EP3208531B1 - Phare de véhicule automobile comprenant un affichage à cristaux liquides - Google Patents

Phare de véhicule automobile comprenant un affichage à cristaux liquides Download PDF

Info

Publication number
EP3208531B1
EP3208531B1 EP17156657.3A EP17156657A EP3208531B1 EP 3208531 B1 EP3208531 B1 EP 3208531B1 EP 17156657 A EP17156657 A EP 17156657A EP 3208531 B1 EP3208531 B1 EP 3208531B1
Authority
EP
European Patent Office
Prior art keywords
liquid crystal
matrix element
crystal matrix
beam splitter
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17156657.3A
Other languages
German (de)
English (en)
Other versions
EP3208531A3 (fr
EP3208531A2 (fr
Inventor
Joachim Knittel
Martin Licht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP3208531A2 publication Critical patent/EP3208531A2/fr
Publication of EP3208531A3 publication Critical patent/EP3208531A3/fr
Application granted granted Critical
Publication of EP3208531B1 publication Critical patent/EP3208531B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/63Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates
    • F21S41/64Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates by changing their light transmissivity, e.g. by liquid crystal or electrochromic devices
    • F21S41/645Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates by changing their light transmissivity, e.g. by liquid crystal or electrochromic devices by electro-optic means, e.g. liquid crystal or electrochromic devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/12Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of emitted light
    • F21S41/135Polarised

