EP3204596A1 - Deposit heater - Google Patents

Deposit heater

Info

Publication number
EP3204596A1
EP3204596A1 EP15794866.2A EP15794866A EP3204596A1 EP 3204596 A1 EP3204596 A1 EP 3204596A1 EP 15794866 A EP15794866 A EP 15794866A EP 3204596 A1 EP3204596 A1 EP 3204596A1
Authority
EP
European Patent Office
Prior art keywords
alternating current
alternator
conductor
soil
conductor loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15794866.2A
Other languages
German (de)
French (fr)
Other versions
EP3204596B1 (en
Inventor
Dirk Diehl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3204596A1 publication Critical patent/EP3204596A1/en
Application granted granted Critical
Publication of EP3204596B1 publication Critical patent/EP3204596B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/04Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/03Heating of hydrocarbons

Definitions

  • Heating reservoir The invention relates to a deposit heating for inductive heating of the soil, in particular an oil sands, oil shale ⁇ , Schwerstöl- or heavy oil reservoir.
  • Heavy oils or bitumen from oil sands or oil shale deposits it is necessary to achieve the greatest possible flowability of the hydrocarbons to be pumped.
  • One way to improve the fluidity of the hydrocarbons in their promotion is to increase the temperature prevailing in the soil of the deposit by means of a deposit heating.
  • a known method for increasing the temperature of the storage site or the soil is the inductive Hei ⁇ zen means of an inductor, which in the deposit, that is in the soil, is introduced.
  • the Induk ⁇ tors eddy currents are induced in electrically conductive deposits, which heat the deposit, so that there is thus an improvement in the flowability of the present in the reservoir hydrocarbons.
  • the inductor To ensure a sufficient rise in temperature of the earth to keep it ⁇ high heat outputs are typically required. Due to the high voltage amplitude occurring thereby, the inductor must have a sufficient electrical insulation with respect to the ground. The electrical insulation of the inductor consequently limits its heating power to a maximum heating power.
  • the present invention has for its object to increase the maximum heat output of a deposit heating.
  • the object is achieved by a deposit heating with the features of independent claim 1 and by a method having the features of independent claim 8 and by use with the features of independent claim 14.
  • advantageous refinements and developments of the invention are given.
  • a deposit heating invention for inductive Hei-wetting of a soil comprises at least a first and second alternating-current generator and at least partially disposed within the soil electrical conductor loop ⁇ .
  • the conductor loop with the ers ⁇ th and second alternator is such electrically overall couples, that the conductor loop in a first region with ⁇ means of the first alternating current generator having a first Wech ⁇ selstrom and in a second region by the second alternator with a second AC
  • the energization that is the Beauf ⁇ suppression of the conductor loop with an electrical alternating current, by means of a first and second Messtromgenera ⁇ sector.
  • the first alternator is preferably arranged on the first region and the second alternator preferably on the second region of the conductor loop.
  • the limited and already existing insulation or insulation capability of the conductor loop is used as optimally as possible. If the maximum heating power of the deposit heating is not to be increased, the electrical insulation of the conductor loop with regard to its electrical insulation capability can advantageously be reduced due to the reduction of the voltage amplitudes.
  • the requirement for electrical isolation within the alternators can be reduced.
  • the maximum heat output which is limited by said isolati ⁇ on, for example, by a factor of two by means of the dual energizing.
  • the conductor loop extending from the first Kasstromge ⁇ erator to the second ac generator and the second AC generator back to the first alternator.
  • the conductor loop has a first conductor section and a second conductor section.
  • the first Lei ⁇ terabites extends from the first alternating-current generator to the second alternator.
  • the second conductor portion extends from the second alternator to the first alternator. The first and second conductor section thus form the conductor loop.
  • a first alternator generates a first alternating current and a second alternator gate a second alternating current.
  • a nozzles partially disposed within a soil conductor loop in a first region with the first alternating Selstrom and acted upon in a second area with the second alternating current.
  • Deposit heating uses a reservoir heater according to the present invention to reduce the viscosity of a hydrocarbonaceous substance present in a soil.
  • the hydrocarbonaceous substance may be heavy oils,
  • the koh ⁇ lenwasserstoff Anlagen substance comprises at least hydrocarbons, which are provided for support, particularly for in-situ production.
  • the first and second regions are arranged disjointly along the conductor loop.
  • the conductor loop is acted on at a first location by means of the first alternating current generator with a first alternating current and at a second location different from the first location by means of the second alternating current generator with the second alternating current.
  • the first and second alternator are advantageously not immediately one behind the other, that is arranged generously spaced from each other.
  • the first and second alternator are arranged outside the earth ⁇ rich.
  • the alternators can advantageously be arranged spaced from each other without further holes. Furthermore, the above-ground arrangement of the alternators allows easy access to the alternators, for example, for maintenance.
  • the second AC generator is arranged in a region (second region) of the conductor loop, which is at a given geometry of the conductor loop as far as possible from the first AC generator, that is spaced from the first region. This will advantageously be converted, the geometry of the loop by the presence of the second ⁇ be alternator not changed or adversely affected.
  • the conductor must not ⁇ loop due to the dual electric energization to a simple electric current supply to or only slightly extended.
  • the first alternator outside and the second alternator within the soil is arranged.
