EP3211192B1 - Brennkraftmaschine mit einem fremdgezündeten verbrennungsmotor und verfahren zum betreiben einer derartigen brennkraftmaschine - Google Patents

Brennkraftmaschine mit einem fremdgezündeten verbrennungsmotor und verfahren zum betreiben einer derartigen brennkraftmaschine Download PDF

Info

Publication number
EP3211192B1
EP3211192B1 EP17157649.9A EP17157649A EP3211192B1 EP 3211192 B1 EP3211192 B1 EP 3211192B1 EP 17157649 A EP17157649 A EP 17157649A EP 3211192 B1 EP3211192 B1 EP 3211192B1
Authority
EP
European Patent Office
Prior art keywords
exhaust
branch
secondary air
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17157649.9A
Other languages
English (en)
French (fr)
Other versions
EP3211192A1 (de
Inventor
Markus Paulovsky
Ines Schulze
Jakob Erfurt
Jörg THEOBALD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102016208289.2A external-priority patent/DE102016208289A1/de
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP3211192A1 publication Critical patent/EP3211192A1/de
Application granted granted Critical
Publication of EP3211192B1 publication Critical patent/EP3211192B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • F01N3/32Arrangements for supply of additional air using air pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2270/00Mixing air with exhaust gases
    • F01N2270/04Mixing air with exhaust gases for afterburning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture

