EP3208382B1 - Engin automobile et procédé de fonctionnement d'un engin automobile - Google Patents

Engin automobile et procédé de fonctionnement d'un engin automobile Download PDF

Info

Publication number
EP3208382B1
EP3208382B1 EP17156134.3A EP17156134A EP3208382B1 EP 3208382 B1 EP3208382 B1 EP 3208382B1 EP 17156134 A EP17156134 A EP 17156134A EP 3208382 B1 EP3208382 B1 EP 3208382B1
Authority
EP
European Patent Office
Prior art keywords
milling
depth
construction machine
drum
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17156134.3A
Other languages
German (de)
English (en)
Other versions
EP3208382A1 (fr
Inventor
Christian Berning
René Müller
Sebastian Hofrath
Cyrus Barimani
Günter HÄHN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wirtgen GmbH
Original Assignee
Wirtgen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wirtgen GmbH filed Critical Wirtgen GmbH
Publication of EP3208382A1 publication Critical patent/EP3208382A1/fr
Application granted granted Critical
Publication of EP3208382B1 publication Critical patent/EP3208382B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/08Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades
    • E01C23/085Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for roughening or patterning; for removing the surface down to a predetermined depth high spots or material bonded to the surface, e.g. markings; for maintaining earth roads, clay courts or like surfaces by means of surface working tools, e.g. scarifiers, levelling blades using power-driven tools, e.g. vibratory tools
    • E01C23/088Rotary tools, e.g. milling drums
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/12Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor
    • E01C23/122Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor with power-driven tools, e.g. oscillated hammer apparatus
    • E01C23/127Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor with power-driven tools, e.g. oscillated hammer apparatus rotary, e.g. rotary hammers