  • the waste heat of the second Wech ⁇ selstromgenerators which is generated during the operation of the second alternating current generator ⁇ .
  • the heating of the soil is advantageously improved or supported by the arranged in the ground second alternator. Conversion losses, which occur in the second alternator, thus remain in the reservoir or in the ground.
  • conductor portions of the conductor loop which conductor portions are arranged between the first and second alternator, are of identical design with respect to their conductor length.
  • the first and second AC generators are arranged symmetrically along the conductor loop.
  • the first conductor portion extends from the first alternator to the second alternator and the second conductor portion extends from the second alternator back to the first alternator.
  • the first and second conductor sections have approximately the same conductor length. Consequently, by means of the two alternators, a symmetrical one with respect to the length of the conductor loop takes place
  • the voltage amplitudes at the alternators and / or in the first and second conductor sections are advantageously approximately halved compared to a simple energization.
  • the first and / or second alternator comprises / comprises a frequency converter.
  • the frequency of the first and / or second alternating current can be adapted to a resonance frequency of the conductor loop.
  • the Lei ⁇ terschleife at least one capacitor.
  • the Induktivi ⁇ ty of the electrical resonant circuit is formed by the Induktivi ⁇ ty of the loop itself.
  • the first and second alternator have a distance of at least 100 m.
  • the first and second alternator are operated in phase.
  • a phase-coupled operation of the first and second alternator is characterized in that the phase ⁇ difference between the phase of the first and second alternating current temporally not or only slightly varies.
  • transmits the phase difference between the first and second alternating current preferably from 0 ° or 180 °, at the same Pola ⁇ the alternators rity 0 ° and is preferably at the opposite polarity of the AC generators 180 °. This advantageously ensures that an ad ⁇ dition of the voltage amplitudes and not a mutual cancellation (difference) of the voltage amplitudes of the alternators.
  • the first and second alternating current are generated at the same frequency.
  • the conductor loop advantageously bezügli ⁇ cher the voltage amplitude is energized symmetrical.
  • the conductor loop is subjected to a first and / or second alternating ⁇ current, wherein the frequency of the first and / or second alternating current in the range of 10 kHz to 200 kHz.
  • a frequency in the range of 10 kHz to 200 kHz which corresponds to the resonant frequency of the conductor loop, wherein for forming an electrical resonant circuit, the conductor loop comprises at least one capacitor. This can be done a reactive power compensation.
  • the frequency of the alternating currents compared to known methods for deposit heating is relatively low.
  • this safety distances, which must be met at higher frequencies, can be reduced.
  • the safe ⁇ ness of the deposit heating is improved. Is advantageously a voltage amplitude of the first and two ⁇ th alternating current which (10 kV) be carrying at least 10 kilovolts ⁇ .
  • Figure 1 is a three-dimensional representation of a
  • Deposit heater comprising two AC generator ⁇ ren for operating a conductor loop;
  • FIG. 2 is a simplified electrical equivalent circuit diagram of
  • Figure 3 is a simplified electrical equivalent circuit diagram ei ⁇ ner deposit heater comprising four alternating current generators for the operation of a conductor loop.
  • FIG. 1 shows a schematic three-dimensional representation of a deposit heater 1, which comprises a first and a second AC generator 21, 22 for operating a conductor loop 4.
  • the conductor loop 4 is at least partially introduced into a soil 46 of the deposit.
  • the soil 46 comprises a hydrocarbon-containing substance, that is to say hydrocarbons to be transported, for example heavy oils, heavy oils, bitumen, oil sands and / or oil shale.
  • the ground 46 may be a geological formation and / or a kohlenwas ⁇ serstoff Anlagen layer of soil 42, in particular a plurality of earth layers 41, ..., 43 include.
  • the conductor loop 4 extends at least through and / or within a layer of soil 42, the hydrocarbons to be promoted hydrogens ⁇ , especially heavy oils, heavy oils, bitumen, oil sands or oil shale deposits, has.
  • the hydrocarbonaceous earth layer 42 is from an overlying one Earth layer 41 and an underlying layer of soil 43 surrounded.
  • the soil 46 comprises the said earth layers 41, ..., 43.
  • the conductor loop 4 forms an inductor 4, wherein the conductor loop 4, for example at a depth of 50 m to 85 m, is introduced into the soil 46.
  • the conductor loop 4 for forming an electrical resonant circuit, which is provided for reactive power compensation, a plurality of capacitors.
  • the conductor loop 4 has a first and a second conductor section 44, 45.
  • the first and second conductor section 44, 45 extends from the second alternator 22 back to the first alternator 21.
  • the first and second conductor section 44, 45 in this case form the conductor loop 4 from.
  • the first AC generator 21 is arranged in a first region 31 and the second AC generator 22 in a second region 32 of the conductor loop 4.
  • the first and second conductor sections 44, 45 reach their greatest distance, for example of 50 m, in the earth layer 42, which has the hydrocarbons to be conveyed.
  • the first and second alternators 21, 22 are disposed outside of the soil 46 and within an air layer 40 surrounding the reservoir 1.
  • the first and second alternators 21, 22 are operated in phase-locked mode, that is to say that the phase difference between the first alternating current generated by the first alternating-current generator 21 and the second alternating-current generated by the second alternating-current generator 22 does not vary or only slightly varies over time.