Definitions

  • the invention relates to an internal combustion engine, preferably a chargeable internal combustion engine with a spark ignition internal combustion engine, with the features according to the preamble of claim 1. Furthermore, the invention relates to a method for operating an internal combustion engine, preferably a chargeable internal combustion engine with a spark-ignition internal combustion engine, with the features according to In combustion processes in an internal combustion engine, in particular a spark ignition internal combustion engine, preferably used as a traction engine of a vehicle, soot particles, which are separated from a arranged in the exhaust system of the internal combustion engine particulate filter, in particular gasoline particulate filter, while driving from the exhaust gas.
  • the particulate filter is regenerated continuously or periodically, that is, the soot loading of the particulate filter is reduced by providing reaction conditions for a thermal oxidation of the soot with oxygen.
  • a sufficiently high temperature in the particle filter with simultaneous supply of oxygen in the exhaust gas is necessary. Since modern spark-ignited internal combustion engines are operated regularly without excess oxygen - lambda equal to 1, stoichiometric - or have good efficiencies, a separate procedure for regeneration is required. If the internal combustion engine is a traction engine of a vehicle, this is achieved by means of a special driving cycle.
  • a temperature of more than 500 degrees Celsius in the particulate filter is required, the representation of which represents a major challenge in particular in an arrangement of the particulate filter in a portion of the exhaust system in the underbody of the vehicle, so with a relatively large distance to the engine of the internal combustion engine.
  • the first secondary air duct opens at several points in an exhaust manifold, wherein in each case a point in an individual exhaust gas line downstream of a combustion chamber of the internal combustion engine and upstream of an exhaust gas collection chamber of the exhaust manifold is located.
  • the second secondary air line also opens downstream of the first secondary air line into the exhaust manifold, possibly into an exhaust gas collecting chamber in the exhaust manifold.
  • the provision of a further secondary air line serves to increase the efficiency of the reaction of the secondary air with the unburned fuel in a catalyst.
  • Object of the present invention is to provide an exhaust system of an internal combustion engine with spark-ignition internal combustion engine at a plurality of desired locations with secondary air.
  • An internal combustion engine comprises a spark-ignited internal combustion engine, in particular a spark-ignited internal combustion engine, a fresh gas train, an exhaust system with at least one first exhaust aftertreatment device and at least one second exhaust aftertreatment device, in particular a particulate filter which is disposed downstream of the first exhaust aftertreatment device.
  • the internal combustion engine further comprises a secondary air line with a secondary air pump branching from the fresh gas train, the secondary air line having a first branch opening into the exhaust system upstream of the first exhaust aftertreatment device and a second branch downstream of the first exhaust aftertreatment device and upstream of the particulate filter the exhaust system opens.
  • the secondary air pump may be a variable speed controlled and / or regulated operated secondary air pump.
  • the secondary air pump can be driven variable speed, for example by means of an electric motor.
  • the electric motor is preferably controlled by a microcontroller, which is in active and / or signal connection to an engine control unit of the internal combustion engine according to the invention.
  • the exhaust system immediately downstream of a plurality of combustion chambers of the internal combustion engine on a plurality of partial exhaust gas lines, which are further merged downstream at least partially to at least one exhaust manifold, wherein the first branch of the secondary air line in divides a plurality of sub-branches and opens each sub-branch at a first outlet of the sub-branch in a partial exhaust gas line.
  • the at least one exhaust treatment device is arranged downstream of the first outlet in the partial exhaust gas line.
  • the exhaust system immediately downstream of a plurality of combustion chambers of the internal combustion engine comprises a plurality of partial exhaust lines which are further merged downstream to an exhaust manifold, wherein the first branch of the secondary air line at a first outlet of the first branch in the exhaust manifold opens.
  • the secondary air line has at least one valve for forwarding a volume flow conveyed through the secondary air line through the first branch and / or through the second branch.
  • a valve is preferably arranged in the first branch and in the second branch.
  • the secondary air line branches off from the fresh gas line upstream of a compressor arranged in the fresh gas line.
  • the secondary air line branches off the fresh gas line downstream of the compressor.
  • At least the particle filter is arranged downstream of a turbine arranged in the exhaust system in the exhaust system.
  • the internal combustion engine is a rechargeable internal combustion engine with at least one compressor in the fresh gas line and at least one turbine in the exhaust system.
  • the secondary air line branches off in front of the compressor (upstream of the compressor).
  • the first branch opens upstream (- lake) of the turbine in the exhaust system and the second branch downstream (- lake) of the turbine in the exhaust system.
  • the internal combustion engine in certain embodiments also be rechargeable by means of a mechanical or electrical compressor.
  • the exhaust system may also include a turbine of another assembly, for example for energy recovery.
  • an internal combustion engine with a spark-ignited internal combustion engine, in particular a spark ignited spark internal combustion engine, a fresh gas train, an exhaust system with at least a first exhaust aftertreatment device and at least a second exhaust aftertreatment device, in particular a particle filter which downstream (-ello) the first exhaust aftertreatment device is arranged, and a secondary air line with a secondary air pump, which branches off from the fresh gas train.
  • a spark-ignited internal combustion engine in particular a spark ignited spark internal combustion engine
  • a fresh gas train an exhaust system with at least a first exhaust aftertreatment device and at least a second exhaust aftertreatment device, in particular a particle filter which downstream (-year) the first exhaust aftertreatment device is arranged
  • a secondary air line with a secondary air pump which branches off from the fresh gas train.
  • secondary air is introduced into the exhaust system upstream of the first exhaust aftertreatment device, and secondary air is introduced downstream of the first exhaust aftertreatment device and upstream of the particulate filter into the exhaust system.
  • the method is suitable for operating the internal combustion engine proposed here.
  • the rechargeable internal combustion engine is charged by means of the compressor.
  • the secondary air duct branches into a first branch and a second branch at a branch point.
  • the secondary air pump is located in the secondary air line between the branch of the fresh gas line and the branch point.
  • the first and the second branch are preferably closed fluid-tight.
  • there is a 3-way valve at the branch point so that secondary air can pass from the branch through the first branch to the exhaust system or from the branch through the second branch to the exhaust system, depending on the valve position.
  • a 2-way valve with which the respective branch of the secondary air line can be closed, is located in the first and in the second branch.
  • each of the valves can also be operated in intermediate positions so that adjustable portions of the volume flow conveyed through the secondary air line can be conveyed through the first branch and through the second branch (ie also simultaneously).
  • the internal combustion engine is preferably operated in a gasoline process or an Otto-Miller process, in particular ignited spark-ignited.
  • the sparks may be generated by laser light or, preferably, by electrical discharge.
  • the internal combustion engine is preferably operated stoichiometrically.
  • the internal combustion engine is preferably a reciprocating internal combustion engine.
  • the internal combustion engine may have a direct injection of fuel into the combustion chambers of the internal combustion engine or via a port injection of fuel into a suction pipe, preferably at a plurality of points (MPI).
  • the introduced secondary air may be utilized for exothermic reaction with exhaust constituents so that the first exhaust treatment device may be heated.
  • a first catalyst stage in particular a 3-way catalyst, can be heated in this way.
  • the introduced secondary air may be utilized for exothermic reaction with the particular exhaust constituents such that the second exhaust treatment device may be discharged or regenerated.
  • an Otto particle filter can be regenerated.
  • the internal combustion engine according to the invention preferably has a control unit which is designed such that a fuel-air ratio and / or one or more ignition angles and / or one or more injection times of the spark-ignition internal combustion engine can be controlled or regulated by these.
  • the control or regulation is carried out such that in the exhaust system after the admixing of the charge air via the secondary air line, a stoichiometric air-fuel ratio is achieved.
  • the intake manifold pressure / boost pressure in particular to compensate for the poorer efficiency in the regeneration, and / or increases an air mass flow in the intake manifold.
  • the exhaust gas mass flow is increased by the introduced via the secondary air line part of the charge air.
  • the boost pressure and the air mass flow are lowered in the regeneration phase.
  • the internal combustion engine in particular during the regeneration of the particulate filter, operated at an operating point with partial load and / or with a substoichiometric fuel-air ratio.
  • the temperature in the exhaust system on the particulate filter to a value greater than 500 degrees Celsius, especially 560 degrees Celsius, and less than 1100 degrees Celsius, preferably greater than 580 degrees Celsius and less than 1000 degrees Celsius, to increase.
  • the temperature of the exhaust system can be controlled, optionally regulated.
  • the control or regulation can be carried out by the engine control unit. It may be based on a model of the temperature in the exhaust system and / or one or more measurements at various locations in the exhaust system.
  • one or more ignition angles and / or one or more injection times may be retarded compared to operation at the same operating point without secondary air supply.
  • Particularly advantageous and expedient in supercharged internal combustion engines according to the invention is, in the method according to the invention, to increase a boost pressure and / or an air mass flow to the spark-ignited internal combustion engine. In this way, the efficiency of the compressor can be optimized.
  • FIG. 1 shows a first embodiment of an internal combustion engine 1, which can be charged by means of a turbocharger consisting of an exhaust gas turbine 19 and a compressor 18 Aufladexx (exhaust gas turbocharger).
  • a non-chargeable internal combustion engine 1, a suction engine, can, except for the then missing Aufladeoli the same topology as in FIG. 1 have shown.
  • the internal combustion engine 1 in this embodiment is a traction machine of a trackless land vehicle and thus integrated into the land vehicle.
  • the in the FIG. 1 illustrated embodiment has a spark-ignition of electrical discharges spark-ignited internal combustion engine 1, which operates with a gasoline combustion process or Otto-Miller combustion process.
  • the internal combustion engine 2 is a reciprocating piston engine with, for example, four cylindrical combustion chambers 11.
  • the spark-ignited internal combustion engine 2 is supplied with air through a fresh gas line 3. From the air first non-gaseous impurities are separated in an air filter 34 (Lufi).
  • the air is compressed by means of a compressor 18 of the turbocharger charge group. It passes a throttle valve 24 and enters a suction tube.
  • a charge air cooler in particular a suction pipe integrated intercooler, have.
  • exhaust gas is discharged into the exhaust system 4, first in an exhaust manifold.
  • the exhaust manifold has individual (partial) exhaust pipes 12, which extend from the individual exhaust valves of the four combustion chambers 11 to a (exhaust) manifold 13.
  • the exhaust manifold combines the effluent exhaust gas over individual floods to a total exhaust gas flow.
  • the exhaust gas is first conducted in the exhaust system 4 via a turbine 19 of the turbocharger charge group, which drives the compressor 18.
  • the expanded exhaust gas passes downstream of the turbine 19 into a first exhaust aftertreatment device 5, a catalyst, in particular a three-way catalyst KAT.
  • the first exhaust aftertreatment device 5 may be located close to the engine, in particular on the engine or in the engine compartment, so that the heat from the burns in the Combustion chambers 11 can be used for heating the first exhaust aftertreatment device 5.
  • the second exhaust aftertreatment device is disposed in the underbody of the land vehicle. After passage of the Ottop redesignfilters 6, the exhaust gas enters the environment of the internal combustion engine. 1
  • the secondary air line 7 branches off upstream of the compressor 18 and downstream of the air filter 34 from the fresh gas line 3.
  • the secondary air line 7 has a secondary air pump 8, whose impeller promotes air through the secondary air line 7 to the exhaust system 4.
  • the secondary air duct 7 branches off into a first branch 9 and into a second branch 10.
  • the first branch 9 opens into the exhaust system 4 upstream of the turbine 19, while the second branch 10 flows downstream of the first exhaust aftertreatment device 5 and upstream of the second exhaust aftertreatment device 6 opens into the exhaust system 4.
  • the first branch 9 of the secondary air line 7 can open or end in an exhaust manifold of the exhaust system 4 at one or more discharge points (first outlets 15).
  • the exhaust manifold is integrated in the cylinder head. If it is a cooled at certain operating points of the internal combustion engine 1 exhaust manifold, it is advantageous in the context of the invention, when introducing secondary air into the exhaust system 4 to reduce the cooling of the exhaust gas or omit altogether.
  • One advantage of an exothermic reaction as far upstream in the exhaust system 4 is, inter alia, that the risk of uncontrolled combustion of the particular rich exhaust gas in sensitive components of the exhaust system 4, such as catalysts, reduced, preferably avoided.
  • additional exhaust enthalpy for the turbine 19 can be provided in an advantageous manner.
  • the exhaust system 4 immediately downstream of a plurality of combustion chambers 11 of the internal combustion engine 2, a plurality of partial exhaust gas lines 12, which are further merged downstream to an exhaust manifold 13, wherein the first branch 9 of the secondary air duct 7 is divided into a plurality of sub-branches 14 and each partial branch 14 opens at a first outlet 15 of the partial branch 14 into a partial exhaust gas line 12.
  • Both in the first branch 9 and in the second branch 10 of the secondary air line 7 is in each case a secondary air valve (valve 16).
  • the respective secondary air valve 16 can be opened or closed, so that the fluid connection can be interrupted or produced in the exhaust system 4.
  • FIG. 1 a series of along the fresh gas line 3 and the exhaust system 4 arranged measuring sensors or in the secondary air line 7 is shown. These are in signal and / or control and / or operative connection (not shown in the drawing) with an engine control unit 22. Based on a selection or all measured by the measuring sensors variables operating conditions, operating state parameters or operating conditions of the internal combustion engine 1 can be diagnosed. All or a selection of the measured variables can furthermore be used for the control and / or regulation of the internal combustion engine 1 or of assemblies / parts of the internal combustion engine 1. In particular, measured variables for the control and / or regulation of the regeneration of the second exhaust gas aftertreatment device 6, in particular of the Otto particle filter 6, can be used.
  • In Frischgasstrang 3 is downstream of the compressor 18 and upstream of the throttle valve 24, a first combined pressure and temperature sensor 23. Downstream of the throttle valve 24 and upstream of the combustion chambers 11 is a second combined pressure and temperature sensor 25 in the fresh gas line 3.
  • a pressure sensor downstream of the mouth (first outlets 15) of the first branch 9 of the secondary air duct 7 and upstream of the turbine 19 is a pressure sensor (third sensor 26), a so-called p3 sensor.
  • Downstream of turbine 19 and upstream first exhaust aftertreatment device 5 is a first linear lambda probe 27 in the exhaust system 4.
  • the second exhaust aftertreatment device 6 is a (Otto) particulate filter 6
  • the pressure difference / pressure drop p rel to OPF is measured between a point upstream of the Ottopisers 6 and another point downstream of the Ottopisers 6.
  • a differential pressure sensor ⁇ p OPF sensor (fourth sensor 32) is used.
  • a pressure sensor (fifth sensor 33).
  • Fig. 2 shows a representation of a second non-inventive embodiment of an internal combustion engine 1.
  • the secondary air line 7 has two valves 16 for the forwarding of a volume flow 17 conveyed through the secondary air line 7 through the first branch 9 and / or through the second branch 10.
  • the secondary air line 7 branches off the fresh gas line 3 downstream of the compressor 18.
  • the first branch 9 opens here at a single first outlet 15 into the exhaust manifold 13.
  • the partial exhaust gas lines 12 are merged upstream of the first outlet 15 to an exhaust manifold 13.
  • Secondary air 20 is conveyed into the exhaust system 4 upstream of the particulate filter 6 and downstream of the exhaust gas treatment unit 5 via the second branch 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Supercharger (AREA)

