EP3207224A1 - Systeme d'allumage d'une chambre de combustion d'un turbomoteur - Google Patents
Systeme d'allumage d'une chambre de combustion d'un turbomoteurInfo
- Publication number
- EP3207224A1 EP3207224A1 EP15791692.5A EP15791692A EP3207224A1 EP 3207224 A1 EP3207224 A1 EP 3207224A1 EP 15791692 A EP15791692 A EP 15791692A EP 3207224 A1 EP3207224 A1 EP 3207224A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- injectors
- circuit
- starter
- fuel
- combustion chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P7/00—Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
- F02P7/02—Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of distributors
- F02P7/021—Mechanical distributors
- F02P7/026—Distributors combined with other ignition devices, e.g. coils, fuel-injectors
- F02P7/028—Distributors combined with other ignition devices, e.g. coils, fuel-injectors combined with circuit-makers or -breakers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D19/00—Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
- F02C7/232—Fuel valves; Draining valves or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/26—Starting; Ignition
- F02C7/264—Ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/266—Control of fuel supply specially adapted for gas turbines with intermittent fuel injection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/045—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B53/00—Internal-combustion aspects of rotary-piston or oscillating-piston engines
- F02B53/12—Ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/48—Control of fuel supply conjointly with another control of the plant
- F02C9/56—Control of fuel supply conjointly with another control of the plant with power transmission control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/80—Diagnostics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the invention relates to a system for igniting a combustion chamber of a turbine engine.
- the invention particularly relates to the ignition system of a combustion chamber of a turbine engine capable of being put in a standby mode and to be reactivated quickly if necessary.
- a twin-engine helicopter or three-engine helicopter present in a known manner a propulsion system comprising two or three turbine engines, each turbine engine comprising a gas generator and a free turbine rotated by the gas generator, and integral with an output shaft.
- the output shaft of each free turbine is adapted to set in motion a power transmission box, which drives itself the rotor of the helicopter.
- the gas generator comprises a combustion chamber into which fuel injectors fed by a supply circuit.
- turboshaft engines of a helicopter are designed oversized to be able to keep the helicopter in flight in case of failure of one of the engines. This flight situation arises following the loss of an engine and This translates into the fact that each running engine provides power well beyond its rated power to allow the helicopter to cope with a perilous situation and then to be able to continue its flight.
- the turboshaft engines are also oversized to be able to ensure the flight in all the flight range specified by the aircraft manufacturer and in particular the flight at high altitudes and in hot weather. These flight points, very restrictive, especially when the helicopter has a mass close to its maximum take-off weight, are encountered only in certain cases of use.
- turboshaft engines are penalizing in terms of weight and fuel consumption. In order to reduce this consumption during cruising flight, it is envisaged to put at least one of the turboshaft engines in flight.
- the active engine (s) then operate at higher power levels to provide all the power required and therefore at more favorable Cs levels.
- the standby of a turbine engine requires to have a quick reactivation system that allows the turbine engine to quickly get out of the standby state if necessary. This need may for example result from a failure of one of the active engines or unexpected degradation of flight conditions requiring a quick return of full power.
- the applicant has therefore sought to optimize the ignition system of a combustion chamber of a turbine engine to be able to quickly reactivate the turbine engine when idle and the flight conditions require a quick return to full power available .
- a ignition system of a combustion chamber of a turbine engine of a helicopter comprises, in known manner, starter injectors intended to initiate combustion and main injectors intended to maintain combustion, once this has been initiated. It is known that the main injectors are fueled by a main circuit and the starter injectors are fueled by a starting circuit, separate from the main circuit.
- a known ignition system makes it possible to initiate combustion by means of the starter injectors associated with at least one spark plug of starting adapted to provide the spark for igniting the mixture of air and fuel present in the combustion chamber. This results in a propagation of the flame of the starter injectors to the main injectors.
- the inventors have therefore sought to propose a solution that can both allow rapid propagation of the flame of the starter injectors to the main injectors and rapid filling of the starter injectors.
- the inventors sought to reconcile the two alternatives that are a priori incompatible with each other.
- the inventors have also sought to provide an ignition system whose reliability is improved compared to known systems to improve the safety of helicopters equipped with hybrid turbine engines capable of being put in standby mode.
- the invention aims to provide an ignition system of a combustion chamber of a turbine engine which allows rapid ignition of the combustion chamber compatible with rapid reactivation of the turbine engine.
- the invention also aims at providing an ignition system that combines the advantages of a rapid flame spread from the starter injectors to the main injectors and a fast filling of the starter injectors.
- the invention also aims to provide an ignition system which has improved reliability compared to the systems of the prior art.
- the invention also aims to provide a turbine engine equipped with an ignition system according to the invention.
- the invention relates to a system for igniting a combustion chamber of a turbine engine of an aircraft comprising:
- a plurality of starter injectors opening into said combustion chamber and adapted to inject fuel into said chamber during a combustion initiation phase
- a fuel supply circuit for said starting injectors called a starting circuit
- a plurality of main injectors opening into said combustion chamber and adapted to inject fuel into said combustion chamber to maintain combustion, once the combustion initiated by said starter injectors.
