253B (en) * 2019-10-10 2024-04-12 中车资阳机车有限公司 Integrated cooling device for hydraulic transmission locomotive
CN113294410A (en) * 2021-05-25 2021-08-24 珠海格力智能装备有限公司 Hydraulic station and numerical control machine tool
CN115807793B (en) * 2023-02-09 2023-05-05 泰州海陵液压机械股份有限公司 Constant-pressure-adjustable hydraulic mechanism and working method

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147988Y2 (en) * 1971-08-17 1976-11-18
FR2227451A1 (en) * 1973-04-27 1974-11-22 Int Basic Economy Corp
JPS52119117U (en) * 1976-03-08 1977-09-09
JPS5810003Y2 (en) * 1976-10-12 1983-02-23 トキコ株式会社 Oil circulation system with oil cooling system
JPS54105915U (en) * 1978-01-10 1979-07-26
JPS58196301A (en) 1982-05-11 1983-11-15 Mitsuo Sohgoh Kenkyusho Kk Working oil cooler of hydraulic power unit
JPS58194376U (en) * 1982-06-21 1983-12-24 ヤンマー農機株式会社 oil cooler
JPS61116112A (en) 1984-11-12 1986-06-03 Sekitan Rotenbori Kikai Gijutsu Kenkyu Kumiai Liquid cooling system for construction machinery
JPS61160308U (en) * 1985-03-27 1986-10-04
DE3513143A1 (en) * 1985-04-12 1986-10-16 Franz 5413 Bendorf Hübner Hydraulic system for mobile and/or stationary operation
DE3643265A1 (en) * 1986-12-18 1988-07-07 Man Nutzfahrzeuge Gmbh OIL CONTAINER FOR THE OIL SUPPLY OF HYDRAULIC WORKING CIRCUITS WITH STORAGE FUNCTION AND FOR RECOVERY OF OIL RECEIVED
SE8903739D0 (en) * 1989-11-08 1989-11-08 Haakan Ingvast METHOD AND DEVICE IN A HYDRAULIC PLANT
JPH0618608U (en) * 1992-08-13 1994-03-11 株式会社中村自工 Heat pipe type oil cooler
JP2000266001A (en) * 1999-03-12 2000-09-26 Kobe Steel Ltd Water cooling type hydraulic oil tank and cooling system for construction equipment using it
DE102004040909B4 (en) * 2004-06-17 2007-07-05 Hydac Filtertechnik Gmbh unit
DE202004011911U1 (en) * 2004-07-29 2005-01-20 Universal Hydraulik Gmbh Method for cooling and filtering hydraulic fluid in a recirculating system has a one piece module fitted to a hole in the hydraulic tank wall and incorporating a filter cartridge and a heat exchanger for a cooling circuit
CN201306335Y (en) * 2008-11-14 2009-09-09 姜今善 Novel thermotube-cooling oil tank
US20110303389A1 (en) * 2010-06-09 2011-12-15 Helgesen Design Services, Llc Fluid storage tank having active integrated cooling
CN202441659U (en) * 2012-02-02 2012-09-19 新兴铸管股份有限公司 Hydraulic oil tank with cooling device
CN202707645U (en) * 2012-08-29 2013-01-30 宁波华美达机械制造有限公司 Hydraulic oil tank for injection molding machine
CN203249527U (en) * 2013-04-28 2013-10-23 北京科路工业装备有限公司 Immersive efficient heat dissipation device and hydraulic station using same
CN203532420U (en) * 2013-11-01 2014-04-09 武汉重冶阳逻重型机械制造有限公司 Adding oil cooling and temperature controlling device for 2000-ton pressing machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2017538899A (en) 2017-12-28
DE102014223947A1 (en) 2016-05-25
JP6570635B2 (en) 2019-09-04
CN107002712A (en) 2017-08-01
WO2016083249A1 (en) 2016-06-02
EP3224484A1 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
EP3224484B1 (en) Cooling device for a hydraulic assembly and use of a cooling device
EP2891396B1 (en) Cooling arrangement for components disposed in an interior of a switch cabinet
DE112016003754B4 (en) Vertical storage device
DE112012004988T5 (en) heat exchangers
EP3482106B1 (en) Gear and use of a ring cooler
DE112005002424T5 (en) Liquid cooling system for a multiprocessor
DE112007001424T5 (en) Heat sink and radiator
DE212012000286U1 (en) Subcooler with high performance and low coolant
DE102021105437A1 (en) HIGH EFFICIENCY MULTI-CHANNEL WATER-COOLING RADIATOR
WO2017055137A1 (en) Hydrostatic compact aggregate with cooling
DE102019220259A1 (en) TURN HEAT EXCHANGER AND RELATED SYSTEM
DE102012112505B3 (en) Control cabinet with an arrangement for cooling, absorbed in an interior of the cabinet, heat-emitting components
EP3105650B1 (en) Cooling arrangement for a computer system
WO2017055134A1 (en) Drive unit and aggregate with cooling
DE102015217899A1 (en) Hydraulic cylinder unit
EP2952678B1 (en) Vacuum pump with cooling fins
EP2713130B1 (en) Thermal storage device for refrigeration systems
DE102008000415B4 (en) Arrangement for dissipating heat from electrical components
EP3507504B1 (en) Tank, and electrohydraulic compact assembly having a tank
EP3321623B1 (en) Chiller with compression coolant circuit and buffer storage, a corresponding cooling arrangement and a method for operating same
EP2957772B2 (en) Vacuum pump
EP3085996B1 (en) Gear box and method for operating same
EP2410829B1 (en) Cooling system for housed electronic equipment
DE202013105494U1 (en) Heat sink for cooling a heat-generating component and computer system
WO2015197362A1 (en) Heat exchanger

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170626

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200520

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1309137

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015013395

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201203

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015013395

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201120

26N No opposition filed

Effective date: 20210603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201202

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1309137

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230124

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231130

Year of fee payment: 9