Description

  • Die Erfindung betrifft eine Brennkraftmaschine, bevorzugt eine aufladbare Brennkraftmaschine mit einem fremdgezündeten Verbrennungsmotor, mit den Merkmalen gemäß dem Oberbegriff des Patentanspruchs 1. Des Weiteren betrifft die Erfindung ein Verfahren zum Betreiben einer Brennkraftmaschine, bevorzugt einer aufladbaren Brennkraftmaschine mit einem fremdgezündeten Verbrennungsmotor, mit den Merkmalen gemäß dem Oberbegriff des Patentanspruchs 7. Bei Verbrennungsprozessen in einer Brennkraftmaschine, insbesondere einer fremdgezündeten Brennkraftmaschine, bevorzugt verwendet als Traktionsmaschine eines Fahrzeugs, entstehen Rußpartikel, welche von einem in der Abgasanlage der Brennkraftmaschine angeordneten Partikelfilter, insbesondere Ottopartikelfilter, im Fahrbetrieb aus dem Abgas abgesondert werden. Damit der Abgasgegendruck vor dem Partikelfilter nicht zu weit ansteigt, wird der Partikelfilter kontinuierlich oder periodisch regeneriert, das heißt, die Rußbeladung des Partikelfilters wird reduziert, indem Reaktionsbedingungen für eine thermische Oxidation des Rußes mit Sauerstoff geschaffen werden. Zu diesem Zweck ist eine ausreichend hohe Temperatur im Partikelfilter bei gleichzeitigem Angebot von Sauerstoff im Abgas notwendig.
    Da moderne fremdgezündete Brennkraftmaschinen regelmäßig ohne Sauerstoffüberschuss betrieben werden - Lambda gleich 1, stöchiometrisch - beziehungsweise gute Wirkungsgrade aufweisen, ist eine gesonderte Vorgehensweise für die Regeneration erforderlich. Handelt es sich bei der Brennkraftmaschine um eine Traktionsmaschine eines Fahrzeugs wird das mittels eines speziellen Fahrzyklus erreicht. Zur Regeneration wird eine Temperatur von mehr als 500 Grad Celsius im Partikelfilter benötigt, deren Darstellung insbesondere bei einer Anordnung des Partikelfilters in einem Abschnitt der Abgasanlage im Unterboden des Fahrzeugs, also mit relativ großem Abstand zum Verbrennungsmotor der Brennkraftmaschine, eine große Herausforderung darstellt.
  • Um Sauerstoff in die Abgasanlage einer Brennkraftmaschine mit einem 3-Wege-Katalysator und einem Hilfskatalysator zu bringen, ist es zum Beispiel aus dem Dokument US 4,192,141 zum Zweck der Abgasreinigung bekannt, die Reduzierungs- und Oxidierungsbedingungen zu steuern, indem Sekundärluft jeweils stromauf der Katalysatoren in Funktion der Betriebsbedingungen der Brennkraftmaschine dem Abgas in der Abgasanlage zugeführt wird.
  • Um Sauerstoff in die Abgasanlage mit Partikelfilter einer mittels eines Abgasturboladers aufladbaren fremdgezündeten Brennkraftmaschine einzubringen, ist es zum Beispiel im Dokument DE 10 2011 118 337 A1 beschrieben, unmittelbar vor dem Partikelfilter einen Teil der Ladeluft einzubringen. Zu diesem Zweck ist eine aus der Ladeluftleitung stromab des Verdichters abzweigende schaltbare Luftleitung vorgesehen, welche stromab der Turbine und gegebenenfalls stromab von Katalysatorelementen in die Abgasanlage mündet, so dass bei ausreichendem Ladedruck in der Ladeluftleitung ein Teil der Ladeluft direkt in die Abgasanlage gelangt. Der Strom durch die Luftleitung kann variabel steuerbar, insbesondere absperrbar, mittels eines Ventils sein.
  • Aus dem Dokument DE 10 2013 001 319 A1 geht hervor, eine Brennkraftmaschine mit einer Abgasablage, einer ersten Sekundärluftleitung und einer zweiten Sekundärluftleitung zu betreiben, wobei wechselweise ausgehend von derselben Druckluftquelle entweder durch die erste Sekundärluftleitung oder durch die zweite Sekundärluftleitung der Abgasanlage Sekundärluft zugeführt wird. Die erste Sekundärluftleitung mündet an mehreren Stellen in einen Abgaskrümmer, wobei jeweils eine Stelle in einer Einzelabgasleitung stromabwärts von einer Brennkammer der Brennkraftmaschine und stromaufwärts einer Abgassammelkammer des Abgaskrümmers liegt. Die zweite Sekundärluftleitung mündet dabei stromabwärts der ersten Sekundärluftleitung ebenfalls in den Abgaskrümmer, ggf. in eine Abgassammelkammer im Abgaskrümmer. Die Bereitstellung einer weiteren Sekundärluftleitung dient hier der Erhöhung des Wirkungsgrads der Reaktion der Sekundärluft mit dem nicht verbrannten Kraftstoff in einem Katalysator.
  • Aufgabe der vorliegenden Erfindung ist es, eine Abgasanlage einer Brennkraftmaschine mit fremdgezündeten Verbrennungsmotor an einer Mehrzahl gewünschter Stellen mit Sekundärluft zu versorgen.
  • Diese Aufgabe wird erfindungsgemäß durch eine Brennkraftmaschine mit den Merkmalen gemäß Patentanspruch 1 und/oder durch ein Verfahren mit den Merkmalen gemäß Patentanspruch 7 gelöst.
  • Eine erfindungsgemäße Brennkraftmaschine weist einen fremdgezündeten Verbrennungsmotor, insbesondere einen mit Zündfunken fremdgezündeten Verbrennungsmotor, einen Frischgasstrang, eine Abgasanlage mit wenigstens einer ersten Abgasnachbehandlungsvorrichtung und wenigstens einer zweiten Abgasnachbehandlungsvorrichtung, insbesondere einem Partikelfilter, welcher stromab der ersten Abgasnachbehandlungsvorrichtung angeordnet ist, auf. Des Weiteren umfasst die Brennkraftmaschine eine Sekundärluftleitung mit einer Sekundärluftpumpe, welche vom Frischgasstrang abzweigt, wobei die Sekundärluftleitung einen ersten Zweig aufweist, welcher stromauf der ersten Abgasnachbehandlungsvorrichtung in die Abgasanlage mündet, und einen zweiten Zweig aufweist, welcher stromab der ersten Abgasnachbehandlungsvorrichtung und stromauf des Partikelfilters in die Abgasanlage mündet.
  • Die Sekundärluftpumpe kann eine drehzahlvariabel gesteuert und/oder geregelt betreibbare Sekundärluftpumpe sein. Die Sekundärluftpumpe kann beispielsweise mittels eines Elektromotors drehzahlvariabel angetrieben sein. Der Elektromotos ist bevorzugt durch einen Mikrocontroller gesteuert, welcher in Wirk- und/oder Signalverbindung zu einem Motorsteuergerät der erfindungsgemäßen Brennkraftmaschine steht.
  • Erfindungsgemäß weist die Abgasanlage unmittelbar stromabwärts einer Mehrzahl von Brennkammern des Verbrennungsmotors eine Mehrzahl von Teilabgasleitungen auf, die weiter stromabwärts zumindest teilweise zu mindestens einer Abgassammelleitung zusammengeführt werden, wobei der erste Zweig der Sekundärluftleitung sich in mehrere Teilzweige aufteilt und jeder Teilzweig an einem ersten Auslass des Teilzweiges in eine Teilabgasleitung einmündet.
  • Bevorzugt ist die wenigstens eine Abgasbehandlungsvorrichtung stromabwärts des ersten Auslasses in der Teilabgasleitung angeordnet.
  • Gemäß einer zweiten Ausgestaltung (nicht erfindungsgemäß) weist die Abgasanlage unmittelbar stromabwärts einer Mehrzahl von Brennkammern des Verbrennungsmotors eine Mehrzahl von Teilabgasleitungen auf, die weiter stromabwärts zu einer Abgassammelleitung zusammengeführt werden, wobei der erste Zweig der Sekundärluftleitung an einem ersten Auslass des ersten Zweigs in die Abgassammelleitung einmündet.
  • Gemäß einer weiteren Ausgestaltung weist die Sekundärluftleitung zumindest ein Ventil zur Weiterleitung eines durch die Sekundärluftleitung geförderten Volumenstroms durch den ersten Zweig und/oder durch den zweiten Zweig auf.
  • Bevorzugt ist jeweils ein Ventil in dem ersten Zweig und in dem zweiten Zweig angeordnet.