Definitions

  • the present invention relates to a motor vehicle headlight according to the preamble of claim 1.
  • Such a headlight is from the unpublished EP 3 032 168 A1 known.
  • Liquid crystal matrix components are used as a display (LCD), but also in video projectors.
  • Another disadvantage is a rather weak contrast ratio between luminous and non-luminous matrix elements.
  • Liquid crystal matrix component requires illumination with linearly polarized light.
  • Light from conventional light sources is initially not polarized and has two parts of polarization directions orthogonal to one another.
  • the light is polarized before it strikes the liquid crystal matrix component.
  • the polarization is usually carried out by a polarization filter that only allows one of the two components to pass through and that absorbs the other component.
  • This document shows a motor vehicle headlight with a light source, a polarizing beam splitter, which is arranged in a light bundle emanating from the light source and which divides the light incident from the light source into a first sub-bundle and a second sub-bundle, the light of the first sub-bundle being a first Has polarization direction and has a first main propagation direction, and wherein the light of the second sub-beam has a second polarization direction and a second main propagation direction, and with a first reflective liquid crystal matrix element region whose influence on the polarization direction of the reflected light is controllable, and with a second reflective liquid crystal matrix element region whose influence is controllable on the direction of polarization of the reflected light.
  • the liquid crystal matrix element regions are operated in transmission.
  • headlights require their own projection optics for each polarization direction. Each of the two projection optics transmits polarized light. As a rule, headlights are intended to produce light distributions which consist of unpolarized light. This may require an additional device for depolarization. Since two projection optics are required, the light exit surface is doubled and thus the luminance is halved compared to a solution that only requires one projection optic.
  • the one from the DE 10 2013 113 807 A1 known headlamp is a so-called matrix headlamp, in which the brightness of individual pixels of the liquid crystal element can be controlled.
  • matrix headlights in automotive technology allow dynamic adjustment of the light distribution of the headlights to changing environmental conditions. For example, when driving with high beam at night, individual sub-areas of the light distribution can be darkened so that an oncoming vehicle is not dazzled despite the high beam being switched on.
  • headlights can also be used with micromirrors (e.g. DE 10 2013 113807 A1 , EP 2 813 395 A1 ) will be realized.
  • micromirrors e.g. DE 10 2013 113807 A1 , EP 2 813 395 A1
  • the object of the present invention is to provide a headlamp of the type mentioned at the outset which requires a smaller light exit area and has a greater luminance and which is capable of generating a light distribution consisting essentially of unpolarized light even without additional depolarizers.
  • the light reflected back from the liquid crystal matrix element areas is combined by the beam splitter and projected into the radiation direction by means of projection optics.
  • the main task of the liquid crystal matrix element areas is to modulate the incident light pixel by pixel in accordance with the required light function.
  • the two liquid crystal matrix element regions are aligned parallel to one another, and a deflection mirror is arranged between the second liquid crystal matrix element region and the beam splitter.
  • the two liquid crystal matrix element regions are arranged in the same plane.
  • Another preferred embodiment is characterized in that the two liquid crystal matrix element regions adjoin one another and belong to the same component.
  • the individual pixels of the liquid crystal matrix element regions are controlled in such a way that the polarization of the light reflected from them in is not rotated in an outer region and is rotated in an inner region and that the inner region which is imaged with a larger magnification factor in an illumination zone of the headlight is smaller than that inner region which is imaged with a smaller magnification factor in an illumination zone of the headlight becomes.
  • first liquid crystal matrix element region belongs to a first component and that the second liquid crystal matrix element region belongs to a second component that is separate from the first component.
  • a further preferred embodiment is characterized in that the two liquid crystal matrix element regions are arranged parallel to one another in different, mutually parallel planes offset from one another.
  • the two liquid crystal matrix areas are arranged parallel to one another in different, mutually parallel planes so far offset from one another, and that a distance perpendicular to the pixel surfaces between the two liquid crystal element areas is just as large as an average distance of the deflecting mirror from the beam splitter.
  • the two liquid crystal matrix element regions form a right angle with one another, a surface of the liquid crystal matrix element region facing a first side of the beam splitter and a surface of the second liquid crystal matrix element region facing a second surface of the beam splitter.
  • liquid crystal matrix element regions are arranged in such a way that the light incident from the beam splitter falls perpendicularly on the liquid crystal matrix element regions and is therefore also reflected vertically.
  • a preferred embodiment is characterized by projection optics which are arranged in the beam path of the light reflected by the liquid crystal matrix element regions behind the beam splitter.
  • a focal point of the projection optics on the beam splitter side is in the vicinity of the surfaces of the liquid crystal matrix element regions.
  • Another preferred embodiment is characterized in that a first optical element is arranged between the light source and the beam splitter, and that the first optical element is set up to parallelize light emanating from the light source.
