EP3213337B1 - Metal jet x-ray tube - Google Patents

Metal jet x-ray tube Download PDF

Info

Publication number
EP3213337B1
EP3213337B1 EP15820839.7A EP15820839A EP3213337B1 EP 3213337 B1 EP3213337 B1 EP 3213337B1 EP 15820839 A EP15820839 A EP 15820839A EP 3213337 B1 EP3213337 B1 EP 3213337B1
Authority
EP
European Patent Office
Prior art keywords
component
cathode
electron beam
metal jet
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15820839.7A
Other languages
German (de)
French (fr)
Other versions
EP3213337A1 (en
Inventor
Oliver Heid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthcare GmbH
Original Assignee
Siemens Healthcare GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Healthcare GmbH filed Critical Siemens Healthcare GmbH
Publication of EP3213337A1 publication Critical patent/EP3213337A1/en
Application granted granted Critical
Publication of EP3213337B1 publication Critical patent/EP3213337B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/12Cooling non-rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/062Cold cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/081Target material
    • H01J2235/082Fluids, e.g. liquids, gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/086Target geometry

Definitions

  • the invention relates to a metal beam X-ray tube according to the preamble of claim 1.
  • the maintenance of the solid or liquid state of aggregation of the anode material at the focal point of the electron beam is known to be achieved by transporting the material of the rotating anode or the metal beam at the focal point of the electron beam through the focal point with sufficient speed.
  • the electrons are slowed down to a standstill, although only high-energy electrons produce the desired short-wave X-ray radiation.
  • Complete deceleration is an unfavorable process in terms of focal spot power deposition and also efficiency.
  • the object of the present invention is to propose a metal beam X-ray tube that has less of the problem of power density at the point of impact than conventional fixed or rotating anode tubes or previous metal beam X-ray tubes of the electron beam on the anode component is affected.
  • the metal beam X-ray tube has a provision for extracting the electron beam from the cathode component in addition to a cathode component for extracting an electron beam in a vacuum space.
  • the metal beam X-ray tube has an anode component formed with a liquid metal beam as a target for the emitted electron beam of the cathode component and a provision for accelerating the electron beam emitted by the cathode component within a vacuum path in the direction and with the target anode component.
  • the metal beam X-ray tube according to the invention has a thin metal beam as the anode component, by means of which the electrons of the electron beam impinging on the anode component are only partially decelerated.
  • the metal beam X-ray tube according to the invention has a knife-edge cathode as the cathode component with a cathode cutting edge pointing with a slight downward slope in the direction of the liquid metal beam of the anode component.
  • a metal beam X-ray tube is thus proposed in which the fast primary electrons, which are electrostatically or electrodynamically accelerated in a first vacuum path, are only partially decelerated in a thin, relatively electron-transparent target medium.
  • the thin light-generating anode material can only absorb very little energy.
  • Physically very thin anode materials are required, for example 0.1 to 10 ⁇ m thick.
  • liquid metal jets are very difficult to produce in a shape other than round. This also limits the focal spot diameter to a very small size.
  • a knife-edge cathode is therefore used in combination with the correspondingly thin metal beam of the anode component, which according to the invention generates a flat electron beam with a thickness matching the metal beam diameter, so that a sufficiently large proportion of the electrons emerging from the cathode hit the metal beam.
  • a metal beam of the anode component which is embedded or dissolved in a second, relatively good electron-permeable and heat-absorbing material, also helps to increase efficiency.
  • the dissolution can take place, for example, in the form of an alloy or a mixture.
  • this enables anodes that are physically relatively thick but electron-optically thin and have a high specific energy absorption capacity.
  • the metal beam can have the easily realizable cylindrical shape with a diameter in the order of magnitude of the electron beam diameter, e.g. 10 to 100 ⁇ m have, nevertheless, sufficient electron kinetic transmission.
  • the mixture or the alloy should have a low melting point in order to enable liquid jet formation.
  • the improved energy absorption capacity of the anode material reduces the necessary anode beam speed and / or enables higher power deposition and thus luminance of the focal point.
  • the single figure shows a metal beam X-ray tube 1 which has a vacuum space 2.
  • a cathode component 3 is arranged in the vacuum space 2.
  • the cathode component 3 serves to extract an electron beam 4.
  • a provision 5 for extracting the electron beam 4 from the cathode component 3 is provided in the vacuum space 2.
  • an anode component 7 formed with a liquid metal jet 6 is provided in the vacuum space 2.
  • the metal beam 6 is the target for the electron beam 4 emitted by the cathode component 3.
  • a provision 8 is used to accelerate the electron beam 4 emitted by the cathode component 3 at least within a vacuum path 9 in the direction and with the target anode component 7.
  • the metal beam 6 is implemented as a thin metal beam to the extent that the electrons of the electron beam 4 are only partially decelerated by the metal beam 6.
  • the cathode component 3 has a cathode knife edge 10, so that the cathode component 3 also acts as a knife edge cathode can be designated.
  • the cathode knife cutting edge 10 is aligned with a slight downward slope in the direction of the liquid metal jet 6 of the anode component 7.
  • the exemplary embodiment according to the FIGURE additionally has an energy recovery device 12.
  • the metal beam 6 of the anode component 7 is embedded or dissolved in at least a single second, relatively good electron-permeable and heat-absorbing material 13.
  • a knife-cutting cathode is used that is slightly inclined with respect to any magnetic field lines that may be present.
  • an alloy or a mixture of at least two components is used as the X-ray generating anode material and an energy recovery device 12, which captures the electron beam emerging from the metal beam 6 of the anode component 7 with an electrostatic collector.
  • the material 13 used for the metal beam 6 of the anode component 7 is, for example, a chemical element with the atomic number 30 to 92, for example barium, lanthanum, cerium, bismuth, tungsten and so on, and at least one heat-absorbing, relatively electron and X-ray transparent component, for example one chemical element with atomic number ⁇ 20, e.g. lithium.
  • the metal beam 6 is injected into the electron beam 4, for example by means of an injector, so that bremsstrahlung and characteristic radiation are produced in the interaction zone 14.
  • the transmitted and scattered electrons are in an electrostatic collector by a Counter-E-field decelerated with energy recovery and absorbed at low speed.