  • Insbesondere zweigt die Sekundärluftleitung stromaufwärts eines in dem Frischgasstrang angeordneten Verdichters von dem Frischgasstrang ab. Alternativ zweigt die Sekundärluftleitung stromabwärts des Verdichters vom Frischgasstrang ab.
  • Insbesondere ist zumindest der Partikelfilter stromabwärts einer in der Abgasanlage angeordneten Turbine in der Abgasanlage angeordnet.
  • Bevorzugt ist die Brennkraftmaschine eine aufladbare Brennkraftmaschine mit wenigstens einem Verdichter im Frischgasstrang und wenigstens einer Turbine in der Abgasanlage. Bevorzugt zweigt die Sekundärluftleitung vor dem Verdichter (stromaufwärts des Verdichters) ab. Bevorzugt mündet der erste Zweig stromauf(-wärts) der Turbine in die Abgasanlage und der zweite Zweig stromab(-wärts) der Turbine in die Abgasanlage. Alternativ oder darüber hinaus kann die Brennkraftmaschine in bestimmten Ausführungsformen auch mittels eines mechanischen oder elektrischen Verdichters aufladbar sein. Die Abgasanlage kann darüber hinaus eine Turbine einer anderen Baugruppe aufweisen, zum Beispiel für die Energierückgewinnung.
  • Im Zusammenhang der Erfindung steht auch ein Verfahren zum Betreiben einer Brennkraftmaschine mit einem fremdgezündeten Verbrennungsmotor, insbesondere einem mit Zündfunken fremdgezündeten Verbrennungsmotor, einem Frischgasstrang, einer Abgasanlage mit wenigstens einer ersten Abgasnachbehandlungsvorrichtung und wenigstens einer zweiten Abgasnachbehandlungsvorrichtung, insbesondere einem Partikelfilter, welcher stromab(-wärts) der ersten Abgasnachbehandlungsvorrichtung angeordnet ist, und einer Sekundärluftleitung mit einer Sekundärluftpumpe, welche vom Frischgasstrang abzweigt. Im erfindungsgemäßen Verfahren wird Sekundärluft stromauf(-wärts) der ersten Abgasnachbehandlungsvorrichtung in die Abgasanlage eingeleitet und Sekundärluft stromab(-wärts) der ersten Abgasnachbehandlungsvorrichtung und stromauf(-wärts) des Partikelfilters in die Abgasanlage eingeleitet.
  • Gemäß einer Weiterbildung des Verfahrens weist die Sekundärluftleitung einen ersten Zweig auf, welcher stromauf der Abgasnachbehandlungsvorrichtung an einem ersten Auslass des ersten Zweigs in die Abgasanlage mündet, und einen zweiten Zweig, welcher stromab der Abgasnachbehandlungsvorrichtung und stromauf des Partikelfilters an einem zweiten Auslass des zweiten Zweigs in die Abgasanlage mündet, wobei die Sekundärluftleitung zumindest ein Ventil aufweist, das zur Weiterleitung eines durch die Sekundärluftleitung geförderten Volumenstroms
    1. a) durch nur den ersten Zweig oder durch nur den zweiten Zweig schaltbar ist oder
    2. b) durch den ersten Zweig und durch den zweiten Zweig in einstellbaren Anteilen regelbar ist.
  • Insbesondere ist das Verfahren zum Betrieb der hier vorgeschlagenen Brennkraftmaschine geeignet.
  • Die Ausführungen zu der Brennkraftmaschine können zur weiteren Charakterisierung des Verfahrens herangezogen werden und umgekehrt.
  • Im Fall einer aufladbaren Brennkraftmaschine, insbesondere mit den oben beschriebenen strukturellen Merkmalen, wird die aufladbare Brennkraftmaschine mittels des Verdichters aufgeladen.
  • Insbesondere verzweigt sich die Sekundärluftleitung in einen ersten Zweig und einen zweiten Zweig an einem Verzweigungspunkt. Die Sekundärluftpumpe liegt in der Sekundärluftleitung zwischen dem Abzweig vom Frischgasstrang und dem Verzweigungspunkt. Der erste und der zweite Zweig sind bevorzugt fluiddicht verschließbar. In einer ersten Gruppe von Ausführungsformen befindet sich am Verzweigungspunkt ein 3-Wege-Ventil, so dass Sekundärluft in Abhängigkeit der Ventilstellung entweder vom Abzweig durch den ersten Zweig zur Abgasanlage oder vom Abzweig durch den zweiten Zweig zur Abgasanlage gelangen kann. In einer zweiten Gruppe von Ausführungsformen befindet sich im ersten und im zweiten Zweig jeweils ein 2-Wege-Ventil, mit welchem der jeweilige Zweig der Sekundärluftleitung verschließbar ist.
  • Bevorzugt ist jedes der Ventile auch in Zwischenstellungen betreibbar, so dass sich einstellbare Anteile des durch die Sekundärluftleitung geförderten Volumenstroms durch den ersten Zweig und durch den zweiten Zweig (also auch gleichzeitig) fördern lassen.
  • Die Brennkraftmaschine wird bevorzugt in einem Otto-Verfahren oder einem Otto-Miller-Verfahren, insbesondere mit Zündfunken fremdgezündet, betrieben. Die Zündfunken können durch Laserlicht oder bevorzugt durch elektrische Entladung erzeugt werden. Die Brennkraftmaschine wird bevorzugt stöchiometrisch betrieben. Die Brennkraftmaschine ist bevorzugt eine Hubkolben-Brennkraftmaschine. Die Brennkraftmaschine kann über eine Direkteinspritzung von Kraftstoff in die Brennkammern des Verbrennungsmotors oder über eine Saugrohreinspritzung von Kraftstoff in ein Saugrohr, bevorzugt an einer Mehrzahl von Stellen (MPI) verfügen.
  • Mit der Erfindung ist es vorteilhaft möglich, bedarfsgerecht Sekundärluft an eine Mehrzahl, insbesondere an zwei gewünschte Stellen in die Abgasanlage einzubringen. Vorteilhaft, insbesondere hinsichtlich des notwendigen Bauraums und/oder der Kosten, ist, dass nur eine Sekundärluftpumpe gemeinsam eingesetzt wird, die also für beide Zweige der Sekundärluftleitung genutzt wird.
  • Befindet sich stromab der ersten Mündung (erster Auslass) eine erste Abgasbehandlungsvorrichtung (die Abgasnachbehandlungsvorrichtung), kann die eingebrachte Sekundärluft zur exothermen Reaktion mit Abgasbestandteilen genutzt werden, so dass die erste Abgasbehandlungsvorrichtung erwärmt werden kann. Beispielsweise kann auf diese Weise in einer konkreten Ausgestaltung eine erste Katalysatorstufe, insbesondere ein 3-Wege-Katalysator, geheizt werden. Befindet sich stromab der ersten Mündung eine zweite Abgasbehandlungsvorrichtung (der Partikelfilter), welche eine Speicherfunktion für bestimmte Abgasbestandteile aufweist, kann die eingebrachte Sekundärluft zur exothermen Reaktion mit den bestimmten Abgasbestandteilen genutzt werden, so dass die zweite Abgasbehandlungsvorrichtung entladen oder regeneriert werden kann. Beispielsweise kann auf diese Weise in einer konkreten Ausgestaltung ein Ottopartikelfilter regeneriert werden.
  • Die erfindungsgemäße Brennkraftmaschine weist bevorzugt eine Steuereinheit auf, die derart ausgebildet ist, dass durch diese ein Kraftstoff-Luft-Verhältnis und/oder ein oder mehrere Zündwinkel und/oder ein oder mehrere Einspritzzeitpunkte des fremdgezündeten Verbrennungsmotors steuerbar oder regelbar sind. Bevorzugt wird die Steuerung oder Regelung derart vorgenommen, dass in der Abgasanlage nach der Beimischung der Ladeluft über die Sekundärluftleitung ein stöchiometrisches Kraftstoff-Luft-Verhältnis erreicht wird.
  • Im Unterschied zu einem selbstzündenden Verbrennungsmotor, insbesondere einem Dieselmotor, wird bei einer erfindungsgemäßen aufladbaren Brennkraftmaschine der Saugrohrdruck/Ladedruck, insbesondere zum Ausgleich des schlechteren Wirkungsgrades bei der Regeneration, und/oder ein Luftmassenstrom im Saugrohr erhöht. Zusätzlich wird noch der Abgasmassenstrom durch den über die Sekundärluftleitung eingeleiteten Teil der Ladeluft erhöht. Bei einem selbstzündenden Verbrennungsmotor werden der Ladedruck und der Luftmassenstrom in der Regenerationsphase abgesenkt.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Brennkraftmaschine, insbesondere während der Regeneration des Partikelfilters, in einem Betriebspunkt mit Teilllast und/oder mit einem unterstöchiometrischen Kraftstoff-Luft-Verhältnis betrieben.