- a primary starting circuit configured to supply fuel to a portion of said plurality of starter injectors, called primary starter injectors
- a second sub-circuit called a secondary start-up circuit, configured to supply fuel to the other part of said plurality of start injectors, called secondary start injectors.
- the ignition system is also characterized in that said primary starting circuit and said secondary starting circuit each comprise a starter electro-valve adapted to be controlled by a control unit so as to allow or prohibit respectively the supply of power. fuel of said primary and secondary starter injectors.
- An ignition system therefore comprises two separate starting circuits, a primary circuit for supplying primary starter injectors and a secondary circuit intended to feed injectors secondary startup.
- each circuit is equipped with an electro-valve controlled by a control unit to allow or prohibit the supply of injectors.
- An ignition system according to the invention may therefore comprise a large number of starter injectors, without however having the disadvantage of a slow filling of the injectors because these injectors are distributed in two separate supply circuits.
- an ignition system according to the invention has a better reliability than the systems of the prior art by providing two separate starting circuits. Also, in case of failure of an electro-valve of one of the starting circuits, the other circuit can take over and ensure the reactivation of the turbine engine.
- Such an ignition system is particularly suitable for hybrid turboshaft engines capable of being placed in a standby mode during the flight, with improved reliability to ensure reactivation of the turbine engine when necessary.
- the electro-valves are controlled by the control unit according to a sequential or simultaneous procedure, the choice of the procedure depending on the flight conditions of said aircraft.
- the flight conditions of the aircraft for example a helicopter, comprise, for example, the ambient temperature, the ambient pressure, the speed of rotation of the gas turbine engine, and so on. These various parameters are used by the control unit to define the best start-up procedure for the turbine engine to be implemented, taking into account the flight conditions, ie a simultaneous start-up procedure for the two starting circuits, or a sequential procedure of start of both circuits.
- said electro-valves are controlled by the control unit so that on the ground, each starting circuit is used alternately at each flight so as to limit a dormancy of a possible breakdown to a single flight.
- the ignition system is configured so that on the ground, the turbine is started alternately with each flight, on a single start circuit. This makes it possible to limit the dormancy of a possible breakdown to a single flight.
- each starter injector is associated with an injector fuel supply ramp, said supply ramp of a primary starting injector having a volume less than said supply ramp of a secondary injection nozzle so that it can be filled more quickly with fuel.
- the primary and secondary circuits are different from each other.
- the primary circuit has injectors with a filling ramp of reduced volume compared to the secondary injectors.
- the primary injectors can be quickly filled with fuel and quickly initiate combustion of the combustion chamber.
- the secondary injectors continue the combustion and can, in combination with the primary injectors, ensure the propagation of the flame towards the main injectors, once the combustion initiated.
- an ignition system comprises a candle adapted to provide a spark for igniting the fuel present in said combustion chamber facing each starter injector.
- an ignition system comprises two primary starter injectors and two secondary starter injectors.
- An ignition system according to the invention is particularly intended to equip a hybrid turbine engine capable of being put in a standby mode to allow to reactivate it if necessary.
- the primary and secondary start circuits are tested independently of each other to verify their integrity. and allow in flight the standby of the hybrid turbine engine.
- the hybrid turbine engine can be put on standby.
- An ignition system according to the invention can also be configured so that on the ground, the turbine is started alternately at each flight, on a single starting circuit. This makes it possible to limit the dormancy of a possible breakdown to a single flight.
- the ignition system is used by piloting the engines.
- the control of the primary and secondary circuits can be done simultaneously or sequentially.
- Normal reactivation of the hybrid turbine engine is a reactivation that occurs within 10 seconds to 1 minute, especially 30 seconds to 1 minute, after the reactivation command.
- the ignition system according to the invention is used by successively controlling the primary starting circuit, then the circuit secondary start as soon as the ignition of the chamber is detected.
- the control of the primary and secondary circuits is simultaneous.
- the invention also relates to a turbine engine comprising a combustion chamber, characterized in that it comprises an ignition system according to the invention.
- the invention also relates to an aircraft - in particular a helicopter - comprising at least one turbine engine according to the invention.
- the invention also relates to an ignition system, a turbine engine and an aircraft, characterized in combination by all or some of the characteristics mentioned above or below. 5. List of figures
- FIG. 1 is a schematic view of an ignition system according to a embodiment of the invention.
- Figure 1 shows schematically an ignition system of a combustion chamber 2 of a turbine engine.
- the system comprises starter injectors 21a, 21b, 31a, 31b which open into combustion chamber 2 and which are adapted to inject fuel into chamber 2 during a combustion initiation phase.
- the system also includes main injectors 12 which open into the combustion chamber 2 and which are adapted to inject fuel into the chamber 2 with a higher flow rate once the combustion is initiated.
- the combustion chamber 2 is schematically represented by a rectangle in FIG. 1, for the sake of clarity.
- the combustion chamber generally comprises two outer and inner annular walls extending one inside the other and connected by an annular wall of the chamber bottom.
- the fuel injectors are distributed over the entire circumference of the combustion chamber.
- the system also comprises a fuel supply circuit of the main injectors 12, said main circuit 5, and a fuel supply circuit of the injectors 21, 31 of startup, said circuit 6 of startup.