Landscapes

  • X-Ray Techniques (AREA)

Description

Die Erfindung betrifft eine Metallstrahlröntgenröhre gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a metal beam X-ray tube according to the preamble of claim 1.

Eine derartige Metallstrahlröntgenröhre ist aus der Patentanmeldung mit der Veröffentlichungsnummer US 2013/301805 A1 bekannt.Such a metal beam X-ray tube is disclosed in patent application publication number US 2013/301805 A1 known.

Bei bisher bekannten Fest- oder Drehanodenröhren oder auch Metallstrahlröntgenröhren besteht das Problem der Leistungsdichte im Auftreffpunkt des Elektronenstrahls auf der Anodenkomponente. Es entstehen dort zu hohe Verlustleistungen für gegebene Lichtstärken und Brennfleck-Leuchtdichten. Außerdem stellen starke Hintergrund-Magnetfelder, beispielsweise hervorgerufen im Zusammenhang mit Magnetresonanztomographen, ein Problem dar. In solchen starken Magnetfeldern ist es unmöglich, den Elektronenstrahl elektrostatisch zu fokussieren.With previously known fixed or rotating anode tubes or also metal beam X-ray tubes, there is the problem of power density at the point of impact of the electron beam on the anode component. There are too high power losses for the given light intensities and focal point luminance. In addition, strong background magnetic fields, for example caused in connection with magnetic resonance tomographs, represent a problem. In such strong magnetic fields it is impossible to focus the electron beam electrostatically.