  • Es ist besonders zweckmäßig im erfindungsgemäßen Verfahren, die Temperatur in der Abgasanlage am Partikelfilter auf einen Wert größer als 500 Grad Celsius, insbesondere 560 Grad Celsius, und kleiner als 1100 Grad Celsius, bevorzugt größer als 580 Grad Celsius und kleiner als 1000 Grad Celsius, zu erhöhen. Die Temperatur der Abgasanlage kann gesteuert, optional geregelt sein. Die Steuerung beziehungsweise die Regelung kann vom Motorsteuergerät ausgeführt werden. Sie kann auf einem Modell der Temperatur in der Abgasanlage und/oder einer oder mehrerer Messungen an verschiedenen Stellen in der Abgasanlage beruhen.
  • Des Weiteren oder alternativ dazu ist es bevorzugt im erfindungsgemäßen Verfahren einen oder mehrere Zündwinkel und/oder einen oder mehrere Einspritzzeitpunkte, im Vergleich zum Betrieb am gleichen Betriebspunkt ohne Sekundärluftzufuhr, nach spät zu verstellen. Mit anderen Worten, ein oder mehrere Zündwinkel und/oder ein oder mehrere Einspritzzeitpunkte können, im Vergleich zum Betrieb am gleichen Betriebspunkt ohne Sekundärluftzufuhr, nach spät verstellt sein.
  • Besonders vorteilhaft und zielführend bei erfindungsgemäßen aufgeladenen Brennkraftmaschinen ist es, im erfindungsgemäßen Verfahren einen Ladedruck und/oder einen Luftmassenstrom zum fremdgezündeten Verbrennungsmotor zu erhöhen. Auf diese Weise kann der Wirkungsgrad des Verdichters optimiert werden.
  • Die erfindungsgemäße Brennkraftmaschine kann eine mit Benzin als Kraftstoff betriebene Brennkraftmaschine sein. Alternativ dazu kann die erfindungsgemäße Brennkraftmaschine eine mit Gas, bevorzugt Methangas oder CNG, als Kraftstoff betriebene Brennkraftmaschine sein. In einer Gruppe von Ausführungsformen handelt es sich um eine bivalent, insbesondere wechselweise, mit den Kraftstoffen Benzin und Gas betreibbare Brennkraftmaschine. Bei einer bivalenten Brennkraftmaschine wird bevorzugt das Benzin direkt in die Brennkammern eingespritzt und das Gas an mehreren Stellen in das Saugrohr eingeblasen (MPI-Einblasung).
    Bevorzugt ist die erfindungsgemäße Brennkraftmaschine Teil eines Antriebsaggregats eines Fahrzeugs, insbesondere eines gleislosen Landfahrzeugs. Insbesondere kann sie die einzige Antriebsquelle oder aber Teil eines Hybridantriebs sein, zum Beispiel in Kombination mit einer oder mehrerer Elektromaschinen. Bevorzugt handelt es sich bei dem Fahrzeug um einen Personenkraftwagen oder ein Nutzfahrzeug, wobei ein Partikelfilter in einem Unterboden des Fahrzeugs angeordnet ist. Der Partikelfilter ist bevorzugt mit anderen Worten motorfern, das heißt nicht im Motorraum, insbesondere nicht am Motor, angeordnet, sondern z. B. in einem Abstand von mindestens 75 cm [Zentimeter] zu den Brennkammern der Verbrennungskraftmaschine. Einer der Vorteile bei einer Anordnung des Partikelfilters im Unterboden ist das Erreichen eines möglichst geringen Abgasgegendrucks für den Verbrennungsmotor. Darüber hinaus steht grundsätzlich mehr Bauraum für den Partikelfilter zur Verfügung. Dieser kann für ein größeres Package im Vergleich zum Einbau zwischen Unterboden und Brennkammern des Verbrennungsmotors, also einem motornahen Einbau, genutzt werden. Durch die Anpassung auf einen größeren Bauraum kann auch ein vorteilhafter geringerer Volumenstrom im Partikelfilter erreicht werden. Für einen motorfernen Partikelfilter ermöglicht die Erfindung, die Sauerstoffkonzentration zu dessen Regeneration bereitzustellen.
    Die Erfindung sowie das technische Umfeld werden nachfolgend anhand der Figuren näher erläutert. Die Figuren zeigen besonders bevorzugte Ausführungsbeispiele, auf die die Erfindung jedoch nicht beschränkt ist. Insbesondere ist darauf hinzuweisen, dass die Figuren und insbesondere die dargestellten Größenverhältnisse nur schematisch sind. Gleiche Bezugszeichen bezeichnen gleiche Gegenstände. Es zeigen:
  • Fig. 1:
    eine Darstellung einer ersten erfindungsgemäßen Ausführungsform einer Brennkraftmaschine;
    Fig. 2:
    eine Darstellung einer zweiten nicht erfindungsgemäßen Ausgestaltung einer Brennkraftmaschine.
  • Die Figur 1 zeigt eine erste Ausführungsform einer Brennkraftmaschine 1, welche mittels einer aus einer Abgasturbine 19 und einem Verdichter 18 bestehenden Aufladegruppe (Abgasturbolader) aufladbar ist. Eine nicht aufladbare Brennkraftmaschine 1, eine Saug-Brennkraftmaschine, kann bis auf die dann fehlende Aufladegruppe dieselbe Topologie wie in der Figur 1 gezeigt aufweisen. Die Brennkraftmaschine 1 ist in dieser Ausführungsform eine Traktionsmaschine eines gleislosen Landfahrzeugs und somit in das Landfahrzeug integriert.
  • Die in der Figur 1 dargestellte Ausführungsform weist eine mit Zündfunken aus elektrischen Entladungen fremdgezündete Brennkraftmaschine 1 auf, welche mit einem Otto-Brennverfahren beziehungsweise Otto-Miller-Brennverfahren arbeitet. Der Verbrennungsmotor 2 ist eine Hubkolbenmaschine mit hier beispielhaft vier zylindrischen Brennkammern 11. Dem fremdgezündeten Verbrennungsmotor 2 wird Luft durch einen Frischgasstrang 3 zugeführt. Aus der Luft werden zunächst in einem Luftfilter 34 (Lufi) nicht gasförmige Verunreinigungen abgetrennt. Die Luft wird mittels eines Verdichters 18 der Aufladegruppe Abgasturbolader verdichtet. Sie passiert eine Drosselklappe 24 und gelangt in ein Saugrohr. Hier in der Figur 1 nicht zeichnerisch dargestellt, kann eine derartige Ausführungsform einen Ladeluftkühler, insbesondere einen saugrohrintegrierten Ladeluftkühler, aufweisen.
  • Aus den Brennkammern 11 wird Abgas in die Abgasanlage 4, zunächst in einen Abgaskrümmer ausgestoßen. Der Abgaskrümmer weist einzelne (Teil-)Abgasleitungen 12 auf, welche sich von den einzelnen Abgasventilen der vier Brennkammern 11 bis zu einer (Abgas-)Sammelleitung 13 erstrecken. Anders gesagt, der Abgaskrümmer vereint das über einzelne Fluten ausströmende Abgas zu einem gesamten Abgasstrom. Das Abgas wird in der Abgasanlage 4 zunächst über eine Turbine 19 der Aufladegruppe Abgasturbolader geführt, welche den Verdichter 18 antreibt. Das entspannte Abgas gelangt stromab der Turbine 19 in eine erste Abgasnachbehandlungsvorrichtung 5, einen Katalysator, insbesondere einen Drei-Wege-Katalysator KAT. Die erste Abgasnachbehandlungsvorrichtung 5 kann motornah, insbesondere am Motor oder im Motorraum angeordnet sein, damit die Wärme aus den Verbrennungen in den Brennkammern 11 zum Heizen der ersten Abgasnachbehandlungsvorrichtung 5 genutzt werden kann.
  • Stromabwärts der ersten Abgasnachbehandlungsvorrichtung 5 befindet sich eine zweite Abgasnachbehandlungsvorrichtung 6 mit einer Speicherfunktion, konkret bevorzugt für Rußpartikel, insbesondere ein Ottopartikelfilter 6 OPF. In dieser Ausführungsform ist die zweite Abgasnachbehandlungsvorrichtung im Unterboden des Landfahrzeugs angeordnet. Nach Passage des Ottopartikelfilters 6 gelangt das Abgas in die Umgebung der Brennkraftmaschine 1.