Definitions

  • the invention relates to a self-propelled construction machine that has a machine frame that is supported by a chassis that has wheels or crawler tracks.
  • road construction self-propelled construction machines of different types are used. These machines include the well-known road milling machines, with which existing road layers of the road superstructure can be removed.
  • the known recyclers are intended to remove existing road layers, to mix the removed milled material with binders, such as bitumen and thus to produce reusable, treated mix.
  • so-called surface miners are known as self-propelled construction machines, with which, for example, coal or ore can be mined.
  • the construction machines mentioned above have a rotating milling drum equipped with suitable milling or cutting tools for working the soil.
  • the milling drum is arranged on the machine frame, which is adjustable in height relative to the soil to be processed.
  • the height adjustment of the machine frame by means of a lifting device which has the individual wheels or crawler tracks associated lifting columns.
  • a height adjustment of the milling drum can be provided relative to the machine frame.
  • the construction machinery To drive the wheels or crawler tracks and the milling drum, the construction machinery to a drive device, which generally comprises only one drive unit, the drive power is transmitted to the wheels or crawler tracks and the milling drum with separate drive trains, which may each have their own transmission systems.
  • the known construction machines have a control and computing unit with which the drive device and the lifting device are controlled.
  • the control and computing unit controls the drive device such that the construction machine moves in the field at a certain feed rate, wherein the milling drum rotates at a certain milling drum speed.
  • the control and computing unit controls the lifting device such that a certain height of the milling drum is adjusted relative to the ground.
  • the DE 10 2014 015 661 A1 describes a milling machine having a Fräswalzengephaseuse with a milling drum.
  • the milling machine has a sensor for detecting the feed rate, a sensor for detecting the height of the milling drum relative to the ground surface and a sensor for detecting a physical quantity that is characteristic of the soil to be processed, for example the density of the soil.
  • the signals from the sensors are evaluated by a control device configured to determine and set a desired feed rate and a desired amount for the milling drum.
  • the basic principle of the control is that the soil condition is taken into account when determining the setpoint feed rate and the setpoint height. This is particularly advantageous if the construction machine is a rotary mixer, which in the DE 10 2014 015 661 A1 will describe.
  • the DE 10 2013 112 973 A1 describes a method for generating a forecast on the state of wear and the remaining working line of the tillage tools of a self-propelled construction machine. After determining the state of wear, the remaining working line is determined taking into account the material properties of the material to be removed, which are determined during operation of the construction machine depending on the cutting depth and / or feed rate and / or the rotational speed of the milling drum and / or the output power from the drive motor ,
  • the machine operator can specify the feed rate and the speed of the milling drum as well as the milling depth within certain limits as a function of the respective working conditions.
  • the feed rate of the construction machine and the milling roll speed determine the nature of the milled terrain surface, which is referred to as a milling pattern.
  • the milling pattern or milling profile also depends on the use of the respective milling drum type and the milling or cutting tools.
  • the individual milling drum types differ in the diameter of the cutting circle as well as the design and arrangement of the milling or cutting tools.
  • the leveling device for adjusting the height of the milling drum relative to the ground surface can be calibrated.
  • milling work In the execution of milling work is intended to achieve a certain work result, which usually correlates with a desired depth of cut, to which the soil material is to be removed. After the calibration of the leveling device, therefore, a milling depth is specified which corresponds to this desired milling depth.
  • the milling drum is lowered relative to the ground surface until the lower edge of the cutting circle of the milling drum lies below the ground surface by the value of the predetermined milling depth.
  • the invention has for its object to provide a self-propelled construction machine that allows optimal adjustment of the milling depth under different conditions of the project. Another object of the invention is to simplify the operation of the construction machine. The invention is also based on the object of specifying a method for operating a construction machine, which allows an optimal adjustment of the milling depth under different boundary conditions and simplifies the operation of the construction machine.
  • the invention is based on the finding that the feed rate and / or the milling roll rotational speed are decisive for the deviation of the effective milling depth from the predetermined milling depth.
  • the predetermined milling depth which is initially set by the operator at the beginning of the milling work, when the construction machine is still stationary, corresponds to a maximum depth of cut, resulting from the difference between the height of the surface of the soil and the height of the lower edge of the cutting circle of the milling drum.
  • This maximum depth of cut does not change when the construction machine is moving off-road at a certain feed rate while the milling drum is rotating at a particular milling drum speed.
  • the milling pattern changes with the feed speed and milling drum speed.
  • the roughness of the milled surface of the terrain increases with increasing feed speed or decreasing milling drum speed.
  • the milling track shows on average a certain profile, which is characterized by maxima and minima, d. H. Points where the milling depth is minimal or maximum.
  • the basic principle of the invention is that the control and computing unit is configured such that a variable characteristic of the milling profile is determined on the basis of a functional relationship between the size characteristic of the milling profile and the feed rate and / or the milling roll speed.
  • the size characteristic of the milled profile is a variable that is meaningful for the nature of the soil surface.
  • the milling profile in the feed direction of the construction machine shows a series of elevations, the maximum depth of cut being the vertical distance between the original ground surface and the lowest point on the milled surface and the minimum milling depth being the vertical distance between the original ground surface and the ground highest point on the milled surface is.
  • the size characteristic of the milled profile can be an absolute value or a relative value, for example the roughness of the surface or the deviation of an effective cutting depth from a set milling depth.
  • the characteristic of the milled size can also be a size that alone is of interest, for example, as a correction for the preparation of the allowance in the settlement of milling. The only decisive factor is that this characteristic variable is determined as a function of the feed rate and / or the milling roll speed.