  • the first optical element is a lens, a reflector or a catadioptric optical attachment.
  • the polarizing beam splitter consists of two prismatic halves.
  • the beam splitter is a thin-film polarizer.
  • the shows in detail Figure 1 a headlight 10 of a motor vehicle.
  • the headlight 10 has a housing 12, the light exit opening of which is covered by a transparent cover plate 14.
  • a light module 16 and a control device 18 are located in the interior of the housing 12.
  • the control unit 18 is set up, in particular programmed, to function the light module 16 in To control dependence on signals from a driver's request transmitter 20 or a higher-level light control device 22 of the motor vehicle.
  • Driver request transmitter 20 is, for example, a light switch of the motor vehicle.
  • the Figure 2 shows details of a light module 16 of a headlight.
  • the light module 16 has a light source 24, a polarizing beam splitter 26, a first reflective liquid crystal matrix element region 28, a second reflective liquid crystal matrix element region 30, and projection optics 32.
  • the light source 24 preferably has at least one, but preferably a plurality of light-emitting diodes.
  • the light emitting diodes emit light of white color, as is permitted for motor vehicle headlights.
  • a light bundle 25 of unpolarized light originating from the light source 24 is preferably first parallelized by a first optical element 27.
  • the first optical element 27 is preferably implemented as a lens or as a reflector or as a catadioptric optical attachment.
  • the parallelized light beam 29 emanating from the first optical element 27 is incident on the polarizing beam splitter 26.
  • the first optical element 27 is located between the light source 24 and the beam splitter 26.
  • the beam splitter 26 is shown schematically here as a beam splitter cube, which consists of two prismatic halves, each of which has the shape of a right-angled and equilateral triangle in the plane of the drawing and along its respective right angle opposite base surfaces are assembled into a cube. The base surfaces of such a cube are then the beam-splitting surfaces 31.
  • the beam splitter 26 is preferably a thin-film polarizer.
  • the beam splitting surfaces 31 of the beam splitter 26 appear as a line lying in a pz plane of a right-handed right-handed coordinate system 34.
  • the coordinate system 34 has an s-axis, a p-axis and a z-axis, the axes being orthogonal to one another.
  • the shape and position of the beam-dividing surface 31 results from the displacement of the line representing the beam-dividing surface 31 in the S direction.
  • a light incidence plane in which light ultimately emanating from the light source 24 falls on the beam splitter 26 is identical to the drawing plane and is therefore parallel to a p-z plane.
  • Such a plane of light incidence is defined by the direction of the incident beam and the perpendicular of the plane surface onto which the beam is incident.
  • the incident, unpolarized light 29 has a first component which is polarized parallel to the p-z light incidence plane. This portion is also referred to below as the p portion. Its direction of polarization lies in the plane of the drawing.
  • the incident, unpolarized light 29 also has a second component that is polarized perpendicular to the pz light incidence plane. This portion is also referred to below as the s portion. Its direction of polarization is perpendicular to the
  • the polarizing beam splitter 26 has the property of being transparent to one of the two components and reflecting the other component. Without restricting generality, it is assumed below that the polarizing beam splitter 26 is transparent to the p component and reflects the s component. This means that the p-component passes through the beam-splitting surfaces 31 and that the s-component is reflected on the beam-splitting surfaces 31. In an alternative embodiment, the polarizing beam splitter 26 is transparent to the s component and reflects the s component.
  • the polarizing beam splitter 26 ultimately splits the light 29 incident directly from the light source 24 or, if a first optical element 27 is present, via the first optical element 27 into a first sub-bundle 36 and a second sub-bundle 38.
  • the light of the first sub-beam 36 has a first polarization direction (here parallel to the plane of incidence, therefore referred to as the p-direction) and a first main propagation direction.
  • This sub-bundle 36 passes through the beam-splitting surfaces 31.
  • the first main propagation direction points to the first liquid crystal matrix element region 28, which is thus illuminated with the p component.
  • the light from the second sub-beam 38 has a second polarization direction (here perpendicular to the plane of incidence, therefore referred to as the s-direction) and a second main propagation direction.
  • This sub-bundle 38 is reflected on the beam-splitting surfaces. After reflection, the second main propagation direction points to the second Liquid crystal matrix element region 30, which is thus illuminated with the s component.
  • the first liquid crystal matrix element region 28 is arranged in the first sub-beam 36 in such a way that it reflects light incident from the beam splitter 26 back to the beam splitter 26.
  • the first liquid crystal matrix element region 28 is therefore aligned perpendicular to the incident partial bundle 36.
  • the second liquid crystal matrix element region 30 is arranged in the second sub-bundle 38 in such a way that it reflects light incident from the beam splitter 26 back to the beam splitter 26.
  • the second liquid crystal matrix element region 30 is thus aligned perpendicular to the incident partial bundle 38.
  • the influence of the first reflective liquid crystal matrix element region 30 on the polarization direction of the light reflected on it can be controlled pixel by pixel by the control device 18.
  • the control intervention rotates the direction of polarization of the reflected beam more or less.