Bei Rotationsanodenröhren und bei Metallstrahlröntgenröhren wird die Aufrechterhaltung des festen bzw. flüssigen Aggregatzustandes des Anodenmaterials im Brennpunkt des Elektronenstrahls bekanntermaßen dadurch gelöst, dass das Material der Drehanode oder des Metallstrahls im Brennpunkt des Elektronenstrahls genügend schnell durch den Brennfleck transportiert wird. Dabei werden die Elektronen bis zum Stillstand abgebremst, obwohl nur hochenergetische Elektronen die gewünschte kurzwellige Röntgenstrahlung hervorrufen. Die vollständige Abbremsung ist bezüglich der Brennfleck-Leistungsdeposition und auch der Effizienz ein ungünstiger Prozess.In rotating anode tubes and metal beam x-ray tubes, the maintenance of the solid or liquid state of aggregation of the anode material at the focal point of the electron beam is known to be achieved by transporting the material of the rotating anode or the metal beam at the focal point of the electron beam through the focal point with sufficient speed. The electrons are slowed down to a standstill, although only high-energy electrons produce the desired short-wave X-ray radiation. Complete deceleration is an unfavorable process in terms of focal spot power deposition and also efficiency.

Aufgabe der vorliegenden Erfindung ist es, eine Metallstrahlröntgenröhre vorzuschlagen, die weniger als konventionelle Fest- oder Drehanodenröhren oder bisherige Metallstrahlröntgenröhren vom Problem der Leistungsdichte im Auftreffpunkt des Elektronenstrahls auf der Anodenkomponente betroffen ist.The object of the present invention is to propose a metal beam X-ray tube that has less of the problem of power density at the point of impact than conventional fixed or rotating anode tubes or previous metal beam X-ray tubes of the electron beam on the anode component is affected.

Diese Aufgabe wird ausgehend von einer Metallstrahlröntgenröhre der eingangs genannten Art erfindungsgemäß gelöst durch eine Metallstrahlröntgenröhre, die die Merkmale im kennzeichnenden Teil des Anspruchs 1 aufweist.Based on a metal beam X-ray tube of the type mentioned at the beginning, this object is achieved according to the invention by a metal beam X-ray tube which has the features in the characterizing part of claim 1.

Danach weist die Metallstrahlröntgenröhre in einem Vakuumraum neben einer Kathodenkomponente zum Extrahieren eines Elektronenstrahls auch eine Vorkehrung zum Extrahieren des Elektronenstrahls von der Kathodenkomponente auf. Außerdem weist die Metallstrahlröntgenröhre eine mit einem flüssigen Metallstrahl gebildete Anodenkomponente als Ziel für den ausgesendeten Elektronenstrahl der Kathodenkomponente und eine Vorkehrung zum Beschleunigen des von der Kathodenkomponente ausgesendeten Elektronenstrahls innerhalb einer Vakuumstrecke in Richtung und mit Ziel Anodenkomponente auf. Dazu weist die Metallstrahlröntgenröhre erfindungsgemäß einen dünnen Metallstrahl als Anodenkomponente auf, durch den die Elektronen des auf der Anodenkomponente auftreffenden Elektronenstrahls nur teilweise abgebremst sind. Außerdem weist die Metallstrahlröntgenröhre erfindungsgemäß eine Messerschneidekathode als Kathodenkomponente auf mit einer mit einer geringen Neigung abwärts in Richtung flüssiger Metallstrahl der Anodenkomponente zeigenden Kathodenschneide.Thereafter, the metal beam X-ray tube has a provision for extracting the electron beam from the cathode component in addition to a cathode component for extracting an electron beam in a vacuum space. In addition, the metal beam X-ray tube has an anode component formed with a liquid metal beam as a target for the emitted electron beam of the cathode component and a provision for accelerating the electron beam emitted by the cathode component within a vacuum path in the direction and with the target anode component. For this purpose, the metal beam X-ray tube according to the invention has a thin metal beam as the anode component, by means of which the electrons of the electron beam impinging on the anode component are only partially decelerated. In addition, the metal beam X-ray tube according to the invention has a knife-edge cathode as the cathode component with a cathode cutting edge pointing with a slight downward slope in the direction of the liquid metal beam of the anode component.