  • Erfindungsgemäß verfügt die in der Figur 1 gezeigte Ausführungsform über eine Sekundärluftleitung 7, welche stromauf des Verdichters 18 und stromab des Luftfilters 34 vom Frischgasstrang 3 abzweigt. Die Sekundärluftleitung 7 weist eine Sekundärluftpumpe 8 auf, deren Pumpenrad Luft durch die Sekundärluftleitung 7 zur Abgasanlage 4 fördert. Stromab der Sekundärluftpumpe 8 verzweigt sich die Sekundärluftleitung 7 in einen ersten Zweig 9 und in einen zweiten Zweig 10. Der erste Zweig 9 mündet stromauf der Turbine 19 in die Abgasanlage 4, während der zweite Zweig 10 stromab der ersten Abgasnachbehandlungsvorrichtung 5 und stromauf der zweiten Abgasnachbehandlungsvorrichtung 6 in die Abgasanlage 4 mündet.
  • In der aufladbaren Brennkraftmaschine 1 kann der erste Zweig 9 der Sekundärluftleitung 7 in einen Abgaskrümmer der Abgasanlage 4 an einer oder mehreren Mündungsstellen (erste Auslässe 15) münden oder enden. Besonders bevorzugt ist der Abgaskrümmer im Zylinderkopf integriert. Falls es sich um einen im bestimmten Betriebspunkten der Brennkraftmaschine 1 gekühlten Abgaskrümmer handelt, ist es im Zusammenhang der Erfindung vorteilhaft, beim Einleiten von Sekundärluft in die Abgasanlage 4 die Kühlung des Abgases zu verringern oder ganz zu unterlassen. Ein Vorteil einer exothermen Reaktion möglichst weit stromauf in der Abgasanlage 4 besteht unter anderem darin, dass die Gefahr einer unkontrollierten Verbrennung des insbesondere fetten Abgases in empfindlichen Bauteilen der Abgasanlage 4, wie beispielsweise Katalysatoren, verringert, bevorzugt vermieden wird. Im Zusammenhang mit Turbinen 19 in der Abgasanlage 4 kann in vorteilhafter Weise zusätzliche Abgasenthalpie für die Turbine 19 bereitgestellt werden.
  • In der vorliegenden ersten Ausführungsform weist die Abgasanlage 4 unmittelbar stromabwärts einer Mehrzahl von Brennkammern 11 des Verbrennungsmotors 2 eine Mehrzahl von Teilabgasleitungen 12 auf, die weiter stromabwärts zu einer Abgassammelleitung 13 zusammengeführt werden, wobei der erste Zweig 9 der Sekundärluftleitung 7 sich in mehrere Teilzweige 14 aufteilt und jeder Teilzweig 14 an einem ersten Auslass 15 des Teilzweiges 14 in eine Teilabgasleitung 12 einmündet.
  • Sowohl im ersten Zweig 9 als auch im zweiten Zweig 10 der Sekundärluftleitung 7 befindet sich jeweils ein Sekundärluftventil (Ventil 16). Das jeweilige Sekundärluftventil 16 kann geöffnet oder geschlossen werden, so dass die Fluidverbindung in die Abgasanlage 4 unterbrochen oder hergestellt werden kann.
  • In der Figur 1 ist eine Reihe von entlang des Frischgasstrangs 3 und der Abgasanlage 4 angeordneten Messsensoren beziehungsweise in der Sekundärluftleitung 7 gezeigt. Diese stehen in Signal- und/oder Ansteuerungs- und/oder Wirkverbindung (nicht zeichnerisch dargestellt) mit einem Motorsteuergerät 22. Auf Grundlage einer Auswahl oder aller mittels der Messsensoren gemessenen Größen können Betriebszustände, Betriebszustandsparameter oder Betriebsbedingungen der Brennkraftmaschine 1 diagnostiziert werden. Alle oder eine Auswahl der gemessenen Größen können des Weiteren für die Steuerung und/oder Regelung der Brennkraftmaschine 1 oder von Baugruppen/Teilen der Brennkraftmaschine 1 genutzt werden. Insbesondere können gemessene Größen für die Steuerung und/oder Regelung der Regeneration der zweiten Abgasnachbehandlungseinrichtung 6, insbesondere des Ottopartikelfilters 6, genutzt werden.
  • Im Frischgasstrang 3 befindet sich stromab des Verdichters 18 und stromauf der Drosselklappe 24 ein erster kombinierter Druck- und Temperatursensor 23. Stromab der Drosselklappe 24 und stromauf der Brennkammern 11 befindet sich ein zweiter kombinierter Druck- und Temperatursensor 25 im Frischgasstrang 3. In der Abgasanlage 4 stromab der Mündung (erste Auslässe 15) des ersten Zweigs 9 der Sekundärluftleitung 7 und stromauf der Turbine 19 befindet sich ein Drucksensor (dritter Sensor 26), ein so genannter p3-Sensor. Stromab der Turbine 19 und stromauf der ersten Abgasnachbehandlungsvorrichtung 5 befindet sich eine erste lineare Lambda-Sonde 27 in der Abgasanlage 4. Stromab der Mündung (zweiter Auslass 21) des zweiten Zweigs 10 der Sekundärluftleitung 7 und stromauf der zweiten Abgasnachbehandlungsvorrichtung 6, insbesondere des Ottopartikelfilters 6, gibt es eine zweite lineare Lambda-Sonde 28 sowie einen (ersten) Temperatursensor 29 (Tv OPF). Stromab der zweiten Abgasnachbehandlungsvorrichtung 6, insbesondere des Ottopartikelfilters 6, befinden sich eine Sprung-Lambda-Sonde (dritte Lambdasonde 30) sowie ein (zweiter) Temperatursensor 31 (Tn OPF) in der Abgasanlage 4.
    Für den konkreten Fall, dass die zweite Abgasnachbehandlungsvorrichtung 6 ein (Otto-)Partikelfilter 6 ist, wird die Druckdifferenz/der Druckabfall prel nach OPF zwischen einem Punkt stromauf des Ottopartikelfilters 6 und einem anderen Punkt stromab des Ottopartikelfilters 6 gemessen. Dazu gelangt ein Differenzdrucksensor ΔpOPF-Sensor (vierter Sensor 32) zum Einsatz. Auf Basis der über den Partikelfilter 6 gemessenen Druckdifferenz kann insbesondere entschieden werden, ob eine Regeneration des Ottopartikelfilters 6 notwendig ist, und eine Regeneration eingeleitet werden.
    In der Sekundärluftleitung 7 befindet sich stromab der Sekundärluftpumpe 8 und stromauf des Verzweigungspunkts in dem ersten und dem zweiten Zweig 9, 10 ein Drucksensor (fünfter Sensor 33).
  • Fig. 2 zeigt eine Darstellung einer zweiten nicht erfindungsgemäßen Ausgestaltung einer Brennkraftmaschine 1. Auf die Ausführungen zu Fig. 1 wird verwiesen. Auch hier weist die Sekundärluftleitung 7 zwei Ventile 16 zur Weiterleitung eines durch die Sekundärluftleitung 7 geförderten Volumenstroms 17 durch den ersten Zweig 9 und/oder durch den zweiten Zweig 10 auf. Hier zweigt die Sekundärluftleitung 7 stromabwärts des Verdichters 18 von dem Frischgasstrang 3 ab. Der erste Zweig 9 mündet hier an einem einzigen ersten Auslass 15 in die Abgassammelleitung 13. Die Teilabgasleitungen 12 werden stromaufwärts des ersten Auslasses 15 zu einer Abgassammelleitung 13 zusammengeführt. Über den zweiten Zweig 10 wird Sekundärluft 20 stromaufwärts des Partikelfilters 6 und stromabwärts der Abgasbehandlungseinheit 5 in die Abgasanlage 4 befördert.
  • BEZUGSZEICHENLISTE
  • 1
    Brennkraftmaschine
    2
    Verbrennungsmotor
    3
    Frischgasstrang
    4
    Abgasanlage
    5
    Abgasnachbehandlungsvorrichtung
    6
    Partikelfilter
    7
    Sekundärluftleitung
    8
    Sekundärluftpumpe
    9
    erster Zweig
    10
    zweiter Zweig
    11
    Brennkammer
    12
    Teilabgasleitung
    13
    Abgassammelleitung
    14
    Teilzweig
    15
    erster Auslass
    16
    Ventil
    17
    Volumenstrom
    18
    Verdichter
    19
    Turbine
    20
    Sekundärluft
    21
    zweiter Auslass
    22
    Motorsteuergerät
    23
    erster Sensor
    24
    Drosselklappe
    25
    zweiter Sensor
    26
    dritter Sensor
    27
    erste Lambdasonde
    28
    zweite Lambdasonde
    29
    erster Temperatursensor
    30
    dritte Lambdasonde
    31
    zweiter Temperatursensor
    32
    vierter Sensor
    33
    fünfter Sensor
    34
    Luftfilter