  • the first liquid crystal matrix element region 28 has 10 pixels in the p-direction, so that a number of 100 pixels would result with the same number of pixels in the s-direction. In reality, the number of pixels can also be significantly higher and in the order of several hundred thousand.
  • the influence of the second reflecting liquid crystal matrix element region 30 is analogous to this the direction of polarization of the light reflected from it can be controlled by the control device 18 pixel by pixel.
  • the second liquid crystal matrix element region 30 has 10 pixels in the z direction, so that with the same number of pixels in the s direction, a number of 100 pixels would result.
  • the number of pixels can be significantly larger in reality. This number will generally correspond to the number of pixels of the first liquid crystal matrix element region 28.
  • the reflectance of the liquid crystal matrix element regions is additionally dependent on the angle of incidence of the light impinging on the pixels.
  • the parallelization achieved with the first optical element 27 is advantageous since it leads to the light rays of a bundle each striking the pixels with the same angle of incidence.
  • the angle of incidence to the perpendicular is preferably zero degrees. Then there is a casual reversal of direction in the reflection taking place in the pixels, which leads the light reflected in the pixels back to the beam splitter without further deflections.
  • the crossed pixels are controlled by the control device in such a way that they rotate the polarization of the light incident on them by 90 °, so that light incident on these pixels, which is polarized in the p-direction, from the Crossed pixels emerge as light polarized in the s-direction.
  • the pixels that are not shown crossed should be the Do not change the direction of polarization so that the direction of polarization of the light emerging from these pixels corresponds to the direction of polarization of the light incident on these pixels.
  • the two light components are thus brought together again by the beam splitter 26 to form a light beam.
  • This light beam is preferably distributed by a projection optics 32 in an illumination zone located in front of the headlight.
  • Pixels of the two liquid crystal matrix element regions 28, 30, which are not shown in a crossed manner are pixels which are controlled by the control device 18 in such a way that they do not rotate the polarization of the light incident there.
  • the consequence of this is that the rays reflected at the pixels of the first liquid crystal matrix element region 28, which are not shown crossed, hit the beam splitter with p-polarization in the exemplary embodiment shown and are therefore transmitted in the direction of the light source 24 after reflection at the first liquid crystal matrix element region 28.
  • These rays of light thus do not contribute to the light distribution in the lighting zone in front of the headlight.
  • the rays reflected at the pixels of the second liquid crystal matrix element region 30, which are not shown crossed, will strike the beam splitter 26 with an s-polarization in the exemplary embodiment shown and will therefore be reflected in the direction of the light source 24.
  • These light rays also do not contribute to the light distribution in the lighting zone in front of the headlight.
  • a focal point of the projection optics 32 on the beam splitter side is preferably in the vicinity of the surfaces of the liquid crystal matrix element regions 28, 30.
  • a proximity is understood to mean a distance between the focal point and the surfaces 28, 30 that is between 0 and 10% of the focal length of the projection optics 32.
  • the projection optics 32 depict the illumination pattern of the light portion which is set there in the vicinity of the focal point, as a light distribution in the illumination zone mentioned, from the beam splitter 26 to the projection optics.
  • the lighting pattern occurring in the lighting zone in front of the headlight can therefore be shaped by controlling the pixels with a fineness given by the pixel size.
  • the control device By changing a control of the pixels by the control device 18, different light distributions with controllably distributed light and dark areas in the lighting zone in front of the headlight can therefore be generated. Since the two differently polarized components are combined again into a bundle by the beam splitter 26, the light distribution in the illumination zone is basically from unpolarized light. This presupposes that the spatial pattern of the pixel control is the same or at least similar in both liquid crystal matrix element regions.
  • the second liquid crystal matrix element region 30 is preferably arranged in such a way that its pixel surface is oriented perpendicular to the light coming from the beam splitter 26 and incident on it without deflection.
  • the second liquid crystal matrix element region 30 is preferably arranged such that the distance of its pixel surface from the beam splitter 26 is the same as the distance of the pixel surface of the first liquid crystal matrix element region 28 from the beam splitter 26.
  • the same magnification factors result for the imaging of the pixel surfaces of the first liquid crystal matrix element region and of the second liquid crystal matrix element region that takes place through the projection optics 32.
  • this exemplary embodiment does not require a deflection mirror between one of the two liquid crystal matrix element regions 28, 30 and the beam splitter 26.
  • this exemplary embodiment requires two different liquid crystal matrix element region components, since the liquid crystal matrix element regions 28, 30 are not arranged in a single plane and therefore cannot be realized as partial areas of a single liquid crystal matrix element area component.
  • the white light incident on the beam splitter 26 from the light source 24 has an intensity profile with a maximum transversely to its direction of propagation, which is in the region of a central radiation direction and that to the sides, that is to say with increasing distance from the central one Radiation direction, is continuously lower. This results in a lighting zone in front of the motor vehicle that is ultimately illuminated in a lighting area illuminated by the headlight, i.e. without a sharp cut-off between brightness, which favors the formation of a light distribution customary for motor vehicles.