- the fuel supply start circuit 6 of the injectors 21, 31 for starting is formed of two sub-circuits, a first subcircuit, said primary circuit 20 of startup, configured to supply fuel injectors 21, said primary start injectors, and a second sub-circuit, said secondary circuit 30 of startup, configured to supply fuel injectors 31 start , called secondary start injectors.
- the primary starting circuit 20 further comprises an electro-valve 22 controlled for example by the electronic control computer of the helicopter, better known by the acronym EECU.
- the secondary start circuit 30 also includes an electro-valve 32 controlled by the EECU.
- the electro-valve 22 is configured to allow or prohibit the fuel supply of the primary starter injectors.
- the electro-valve 32 is configured to allow or prohibit the fuel supply of the primary starter injectors 31.
- the primary starter injectors 21 have fuel supply ramps of a volume smaller than the volume of the fuel supply ramps of the secondary starter injectors 31. As a result, at the opening of the electro-valves, the primary injectors 21 will be able to quickly start and initiate combustion in the combustion chamber 2.
- the secondary injectors 31 continue combustion as soon as the corresponding ramps are filled, which, taking into account their larger volume, takes a little longer than for the primary injectors.
- each starting injector 21a, 21b, 31a, 31b is associated with a spark plug 23a, 23b, 33a, 33b arranged facing the injector.
- Each spark plug 23a, 23b, 33a, 33b is supplied with electricity from an electric circuit 24, 34 comprising a source of high voltage electrical energy.
- Each spark plug is configured to produce a spark igniting the air and fuel mixture of the combustion chamber 2.
- the presence of a spark plug by starting injector makes it possible to reduce the propagation time of the flame towards the main injectors, and thus ultimately to reduce the starting time of the turbine engine equipped with such a starter system.
- the ignition system may comprise more than 4 starter injectors and / or a different number of primary start injectors and secondary start injectors.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
L'invention concerne un système d'allumage d'une chambre (2) de combustion d'un turbomoteur comprenant : une pluralité d'injecteurs (21a, 21b, 31a, 31b) de démarrage adaptés pour injecter du carburant dans ladite chambre (2) au cours d'une phase d'initiation de la combustion; un circuit (6) d'alimentation en carburant desdits injecteurs de démarrage comprenant un premier sous-circuit, dit circuit primaire (20) de démarrage, configuré pour alimenter en carburant une partie de ladite pluralité d'injecteurs de démarrage; un deuxième sous-circuit, dit circuit secondaire (30) de démarrage, configuré pour alimenter en carburant l'autre partie de ladite pluralité d'injecteurs de démarrage.
Description
SYSTEME D'ALLUMAGE D'UNE CHAMBRE DE COMBUSTION
D'UN TURBOMOTEUR
1. Domaine technique de l'invention
L'invention concerne un système d'allumage d'une chambre de combustion d'un turbomoteur. L'invention concerne en particulier le système d'allumage d'une chambre de combustion d'un turbomoteur apte à être mise dans un régime de veille et à être réactivé rapidement en cas de besoin.
2. Arrière-plan technologique
Un hélicoptère bimoteur ou trimoteur présente de manière connue un système propulsif comprenant deux ou trois turbomoteurs, chaque turbomoteur comprenant un générateur de gaz et une turbine libre entraînée en rotation par le générateur de gaz, et solidaire d'un arbre de sortie. L'arbre de sortie de chaque turbine libre est adapté pour mettre en mouvement une boite de transmission de puissance, qui entraîne elle-même le rotor de l'hélicoptère. Le générateur de gaz comprend une chambre de combustion dans laquelle débouchent des injecteurs de carburant alimentés par un circuit d'alimentation.
Il est connu que lorsque l'hélicoptère est en situation de vol de croisière (c'est-à-dire lorsqu'il évolue dans des conditions normales, au cours de toutes les phases du vol, hors phases transitoires de décollage, de montée, d'atterrissage ou de vol stationnaire), les turbomoteurs développent des puissances faibles inférieures aux puissances maximales continues. Ces faibles niveaux de puissance entraînent une consommation spécifique (ci-après, Cs), définie comme le rapport entre la consommation horaire de carburant par la chambre de combustion du turbomoteur et la puissance mécanique fournie par ce turbomoteur, supérieure de l'ordre de 30% à la Cs de la puissance maximale de décollage, et donc une surconsommation en carburant en vol de croisière.
En outre, les turbomoteurs d'un hélicoptère sont conçus de manière surdimensionnée pour pouvoir maintenir l'hélicoptère en vol en cas de panne de l'un des moteurs. Cette situation de vol survient suite à la perte d'un moteur et se
traduit par le fait que chaque moteur en fonctionnement fournit une puissance bien au-delà de sa puissance nominale pour permettre à l'hélicoptère de faire face à une situation périlleuse, puis de pouvoir poursuivre son vol.
Les turbomoteurs sont également surdimensionnés pour pouvoir assurer le vol dans tout le domaine de vol spécifié par l'avionneur et notamment le vol à des altitudes élevées et par temps chaud. Ces points de vol, très contraignants, notamment lorsque l'hélicoptère a une masse proche de sa masse maximale de décollage, ne sont rencontrés que dans certains cas d'utilisation.