  • the functional relationship between the size characteristic of the milled profile and the feed rate and / or the milling roll speed can be described by a mathematical function.
  • the coefficients of this mathematical function can also be determined empirically by experiments. If the mathematical function is stored in the control and computation unit, the value of the characteristic quantity with the known coefficients can be easily calculated.
  • the functional relationship can also be stored in the control and arithmetic unit but also in the form of a table in which certain characteristic values are assigned to the individual feed rates and / or milling roll speeds.
  • the characteristic values stored in the table can be determined empirically.
  • the respective characteristic value can be read, for example, from a memory of the control and computing unit.
  • control and processing unit can be part of a central control and processing unit of the construction machine, with which all components and components of the machine are controlled. But it is also possible that the control and processing unit is a separate unit that interacts with other control and processing units.
  • control and computing unit is understood to mean any unit with which the respective operations can be carried out, for example a microcomputer on which a data processing program (software) runs.
  • the ratio of feed rate and milling roll speed is crucial for the milling profile.
  • a preferred embodiment of the construction machine according to the invention and the method according to the invention for operating The construction machine therefore provides that the size characteristic of the milled profile is determined on the basis of a functional relationship between the size characteristic for the milled profile and the ratio of feed rate and milling roll speed.
  • the variable characteristic for the milled profile is a correction variable for a given milling depth
  • the control and computing unit being configured such that instead of the predetermined milling depth, a corrected value for the milling depth is set. Consequently, an automatic correction takes place to the effect that regardless of the feed rate of the construction machine and / or speed of the milling drum, the effective routing depth always corresponds to a desired milling depth.
  • the effective milling depth can be a milling depth that can be set differently with regard to the milling profile.
  • the effective milling depth can be, for example, a milling depth which corresponds to the maxima or minima or to an average value between the maxima and minima of the milled profile.
  • the correction amount is the vertical distance between a point on the milled profile where the milling depth is minimum and a point on the milled profile where the milling depth is maximum.
  • the control and computing unit is configured such that the milling drum is lowered by the amount of this correction quantity to correct the milling depth. This ensures that in the working direction over the entire milling track material is milled to a certain level below the terrain surface, d. H. Above this level no material remains in the milling track.
  • the effective milling depth corresponds to a milling depth that extends to the minima of the milling profile.
  • the control and computing unit is preferably configured in such a way that the value for the milling depth corrected by the correction quantity is compared with a predetermined limit value, wherein a control signal is generated when the limit value is exceeded or undershot.
  • an alarm unit connected to the control and arithmetic unit is provided, which is designed such that an acoustic alarm unit and / or visual alarm is given when the alarm unit receives the control signal of the control and processing unit.
  • a particularly preferred embodiment provides the following configuration of the control and processing unit.
  • the control and computing unit is configured such that, when the construction machine is stationary, the milling drum is lowered from a first position, in which the lower edge of the cutting circle of the milling drum is at the level of the surface of the floor, into a second position , so that the lower edge of the cutting circle of the milling drum is at a distance corresponding to the predetermined milling depth to the height of the surface of the floor.
  • the feed speed of the construction machine is zero.
  • a first and a second position do not necessarily mean positions that are accepted immediately after one another. Rather, the milling drum can also assume additional positions between these two positions.
  • a correction is not required.
  • the correction should only begin with the start of the construction machine, d. H. when the feed rate is greater than zero.
  • a corrected value for the milling depth is set, which depends on the feed speed or on the feed speed and the rotational speed of the milling drum, so that the effective milling depth corresponds to the desired milling depth.
  • the feed rate is zero again, no correction takes place again.
  • the size characteristic of the milled profile can be displayed on a display unit.
  • the display unit may be of any desired design, for example a display which may be part of a central display unit of the construction machine.
  • the for the milled profile characteristic size can also be read from a memory of the control and processing unit.
  • the milling depth can be predefined by the machine operator, for example entered on an input unit.
  • the control and computing unit is then configured such that the height of the milling drum is adjusted such that without a correction of the milling depth, the lower edge of the cutting circle is below the ground surface by the value of the predetermined milling depth.
  • the current state of wear of the milling tools is taken into account in the correction of the milling depth.
  • the vertical distance of the lowest point of the milled surface from the original terrain surface changes according to the wear path of the milling tools. This means that the maximum milling depth no longer corresponds to the set milling depth. Therefore, it can be provided that the state of wear of the tools is detected automatically or manually and taken into account in the control and computing unit when determining the correction value. This ensures that the leveling device does not need to be recalibrated when the milling tools are worn.
  • Fig. 1 shows as an example of a self-propelled construction machine, a road milling machine for milling road surfaces made of asphalt, concrete or the like.
  • Fig. 2 shows the essential components of the invention of the construction machine in a highly simplified schematic representation.
  • the construction machine according to the invention may be, for example, a road milling machine or a surface miner.
  • the road milling machine has a machine frame 2 carried by a chassis 1.
  • the chassis 1 of the milling machine comprises front and rear crawler tracks 3, 4, which are arranged on the right and left side of the machine frame 2 in the working direction A. Instead of crawler wheels and wheels can be provided.
  • the self-propelled construction machine has a lifting device 28, which comprises the individual chain drives 3, 4 associated lifting columns 5, 6, 7, 8, of which the machine frame 2 is worn ( FIGS. 1 and 2 ).
  • the construction machine has a milling drum 9, which is equipped with milling tools 10, such as chisels.
  • the milling drum 9 is arranged on the machine frame 2 between the front and rear crawler tracks 3, 4 in a milling drum housing 11 which is closed at the longitudinal sides by an edge guard 12 and at the front by a downholder, not shown, and at the rear by a scraper, not shown ,