Damit wird eine Metallstrahlröntgenröhre vorgeschlagen, bei der die schnellen, in einer ersten Vakuumstrecke elektrostatisch oder elektrodynamisch beschleunigten primären Elektronen in einem dünnen, relativ elektronentransparenten Zielmedium nur teilweise abgebremst werden.A metal beam X-ray tube is thus proposed in which the fast primary electrons, which are electrostatically or electrodynamically accelerated in a first vacuum path, are only partially decelerated in a thin, relatively electron-transparent target medium.

Hierbei besteht aber noch das Problem, dass das dünne lichterzeugende Anodenmaterial nur sehr wenig Energie absorbieren kann. Im Endeffekt besteht zunächst im Wesentlichen die gleiche Leistungsgrenze wie bei einem dicken Anodenmaterial. Es sind physikalisch sehr dünne Anodenmaterialien erforderlich, beispielsweise in der Stärke von 0,1 bis 10 µm. Andererseits sind Flüssigmetallstrahlen nur sehr schwierig in einer anderen als runder Form zu realisieren. Damit ist der Brennfleckdurchmesser ebenfalls auf eine sehr geringe Größe beschränkt.However, there is still the problem that the thin light-generating anode material can only absorb very little energy. In the end, there is essentially the same performance limit as with a thick anode material. Physically very thin anode materials are required, for example 0.1 to 10 μm thick. On the other hand, liquid metal jets are very difficult to produce in a shape other than round. This also limits the focal spot diameter to a very small size.

Weiter macht die Anwesenheit eines starken, homogenen Hintergrundmagnetfelds, beispielsweise beim Einsatz in einem Magnetresonanztomographen, es unmöglich, die Elektronen elektrostatisch zu fokussieren.Furthermore, the presence of a strong, homogeneous background magnetic field, for example when used in a magnetic resonance tomograph, makes it impossible to focus the electrons electrostatically.

Es wird daher in Kombination mit dem entsprechend dünnen Metallstrahl der Anodenkomponente eine Messerschneidenkathode verwendet, die erfindungsgemäß einen Elektronen-Flachstrahl mit zum Metallstrahldurchmesser passender Dicke erzeugt, so dass ein ausreichend großer Anteil der aus der Kathode austretenden Elektronen den Metallstrahl trifft.A knife-edge cathode is therefore used in combination with the correspondingly thin metal beam of the anode component, which according to the invention generates a flat electron beam with a thickness matching the metal beam diameter, so that a sufficiently large proportion of the electrons emerging from the cathode hit the metal beam.

In Summe wird eine Metallstrahlröntgenröhre erhalten, die die eingangs genannten Nachteile nicht mehr aufweist.In sum, a metal beam X-ray tube is obtained which no longer has the disadvantages mentioned at the beginning.

Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand von Unteransprüchen.Advantageous refinements of the invention are the subject of subclaims.

Danach ist nach der Anodenkomponente eine weitere Vakuumstrecke für die noch nicht ganz abgebremsten Elektronen des Elektronenstrahls vorgesehen, in der eine Abbremsung der Elektronen wenigstens annähernd bis zum Stillstand erfolgt.Thereafter, after the anode component, a further vacuum path is provided for the electrons of the electron beam that have not yet been completely braked, in which the electrons are braked at least approximately to a standstill.

Erfolgt dieses Abbremsen der Elektronen zusammen mit einer Energierückgewinnungsvorkehrung, wird in einer ganz besonders vorteilhaften Weise die Lichterzeugungseffizienz gesteigert.If this braking of the electrons takes place together with an energy recovery device, the light generation efficiency is increased in a particularly advantageous manner.

Zur Effizienzsteigerung trägt zusätzlich bei ein Metallstrahl der Anodenkomponente, der in einem zweiten, relativ gut elektronendurchlässigen und wärmeabsorbierenden Material eingebettet oder auch darin aufgelöst ist.A metal beam of the anode component, which is embedded or dissolved in a second, relatively good electron-permeable and heat-absorbing material, also helps to increase efficiency.