  • the projection optics 32 depict the surface of the two liquid crystal matrix element regions 28, 30 and their pixels sharply and overlap as precisely as possible in the illumination zone, so that the image of each pixel is illuminated as far as possible by unpolarized light.
  • the Figure 3 shows details of a further embodiment of a headlight according to the invention.
  • the second liquid crystal matrix element region 30 is illuminated by a mirror 39.
  • the mirror 39 is preferably designed such that it reflects both polarization directions s and p equally well and does not change the two polarization directions during reflection.
  • the distances of the two liquid crystal matrix element regions 28 and 30 from the projection optics 32 are the subject of FIG Figure 3 different from each other.
  • the beam splitter side is then located
  • the focal point of the projection optics 32 is closer to one of the two liquid crystal matrix element areas 28, 30 than to the other liquid crystal matrix element areas 30, 28.
  • the two liquid crystal matrix element areas 28, 30 have different object widths and thus also slightly different magnification factors in the image produced by the projection optics 32 .
  • liquid crystal matrix element areas and in particular LCoS areas have a very large number of pixels (e.g. several hundred thousand), this undesired effect of different magnification factors can be compensated for by adapting the object size on the liquid crystal matrix element areas.
  • Figure 4 illustrates the mapping of the surface of the liquid crystal matrix element areas into the lighting zone of the headlight lying in front of the vehicle.
  • the Figure 4 shows on the left in the figure part a) the surface areas 28 ', 30' of the two liquid crystal matrix element areas 28, 30, in which the polarization is rotated, in the ps plane and on the right in the figure part b) the overlap of their two images 28 '', 30 ''after being imaged by the projection optics 32 into the lighting zone.
  • the in the Image area lying in the illumination zone for example, is to be illuminated in a positionally overlapping rectangular area with contributions 28 ′′, 30 ′′ of both polarization directions.
  • the individual pixels of the liquid crystal matrix element regions 28, 30 are switched such that the polarization is not rotated in the outer region and is rotated in the inner regions.
  • the outer area is in the Figure 4 the difference between the areas 30 and 30 'and 28 and 28'. Only light from the areas in which the polarization is rotated is transmitted or reflected from the beam splitter to the projection optics.
  • the liquid crystal matrix element area that is imaged into the lighting zone with the larger magnification factor is reduced by correspondingly controlling its outer pixels on the liquid crystal matrix element area. In the example shown, this is the liquid crystal matrix element region 28.
  • the resulting regions 28 ', 30' of different sizes on the liquid crystal matrix element regions are then imaged by the projection optics in such a way that their images 28 ", 30" merge with one another overlapping positions in the illumination zone.
  • the degree of polarization of this light distribution can be adjusted by electronically controlling the pixels of the liquid crystal matrix element areas. For example, the pixels of one of the two liquid crystal matrix element regions 28, 30 are switched such that the light reflected by them from the beam splitter is not directed towards the projection optics, the other of the two liquid crystal matrix element regions results in an almost 100 percent polarized light distribution.
  • the embodiment according to the Figure 3 requires a deflection mirror 39 between one of the two liquid crystal matrix element regions 28, 30 and the beam splitter 26.
  • this fundamental disadvantage is accompanied by the advantage that this exemplary embodiment does not require two different liquid crystal matrix element region components, since the liquid crystal matrix element regions are arranged here in a single plane and therefore can be realized as partial areas of a single liquid crystal matrix element area component.
  • the different magnification factors which in this example result from the different optical path lengths between the projection optics 32 on the one side and in each case one of the two liquid crystal matrix element regions 28, 30 on the other side, can be arranged in mutually offset planes by arranging the two liquid crystal matrix element regions 28, 30 be avoided.
  • the two liquid crystal element regions are arranged in different planes with pixel surfaces arranged parallel to one another. It is preferred that a distance between the two liquid crystal element areas perpendicular to the pixel surfaces is as large as an average distance of the deflecting mirror 39 from the beam splitter 26.
  • the pixel surfaces of the liquid crystal matrix element areas are then in the z direction arranged just so far that the optical path lengths of the light reflected there are the same. With this determination of the distance, the two liquid crystal element regions are then arranged at the same distance from the projection lens. As a result, both areas are imaged by the projection optics 32 with the same magnification factor in the lighting zone located in front of the headlight.
  • this exemplary embodiment then requires two different liquid crystal matrix element region components, since the liquid crystal matrix element regions are not arranged in a single plane and therefore cannot be realized as partial regions of a single liquid crystal matrix element region component.
  • the projection optics 32 is a projection lens, which is represented in these figures by its main plane shown in dashed lines.
  • Figure 5 shows an embodiment in which a reflector 40 is used as projection optics 32 instead of the projection lens.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Claims (14)