  • the means of the First and second AC generators 21, 22 generated alternating currents have the same frequency and current amplitude.
  • the first and second AC Gene ⁇ rator 21, 22 is approximately the same voltage amplitude, wherein different voltage amplitudes may be provided.
  • the conductor loop 4 can be energized by means of more than two alternators. This advantageously further reduces the respective voltage amplitudes at the AC generators and in the conductor sections between the AC generators.
  • N alternators are used, the electrical requirements can verrin- to the insulation of the conductor loop 4 against the ground 46 by a factor 1 / N like, if the effective voltage is higher than the reactive voltage of the respective conductor section between in each case two alternating ⁇ power generators.
  • N is a natural number greater than or equal to two.
  • At least a portion of the N alternators may be disposed within the soil 46. As a result, losses, for example conversion losses of frequency converters arranged in the alternators, are released to the ground 46 before ⁇ geous.
  • Figure 2 shows a schematic equivalent electrical circuit diagram of the conductor loop 4 of Figure 1. This comprises the conductor ⁇ loop 4, a plurality of capacitors 52.
  • the conductor loop 4 of Figure 1 comprises the conductor ⁇ loop 4, a plurality of capacitors 52.
  • Inductors 51 are formed by the conductor loop 4 itself.
  • the conductor loop 4 is acted upon in each case by means of the Kirstromge ⁇ generators 21, 22 each with an alternating current.
  • the capacitors 52 and inductors 51 form an electrical series resonant circuit with a predetermined by the capacitors 52 and inductors 51 resonant frequency. It is an advantage to use the first and second Power generator 21, 22 to operate at the resonant frequency of said electrical series resonant circuit. This results in a particularly advantageous reactive power compensation.
  • the first and second alternating current generator 21, 22 with respect to the conductor length of the conductor loop 4 symmetrically ⁇ arranged, that is, that the first conductor portion 44 has the We ⁇ sentlichen the same conductor length as the secondêtab ⁇ cut 45th
  • FIG. 3 shows a schematic electrical equivalent circuit of a conductor loop 4, which is in each case subjected to an alternating current in four regions 31,..., 34.
  • the conductor loop 4 with a first, second, third and fourth alternator 21, ..., 24 is electrically coupled.
  • the lying between each two alternators conductor sections preferably have the same conductor length.
  • the alternators 21,..., 24 are arranged symmetrically along the conductor loop 4. They thus split the conductor loop 4 into the conductor sections of the same length.
  • the conductor loop 4 has a plurality of capacitors 52 and
  • the third and fourth Kirstromgenera ⁇ gate 33, 34 can preferably be in the soil 46, that is underground, be disposed.
  • the loop conductor 4 can be electrically coupled to more than four alternating ⁇ power generators. In other words, there is an N-fold energization of the conductor loop 4. Since ⁇ by the electrical requirement for the isolation of the conductor loop 4 against the soil 46 can be reduced by a factor of 1 / N.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Road Paving Machines (AREA)

Abstract

The invention proposes a deposit heater (1) for inductively heating an area of ground (46), which deposit heater comprises at least one first and one second AC generator (21, 22) and an electrical conductor loop (4) which is arranged at least partially within the area of ground (46). According to the invention, the conductor loop (4) is electrically coupled to the first and the second AC generator (21, 22) in such a way that the conductor loop (4) can be acted on by a first alternating current by means of the first AC generator (21) in a first region (31) and by a second alternating current by means of the second AC generator (22) in a second region (32). The invention further relates to a method for operating a deposit heater (1) and also to the use of a deposit heater (1).

Description

Beschreibung description
LagerStättenheizung Die Erfindung betrifft eine Lagerstättenheizung zur induktiven Heizung eines Erdreiches, insbesondere einer Ölsand-, Öl¬ schiefer, Schwerstöl- oder Schweröllagerstätte. Heating reservoir The invention relates to a deposit heating for inductive heating of the soil, in particular an oil sands, oil shale ¬, Schwerstöl- or heavy oil reservoir.
Zur in-situ Förderung von Kohlenwasserstoffen aus einer un- terirdischen Lagerstätte, beispielsweise zur Förderung vonFor the in situ production of hydrocarbons from a subterranean deposit, for example for the production of
Schwerölen oder Bitumen aus Ölsand oder Ölschiefervorkommen, ist es notwendig, eine möglichst große Fließfähigkeit der zu fördernden Kohlenwasserstoffe zu erreichen. Eine Möglichkeit die Fließfähigkeit der Kohlenwasserstoffe bei ihrer Förderung zu verbessern, ist die im Erdreich der Lagerstätte vorherrschende Temperatur mittels einer Lagerstättenheizung zu erhöhen . Heavy oils or bitumen from oil sands or oil shale deposits, it is necessary to achieve the greatest possible flowability of the hydrocarbons to be pumped. One way to improve the fluidity of the hydrocarbons in their promotion is to increase the temperature prevailing in the soil of the deposit by means of a deposit heating.