Claims (8)

  1. Brennkraftmaschine (1) mit einem fremdgezündeten Verbrennungsmotor (2), einem Frischgasstrang (3), einer Abgasanlage (4) mit wenigstens einer Abgasnachbehandlungsvorrichtung (5) und wenigstens einem Partikelfilter (6), welcher stromab der Abgasnachbehandlungsvorrichtung (5) angeordnet ist, und einer Sekundärluftleitung (7) mit einer Sekundärluftpumpe (8), welche vom Frischgasstrang (3) abzweigt, wobei die Sekundärluftleitung (7) einen ersten Zweig (9) aufweist, welcher stromauf der Abgasnachbehandlungsvorrichtung (5) in die Abgasanlage (4) mündet, und einen zweiten Zweig (10) aufweist, welcher stromab der Abgasnachbehandlungsvorrichtung (5) und stromauf des Partikelfilters (6) in die Abgasanlage (4) mündet, wobei die Abgasanlage (4) unmittelbar stromabwärts einer Mehrzahl von Brennkammern (11) des Verbrennungsmotors (2) eine Mehrzahl von Teilabgasleitungen (12) aufweist, die weiter stromabwärts zumindest teilweise zu mindestens einer Abgassammelleitung (13) zusammengeführt werden; dadurch gekennzeichnet, dass der erste Zweig (9) der Sekundärluftleitung (7) sich in mehrere Teilzweige (14) aufteilt und jeder Teilzweig (14) an einem ersten Auslass (15) des Teilzweiges (14) in eine Teilabgasleitung (12) einmündet.
  2. Brennkraftmaschine (1) nach Patentanspruch 1, wobei die wenigstens eine Abgasnachbehandlungsvorrichtung (5) stromabwärts des ersten Auslasses (15) in der Teilabgasleitung (12) angeordnet ist.
  3. Brennkraftmaschine (1) nach einem der vorhergehenden Patentansprüche, wobei die Sekundärluftleitung (7) zumindest ein Ventil (16) zur Weiterleitung eines durch die Sekundärluftleitung (7) geförderten Volumenstroms (17) durch den ersten Zweig (9) und/oder durch den zweiten Zweig (10) aufweist.
  4. Brennkraftmaschine (1) nach Patentanspruch 3, wobei jeweils ein Ventil (16) in dem ersten Zweig (9) und in dem zweiten Zweig (10) angeordnet ist.
  5. Brennkraftmaschine (1) nach einem der vorhergehenden Patentansprüche, wobei die Sekundärluftleitung (7) stromaufwärts eines in dem Frischgasstrang (3) angeordneten Verdichters (18) von dem Frischgasstrang (3) abzweigt.
  6. Brennkraftmaschine (1) nach einem der vorhergehenden Patentansprüche, wobei zumindest der Partikelfilter (6) stromabwärts einer in der Abgasanlage (4) angeordneten Turbine (19) in der Abgasanlage (4) angeordnet ist.
  7. Verfahren zum Betreiben einer Brennkraftmaschine (1) mit einem fremdgezündeten Verbrennungsmotor (2), einem Frischgasstrang (3), einer Abgasanlage (4) mit wenigstens einer Abgasnachbehandlungsvorrichtung (5) und wenigstens einem Partikelfilter (6), welcher stromab der Abgasnachbehandlungsvorrichtung (5) angeordnet ist, und einer Sekundärluftleitung (7) mit einer Sekundärluftpumpe (8), welche vom Frischgasstrang (3) abzweigt, in welchem Sekundärluft (20) stromauf der Abgasnachbehandlungsvorrichtung (5) in die Abgasanlage (4) eingeleitet wird und Sekundärluft (20) stromab der Abgasnachbehandlungsvorrichtung (5) und stromauf des Partikelfilters (6) in die Abgasanlage (4) eingeleitet wird; wobei die Sekundärluftleitung (7) einen ersten Zweig (9) aufweist, welcher stromauf der Abgasnachbehandlungsvorrichtung (5) in die Abgasanlage (4) mündet, und einen zweiten Zweig (10) aufweist, welcher stromab der Abgasnachbehandlungsvorrichtung (5) und stromauf des Partikelfilters (6) an einem zweiten Auslass (21) des zweiten Zweigs (10) in die Abgasanlage (4) mündet; wobei die Abgasanlage (4) unmittelbar stromabwärts einer Mehrzahl von Brennkammern (11) des Verbrennungsmotors (2) eine Mehrzahl von Teilabgasleitungen (12) aufweist, die weiter stromabwärts zumindest teilweise zu mindestens einer Abgassammelleitung (13) zusammengeführt werden; dadurch gekennzeichnet, dass der erste Zweig (9) der Sekundärluftleitung (7) sich in mehrere Teilzweige (14) aufteilt und jeder Teilzweig (14) an einem ersten Auslass (15) des Teilzweiges (14) in eine Teilabgasleitung (12) einmündet.
  8. Verfahren nach Patentanspruch 7, wobei die Sekundärluftleitung (7) zumindest ein Ventil (16) aufweist, das zur Weiterleitung eines durch die Sekundärluftleitung (7) geförderten Volumenstroms
    a) durch nur den ersten Zweig (9) oder durch nur den zweiten Zweig (10) schaltbar ist oder
    b) durch den ersten Zweig (9) und durch den zweiten Zweig (10) in einstellbaren Anteilen regelbar ist.
EP17157649.9A 2016-02-29 2017-02-23 Brennkraftmaschine mit einem fremdgezündeten verbrennungsmotor und verfahren zum betreiben einer derartigen brennkraftmaschine Active EP3211192B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016203284 2016-02-29
DE102016208289.2A DE102016208289A1 (de) 2016-02-29 2016-05-13 Brennkraftmaschine mit einem fremdgezündeten Verbrennungsmotor und Verfahren zum Betreiben einer derartigen Brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP3211192A1 EP3211192A1 (de) 2017-08-30
EP3211192B1 true EP3211192B1 (de) 2018-10-17