  1. Projecteur de véhicule à moteur (10) avec une source de lumière (24), un séparateur de faisceau (26) polarisant, qui est disposé dans un faisceau lumineux (25) sortant de la source de lumière (24) et qui sépare la lumière incidente à partir de la source de lumière (24) en un premier faisceau partiel (36) et un deuxième faisceau partiel (38), dans lequel la lumière du premier faisceau partiel (36) présente une première direction de polarisation et une première direction de propagation principale, et dans lequel la lumière du deuxième faisceau partiel (38) présente une deuxième direction de polarisation et une deuxième direction de propagation principale, et avec une première zone d'élément matriciel à cristaux liquides (28) réfléchissante, dont l'influence sur la direction de polarisation de la lumière réfléchie sur elle peut être commandée, et avec une deuxième zone d'élément matriciel à cristaux liquides (30) réfléchissante, dont l'influence sur la direction de polarisation de la lumière réfléchie sur elle peut être commandée, caractérisé en ce que la première zone d'élément matriciel à cristaux liquides (28) est disposée dans le premier faisceau partiel (36), de sorte qu'elle renvoie par réflexion la lumière incidente à partir du séparateur de faisceau (26) en direction du séparateur de faisceau (26), et dans lequel la deuxième zone d'élément matriciel à cristaux liquides (30) est disposée dans le deuxième faisceau partiel (38), de sorte qu'elle renvoie par réflexion la lumière incidente à partir du séparateur de faisceau (26) en direction du séparateur de faisceau (26), et dans lequel les deux zones d'élément matriciel à cristaux liquides (28, 30) sont orientées parallèlement l'une à l'autre et disposées dans le même plan, et un miroir de déviation (39) est disposé entre la deuxième zone d'élément matriciel à cristaux liquides (30) et le séparateur de faisceau (26), et dans lequel les écarts des deux zones d'élément matriciel à cristaux liquides (28) et (30) par rapport à l'optique de projection (32) sont différents les uns des autres et un foyer côté séparateur de faisceau de l'optique de projection (32) se situe plus près d'une des deux zones d'élément matriciel à cristaux liquides (28, 30) que de l'autre zone d'élément matriciel à cristaux liquides (30, 28) respective, de sorte qu'en conséquence, des distances d'objet différentes pour les deux zones d'élément matriciel à cristaux liquides (28, 30) et donc également des facteurs d'agrandissement légèrement différents sont produits lors de la reproduction s'effectuant à travers l'optique de projection (32), dans lequel la zone d'élément matriciel à cristaux liquides qui est reproduite dans la zone d'éclairage avec le facteur d'agrandissement plus grand est réduite par une commande correspondante de ses pixels extérieurs sur la zone d'élément matriciel à cristaux liquides.
  2. Projecteur (10) selon la revendication 1, caractérisé en ce que les deux zones d'élément matriciel à cristaux liquides (28, 30) sont adjacentes l'une à l'autre et font partie de la même pièce.
  3. Projecteur (10) selon la revendication 1 ou 2, caractérisé en ce que les différents pixels des zones d'élément matriciel à cristaux liquides (28, 30) sont commandés de sorte que la polarisation de la lumière réfléchie sur elles n'est pas amenée en rotation dans une zone extérieure et est amenée en rotation dans une zone intérieure (28', 30') et que la zone intérieure (28') qui est reproduite avec un facteur d'agrandissement plus grand dans une zone d'éclairage du projecteur est plus petite que la zone intérieure (30') qui est reproduite avec un facteur d'agrandissement plus petit dans une zone d'éclairage du projecteur.
  4. Projecteur (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que la première zone d'élément matriciel à cristaux liquides (28) fait partie d'une première pièce, et la deuxième zone d'élément matriciel à cristaux liquides (30) fait partie d'une deuxième pièce séparée de la première pièce.
  5. Projecteur (10) selon la revendication 1, caractérisé en ce que les deux zones d'élément matriciel à cristaux liquides (28, 30) sont disposées de manière décalée l'une de l'autre parallèlement l'une à l'autre dans différents plans parallèles les uns aux autres.
  6. Projecteur (10) selon la revendication 1, caractérisé en ce que les deux zones d'élément matriciel à cristaux liquides (28, 30) sont disposées de manière décalée l'une de l'autre parallèlement l'une à l'autre dans des plans différents parallèles les uns aux autres, dans la mesure où un écart perpendiculaire aux surfaces de pixels entre les deux zones d'élément matriciel à cristaux liquides est aussi grand qu'un écart central du miroir de déviation (39) par rapport au séparateur de faisceau (26).
  7. Projecteur (10) selon la revendication 1, caractérisé en ce que les deux zones d'élément matriciel à cristaux liquides (28, 30) forment un angle droit l'une avec l'autre, dans lequel une surface de la zone d'élément matriciel à cristaux liquides (28) est tournée vers une première face du séparateur de faisceau (26) et dans lequel une surface de la deuxième zone d'élément matriciel à cristaux liquides (30) est tournée vers une deuxième surface du séparateur de faisceau (26).
  8. Projecteur selon l'une quelconque des revendications précédentes, caractérisé en ce que les zones d'élément matriciel à cristaux liquides sont disposées de sorte que la lumière incidente à partir du séparateur de faisceau est incidente verticalement sur les zones d'élément matriciel à cristaux liquides et est donc également réfléchie verticalement.
  9. Projecteur selon l'une quelconque des revendications précédentes, caractérisé par une optique de projection, qui est disposée derrière le séparateur de faisceau dans le faisceau lumineux de la lumière réfléchie par les zones d'élément matriciel à cristaux liquides.
  10. Projecteur (10) selon la revendication 9, caractérisé en ce qu'un foyer côté séparateur de faisceau de l'optique de projection (32) se situe à proximité des surfaces des zones d'élément matriciel à cristaux liquides (28, 30).
  11. Projecteur (10) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un premier élément optique (27) est disposé entre la source de lumière (24) et le faisceau lumineux (26), et que le premier élément optique (27) est conçu pour paralléliser la lumière sortant de la source de lumière (24).
  12. Projecteur (10) selon la revendication 11, caractérisé en ce que le premier élément optique (27) est une lentille, un réflecteur ou une optique additionnelle catadioptrique.
  13. Projecteur (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que le séparateur de faisceau (26) polarisant est constitué de deux moitiés prismatiques.
  14. Projecteur (10) selon l'une quelconque des revendications 1 à 13, caractérisé en ce que le séparateur de faisceau (26) est un polarisateur à couches minces.
EP17156657.3A 2016-02-19 2017-02-17 Phare de véhicule automobile comprenant un affichage à cristaux liquides Active EP3208531B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016102991.2A DE102016102991A1 (de) 2016-02-19 2016-02-19 Kraftfahrzeug-Scheinwerfer mit einem Flüssigkristalldisplay