  • the milled material is removed with a conveyor 13.
  • Above the Fräswalzengephinuses 11 is located on the machine frame 2, the control station 14 with a control panel 15 for the operator.
  • the height of the milling drum 9 relative to the bottom surface 16 can be adjusted.
  • the construction machine For driving the chain drives 3, 4 and the drive of the milling drum 9 and other units, the construction machine has a drive device 17 which has an internal combustion engine 18.
  • a first drive train I To transmit the drive power of the internal combustion engine 18 to the crawler tracks 3, 4 is a first drive train I, while for the transmission of the drive power to the milling drum 9, a second drive train II is used.
  • the first drive train I may include a hydraulic transmission system 19 and the second drive train II a traction mechanism 20.
  • Such drive systems are known to the person skilled in the art.
  • the construction machine has a preferably central control and computing unit 21, with which the crawlers 3, 4 are controlled such that the construction machine moves in the direction of A with a predetermined feed rate v and the milling drum 9 rotates at a predetermined Fräswalzenitchiere n.
  • the control and computing unit 21 also controls the lifting columns 5, 6, 7, 8 such that the machine frame 2 is raised or lowered together with the milling drum 9 for setting the desired cutting depth h.
  • the control panel 15 of the construction machine comprises an input unit 22 and a display unit 23.
  • the operator can input on the input unit 22, for example on a touch screen, a certain feed rate v, a specific Fräswalzenfitiere n and a milling depth h, wherein the control and computing unit 21 drives the drive device 17 such that the construction machine moves at the feed speed v predetermined by the machine operator and the milling drum 9 rotates at the predetermined milling drum speed n, and the lifting device 28 controls such that the predetermined milling depth h is set.
  • FIGS. 3A to 3C show in greatly simplified schematic representation of the milling drum 9, which is equipped with milling bits 10, wherein in the figures, only one milling cutter is shown. While the milling drum 9 rotates at the predetermined speed n, the construction machine moves in the working direction A at the predetermined feed speed v. The figures show the line on which the tip of the cutting bit 10 moves, the milling roll speed n being constant.
  • FIG. 3A shows the cutting line 29 when the construction machine is stationary
  • Fig. 3B the cutting line 29 ', when the construction machine moves at a feed rate v 1
  • Fig. 3C the cutting line 29 ", when the construction machine moves at a feed rate v 2 , where v 2 > v 1, showing a trough 30, 30 ', 30" in the terrain surface 16.
  • FIGS. 4A and 4B show a section through the milled terrain at different feed speeds v 1 and v 2 of the construction machine, resulting in different milling profiles (v 2 > v 1 ). Both milling profiles is continuous Series of depressions 24 or elevations 25 in the working direction A of the construction machine together, resulting in a certain roughness of the terrain surface.
  • FIGS. 4A and 4B show that the height of the elevations 25 is dependent on the feed rate v 1 or v 2 .
  • the milled profile is characterized by "maxima” and "minima", ie points where the depth of cut is lowest and points where the depth of cut is greatest.
  • the vertical distance from the surface 16 of the original terrain and the point at which the milling depth is lowest thus defines a minimum milling depth h min and the vertical distance from the terrain surface 16 and the point at which the milling depth is greatest thus a maximum milling depth h max , which corresponds to the predetermined cutting depth h.
  • the maximum cutting depth h max is not dependent on the feed speed v. However, a dependence of the minimum milling depth h min on the feed rate v is shown.
  • FIGS. 5A to 5C show the cutting circle of the milling drum 9 in an enlarged view, wherein the construction machine with different feed speeds v 1 and v 2 moves and the Fräswalzenfitiere n is constant.
  • the milling drum 9 has a cutting circle diameter d of 1020 mm and a cutting depth h 1 of 10 mm is set.
  • the milling roll speed n is 1001 / min.
  • Fig. 5A shows the stationary milling drum 9.
  • Fig. 5B shows the moving in the milling direction with a feed rate v 1 of 2 m / min milling drum and
  • Fig. 5C shows the milling in the direction of milling at a feed rate v 2 of 5 m / min moving milling drum.
  • Fig. 5B shows that the milling drum during one revolution with the Feed rate v 1 moves in the direction of milling A by a distance that corresponds to about 1/10 s, ie about 20 mm / revolution.
  • Fig. 5C shows that the milling drum moves during one revolution at the feed rate v 2 in the milling direction A by a distance which corresponds to about 1/4 s, ie about 50 mm / revolution.
  • FIGS. 6A to 6C show an embodiment in which the milling drum 9 has the same cutting circle diameter d of 1020 mm, but a milling depth h 2 of 3 mm is set.
  • the milling roll speed n is again 100 1 / min.
  • the cutting length is about 101 mm.
  • Fig. 6A shows the stationary milling drum.
  • Fig. 6B shows the moving in the milling direction with a feed rate v 1 of 2 m / min milling drum and
  • Fig. 6C shows the milling in the direction of milling at a feed rate v 2 of 5 m / min moving milling drum.
  • FIG. 6B shows that the milling drum moves during one revolution at the feed rate v 1 in the milling direction by a distance which corresponds to about 1/5 s, ie about 20 mm / revolution.
  • Fig. 6C shows that the milling drum moves during one revolution at the feed rate v 2 in the milling direction by a distance which corresponds to about 1/2 s, ie about 50 mm / revolution.
  • the height of the elevations 25 is identical for both embodiments. Out Fig. 7 However, it can be seen that in relation to the maximum milling depth h max, the elevations 25 in the second embodiment with the smaller milling depth are greater than in the first embodiment with the larger milling depth.
  • the milling drums 9 have a multiplicity of chisels 10 which are arranged around the circumference of the milling drum and offset axially relative to one another, wherein each chisel produces a cutting line in a specific time interval. This results in a sectional image which is characterized by a plurality of mutually shifted cut lines.
  • Fig. 8A shows the sectional image composed of the individual cutting lines for a larger feed rate v 2 and Fig. 8B for a smaller feed rate v 1 . It again shows a minimum and maximum milling depth h min , h max , wherein the minimum milling depth h min of the feed rate v and the Milling roll speed n is dependent. It can be clearly seen that at a larger feed rate v 2, the minimum milling depth h min is smaller than at a lower feed rate v.
  • the milling depth must be corrected so that the minimum milling depth h min corresponds to the desired milling depth.
  • the effective milling depth h eff is therefore equal to the minimum milling depth h min .
  • control and computing unit of the construction machine according to the invention will be described in detail below.
  • Fig. 9 shows for a constant Fräswalzenwidiere n the dependence of the minimum depth of cut h min of the ratio of feed rate v and Fräswalzenwindiere n.
  • a feed rate of zero corresponds to the minimum milling depth h min of the maximum milling depth h max , ie there are no elevations 25 or recesses 24th because the milling drum has burrowed vertically into the ground.
  • H Max H min + ⁇ v