Die Auflösung kann beispielsweise in Form einer Legierung oder eines Gemisches erfolgen. Dies ermöglicht im Gegensatz zu bisherigen Metallstrahlröntgenröhren physikalisch relativ dicke, aber elektronenoptisch dünne Anoden mit großem spezifischem Energieaufnahmevermögen. Insgesamt kann der Metallstrahl die einfach zu realisierende Zylinderform mit Durchmesser in der Größenordnung des Elektronenstrahldurchmessers, z.B. 10 bis 100 µm aufweisen bei dennoch elektronenkinetisch ausreichender Durchlässigkeit. Das Gemisch oder die Legierung sollte erfindungsgemäß einen geringen Schmelzpunkt haben, um die Flüssigstrahlbildung zu ermöglichen. Das verbesserte Energieaufnahmevermögen des Anodenmaterials reduziert die notwendige Anodenstrahlgeschwindigkeit und/oder ermöglicht eine höhere Leistungsdeposition und damit Leuchtdichte des Brennflecks.The dissolution can take place, for example, in the form of an alloy or a mixture. In contrast to previous metal beam X-ray tubes, this enables anodes that are physically relatively thick but electron-optically thin and have a high specific energy absorption capacity. Overall, the metal beam can have the easily realizable cylindrical shape with a diameter in the order of magnitude of the electron beam diameter, e.g. 10 to 100 µm have, nevertheless, sufficient electron kinetic transmission. According to the invention, the mixture or the alloy should have a low melting point in order to enable liquid jet formation. The improved energy absorption capacity of the anode material reduces the necessary anode beam speed and / or enables higher power deposition and thus luminance of the focal point.

Nachfolgend wird die Erfindung anhand einer Zeichnung näher erläutert.The invention is explained in more detail below with reference to a drawing.

Die einzige Figur zeigt eine Metallstrahlröntgenröhre 1, die einen Vakuumraum 2 aufweist. In dem Vakuumraum 2 ist eine Kathodenkomponente 3 angeordnet. Die Kathodenkomponente 3 dient zum Extrahieren eines Elektronenstrahls 4. Des Weiteren ist in dem Vakuumraum 2 eine Vorkehrung 5 zum Extrahieren des Elektronenstrahls 4 von der Kathodenkomponente 3 vorgesehen. Weiter ist in dem Vakuumraum 2 eine mit einem flüssigen Metallstrahl 6 gebildete Anodenkomponente 7 vorgesehen. Der Metallstrahl 6 ist das Ziel für den ausgesendeten Elektronenstrahl 4 der Kathodenkomponente 3. Eine Vorkehrung 8 dient zum Beschleunigen des von der Kathodenkomponente 3 ausgesendeten Elektronenstrahls 4 zumindest innerhalb einer Vakuumstrecke 9 in Richtung und mit Ziel Anodenkomponente 7.The single figure shows a metal beam X-ray tube 1 which has a vacuum space 2. A cathode component 3 is arranged in the vacuum space 2. The cathode component 3 serves to extract an electron beam 4. Furthermore, a provision 5 for extracting the electron beam 4 from the cathode component 3 is provided in the vacuum space 2. Furthermore, an anode component 7 formed with a liquid metal jet 6 is provided in the vacuum space 2. The metal beam 6 is the target for the electron beam 4 emitted by the cathode component 3. A provision 8 is used to accelerate the electron beam 4 emitted by the cathode component 3 at least within a vacuum path 9 in the direction and with the target anode component 7.

Der Metallstrahl 6 ist als soweit dünner Metallstrahl realisiert, als die Elektronen des Elektronenstrahls 4 durch den Metallstrahl 6 nur teilweise abgebremst werden. Die Kathodenkomponente 3 weist eine Kathodenmesserschneide 10 auf, so dass die Kathodenkomponente 3 auch als Messerschneidekathode bezeichnet werden kann. Die Kathodenmesserschneide 10 ist mit einer geringen Neigung abwärts in Richtung flüssiger Metallstrahl 6 der Anodenkomponente 7 ausgerichtet.The metal beam 6 is implemented as a thin metal beam to the extent that the electrons of the electron beam 4 are only partially decelerated by the metal beam 6. The cathode component 3 has a cathode knife edge 10, so that the cathode component 3 also acts as a knife edge cathode can be designated. The cathode knife cutting edge 10 is aligned with a slight downward slope in the direction of the liquid metal jet 6 of the anode component 7.