Eine bekannte Methode zur Erhöhung der Temperatur der Lager- Stätte beziehungsweise des Erdreiches ist das induktive Hei¬ zen mittels eines Induktors, welcher in die Lagerstätte, das heißt in das Erdreich, eingebracht wird. Mittels des Induk¬ tors werden in elektrisch leitfähigen Lagerstätten Wirbelströme induziert, welche die Lagerstätte aufheizen, sodass es folglich zu einer Verbesserung der Fließfähigkeit der in der Lagerstätte vorliegenden Kohlenwasserstoffe kommt. A known method for increasing the temperature of the storage site or the soil is the inductive Hei ¬ zen means of an inductor, which in the deposit, that is in the soil, is introduced. By means of the Induk ¬ tors eddy currents are induced in electrically conductive deposits, which heat the deposit, so that there is thus an improvement in the flowability of the present in the reservoir hydrocarbons.
Um eine ausreichende Temperaturerhöhung des Erdreiches zu er¬ halten sind typischerweise hohe Heizleistungen erforderlich. Aufgrund der dadurch auftretenden hohen Spannungsamplitude muss der Induktor gegenüber dem Erdreich eine ausreichende elektrische Isolation aufweisen. Die elektrische Isolation des Induktors begrenzt folglich dessen Heizleistung auf eine maximale Heizleistung. To ensure a sufficient rise in temperature of the earth to keep it ¬ high heat outputs are typically required. Due to the high voltage amplitude occurring thereby, the inductor must have a sufficient electrical insulation with respect to the ground. The electrical insulation of the inductor consequently limits its heating power to a maximum heating power.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die maximale Heizleistung einer Lagerstättenheizung zu erhöhen. Die Aufgabe wird durch eine Lagerstättenheizung mit den Merkmalen des unabhängigen Patentanspruches 1 und durch ein Verfahren mit den Merkmalen des unabhängigen Patentanspruches 8 sowie durch eine Verwendung mit den Merkmalen des unabhängi- gen Patentanspruches 14 gelöst. In den abhängigen Patentansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung angegeben. The present invention has for its object to increase the maximum heat output of a deposit heating. The object is achieved by a deposit heating with the features of independent claim 1 and by a method having the features of independent claim 8 and by use with the features of independent claim 14. In the dependent claims advantageous refinements and developments of the invention are given.
Eine erfindungsgemäße Lagerstättenheizung zur induktiven Hei- zung eines Erdreiches umfasst wenigstens einen ersten und zweiten Wechselstromgenerator und eine wenigstens teilweise innerhalb des Erdreiches angeordnete elektrische Leiter¬ schleife. Erfindungsgemäß ist die Leiterschleife mit dem ers¬ ten und zweiten Wechselstromgenerator derart elektrisch ge- koppelt, dass die Leiterschleife in einem ersten Bereich mit¬ tels des ersten Wechselstromgenerators mit einem ersten Wech¬ selstrom und in einem zweiten Bereich mittels des zweiten Wechselstromgenerators mit einem zweiten Wechselstrom A deposit heating invention for inductive Hei-wetting of a soil comprises at least a first and second alternating-current generator and at least partially disposed within the soil electrical conductor loop ¬. According to the invention, the conductor loop with the ers ¬ th and second alternator is such electrically overall couples, that the conductor loop in a first region with ¬ means of the first alternating current generator having a first Wech ¬ selstrom and in a second region by the second alternator with a second AC
beaufschlagbar ist. can be acted upon.
Erfindungsgemäß erfolgt die Bestromung, das heißt die Beauf¬ schlagung der Leiterschleife mit einem elektrischen Wechselstrom, mittels eines ersten und zweiten Wechselstromgenera¬ tors. Hierbei ist der erste Wechselstromgenerator bevorzugt am ersten Bereich und der zweite Wechselstromgenerator bevorzugt am zweiten Bereich der Leiterschleife angeordnet. According to the invention, the energization, that is the Beauf ¬ suppression of the conductor loop with an electrical alternating current, by means of a first and second Wechselstromgenera ¬ sector. Here, the first alternator is preferably arranged on the first region and the second alternator preferably on the second region of the conductor loop.
Zur Bestromung der Leiterschleife sind daher wenigstens zwei Wechselstromgeneratoren (erster und zweiter Wechselstromgene- rator) vorgesehen. Dadurch werden erfindungsgemäß Spannungsamplituden an den Wechselstromgeneratoren, die für die Beaufschlagung oder Bestromung der Leiterschleife mit dem ersten und zweiten Wechselstrom vorgesehen sind, gegenüber der For energizing the conductor loop therefore at least two alternators (first and second alternator) are provided. As a result, according to the invention, voltage amplitudes at the alternating current generators, which are provided for the application or energization of the conductor loop with the first and second alternating current, are compared to FIG
Bestromung der Leiterschleife mittels eines einzigen Wechsel- Stromgenerators verringert, insbesondere halbiert. Current supply of the conductor loop by means of a single AC power generator reduced, in particular halved.