Family

ID=58158932

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17157649.9A Active EP3211192B1 (de) 2016-02-29 2017-02-23 Brennkraftmaschine mit einem fremdgezündeten verbrennungsmotor und verfahren zum betreiben einer derartigen brennkraftmaschine

Country Status (1)

Country Link
EP (1) EP3211192B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018209698A1 (de) * 2018-06-15 2019-12-19 Robert Bosch Gmbh Verfahren und Steuergerät zum Betreiben einer Antriebsvorrichtung, Antriebsvorrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4192141A (en) 1977-05-02 1980-03-11 Toyota Jidosha Kegko Kabushiki Kaisha Exhaust gas purifying system for engines
US8464523B2 (en) * 2010-03-12 2013-06-18 GM Global Technology Operations LLC Targeted particulate matter filter regeneration system
US8528323B2 (en) * 2010-06-30 2013-09-10 GM Global Technology Operations LLC System and method for particulate matter filter regeneration using a catalytic converter as a combustor
DE102011118337A1 (de) 2011-11-11 2013-05-16 Daimler Ag Abgasnachbehandlungsvorrichtung einer Verbrennungskraftmaschine und Verfahren zum Nachbehandeln von Abgas einer Verbrennungskraftmaschine
DE102013001319B4 (de) 2013-01-25 2016-10-27 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3211192A1 (de) 2017-08-30

Similar Documents

Publication Publication Date Title
EP3475543B1 (de) Verfahren und vorrichtung zur abgasnachbehandlung eines verbrennungsmotors
DE102010032076B4 (de) Twinturbodiesel-Nachbehandlungssystem
DE102004032589B4 (de) Brennkraftmaschine mit Abgasnachbehandlung und Verfahren zu deren Betrieb
DE102018117913A1 (de) Verfahren und System zur Partikelfilterregeneration
DE102016201770B3 (de) Selbstzündende und für den HCCI-Betrieb geeignete Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
EP3084192B1 (de) Brennkraftmaschine und verfahren zum betreiben einer brennkraftmaschine
DE102017118215A1 (de) Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
EP3344863B1 (de) Verfahren sowie vorrichtung zur abgasnachbehandlung einer brennkraftmaschine
DE102007057603B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit einem Abgasturbolader
DE102008032604A1 (de) Einstellen eines Zustands eines Abgasstroms einer Brennkraftmaschine eines Kraftfahrzeuges
DE102017103560B4 (de) Verbrennungsmotor und Verfahren zur Regeneration eines Partikelfilters im Abgaskanal eines Verbrennungsmotors
DE102016208289A1 (de) Brennkraftmaschine mit einem fremdgezündeten Verbrennungsmotor und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102016208208A1 (de) Verbrennungsmotor und Kraftfahrzeug
DE102005021953A1 (de) Brennkraftmaschine und Verfahren zum Betreiben dieser
EP3056705B1 (de) Turbo-aufgeladene brennkraftmaschine mit einem fremdgezündeten verbrennungsmotor und verfahren zum betreiben einer derartigen brennkraftmaschine
DE102006028436A1 (de) Verfahren zum Betreiben einer in einem Abgasbereich einer Brennkraftmaschine angeordneten Abgasreinigungsanlage
DE102018009400A1 (de) Verbrennungskraftmaschine für ein Kraftfahrzeug mit einem in einem Abgastrakt angeordneten Brenner, sowie Verfahren zum Betreiben einer solchen Verbrennungskraftmaschine
DE102021111152A1 (de) Motoranordnung und Verfahren
EP3211192B1 (de) Brennkraftmaschine mit einem fremdgezündeten verbrennungsmotor und verfahren zum betreiben einer derartigen brennkraftmaschine
DE102009012336B3 (de) Verfahren zum Aufheizen einer Komponente einer Abgasnachbehandlungseinrichtung einer Brennkraftmaschine
DE102019005155A1 (de) Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, sowie Verfahren zum Betreiben einer solchen Verbrennungskraftmaschine
DE102011117220A1 (de) Energiebasierte regelung einer turbinenauslasstemperatur in einem fahrzeug
DE102015200045A1 (de) Verfahren zum optimierten Betreiben einer Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
DE602004003034T2 (de) Ein Abgassystem für einen Dieselmotor
DE102015204505A1 (de) Verfahren zum Betreiben einer fremdgezündeten, direkteinspritzenden Brennkraftmaschine sowie fremdgezündete, direkteinspritzende Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180228

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180430

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017000247

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1054299

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181017

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190217

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190228

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190217

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017000247

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

26N No opposition filed

Effective date: 20190718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190223

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502017000247

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1054299

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220223

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240226

Year of fee payment: 8