Publications (3)

Publication Number Publication Date
EP3208531A2 EP3208531A2 (fr) 2017-08-23
EP3208531A3 EP3208531A3 (fr) 2017-10-25
EP3208531B1 true EP3208531B1 (fr) 2020-04-01

Family

ID=58094247

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17156657.3A Active EP3208531B1 (fr) 2016-02-19 2017-02-17 Phare de véhicule automobile comprenant un affichage à cristaux liquides

Country Status (2)

Country Link
EP (1) EP3208531B1 (fr)
DE (1) DE102016102991A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017109679A1 (de) * 2017-05-05 2018-11-08 Jos. Schneider Optische Werke Gmbh Vorrichtung und Verfahren zum Erzeugen einer Ausgangslichtemission und Scheinwerfer
CN106939992A (zh) 2017-05-14 2017-07-11 上海小糸车灯有限公司 一种基于pbs分光器的车灯系统
FR3079599A1 (fr) * 2018-03-29 2019-10-04 Valeo Vision Dispositif de signalisation lumineuse avec ecran lcd
US11880030B2 (en) * 2020-02-24 2024-01-23 Google Llc Programmable injector grid plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3032168A1 (fr) * 2014-12-11 2016-06-15 Stanley Electric Co., Ltd. Phare de véhicule

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3614001B2 (ja) * 1997-12-03 2005-01-26 セイコーエプソン株式会社 投影装置
DE102008044334A1 (de) * 2008-12-04 2010-06-10 Robert Bosch Gmbh Projektionseinrichtung und Verfahren zur Projektion
JP5418760B2 (ja) * 2009-01-28 2014-02-19 スタンレー電気株式会社 車両用灯具
JP5448615B2 (ja) * 2009-07-14 2014-03-19 株式会社小糸製作所 車両用前照灯
FR3006746B1 (fr) 2013-06-11 2017-12-08 Valeo Vision Projecteur pour vehicule automobile comprenant une source de lumiere laser
DE102013113807A1 (de) 2013-12-11 2015-06-11 Hella Kgaa Hueck & Co. Beleuchtungseinrichtung für ein Kraftfahrzeug