Durch die Verringerung der Spannungsamplituden an den Wechselstromgeneratoren wird erfindungsgemäß die Isolation der Leiterschleife elektrisch geringer belastet, sodass bei gege¬ bener Isolation der Leiterschleife die maximale Heizleistung der Lagerstättenheizung erhöht wird. Dadurch wird die begrenzte und bereits vorhandene Isolation oder Isolationsfä- higkeit der Leiterschleife möglichst optimal genutzt. Soll die maximale Heizleistung der Lagerstättenheizung nicht erhöht werden, so kann aufgrund der Verringerung der Spannungsamplituden vorteilhafterweise die elektrische Isolation der Leiterschleife bezüglich ihrer elektrischen Isolationsfähig- keit verringert werden. By reducing the voltage amplitudes of the alternators according to the invention, the isolation of the Conductor loop electrically less burdened, so that gege ¬ ge insulation of the conductor loop, the maximum heat output of the deposit heating is increased. As a result, the limited and already existing insulation or insulation capability of the conductor loop is used as optimally as possible. If the maximum heating power of the deposit heating is not to be increased, the electrical insulation of the conductor loop with regard to its electrical insulation capability can advantageously be reduced due to the reduction of the voltage amplitudes.
Weiterhin kann die Anforderung an die elektrische Isolation innerhalb der Wechselstromgeneratoren verringert werden. Bei gegebener Isolation oder Isolationsfähigkeit der Leiter- schleife kann mittels der zweifachen Bestromung der Leiterschleife mit Wechselstrom (erster und zweiter Wechselstrom) die maximale Heizleistung, welche durch die genannte Isolati¬ on begrenzt ist, beispielsweise um einen Faktor zwei, erhöht werden . Furthermore, the requirement for electrical isolation within the alternators can be reduced. For a given insulation or insulation capability of the conductor loop of the conductor loop with an alternating current (first and second alternating current) can be increased the maximum heat output, which is limited by said isolati ¬ on, for example, by a factor of two by means of the dual energizing.
Die Leiterschleife erstreckt sich vom ersten Wechselstromge¬ nerator zum zweiten Wechselstromgenerator und vom zweiten Wechselstromgenerator zurück zum ersten Wechselstromgenerator. Dadurch weist die Leiterschleife einen ersten Leiterab- schnitt und einen zweiten Leiterabschnitt auf. Der erste Lei¬ terabschnitt erstreckt sich vom ersten Wechselstromgenerator zum zweiten Wechselstromgenerator. Der zweite Leiterabschnitt erstreckt sich vom zweiten Wechselstromgenerator zum ersten Wechselstromgenerator. Der erste und zweite Leiterabschnitt bilden somit die Leiterschleife aus. The conductor loop extending from the first Wechselstromge ¬ erator to the second ac generator and the second AC generator back to the first alternator. As a result, the conductor loop has a first conductor section and a second conductor section. The first Lei ¬ terabschnitt extends from the first alternating-current generator to the second alternator. The second conductor portion extends from the second alternator to the first alternator. The first and second conductor section thus form the conductor loop.
Bei einem erfindungsgemäßen Verfahren zum Betrieb einer In a method according to the invention for operating a
Lagerstättenheizung erzeugt ein erster Wechselstromgenerator einen ersten Wechselstrom und ein zweiter Wechselstromgenera- tor einen zweiten Wechselstrom. Erfindungsgemäß wird eine we¬ nigstens teilweise innerhalb eines Erdreiches angeordnete Leiterschleife in einem ersten Bereich mit dem ersten Wech- selstrom und in einem zweiten Bereich mit dem zweiten Wechselstrom beaufschlagt. Deposit heat, a first alternator generates a first alternating current and a second alternator gate a second alternating current. According to the invention we ¬ a nigstens partially disposed within a soil conductor loop in a first region with the first alternating Selstrom and acted upon in a second area with the second alternating current.
Mit anderen Worten erfolgt eine zweifache Bestromung der Lei- terschleife, welche Leiterschleife den Induktor zum indukti¬ ven Heizen des Erdreiches ausbildet. Es ergeben sich zur be¬ reits genannten Lagerstättenheizung gleichartige und gleichwertige Vorteile. Bei einer erfindungsgemäßen Verwendung einer In other words, a two-time energization of the conductor loop which forms the conductor loop inductor for inductive ¬ ven heating of the soil occurs. This results in the be ¬ already mentioned deposit heating similar and equivalent benefits. In an inventive use of a
Lagerstättenheizung wird eine Lagerstättenheizung gemäß der vorliegenden Erfindung zur Verringerung der Viskosität einer kohlenwasserstoffhaltigen Substanz, die in einem Erdreich vorliegt, verwendet.  Deposit heating uses a reservoir heater according to the present invention to reduce the viscosity of a hydrocarbonaceous substance present in a soil.
Die kohlenwasserstoffhaltige Substanz kann Schweröle, The hydrocarbonaceous substance may be heavy oils,
Schwerstöle, Bitumen, Ölsand und/oder Ölschiefer, umfassen. Durch die Verwendung der Lagerstättenheizung wird vorteilhafterweise das Erdreich sowie die im Erdreich vorliegende Substanz erwärmt, wodurch die Viskosität der Substanz verringert wird. Mit anderen Worten wird durch die Verwendung der Lagerstättenheizung die Fließfähigkeit der kohlenwasserstoff- haltigen Substanz erhöht beziehungsweise verbessert. Die koh¬ lenwasserstoffhaltige Substanz umfasst wenigstens Kohlenwas- serstoffe, die für eine Förderung, insbesondere für eine in- situ Förderung, vorgesehen sind. Heavy oils, bitumen, oil sands and / or oil shale. By using the deposit heating advantageously the soil and the substance present in the soil is heated, whereby the viscosity of the substance is reduced. In other words, the use of the deposit heating increases or improves the flowability of the hydrocarbon-containing substance. The koh ¬ lenwasserstoffhaltige substance comprises at least hydrocarbons, which are provided for support, particularly for in-situ production.