  • Fig. 9 shows only the dependence of the milling depth h of the feed rate v.
  • the milling depth h is also dependent on the milling roller speed n.
  • the minimum milling depth h min decreases with decreasing milling drum speed n.
  • the milling depth h is dependent, in particular, on the ratio of the feed speed and the milling drum speed v / n. A doubling of the milling drum speed has the same influence on the change of the milling depth as the halving of the feed speed.
  • the milling depth h is also dependent on the particular milling drum type. Different milling drum types, which have the same cutting circle diameter d, may differ, for example, in the number of milling bits. For example, two cutting tools arranged in a line instead of one milling cutter have the same influence on the change in the cutting depth h as halving the feed rate or doubling the milling roll speed.
  • the deviation ⁇ (v, n) of the minimum milling depth h min from the maximum milling depth h max is the characteristic of the milling profile. This size is used in the present embodiment as a correction value for the control of the milling depth.
  • a variable derived from the deviation ⁇ (v, n) of the minimum cutting depth h min from the maximum cutting depth h max can also be used as the correction variable, for example the deviation ⁇ (v, n) of a value between minimum cutting depth h min and maximum milling depth h max from the maximum cutting depth h max .
  • the value between minimum milling depth h min and maximum milling depth h max can specify an average milling depth, with the desired milling depth corresponding to an average milling depth.
  • the control and computing unit 21 can be a data processing unit on which a data processing program (software) runs, so that the method steps described below are carried out.
  • the control and computing unit 21 has a memory 26, in which for different types of milling rollers, which differ in the diameter of the intersecting circle d and the number and arrangement and design of the chisel 10, the above-described functional relationship between the deviation ⁇ (v, n) the minimum milling depth h min of the maximum milling depth h max and the feed rate v and the Fräswalzencardiere n or the ratio of feed rate and Fräswalzenfitiere v / n are stored in the form of the coefficients of a mathematical function or in the form of a table of values.
  • the feed rate v and milling roll speed n are known to the control and computation unit 21 when these values have been input to the input unit 22 by the operator. Feed rate v and / or milling roll speed n can also be measured continuously. For this purpose, suitable sensors are state of the art.
  • control and computing unit 21 continuously determines the correction quantity ⁇ (v, n) for a specific type of milling drum at a predetermined feed rate v and milling drum speed n.
  • the correction quantity ⁇ (v, n) can be calculated on the basis of the known functional relationship according to the above equation and / or read out as an empirically determined value from a memory 26 of the control and computing unit 21.
  • This correction variable changes continuously as the feed rate v and / or milling roll speed n change.
  • the value of the correction quantity or a value derived therefrom can be displayed to the driver on the control panel 15 on the display unit 23.
  • the value can also be read from the memory 26 of the control and computing unit 21. Interfaces suitable for this purpose belong to the state of the art.
  • the machine operator lowers the milling drum 9 manually while the construction machine is stationary until the tips of the cutting tools 10 just touch the surface 16 of the floor.
  • the control and computing unit 21 is given a value of zero for the milling depth at this time. This calibrates the leveling device.
  • the machine operator can enter a value for a milling depth h on the input unit 22. This value is stored in the memory 26 of the control and processing unit 21.
  • the control and computing unit 21 reads the value specified by the machine operator for the milling depth h from the memory 26 and then lowers the milling drum 9 when the construction machine is at a standstill, so that the predetermined milling depth h is established.
  • control and computing unit 21 controls the drive device 17 such that the construction machine moves in the working direction A at the predetermined feed rate v, which can also be changed during the feed, and the milling drum 9 rotates with the predetermined Fräswalzenitchiere n, which can also be changed during the feed.
  • the control and computing unit 21 determines a correction value ⁇ (v, n) for each feed rate v or milling roll speed n, in particular for each ratio of feed rate v and milling roll speed nn / v, ie the deviation of the minimum milling depth h min from the maximum milling depth h max , wherein the maximum milling depth h max is the milling depth predetermined at standstill of the construction machine.
  • the milling drum is then lowered during the feed of the construction machine with respect to the predetermined height at standstill by the correction value.
  • the milling drum When the construction machine starts, the milling drum is lowered as the feed rate increases as the machine accelerates. If the construction machine moves at a constant feed rate v and constant milling roll speed, no further correction takes place. In case of a change the feed rate v and / or a change in the Fräswalzenfitiere, however, takes place continuously a correction. When the construction machine stops, the milling drum is raised again as the feed rate decreases as the machine decelerates so that the amount of correction by which the milling drum is lowered also decreases.
  • control and computing unit 21 is configured in such a way that the value for the milling depth corrected by the correction quantity is compared with a predetermined limit value, wherein a control signal is generated when the limit value is exceeded or undershot.
  • the construction machine has an alarm unit 27, which is connected to the control and computing unit 21 and can be arranged on the control panel 15. When the alarm unit 27 receives the signal of the control and processing unit 21, this generates an optical and / or audible alarm.
  • a limiting value h limit for the current maximum milling depth h max which results after the correction, can be specified as the limit value.
  • Such a limit value can be specified, for example, if it is to be ruled out that material is removed in a region which is below a certain level or in relation to the feed rate v and / or milling roll speed n a larger milling depth is not to be set.
  • the control and arithmetic unit can be designed such that a correction of the milling depth is not carried out when a limit value is exceeded.
  • the alarm when a limit value is exceeded may prompt the machine operator to intervene in the machine control.
  • the control and computing unit 21 can also be configured such that in this case the feed rate v is automatically reduced and / or the milling roll speed n is increased.
  • the milling tools wear, the vertical distance of the lowest point of the milled surface from the original terrain surface changes according to the wear path of the milling tools.
  • the current state of wear of the milling tools can be taken into account. For this purpose, the state of wear of the tools is automatically recorded with a suitable transducer or entered manually.
  • the control and computing unit is configured such that the wear of the milling tools is taken into account when determining the correction value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Road Repair (AREA)