Ces turbomoteurs surdimensionnés sont pénalisants en termes de masse et de consommation de carburant. Afin de réduire cette consommation en vol de croisière, il est envisagé de mettre en veille en vol au moins l'un des turbomoteurs. Le ou les moteurs actifs fonctionnent alors à des niveaux de puissance plus élevés pour fournir toute la puissance nécessaire et donc à des niveaux de Cs plus favorables.
La mise en veille d'un turbomoteur impose de disposer d'un système de réactivation rapide qui permet de sortir rapidement le turbomoteur de l'état de veille en cas de besoin. Ce besoin peut par exemple résulter d'une panne de l'un des moteurs actifs ou de la dégradation imprévue des conditions de vol nécessitant un retour rapide de la pleine puissance.
Le demandeur a donc cherché à optimiser le système d'allumage d'une chambre de combustion d'un turbomoteur pour pouvoir notamment réactiver rapidement le turbomoteur lorsqu'il est en veille et que les conditions de vol imposent un retour rapide à la pleine puissance disponible.
Un système d'allumage d'une chambre de combustion d'un turbomoteur d'un hélicoptère comprend de manière connue des injecteurs de démarrage destinés à initier la combustion et des injecteurs principaux destinés à maintenir la combustion, une fois celle-ci initiée. Il est connu que les injecteurs principaux sont alimentés en carburant par un circuit principal et que les injecteurs de démarrage sont alimentés en carburant par un circuit de démarrage, distinct du circuit principal. Un système d'allumage connu permet d'initier la combustion par l'intermédiaire des injecteurs de démarrage associés à au moins une bougie de
démarrage adaptée pour fournir l'étincelle permettant d'enflammer le mélange d'air et de carburant présent dans la chambre de combustion. Il s'ensuit une propagation de la flamme des injecteurs de démarrage vers les injecteurs principaux.
Lors de la conception d'un système d'allumage pour turbomoteur, les ingénieurs doivent faire un choix entre une utilisation d'un grand nombre d'injecteurs de démarrage, ce qui permet une propagation rapide de la flamme vers les injecteurs principaux, mais un acheminement plus lent du carburant vers tous les injecteurs, et une utilisation d'un petit nombre d'injecteurs de démarrage, ce qui permet un acheminement plus rapide du carburant vers les injecteurs de démarrage, mais une propagation plus lente de la flamme vers les injecteurs principaux.
Les inventeurs ont donc cherché à proposer une solution qui puisse à la fois permettre une propagation rapide de la flamme des injecteurs de démarrage vers les injecteurs principaux et un remplissage rapide des injecteurs de démarrage.
En d'autres termes, les inventeurs ont cherché à concilier les deux alternatives a priori incompatibles l'une avec l'autre.
Les inventeurs ont également cherché à fournir un système d'allumage dont la fiabilité est améliorée par rapport aux systèmes connus pour améliorer la sécurité des hélicoptères équipés de turbomoteurs hybrides aptes à être mis en régime de veille.
3. Objectifs de l'invention
L'invention vise à fournir un système d'allumage d'une chambre de combustion d'un turbomoteur qui permet un allumage rapide de la chambre de combustion compatible avec une réactivation rapide du turbomoteur.
L'invention vise aussi à fournir un système d'allumage qui combine les avantages d'une propagation rapide de la flamme des injecteurs de démarrage vers les injecteurs principaux et un remplissage rapide des injecteurs de démarrage.
L'invention vise aussi à fournir un système d'allumage qui présente une fiabilité améliorée par rapport aux systèmes de l'art antérieur.
L'invention vise aussi à fournir un turbomoteur équipé d'un système d'allumage selon l'invention.
4. Exposé de l'invention
Pour ce faire, l'invention concerne un système d'allumage d'une chambre de combustion d'un turbomoteur d'un aéronef comprenant :
- une pluralité d' injecteurs de démarrage débouchant dans ladite chambre de combustion et adaptés pour injecter du carburant dans ladite chambre au cours d'une phase d'initiation de la combustion,
- un circuit d'alimentation en carburant desdits injecteurs de démarrage, dit circuit de démarrage,
- une pluralité d' injecteurs principaux débouchant dans ladite chambre de combustion et adaptés pour injecter du carburant dans ladite chambre de combustion pour maintenir la combustion, une fois la combustion initiée par lesdits injecteurs de démarrage.
Le système d'allumage selon l'invention est caractérisé en ce que le circuit de démarrage comprend :
- un premier sous-circuit, dit circuit primaire de démarrage, configuré pour alimenter en carburant une partie de ladite pluralité d' injecteurs de démarrage, dits injecteurs de démarrage primaires,
- un deuxième sous-circuit, dit circuit secondaire de démarrage, configuré pour alimenter en carburant l'autre partie de ladite pluralité d'injecteurs de démarrage, dits injecteurs de démarrage secondaires.
Le système d'allumage est aussi caractérisé en ce que ledit circuit primaire de démarrage et ledit circuit secondaire de démarrage comprennent chacun un électro-clapet de démarrage adapté pour être piloté par une unité de commande de manière à autoriser ou interdire respectivement l'alimentation en carburant desdits injecteurs de démarrage primaires et secondaires.