Nach der Anodenkomponente 7 ist eine weitere Vakuumstrecke 11 für die noch nicht ganz abgebremsten Elektronen des Elektronenstrahls 4 vorhanden. Die Vakuumstrecke 11 dient dazu, die nach der Anodenkomponente 7 nur teilweise abgebremsten Elektronen wenigstens annähernd bis zum Stillstand abzubremsen. Das Ausführungsbeispiel gemäß der Figur weist hierfür ergänzend eine Energierückgewinnungsvorkehrung 12 auf.After the anode component 7 there is a further vacuum path 11 for the electrons of the electron beam 4 that have not yet been completely braked. The vacuum path 11 serves to decelerate the electrons, which are only partially braked after the anode component 7, at least approximately to a standstill. For this purpose, the exemplary embodiment according to the FIGURE additionally has an energy recovery device 12.

Nicht speziell erkennbar in der Figur ist, dass der Metallstrahl 6 der Anodenkomponente 7 wenigstens in einem einzigen zweiten, relativ gut elektronendurchlässigen und wärmeabsorbierenden Material 13 eingebettet oder darin aufgelöst ist.It is not specifically recognizable in the figure that the metal beam 6 of the anode component 7 is embedded or dissolved in at least a single second, relatively good electron-permeable and heat-absorbing material 13.

Erfindungsgemäß findet eine Messerschneidekathode Anwendung, die leicht gegen gegebenenfalls vorhandene Magnetfeldlinien geneigt ist. Zusätzlich findet beim Ausführungsbeispiel nach der Figur eine Legierung bzw. ein Gemisch aus mindestens zwei Komponenten als röntgenstrahlerzeugendes Anodenmaterial Verwendung und weiter eine Energierückgewinnungsvorkehrung 12, die das aus dem Metallstrahl 6 der Anodenkomponente 7 austretende Elektronenbündel mit einem elektrostatischen Kollektor auffängt. Als Material 13 für den Metallstrahl 6 der Anodenkomponente 7 ist beispielsweise ein chemisches Element der Ordnungszahl 30 bis 92 verwendet, zum Beispiel Barium, Lanthan, Cer, Wismut, Wolfram und so weiter und mindestens einer wärmeabsorbierenden, relativ elektronen- und röntgentransparenten Komponente, beispielsweise einem chemischen Element mit Ordnungszahl < 20, zum Beispiel Lithium.According to the invention, a knife-cutting cathode is used that is slightly inclined with respect to any magnetic field lines that may be present. In addition, in the embodiment according to the figure, an alloy or a mixture of at least two components is used as the X-ray generating anode material and an energy recovery device 12, which captures the electron beam emerging from the metal beam 6 of the anode component 7 with an electrostatic collector. The material 13 used for the metal beam 6 of the anode component 7 is, for example, a chemical element with the atomic number 30 to 92, for example barium, lanthanum, cerium, bismuth, tungsten and so on, and at least one heat-absorbing, relatively electron and X-ray transparent component, for example one chemical element with atomic number <20, e.g. lithium.

Der Metallstrahl 6 wird beispielsweise mittels eines Injektors in den Elektronenstrahl 4 eingeschossen, so dass in der Interaktionszone 14 Bremsstrahlung und charakteristische Strahlung entsteht. Die transmittierten und gestreuten Elektronen werden in einem elektrostatischen Kollektor durch ein Gegen-E-Feld unter Energierückgewinnung abgebremst und bei geringer Geschwindigkeit aufgefangen.The metal beam 6 is injected into the electron beam 4, for example by means of an injector, so that bremsstrahlung and characteristic radiation are produced in the interaction zone 14. The transmitted and scattered electrons are in an electrostatic collector by a Counter-E-field decelerated with energy recovery and absorbed at low speed.