Claims (14)

  1. Engin automobile avec
    un bâti d'engin (2) qui est porté par un mécanisme de roulement (1) qui présente des roues ou chenilles (3, 4),
    un rouleau de fraisage (9) agencé sur le bâti d'engin (2) pour le traitement du sol,
    un dispositif d'entraînement (17) pour l'entraînement des roues ou chenilles (3, 4) et du rouleau de fraisage (9),
    un dispositif de levage (28) pour le réglage de la hauteur du rouleau de fraisage (9) par rapport à la surface (16) du sol à traiter,
    une unité de commande et de calcul (21) qui est configurée de telle manière qu'une vitesse d'avance déterminée (v) à laquelle l'engin se déplace dans le terrain, une vitesse de rotation de rouleau de fraisage (n) déterminée à laquelle le rouleau de fraisage (9) tourne, et une hauteur déterminée du rouleau de fraisage par rapport à la surface (16) du sol à traiter peuvent être réglées de sorte que du matériau soit enlevé du sol, par quoi il résulte une bande de fraisage avec un profil de fraisage déterminé, dans lequel l'unité de commande et de calcul (21) est configurée de telle manière qu'une grandeur (Δ) caractéristique pour le profil de fraisage soit déterminée sur la base d'un rapport fonctionnel entre la grandeur caractéristique pour le profil de fraisage et la vitesse d'avance (v) et/ou la vitesse de rotation de rouleau de fraisage (n),
    caractérisé en ce que
    la grandeur (Δ) caractéristique pour le profil de fraisage est une grandeur de correction pour une profondeur de fraisage prédéfinie (h), dans lequel l'unité de commande et de calcul (21) est configurée de telle manière qu'une valeur corrigée avec la grandeur de correction soit réglée à la place de la profondeur de fraisage prédéfinie (h).
  2. Engin automobile selon la revendication 1, caractérisé en ce que l'unité de commande et de calcul (21) est configurée de telle manière que la grandeur (Δ) caractéristique pour le profil de fraisage soit déterminée sur la base d'un rapport fonctionnel entre la grandeur caractéristique pour le profil de fraisage et le rapport (v/n) de vitesse d'avance (v) et de vitesse de rotation de rouleau de fraisage (n).
  3. Engin automobile selon la revendication 1 ou 2, caractérisé en ce que la grandeur de correction (Δ) est la distance verticale entre un point sur le profil de fraisage sur lequel la profondeur de fraisage est minimale, et un point sur le profil de fraisage sur lequel la profondeur de fraisage est maximale.
  4. Engin automobile selon la revendication 3, caractérisé en ce que l'unité de commande et de calcul (21) est configurée de telle manière que pour la correction de la profondeur de fraisage (h) le rouleau de fraisage (9) soit abaissé de la valeur de la grandeur de correction (Δ).
  5. Engin automobile selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'unité de commande et de calcul (21) est configurée de telle manière que la valeur corrigée avec la grandeur de correction (Δ) pour la profondeur de fraisage (h) soit comparée avec une valeur limite prédéfinie, dans lequel un signal de commande est généré lors du dépassement ou de la non-atteinte de la valeur limite.
  6. Engin automobile selon la revendication 5, caractérisé en ce qu'une unité d'alarme (27) raccordée à l'unité de commande et de calcul (21) est prévue, laquelle est réalisée de telle manière qu'une alarme acoustique et/ou optique soit émise, lorsque l'unité d'alarme (27) reçoit le signal de commande de l'unité de commande et de calcul (21).
  7. Engin automobile selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'une unité d'affichage (23) raccordée à l'unité de commande et de calcul (21) est prévue, laquelle est réalisée de telle manière que la grandeur (Δ) caractéristique pour le profil de fraisage, ou une valeur dérivée de la grandeur caractéristique pour le profil de fraisage soit affichée.
  8. Engin automobile selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'unité de commande et de calcul (21) est configurée de telle manière que lors de la détermination de la grandeur (Δ) caractéristique pour le profil de fraisage l'état d'usure actuel des outils de fraisage soit pris en considération.
  9. Engin automobile selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'unité de commande et de calcul (21) est configurée de telle manière que pour le réglage de la profondeur de fraisage (h) prédéfinie en cas d'engin immobile le rouleau de fraisage (9) soit abaissé d'une première position dans laquelle l'arête inférieure du cercle de coupe du rouleau de fraisage se trouve à la hauteur de la surface (16) du sol, dans une seconde position de sorte que l'arête inférieure du cercle de coupe du rouleau de fraisage se trouve à une distance correspondant à la profondeur de fraisage (h) prédéfinie de la hauteur de la surface (16) du sol, et qu'après le démarrage de l'engin à la place de la profondeur de fraisage (h) prédéfinie une valeur corrigée avec la grandeur de correction (Δ) pour la profondeur de fraisage est réglée en continu.
  10. Procédé de fonctionnement d'un engin automobile avec un rouleau de fraisage réglable en hauteur par rapport au sol pour le traitement du sol, dans lequel une vitesse d'avance (v) déterminée à laquelle l'engin se déplace dans le terrain, une vitesse de rotation de rouleau de fraisage (n) déterminée à laquelle le rouleau de fraisage tourne, et une hauteur déterminée du rouleau de fraisage (9) est réglable par rapport à la surface (16) du sol à traiter de sorte que du matériau soit enlevé du sol, par quoi il résulte une bande de fraisage avec un profil de fraisage déterminé, dans lequel une grandeur (Δ) caractéristique pour le profil de fraisage est déterminée sur la base d'un rapport fonctionnel entre la grandeur caractéristique pour le profil de fraisage et la vitesse d'avance (v) et/ou la vitesse de rotation de rouleau de fraisage (n), caractérisé en ce que la grandeur (Δ) caractéristique pour le profil de fraisage est une grandeur de correction pour une profondeur de fraisage prédéfinie (h), dans lequel une valeur corrigée avec la grandeur de correction pour la profondeur de fraisage est réglée à la place de la profondeur de fraisage (h) prédéfinie.
  11. Procédé selon la revendication 10, caractérisé en ce que la grandeur caractéristique pour le profil de fraisage (Δ) est déterminée sur la base d'un rapport fonctionnel entre la grandeur caractéristique pour le profil de fraisage et le rapport (v/n) de la vitesse d'avance (v) et la vitesse de rotation de rouleau de fraisage (n).
  12. Procédé selon la revendication 10 ou 11, caractérisé en ce que la grandeur de correction (Δ) est la distance verticale entre un point sur le profil de fraisage sur lequel la profondeur de fraisage est minimale, et un point sur le profil de fraisage sur lequel la profondeur de fraisage est maximale.
  13. Procédé selon la revendication 12, caractérisé en ce que pour la correction de la profondeur de fraisage le rouleau de fraisage (9) est abaissé de la valeur de la grandeur caractéristique (Δ).
  14. Procédé selon l'une quelconque des revendications 10 à 13, caractérisé en ce que pour le réglage de la profondeur de fraisage (h) prédéfinie en cas d'engin immobile le rouleau de fraisage (9) est abaissé d'une première position dans laquelle l'arête inférieure du cercle de coupe du rouleau de fraisage se trouve à la hauteur de la surface (16) du sol, dans une seconde position de sorte que l'arête inférieure du cercle de coupe du rouleau de fraisage se trouve à une distance correspondant à la profondeur de fraisage prédéfinie (h) de la hauteur de la surface (16) du sol, et qu'après le démarrage de l'engin à la place de la profondeur de fraisage (h) prédéfinie une valeur corrigée avec la grandeur de correction (Δ) pour la profondeur de fraisage est réglée en continu.
EP17156134.3A 2016-02-16 2017-02-14 Engin automobile et procédé de fonctionnement d'un engin automobile Active EP3208382B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016001720.1A DE102016001720B4 (de) 2016-02-16 2016-02-16 Selbstfahrende Baumaschine und Verfahren zum Betreiben einer selbstfahrenden Baumaschine