Un système d'allumage selon l'invention comprend donc deux circuits de démarrage distincts, un circuit primaire destiné à alimenter des injecteurs de démarrage primaires et un circuit secondaire destiné à alimenter des injecteurs de
démarrage secondaires. En outre, chaque circuit est équipé d'un électro-clapet piloté par une unité de commande pour autoriser ou interdire l'alimentation des injecteurs. Un système d'allumage selon l'invention peut donc comprendre un grand nombre d'injecteurs de démarrage, sans néanmoins présenter l'inconvénient d'un remplissage lent des injecteurs car ces injecteurs sont répartis dans deux circuits distincts d'alimentation.
En outre, un système d'allumage selon l'invention présente une meilleure fiabilité que les systèmes de l'art antérieur en prévoyant deux circuits de démarrage distincts. Aussi, en cas de panne d'un électro-clapet d'un des circuits de démarrage, l'autre circuit peut prendre le relais et assurer la réactivation du turbomoteur. Un tel système d'allumage est donc particulièrement adapté aux turbomoteurs hybrides aptes à être placés dans un régime de veille au cours du vol, en présentant une fiabilité améliorée permettant de garantir une réactivation du turbomoteur en cas de besoin.
Avantageusement et selon l'invention, les électro-clapets sont pilotés par l'unité de commande suivant une procédure séquentielle ou simultanée, le choix de la procédure dépendant des conditions de vol dudit aéronef.
Les conditions de vol de l'aéronef, par exemple un hélicoptère, comprennent par exemple la température ambiante, la pression ambiante, la vitesse de rotation du générateur de gaz du turbomoteur, etc. Ces différents paramètres sont utilisés par l'unité de commande pour définir quelle est la meilleure procédure de démarrage du turbomoteur à mettre en œuvre compte tenu des conditions de vol, soit une procédure simultanée de démarrage des deux circuits de démarrage, soit une procédure séquentielle de démarrage des deux circuits.
Avantageusement et selon l'invention, lesdits électro-clapets sont pilotés par l'unité de commande de sorte qu'au sol, chaque circuit de démarrage est utilisé alternativement à chaque vol de manière à limiter une dormance d'une panne éventuelle à un seul vol.
Selon cette variante avantageuse, le système d'allumage est configuré de sorte qu'au sol, la turbine est démarrée alternativement à chaque vol, sur un seul
circuit de démarrage. Cela permet de limiter la dormance d'une panne éventuelle à un seul vol.
Avantageusement et selon l'invention, chaque injecteur de démarrage est associé à une rampe d'alimentation en carburant de Γ injecteur, ladite rampe d'alimentation d'un injecteur de démarrage primaire présentant un volume inférieur à ladite rampe d'alimentation d'un injecteur de démarrage secondaire de manière à pouvoir être remplie plus rapidement en carburant.
Selon cette variante avantageuse, les circuits primaire et secondaire sont différents l'un de l'autre. Le circuit primaire présente des injecteurs à rampe de remplissage de volume réduit par rapport aux injecteurs secondaires. Aussi, les injecteurs primaires peuvent être rapidement remplis en carburant et initier rapidement la combustion de la chambre de combustion. Les injecteurs secondaires poursuivent la combustion et peuvent, en combinaison avec les injecteurs primaires, assurer la propagation de la flamme vers les injecteurs principaux, une fois la combustion initiée.
Avantageusement, un système d'allumage selon l'invention comprend une bougie adaptée pour fournir une étincelle permettant d'enflammer le carburant présent dans ladite chambre de combustion en regard de chaque injecteur de démarrage.
La présence d'une bougie en regard de chaque injecteur de démarrage - primaire et secondaire - permet d'accélérer la combustion et la propagation de la flamme vers les injecteurs principaux.
Avantageusement, un système d'allumage selon l'invention comprend deux injecteurs de démarrage primaires et deux injecteurs de démarrage secondaires.
Un système d'allumage selon l'invention, selon l'une ou l'autre des variantes avantageuses décrites, est particulièrement destiné à équiper un turbomoteur hybride apte à être mis dans un régime de veille pour permettre de le réactiver en cas de besoin.
Lorsque l'hélicoptère est au sol, les circuits de démarrage primaire et secondaire sont testés indépendamment l'un de l'autre pour vérifier leur intégrité
et autoriser en vol la mise en veille du turbomoteur hybride.
Au cours d'un vol de croisière de l'hélicoptère, le turbomoteur hybride peut donc être mis en veille.
Un système d'allumage selon l'invention peut également être configuré de sorte qu'au sol, la turbine est démarrée alternativement à chaque vol, sur un seul circuit de démarrage. Cela permet de limiter la dormance d'une panne éventuelle à un seul vol.
Si les conditions de vol imposent une réactivation normale du turbomoteur, par exemple parce que l'hélicoptère va passer d'une phase de vol de croisière vers une phase d'atterrissage, le système d'allumage selon l'invention est utilisé en pilotant les deux circuits de démarrage primaire et secondaire et les différentes voies d'alimentation des bougies. Le pilotage des circuits primaire et secondaire peut se faire simultanément ou séquentiellement. Une réactivation normale du turbomoteur hybride est une réactivation qui intervient dans un délai de 10 secondes à 1 minute, notamment de 30 secondes à 1 minute, après la commande de réactivation.