Bevorzugt sind der erste und zweite Bereich disjunkt entlang der Leiterschleife angeordnet. Preferably, the first and second regions are arranged disjointly along the conductor loop.
Mit anderen Worten wird die Leiterschleife an einer ersten Stelle mittels des ersten Wechselstromgenerators mit einem ersten Wechselstrom und an einer von der ersten Stelle verschiedenen zweiten Stelle mittels des zweiten Wechselstromge- nerators mit dem zweiten Wechselstrom beaufschlagt. Es er¬ folgt daher eine zweifache elektrische Beaufschlagung oder Bestromung der Leiterschleife mit Wechselstrom an zwei verschiedenen Stellen oder in zwei verschiedenen Bereichen der Leiterschleife. Der erste und zweite Wechselstromgenerator sind vorteilhafterweise nicht unmittelbar hintereinander, das heißt großzügig zueinander beabstandet angeordnet. Gemäß einer vorteilhaften Ausgestaltung der Erfindung sind der erste und zweite Wechselstromgenerator außerhalb des Erd¬ reiches angeordnet. In other words, the conductor loop is acted on at a first location by means of the first alternating current generator with a first alternating current and at a second location different from the first location by means of the second alternating current generator with the second alternating current. There he ¬ therefore follows a dual electrical excitation or energization of the conductor loop with alternating current at two different locations or in two different areas of Conductor loop. The first and second alternator are advantageously not immediately one behind the other, that is arranged generously spaced from each other. According to an advantageous embodiment of the invention, the first and second alternator are arranged outside the earth ¬ rich.
Dadurch können die Wechselstromgeneratoren vorteilhafterweise ohne weitere Bohrungen beabstandet voneinander angeordnet werden. Ferner ermöglicht die oberirdische Anordnung der Wechselstromgeneratoren einen einfachen Zugang zu den Wechselstromgeneratoren, beispielsweise für Wartungsarbeiten. Vorteilhafterweise ist der zweite Wechselstromgenerator in einem Bereich (zweiter Bereich) der Leiterschleife angeordnet, der bei einer vorgegebenen Geometrie der Leiterschleife möglichst weit vom ersten Wechselstromgenerator, das heißt vom ersten Bereich beabstandet ist. Dadurch wird vorteilhaft- erweise die Geometrie der Leiterschleife durch das Vorhanden¬ sein des zweiten Wechselstromgenerators nicht verändert oder nachteilig beeinträchtigt. Insbesondere muss die Leiter¬ schleife aufgrund der zweifachen elektrischen Bestromung gegenüber einer einfachen elektrischen Bestromung nicht oder nur geringfügig verlängert werden. As a result, the alternators can advantageously be arranged spaced from each other without further holes. Furthermore, the above-ground arrangement of the alternators allows easy access to the alternators, for example, for maintenance. Advantageously, the second AC generator is arranged in a region (second region) of the conductor loop, which is at a given geometry of the conductor loop as far as possible from the first AC generator, that is spaced from the first region. This will advantageously be converted, the geometry of the loop by the presence of the second ¬ be alternator not changed or adversely affected. In particular, the conductor must not ¬ loop due to the dual electric energization to a simple electric current supply to or only slightly extended.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist der erste Wechselstromgenerator außerhalb und der zweite Wechselstromgenerator innerhalb des Erdreiches angeordnet. In a further advantageous embodiment of the invention, the first alternator outside and the second alternator within the soil is arranged.
Vorteilhafterweise wird durch die unterirdische Anordnung des zweiten Wechselstromgenerators die Abwärme des zweiten Wech¬ selstromgenerators, welche beim Betrieb des zweiten Wechsel¬ stromgenerators erzeugt wird, in das den zweiten Wechsel- Stromgenerator umgebende Erdreich eingebracht. Mit anderen Worten wird vorteilhafterweise das Heizen des Erdreiches durch den im Erdreich angeordneten zweiten Wechselstromgenerator verbessert oder unterstützt. Wandlungsverluste, welche im zweiten Wechselstromgenerator auftreten, verbleiben somit in der Lagerstätte beziehungsweise im Erdreich. Advantageously, in the second alternating current generator surrounding soil introduced through the underground location of the second alternator, the waste heat of the second Wech ¬ selstromgenerators which is generated during the operation of the second alternating current generator ¬. In other words, the heating of the soil is advantageously improved or supported by the arranged in the ground second alternator. Conversion losses, which occur in the second alternator, thus remain in the reservoir or in the ground.
Gemäß einer bevorzugten Ausgestaltung der Erfindung sind Lei- terabschnitte der Leiterschleife, welche Leiterabschnitte zwischen dem ersten und zweiten Wechselstromgenerator angeordnet sind, bezüglich ihrer Leiterlänge gleich ausgebildet. According to a preferred embodiment of the invention, conductor portions of the conductor loop, which conductor portions are arranged between the first and second alternator, are of identical design with respect to their conductor length.