Publications (2)

Publication Number Publication Date
EP3208382A1 EP3208382A1 (fr) 2017-08-23
EP3208382B1 true EP3208382B1 (fr) 2018-11-28

Family

ID=58043981

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17156134.3A Active EP3208382B1 (fr) 2016-02-16 2017-02-14 Engin automobile et procédé de fonctionnement d'un engin automobile

Country Status (4)

Country Link
US (2) US10370803B2 (fr)
EP (1) EP3208382B1 (fr)
CN (1) CN107083735B (fr)
DE (1) DE102016001720B4 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016216216A1 (de) 2016-08-29 2018-03-01 Wirtgen Gmbh Verfahren zum Bearbeiten von Bodenbelägen, sowie selbstfahrende Baumaschine
DE102016010390A1 (de) * 2016-08-30 2018-03-01 Wirtgen Gmbh Fräsmaschine und Verfahren zum Betrieb einer Fräsmaschine
US11242658B2 (en) * 2018-01-03 2022-02-08 Volvo Construction Equipment Ab Paver machine and a method for paver screed height calibration
DE102019135225B4 (de) 2019-12-19 2023-07-20 Wirtgen Gmbh Verfahren zum Abfräsen von Verkehrsflächen mit einer Fräswalze, sowie Fräsmaschine zur Durchführung des Verfahrens zum Abfräsen von Verkehrsflächen
US11203841B2 (en) 2020-04-01 2021-12-21 Caterpillar Paving Products Inc. Machine, system, and method for automated milling exit cut operation