Si les conditions de vol imposent une réactivation rapide du turbomoteur, par exemple parce que l'un des turbomoteurs actifs tombe subitement en panne, le système d'allumage selon l'invention est utilisé en pilotant successivement le circuit de démarrage primaire, puis le circuit de démarrage secondaire dès que l'allumage de la chambre est détecté. Selon une autre variante, le pilotage des circuits primaire et secondaire est simultané.
L'invention concerne également un turbomoteur comprenant une chambre de combustion, caractérisé en ce qu'il comprend un système d'allumage selon l'invention.
L'invention concerne également un aéronef - en particulier un hélicoptère - comprenant au moins un turbomoteur selon l'invention.
L'invention concerne également un système d'allumage, un turbomoteur et un aéronef, caractérisés en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci-après.
5. Liste des figures
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante donnée à titre uniquement non limitatif et qui se réfère à la figure 1 annexée, qui est une vue schématique d'un système d'allumage selon un mode de réalisation de l'invention.
6. Description détaillée d'un mode de réalisation de l'invention Sur la figure, les échelles et les proportions ne sont pas respectées et ce, à des fins d'illustration et de clarté.
La figure 1 représente schématiquement un système d'allumage d'une chambre 2 de combustion d'un turbomoteur.
Le système comprend des injecteurs 21a, 21b, 31a, 31b de démarrage qui débouchent dans la chambre 2 de combustion et qui sont adaptés pour injecter du carburant dans la chambre 2 au cours d'une phase d'initiation de la combustion.
Le système comprend également des injecteurs 12 principaux qui débouchent dans la chambre 2 de combustion et qui sont adaptés pour injecter du carburant dans la chambre 2 avec un débit plus important une fois que la combustion est initiée.
Sur la figure, la chambre 2 de combustion est schématiquement représentée par un rectangle sur la figure 1, à des fins de clarté. En pratique, la chambre de combustion comprend en général deux parois annulaires externe et interne s'étendant l'une à l'intérieur de l'autre et reliées par une paroi annulaire de fond de chambre. Les injecteurs de carburant sont répartis sur toute la circonférence de la chambre de combustion.
Le système comprend également un circuit d'alimentation en carburant des injecteurs 12 principaux, dit circuit 5 principal, et un circuit d'alimentation en carburant des injecteurs 21, 31 de démarrage, dit circuit 6 de démarrage.
Ces deux circuits sont reliés à une entrée 7 de carburant qui est alimentée en carburant par une pompe configurée pour prélever du carburant dans un réservoir de carburant, non représenté sur la figure 1.
Selon l'invention, le circuit 6 de démarrage d'alimentation en carburant des injecteurs 21, 31 de démarrage est formé de deux sous-circuits, un premier
sous-circuit, dit circuit primaire 20 de démarrage, configuré pour alimenter en carburant les injecteurs 21, dits injecteurs de démarrage primaires, et un deuxième sous-circuit, dit circuit secondaire 30 de démarrage, configuré pour alimenter en carburant les injecteurs 31 de démarrage, dits injecteurs de démarrage secondaires.
Le circuit 20 primaire de démarrage comprend en outre un électro-clapet 22 piloté par exemple par le calculateur électronique de régulation de l'hélicoptère, plus connu sous l'acronyme EECU. Le circuit 30 secondaire de démarrage comprend également un électro-clapet 32 piloté par l'EECU. L'électro- clapet 22 est configuré pour autoriser ou interdire l'alimentation en carburant des injecteurs 21 de démarrage primaires. L'électro-clapet 32 est configuré pour autoriser ou interdire l'alimentation en carburant des injecteurs 31 de démarrage primaires.
Les injecteurs 21 de démarrage primaires présentent des rampes d'alimentation en carburant de volume inférieur au volume des rampes d'alimentation en carburant des injecteurs 31 de démarrage secondaires. Il en résulte qu'à l'ouverture des électro-clapets, les injecteurs 21 primaires vont pouvoir rapidement se mettre en action et initier la combustion dans la chambre 2 de combustion. Les injecteurs 31 secondaires poursuivent la combustion dès que les rampes correspondantes sont remplies, ce qui compte tenu de leur volume plus important, prend un peu plus de temps que pour les injecteurs primaires.
Une fois les injecteurs 21, 31 de démarrage actifs, la combustion de la chambre de combustion est maintenue par la mise en action des injecteurs 12 du circuit principal combinée à une propagation de la flamme des injecteurs 31, 21 de démarrage aux injecteurs 12 principaux. Une fois que les injecteurs 12 principaux ont pris le relais des injecteurs 21, 31 de démarrage, les circuits primaire et secondaire de démarrage sont purgés et les résidus de carburant sont expulsés vers un collecteur par l'intermédiaire des conduites 25, 35. La purge des injecteurs de démarrage après l'arrêt de leur alimentation permet d'éviter la cokéfaction (carbonisation du carburant dans les tuyauteries) et donc le colmatage des injecteurs.