Leichtschmelzende Metalllegierungen tendieren bei erhöhten Temperaturen zu einem hohen Dampfdruck, was die Ablagerung von leitfähigen Oberflächenschichten zum Beispiel auf Isolatoren begünstigt. Es ist daher vorteilhaft, den Metallstrahl 6 nur für eine minimale, für die Interaktion mit dem Elektronenstrahl 4 notwendige Länge durch den Entladungsraum zu führen und danach in einen wandgekühlten Kondensations- und Auffangbehälter eintreten zu lassen.Easily melting metal alloys tend to have a high vapor pressure at elevated temperatures, which favors the deposition of conductive surface layers, for example on insulators. It is therefore advantageous to guide the metal beam 6 through the discharge space only for a minimum length necessary for interaction with the electron beam 4 and then to allow it to enter a wall-cooled condensation and collecting container.

Claims (4)

  1. Metal jet x-ray tube (1), comprising, in a vacuum chamber (2), a cathode component (3) for extracting an electron beam (4), a provision (5) for the extraction of the electron beam (4) by the cathode component (3), an anode component (7) formed by a liquid metal jet (6) as a target for the emitted electron beam (4) of the cathode component (3) and a provision (8) for accelerating the electron beam (4) emitted by the cathode component (3) within a vacuum path in the direction and with a target of the anode component (7), wherein a thin metal jet (6) is provided as an anode component (7), by means of which the electrons of the electron beam (4) incident thereon are only partly decelerated, characterized in that a blade cathode is provided as cathode component (3), said blade cathode comprising a cathode blade (10) directed with a slight inclination downward in the direction of the liquid metal jet (6) of the anode component (7).
  2. Metal jet x-ray tube according to Claim 1, characterized in that a further vacuum path (11) is provided downstream of the anode component (7) for the electrons of the electron beam (4) which have not yet been completely decelerated, within which vacuum path the electrons are decelerated at least virtually to standstill.
  3. Metal jet x-ray tube according to Claim 2, characterized in that the deceleration of the electrons at least virtually to standstill is linked to an energy recuperation provision (12).
  4. Metal jet x-ray tube according to any one of the preceding claims, characterized in that the metal jet (6) of the anode component (7) is at least embedded and/or dissolved in a single second material (13) which passes electrons relatively well and which is heat absorbing.
EP15820839.7A 2014-12-22 2015-12-18 Metal jet x-ray tube Active EP3213337B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014226813.3A DE102014226813A1 (en) 2014-12-22 2014-12-22 Metal beam X-ray tube
PCT/EP2015/080504 WO2016102370A1 (en) 2014-12-22 2015-12-18 Metal jet x-ray tube

Publications (2)

Publication Number Publication Date
EP3213337A1 EP3213337A1 (en) 2017-09-06
EP3213337B1 true EP3213337B1 (en) 2020-10-07

Family

ID=55072621

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15820839.7A Active EP3213337B1 (en) 2014-12-22 2015-12-18 Metal jet x-ray tube

Country Status (5)

Country Link
US (1) US10586673B2 (en)
EP (1) EP3213337B1 (en)
CN (1) CN107004552B (en)
DE (1) DE102014226813A1 (en)
WO (1) WO2016102370A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3214635A1 (en) * 2016-03-01 2017-09-06 Excillum AB Liquid target x-ray source with jet mixing tool
US10748736B2 (en) * 2017-10-18 2020-08-18 Kla-Tencor Corporation Liquid metal rotating anode X-ray source for semiconductor metrology
EP3671802A1 (en) 2018-12-20 2020-06-24 Excillum AB Electron collector with oblique impact portion