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7856302B2 (en) * 2005-12-23 2010-12-21 Caterpillar Inc Work machine with transition region control system
US8465105B2 (en) * 2007-01-18 2013-06-18 Cmi Terex Corporation Control system for cutter drum
DE202007005756U1 (de) * 2007-04-19 2008-08-28 Wirtgen Gmbh Selbstfahrende Baumaschine
US8376653B2 (en) * 2007-04-23 2013-02-19 Wirtgen Gmbh Self-propelled road construction machine
DE102008045470A1 (de) 2008-09-03 2010-03-04 Wirtgen Gmbh Verfahren zur Bestimmung des Verschleißzustandes
DE102011106139B4 (de) * 2011-06-10 2015-04-02 Wirtgen Gmbh Verfahren und Vorrichtung zum Bestimmen einer von mindestens einer Baumaschine oder Abbaumaschine mit einer Fräswalze gefrästen Fläche
US8821063B2 (en) * 2011-12-01 2014-09-02 Surface Preparation Technologies, Llc Control system and method for road cutting machine
US8899689B2 (en) * 2011-12-21 2014-12-02 Caterpillar Paving Products Inc. Automatic cut-transition milling machine and method
US9121146B2 (en) * 2012-10-08 2015-09-01 Wirtgen Gmbh Determining milled volume or milled area of a milled surface
DE102013013304A1 (de) * 2013-08-12 2015-02-12 Wirtgen Gmbh Selbstfahrende Baumaschine zum Bearbeiten von Fahrbahnen oder Bodenoberflächen und Verfahren zum Kühlen der Fräswerkzeuge einer Fräswalze einer selbstfahrenden Baumaschine
US9574310B2 (en) * 2013-09-20 2017-02-21 Surface Preparation Technologies Llc Method and apparatus for cutting a sinusoidal groove in a road surface
US9103079B2 (en) 2013-10-25 2015-08-11 Caterpillar Paving Products Inc. Ground characteristic milling machine control
DE102013112973A1 (de) * 2013-11-25 2015-05-28 Wirtgen Gmbh Verschleißprognoseverfahren und Wartungsverfahren
US20160258119A1 (en) * 2015-03-03 2016-09-08 Caterpillar Inc. Automatic Rotor Speed Control
US20160340843A1 (en) * 2015-05-22 2016-11-24 Caterpillar Paving Products Inc. Planer and Method for Producing Rumble Strips

Also Published As

Publication number Publication date
US20200024812A1 (en) 2020-01-23
US20170233959A1 (en) 2017-08-17
DE102016001720A1 (de) 2017-08-17
CN107083735A (zh) 2017-08-22
EP3208382A1 (fr) 2017-08-23
US10370803B2 (en) 2019-08-06
US10745869B2 (en) 2020-08-18
CN107083735B (zh) 2019-04-02
DE102016001720B4 (de) 2020-09-17

Similar Documents

Publication Publication Date Title
EP3208382B1 (fr) Engin automobile et procédé de fonctionnement d'un engin automobile
EP2104768B1 (fr) Fraiseuse routière et procédé permettant d'obtenir le parallélisme du bâti de machine par rapport au sol
EP2738309B1 (fr) Engin de construction routière et procédé de mesure de la profondeur de la fraise
EP2037042B1 (fr) Machine de fraisage ou machine destinée à exploiter des gisements
EP3168367B1 (fr) Fraiseuse autotractée et procédé de traitement des surfaces routières
EP3237683B1 (fr) Engin de construction automoteur et procédé pour faire fonctionner un engin de construction automoteur
EP2735650B1 (fr) Procédé de traitement de couches, un engin de construction et un engin auxiliaire de construction
EP2722441B1 (fr) Engin automoteur et procédé de fonctionnement d'un engin automoteur
EP3647494B1 (fr) Raboteuse et procédé de commande d'une raboteuse
DE102017010919B4 (de) Verfahren zum Steuern einer Höhenverstellung eines Abstreifschildes einer Bodenfräsmaschine und Bodenfräsmaschine
DE112012005425T5 (de) Fräsmaschine und Fräsverfahren mit automatischem Schnittübergang
EP2698475B2 (fr) Engin automobile et procédé de fonctionnement d'un engin automobile
DE102015003153B4 (de) Selbstfahrende Baumaschine
DE102016010390A1 (de) Fräsmaschine und Verfahren zum Betrieb einer Fräsmaschine
EP3401442A1 (fr) Finisseuse de route ayant une compensation de braquage et procédé de commande
EP3845710A1 (fr) Procédé de traitement du sol par enlèvement pourvu d'outil d'enlèvement incliné par rapport à la direction d'avancement et machine de traitement du sol conçue pour mettre en oeuvre ledit procédé
EP4249680A1 (fr) Fraiseuse routière automotrice et procédé de commande d'une fraiseuse routière automotrice
EP3489415B1 (fr) Machine de fraisage autopropulsée et procédé de chargement automatique d'un moyen de transport avec du matériau fraisé
DE102021114397A1 (de) Verfahren zur Steuerung einer Straßenfräsmaschine und Straßenfräsmaschine
DE102016009516A1 (de) Straßenfräse
WO2022156948A1 (fr) Procédé et machine de génie civil pour travaux de sol
DE102015014574A1 (de) Selbstfahrende Bodenfräsmaschine und Verfahren zum Bearbeiten einer Verkehrsfläche

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180215

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E01C 23/088 20060101AFI20180430BHEP

INTG Intention to grant announced

Effective date: 20180606

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1070381

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017000400

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181128

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190328

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190301

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017000400

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190214

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

26N No opposition filed

Effective date: 20190829

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1070381

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230220

Year of fee payment: 7

Ref country code: IT

Payment date: 20230228

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240216

Year of fee payment: 8

Ref country code: GB

Payment date: 20240222

Year of fee payment: 8