Mit anderen Worten sind der erste und zweite Wechselstromge- nerator symmetrisch entlang der Leiterschleife angeordnet. Hierbei erstreckt sich der erste Leiterabschnitt vom ersten Wechselstromgenerator zum zweiten Wechselstromgenerator und der zweite Leiterabschnitt vom zweiten Wechselstromgenerator zurück zum ersten Wechselstromgenerator. Der erste und zweite Leiterabschnitt weisen annähernd dieselbe Leiterlänge auf. Es erfolgt folglich mittels der zwei Wechselstromgeneratoren eine bezüglich der Länge der Leiterschleife symmetrische In other words, the first and second AC generators are arranged symmetrically along the conductor loop. Here, the first conductor portion extends from the first alternator to the second alternator and the second conductor portion extends from the second alternator back to the first alternator. The first and second conductor sections have approximately the same conductor length. Consequently, by means of the two alternators, a symmetrical one with respect to the length of the conductor loop takes place
Bestromung der Leiterschleife. Dadurch werden vorteilhafterweise die Spannungsamplituden an den Wechselstromgeneratoren und/oder im ersten und zweiten Leiterabschnitt gegenüber einer einfachen Bestromung annähernd halbiert. Energizing the conductor loop. As a result, the voltage amplitudes at the alternators and / or in the first and second conductor sections are advantageously approximately halved compared to a simple energization.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung umfas- sen/umfasst der erste und/oder zweite Wechselstromgenerator einen Frequenzumrichter. According to an advantageous embodiment of the invention, the first and / or second alternator comprises / comprises a frequency converter.
Dadurch kann vorteilhafterweise die Frequenz des ersten und/oder zweiten Wechselstromes auf eine Resonanzfrequenz der Leiterschleife angepasst werden. Zur Ausbildung eines elekt- rischen Schwingkreises, insbesondere eines elektrischen Se¬ rienschwingkreises, mit einer Resonanzfrequenz weist die Lei¬ terschleife wenigstens einen Kondensator auf. Die Induktivi¬ tät des elektrischen Schwingkreises wird durch die Induktivi¬ tät der Leiterschleife selbst gebildet. Mittels des Frequenz- Umrichters kann vorteilhafterweise die Frequenz der As a result, advantageously, the frequency of the first and / or second alternating current can be adapted to a resonance frequency of the conductor loop. In order to form an electric resonant circuit, in particular an electric Se ¬ rien resonant circuit having a resonant frequency, the Lei ¬ terschleife at least one capacitor. The Induktivi ¬ ty of the electrical resonant circuit is formed by the Induktivi ¬ ty of the loop itself. By means of the frequency converter can advantageously the frequency of
Bestromung an die Resonanzfrequenz der Leiterschleife angepasst werden, sodass in Resonanz eine vorteilhafte Blindleis¬ tungskompensation erfolgt. Ist der zweite Wechselstromgenerator innerhalb des Erdreiches angeordnet, so werden die Wandlungsverluste des Frequenzum¬ richters, welche typischerweise ein bis zehn Prozent der Ge- samtleistung des Frequenzumrichters betragen, an das Erdreich abgegeben. Die Wandlungsverluste werden direkt in das Erd¬ reich eingebracht, wodurch sich dieses zusätzlich erwärmt. Current supply to the resonant frequency of the conductor loop are adjusted so that in resonance an advantageous Blindleis ¬ compensation device. The second alternating-current generator disposed within the soil, then the conversion losses of the Frequenzum ¬ judge which typically amount to a total power of up to ten percent of the overall frequency of the output to the ground. The conversion losses are introduced directly into the earth ¬ rich, whereby this additionally heated.
Bevorzugt weisen der erste und zweite Wechselstromgenerator einen Abstand von wenigstens 100 m auf. Preferably, the first and second alternator have a distance of at least 100 m.
Dadurch wird vorteilhafterweise eine großflächige und/oder großräumige Beheizung des Erdreiches mittels der Leiter¬ schleife ermöglicht. This advantageously a large-area and / or large-scale heating of the soil by means of the conductor loop ¬ possible.
Gemäß einer besonders bevorzugten Ausgestaltung der Erfindung werden der erste und zweite Wechselstromgenerator phasengekoppelt betrieben. Ein phasengekoppelter Betrieb des ersten und zweiten Wechselstromgenerators ist dadurch gekennzeichnet, dass die Phasen¬ differenz zwischen der Phase des ersten und zweiten Wechselstromes zeitlich nicht oder nur kaum variiert. Hierbei be¬ trägt die Phasendifferenz zwischen dem ersten und zweiten Wechselstrom bevorzugt 0° oder 180°, wobei bei gleicher Pola¬ rität der Wechselstromgeneratoren 0° und bei entgegengesetzter Polarität der Wechselstromgeneratoren 180° bevorzugt ist. Dadurch wird vorteilhafterweise sichergestellt, dass eine Ad¬ dition der Spannungsamplituden und nicht eine gegenseitige Auslöschung (Differenz) der Spannungsamplituden der Wechselstromgeneratoren erfolgt. According to a particularly preferred embodiment of the invention, the first and second alternator are operated in phase. A phase-coupled operation of the first and second alternator is characterized in that the phase ¬ difference between the phase of the first and second alternating current temporally not or only slightly varies. Here be ¬ transmits the phase difference between the first and second alternating current preferably from 0 ° or 180 °, at the same Pola ¬ the alternators rity 0 ° and is preferably at the opposite polarity of the AC generators 180 °. This advantageously ensures that an ad ¬ dition of the voltage amplitudes and not a mutual cancellation (difference) of the voltage amplitudes of the alternators.