Selon le mode de réalisation de la figure 1, chaque injecteur 21a, 21b, 31a, 31b de démarrage est associé à une bougie 23a, 23b, 33a, 33b agencée en regard de Γ injecteur. Chaque bougie 23a, 23b, 33a, 33b est alimentée en électricité à partir d'un circuit électrique 24, 34 comprenant une source d'énergie électrique à haute tension. Chaque bougie est configurée pour produire une étincelle enflammant le mélange d'air et de carburant de la chambre 2 de combustion.
La présence d'une bougie par injecteur de démarrage permet de diminuer le temps de propagation de la flamme vers les injecteurs principaux, et donc au final de réduire le temps de démarrage du turbomoteur équipé d'un tel système de démarrage.
L'invention ne se limite pas au mode de réalisation décrit. En particulier, selon d'autres modes de réalisation, le système d'allumage peut comprendre plus de 4 injecteurs de démarrage et/ou un nombre différent d'injecteurs de démarrage primaire et d'injecteurs de démarrage secondaire.
Claims
1. Système d'allumage d'une chambre (2) de combustion d'un turbomoteur d'un aéronef comprenant :
une pluralité d'injecteurs (21a, 21b, 31a, 31b) de démarrage débouchant dans ladite chambre (2) de combustion et adaptés pour injecter du carburant dans ladite chambre (2) au cours d'une phase d'initiation de la combustion,
un circuit d'alimentation en carburant desdits injecteurs (21a, 21b, 31a, 31b) de démarrage, dit circuit (6) de démarrage, une pluralité d'injecteurs (12) principaux débouchant dans ladite chambre (2) de combustion et adaptés pour injecter du carburant dans ladite chambre (2) de combustion pour maintenir la combustion, une fois la combustion initiée par lesdits injecteurs (21a, 21b, 31a, 31b) de démarrage,
caractérisé en ce que ledit circuit (6) de démarrage comprend :
un premier sous-circuit, dit circuit primaire (20) de démarrage, configuré pour alimenter en carburant une partie de ladite pluralité d'injecteurs de démarrage, dits injecteurs (21a, 21b) de démarrage primaires,
un deuxième sous-circuit, dit circuit secondaire (30) de démarrage, configuré pour alimenter en carburant l'autre partie de ladite pluralité d'injecteurs de démarrage, dits injecteurs (31a, 31b) de démarrage secondaires,
et en ce que ledit circuit primaire (20) de démarrage et ledit circuit secondaire (30) de démarrage comprennent chacun un électro-clapet (22, 32) de démarrage adapté pour être piloté par une unité de commande de manière à autoriser ou interdire respectivement l'alimentation en carburant desdits injecteurs (21a, 21b, 31a, 31b) de démarrage primaires et secondaires.
2. Système d'allumage selon la revendication 1, caractérisé en ce que lesdits
électro-clapets (22, 32) sont pilotés par ladite unité de commande suivant une procédure séquentielle ou simultanée, le choix de la procédure dépendant des conditions de vol dudit aéronef.
3. Système d'allumage selon l'une des revendications 1 ou 2, caractérisé en ce que lesdits électro-clapets (22, 32) sont pilotés par ladite unité de commande de sorte qu'au sol, chaque circuit de démarrage est utilisé alternativement à chaque vol de manière à limiter une dormance d'une panne éventuelle à un seul vol.
4. Système selon l'une des revendications 1 à 3, caractérisé en ce que chaque injecteur (21a, 21b, 31a, 31b) de démarrage est associé à une rampe d'alimentation en carburant de l'injecteur, ladite rampe d'alimentation d'un injecteur de démarrage primaire présentant un volume inférieur à ladite rampe d'alimentation d'un injecteur de démarrage secondaire de manière à pouvoir être remplie plus rapidement en carburant.
5. Système selon l'une des revendications 1 à 4, caractérisé en ce qu'il comprend une bougie (23a, 23b, 33a, 33b) adaptée pour fournir une étincelle permettant d'enflammer le carburant présent dans ladite chambre (2) de combustion en regard de chaque injecteur de démarrage.
6. Système selon l'une des revendications 1 à 5, caractérisé en ce qu'il comprend deux injecteurs (21a, 21b) de démarrage primaires et deux injecteurs (31a, 31b) de démarrage secondaires.
7. Turbomoteur comprenant une chambre de combustion, caractérisé en ce qu'il comprend un système d'allumage de ladite chambre de combustion selon l'une des revendications 1 à 6.