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL42763A0 (en) 1972-09-18 1973-10-25 Bendix Corp A field emission x-ray tube
US4953191A (en) 1989-07-24 1990-08-28 The United States Of America As Represented By The United States Department Of Energy High intensity x-ray source using liquid gallium target
US5052034A (en) * 1989-10-30 1991-09-24 Siemens Aktiengesellschaft X-ray generator
SE510133C2 (en) 1996-04-25 1999-04-19 Jettec Ab Laser plasma X-ray source utilizing fluids as radiation target
EP1305984B1 (en) * 2000-07-28 2010-11-24 Jettec AB Method and apparatus for generating x-ray radiation
JP3866063B2 (en) 2001-07-31 2007-01-10 独立行政法人科学技術振興機構 X-ray generation method and apparatus
DE102004015590B4 (en) 2004-03-30 2008-10-09 GE Homeland Protection, Inc., Newark Anode module for a liquid metal anode X-ray source and X-ray source with an anode module
DE102008026938A1 (en) 2008-06-05 2009-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Radiation source and method for generating X-radiation
US7929667B1 (en) * 2008-10-02 2011-04-19 Kla-Tencor Corporation High brightness X-ray metrology
EP2415065A1 (en) * 2009-04-03 2012-02-08 Excillum AB Supply of a liquid-metal target in x-ray generation
EP2656369B8 (en) 2010-12-22 2016-09-21 Excillum AB Aligning and focusing an electron beam in an x-ray source
US8879690B2 (en) * 2010-12-28 2014-11-04 Rigaku Corporation X-ray generator
DE102013209447A1 (en) 2013-05-22 2014-11-27 Siemens Aktiengesellschaft X-ray source and method for generating X-ray radiation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN107004552A (en) 2017-08-01
WO2016102370A1 (en) 2016-06-30
US20170345611A1 (en) 2017-11-30
CN107004552B (en) 2018-12-18
DE102014226813A1 (en) 2016-06-23
US10586673B2 (en) 2020-03-10
EP3213337A1 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
DE10334606A1 (en) Cathode for high-emission X-ray tube
WO1996029723A1 (en) Microfocus x-ray device
EP3213337B1 (en) Metal jet x-ray tube
EP1783809A2 (en) Nanofocus x-ray tube
DE19544203A1 (en) X-ray tube, in particular microfocus X-ray tube
DE102013209447A1 (en) X-ray source and method for generating X-ray radiation
WO2005096341A1 (en) Anode module for a liquid metal anode x-ray source, and x-ray emitter comprising an anode module
DE112019003777T5 (en) X-RAY REFLECTION SOURCE WITH HIGH BRIGHTNESS
DE2743108C2 (en) Multi-stage collector with graduated collector voltage
DE102008026938A1 (en) Radiation source and method for generating X-radiation
DE102013220189A1 (en) X-ray source and method for generating X-ray radiation
EP3629361A1 (en) X-ray anode, x-ray emitter and method for producing an x-ray anode
WO2013007484A1 (en) Monochromatic x-ray source
DE2341503A1 (en) ELECTRON BEAM TUBE
DE102014226814B4 (en) metal beam x-ray tube
DE102012103974A1 (en) Apparatus for generating X-rays emitting focal spot, has diaphragm portion comprising mechanical orifice passage that limits electron beam and/or X-rays, so that size of first effective focal spot is adjusted
DE102010022595B4 (en) X-ray tube with backscatter electron catcher
EP2301042B1 (en) X-ray target and a method for producing x-rays
DE102010041156A1 (en) Diaphragm unit for e.g. scanning electron microscope, for examination of samples, has support unit protruding into body from side of body and arranged at distance from edge of aperture, where body and/or aperture are provided with coating
DE1464682A1 (en) Electron gun
WO2008006552A1 (en) Liquid-cooled target for producing electromagnetic radiation
DE102012216977B4 (en) Device for generating X-ray radiation
EP2885807B1 (en) Device having an anode for generating x-radiation
DE619621C (en) X-ray tube with perforated hollow anode
DE102009008046A1 (en) An X-ray tube having a backscattered electron capture device and methods of operating such an X-ray tube

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS HEALTHCARE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200605

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1322042

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015013632

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210208

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015013632

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

26N No opposition filed

Effective date: 20210708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201218

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201218

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1322042

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210207

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231214

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015013632

Country of ref document: DE

Owner name: SIEMENS HEALTHINEERS AG, DE

Free format text: FORMER OWNER: SIEMENS HEALTHCARE GMBH, MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 9

Ref country code: GB

Payment date: 20240102

Year of fee payment: 9