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3032168A1 (fr) * 2014-12-11 2016-06-15 Stanley Electric Co., Ltd. Phare de véhicule

Also Published As

Publication number Publication date
EP3208531A3 (fr) 2017-10-25
EP3208531A2 (fr) 2017-08-23
DE102016102991A1 (de) 2017-08-24

Similar Documents

Publication Publication Date Title
EP3208531B1 (fr) Phare de véhicule automobile comprenant un affichage à cristaux liquides
EP2910847B1 (fr) Module d'éclairage d'un projecteur de véhicule automobile et projecteur avec un tel module d'éclairage
EP2799761B1 (fr) Module d'éclairage de phare de véhicule automobile
EP3420269B1 (fr) Phare pour véhicules
DE60015627T2 (de) Gerät zur Polarisationswandlung, Beleuchtungssystem und projektor
EP3205928B1 (fr) Phare de véhicule automobile équipé d'un élément structurel à matrice à cristaux liquides
DE102012008833A1 (de) Beleuchtungsanordnung und Fahrzeugscheinwerfer
WO2018095718A1 (fr) Répartition d'une distribution de lumière totale dans des modules de phare individuels avec prise en compte de propriétés de technique d'éclairage spécifiques et de dysfonctionnements
DE102013113807A1 (de) Beleuchtungseinrichtung für ein Kraftfahrzeug
DE112017001785B4 (de) Head-up-Anzeigevorrichtung
DE102012212436A1 (de) Lichtmodul für eine Projektionsvorrichtung und Verfahren zur Generierung des Blauanteils in einem Lichtmodul für eine Projektionsvorrichtung
DE102018110083A1 (de) Optikanordnung zur flexiblen Mehrfarbbeleuchtung für ein Lichtmikroskop und Verfahren hierzu
DE102014221389A1 (de) Lichtmodul einer Beleuchtungseinrichtung und Beleuchtungseinrichtung mit einem solchen Lichtmodul
DE102012210808A1 (de) Head-up Display und Projektionsoptik für ein Head-up Display
EP3619465B1 (fr) Dispositif et procédé de production d'une émission de lumière de sortie et phare
DE102015219211A1 (de) Lichtmodul für eine Kfz-Beleuchtungseinrichtung
EP3635472B1 (fr) Affichage tête haute
DE102016211691B4 (de) Vorrichtung und Verfahren zum Erzeugen einer Ausgangslichtemission
DE102018217651A1 (de) Lichtmodul für eine Beleuchtungsvorrichtung eines Kraftfahrzeugs
DE102021123105A1 (de) Fahrzeugleuchte sowie fahrzeug mit fahrzeugleuchte
DE102021108253A1 (de) Leuchte für Fahrzeuge und diese aufweisendes Fahrzeug
DE102016200586A1 (de) Vorrichtung und Verfahren zum Projizieren eines Lichtmusters
EP2225610B1 (fr) Procédé et dispositif de projection d'une image sur une surface de projection
DE102017210683B4 (de) Optische Anordnung einer Empfängeroptik eines abtastenden Lidar-Systems, Lidar-System sowie Arbeitsvorrichtung
DE102015215106A1 (de) Bildgebereinheit für ein Head-up-Display, Head-up-Display und Verfahren zum Erzeugen stereoskopsicher Halbbilder mittels einer Bildgebereinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/10 20060101AFI20170919BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180423

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/20 20170823AFI20181024BHEP

Ipc: F21S 41/135 20170823ALN20181024BHEP

Ipc: F21S 41/64 20170823ALI20181024BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/135 20180101ALN20181024BHEP

Ipc: F21S 41/64 20180101ALI20181024BHEP

Ipc: F21S 41/20 20180101AFI20181024BHEP

17Q First examination report despatched

Effective date: 20181217

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/64 20180101ALI20181024BHEP

Ipc: F21S 41/20 20180101AFI20181024BHEP

Ipc: F21S 41/135 20180101ALN20181024BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017004427

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0041200000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/64 20180101ALI20190910BHEP

Ipc: F21S 41/20 20180101AFI20190910BHEP

Ipc: F21S 41/135 20180101ALN20190910BHEP

INTG Intention to grant announced

Effective date: 20191008

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1251802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004427

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200401

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200801

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200702

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004427

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210217

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210217

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210217

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1251802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 8