8. Aéronef comprenant au moins un turbomoteur selon la revendication 7.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1459811A FR3027059B1 (fr) | 2014-10-13 | 2014-10-13 | Systeme d'allumage d'une chambre de combustion d'un turbomoteur |
PCT/FR2015/052682 WO2016059319A1 (fr) | 2014-10-13 | 2015-10-06 | Systeme d'allumage d'une chambre de combustion d'un turbomoteur |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3207224A1 true EP3207224A1 (fr) | 2017-08-23 |
Family
ID=51932531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15791692.5A Withdrawn EP3207224A1 (fr) | 2014-10-13 | 2015-10-06 | Systeme d'allumage d'une chambre de combustion d'un turbomoteur |
Country Status (9)
Country | Link |
---|---|
US (1) | US20170292491A1 (fr) |
EP (1) | EP3207224A1 (fr) |
JP (1) | JP2017532491A (fr) |
KR (1) | KR20170067770A (fr) |
CN (1) | CN106795777A (fr) |
CA (1) | CA2963837A1 (fr) |
FR (1) | FR3027059B1 (fr) |
RU (1) | RU2017113350A (fr) |
WO (1) | WO2016059319A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10287026B2 (en) * | 2017-02-04 | 2019-05-14 | Bell Helicopter Textron Inc. | Power demand anticipation systems for rotorcraft |
FR3078142B1 (fr) * | 2018-02-22 | 2020-03-20 | Safran Aircraft Engines | Chambre de combustion comportant deux types d'injecteurs dans lesquels les organes d'etancheite ont un seuil d'ouverture different |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4984424A (en) * | 1988-02-16 | 1991-01-15 | Sundstrand Corporation | Fuel injection system for a turbine engine |
GB0206220D0 (en) * | 2002-03-15 | 2002-05-01 | Lucas Industries Ltd | Fuel system |
EP2744996B1 (fr) * | 2011-08-19 | 2020-03-18 | Woodward, Inc. | Unité de commande séparée |
FR3001497B1 (fr) * | 2013-01-29 | 2016-05-13 | Turbomeca | Ensemble de combustion de turbomachine comprenant un circuit d alimentation de carburant ameliore |
FR3002284B1 (fr) * | 2013-02-18 | 2015-02-13 | Turbomeca | Procede de surveillance d'un degre de colmatage d'injecteurs de demarrage d'une turbomachine |
-
2014
- 2014-10-13 FR FR1459811A patent/FR3027059B1/fr active Active
-
2015
- 2015-10-06 WO PCT/FR2015/052682 patent/WO2016059319A1/fr active Application Filing
- 2015-10-06 JP JP2017519295A patent/JP2017532491A/ja active Pending
- 2015-10-06 KR KR1020177009806A patent/KR20170067770A/ko unknown
- 2015-10-06 CN CN201580054863.XA patent/CN106795777A/zh active Pending
- 2015-10-06 RU RU2017113350A patent/RU2017113350A/ru not_active Application Discontinuation
- 2015-10-06 CA CA2963837A patent/CA2963837A1/fr not_active Abandoned
- 2015-10-06 US US15/518,199 patent/US20170292491A1/en not_active Abandoned
- 2015-10-06 EP EP15791692.5A patent/EP3207224A1/fr not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
CA2963837A1 (fr) | 2016-04-21 |
US20170292491A1 (en) | 2017-10-12 |
WO2016059319A1 (fr) | 2016-04-21 |
KR20170067770A (ko) | 2017-06-16 |
JP2017532491A (ja) | 2017-11-02 |
FR3027059B1 (fr) | 2019-08-30 |
RU2017113350A (ru) | 2018-11-15 |
FR3027059A1 (fr) | 2016-04-15 |
CN106795777A (zh) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2635782B1 (fr) | Procede d'optimisation de la consommation specifique d'un helicoptere bimoteur et architecture bimoteur pour sa mise en oeuvre | |
EP3207223B1 (fr) | Architecture d'un systeme propulsif d'un helicoptere comprenant un turbomoteur hybride et un systeme de reactivation de ce turbomoteur hybride | |
EP2904329B1 (fr) | Injecteur a double circuit de chambre de combustion de turbomachine | |
EP3055531B1 (fr) | Procédé d'optimisation de la consommation spécifique d'un hélicoptère bimoteur | |
EP3123012B1 (fr) | Procédé d'assistance d'un turbomoteur en veille d'un hélicoptère multi-moteur et architecture d'un système propulsif d'un hélicoptère comprenant au moins un turbomoteur pouvant être en veille | |
CA2964672C (fr) | Systeme propulsif hybride d'un aeronef multi-moteur | |
EP3175090B1 (fr) | Dispositif pneumatique de réactivation rapide d'un turbomoteur, architecture d'un système propulsif d'un hélicoptère multi-moteur équipé d'un tel dispositif, hélicoptère et procédé correspondant | |
FR3019221A1 (fr) | Dispositif hydraulique de demarrage d'urgence d'un turbomoteur, architecture d'un systeme propulsif d'un helicoptere multi-moteur equipe d'un tel dispositif et helicoptere correspondant | |
FR3027059B1 (fr) | Systeme d'allumage d'une chambre de combustion d'un turbomoteur | |
FR3001525A1 (fr) | Procede de gestion de la consommation de carburant d un ensemble bimoteur et ensemble associe | |
CA2802399C (fr) | Procedure d'allumage pour une chambre de combustion de turbomachine | |
CA3200639A1 (fr) | Procede de mise a l'arret d'un moteur a turbine a gaz de turbogenerateur pour l'aeronef | |
FR3022986B1 (fr) | Procede d'allumage d'une chambre de combustion de turbomachine | |
FR3071550A1 (fr) | Chambre annulaire de combustion | |
EP3448751B1 (fr) | Systeme auxiliaire d'entrainement d'un arbre d'un systeme propulsif d'un helicoptere | |
FR3041607A1 (fr) | Unite d'alimentation en air sous pression pour aeronef | |
FR3081190A1 (fr) | Moteur fusee solide-hybride ameliore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20170503 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20180501 |