Besonders bevorzugt werden der erste und zweite Wechselstrom mit gleicher Frequenz erzeugt. Particularly preferably, the first and second alternating current are generated at the same frequency.
Dadurch wird vorteilhafterweise eine Überlagerung der Wechselströme mit im Wesentlichen einer Frequenz ermöglicht. Besonders vorteilhaft ist, dass bei einer festen Phasendiffe- renz des ersten und zweiten Wechselstromes diese bereits die gleiche Frequenz aufweisen. As a result, it is advantageously possible to superimpose the alternating currents at essentially one frequency. It is particularly advantageous that in the case of a fixed phase difference rence of the first and second alternating current they already have the same frequency.
Weiterhin ist es vorteilhaft, den ersten und zweiten Wechsel- ström mit gleicher Spannungsamplitude zu erzeugen. Furthermore, it is advantageous to generate the first and second alternating currents with the same voltage amplitude.
Dadurch wird die Leiterschleife vorteilhafterweise bezügli¬ cher der Spannungsamplituden symmetrisch bestromt. Gemäß einer vorteilhaften Ausgestaltung der Erfindung wird die Leiterschleife mit einem ersten und/oder zweiten Wechsel¬ strom beaufschlagt, wobei die Frequenz des ersten und/oder zweiten Wechselstromes im Bereich von 10 kHz bis 200 kHz liegt . Thus, the conductor loop advantageously bezügli ¬ cher the voltage amplitude is energized symmetrical. According to an advantageous embodiment of the invention, the conductor loop is subjected to a first and / or second alternating ¬ current, wherein the frequency of the first and / or second alternating current in the range of 10 kHz to 200 kHz.
Besonders bevorzugt ist eine Frequenz im genannten Bereich von 10 kHz bis 200 kHz, die der Resonanzfrequenz der Leiterschleife entspricht, wobei zur Ausbildung eines elektrischen Schwingkreises die Leiterschleife wenigstens einen Kondensa- tor umfasst. Dadurch kann eine Blindleistungskompensation erfolgen . Particularly preferred is a frequency in the range of 10 kHz to 200 kHz, which corresponds to the resonant frequency of the conductor loop, wherein for forming an electrical resonant circuit, the conductor loop comprises at least one capacitor. This can be done a reactive power compensation.
Weiterhin ist die Frequenz der Wechselströme gegenüber bekannten Verfahren zur Lagerstättenheizung vergleichsweise niedrig. Vorteilhafterweise können dadurch Sicherheitsabstände, die bei höheren Frequenzen eingehalten werden müssen, verringert werden. Vorteilhafterweise wird somit die Sicher¬ heit der Lagerstättenheizung verbessert. Vorteilhaft ist eine Spannungsamplitude des ersten und zwei¬ ten Wechselstromes, welche wenigstens 10 Kilovolt (10 kV) be¬ trägt . Furthermore, the frequency of the alternating currents compared to known methods for deposit heating is relatively low. Advantageously, this safety distances, which must be met at higher frequencies, can be reduced. Advantageously, thus the safe ¬ ness of the deposit heating is improved. Is advantageously a voltage amplitude of the first and two ¬ th alternating current which (10 kV) be carrying at least 10 kilovolts ¬.
Dadurch wird vorteilhafterweise ein hoher erster und zweiter Wechselstrom von wenigstens 100 Ampere (100 A) ermöglicht, sodass eine ausreichende Heizleistung mit wenigstens einem Megawatt (1 MW) sichergestellt wird. Weitere Vorteile, Merkmale und Einzelheiten der Erfindung er¬ geben sich aus dem im Folgenden beschriebenen Ausführungsbeispielen sowie anhand der Zeichnungen. Dabei zeigen schematisiert : This advantageously allows a high first and second alternating current of at least 100 amperes (100 A), so that a sufficient heating power of at least one megawatt (1 MW) is ensured. Further advantages, features and details of the invention follow from the ¬ described in the following embodiments and from the drawings. Shown schematically:
Figur 1 eine dreidimensionale Darstellung einer Figure 1 is a three-dimensional representation of a
Lagerstättenheizung, die zwei Wechselstromgenerato¬ ren zum Betrieb einer Leiterschleife umfasst; Deposit heater comprising two AC generator ¬ ren for operating a conductor loop;
Figur 2 ein vereinfachtes elektrisches Ersatzschaltbild der Figure 2 is a simplified electrical equivalent circuit diagram of
Lagerstättenheizung aus Figur 1; und  Depository heater of Figure 1; and
Figur 3 ein vereinfachtes elektrisches Ersatzschaltbild ei¬ ner Lagerstättenheizung, die vier Wechselstromgeneratoren zum Betrieb einer Leiterschleife umfasst. Figure 3 is a simplified electrical equivalent circuit diagram ei ¬ ner deposit heater comprising four alternating current generators for the operation of a conductor loop.
Gleichartige oder äquivalente Elemente können in den Figuren mit denselben Bezugszeichen versehen sein. Similar or equivalent elements may be provided with the same reference numerals in the figures.
In Figur 1 ist eine schematische dreidimensionale Darstellung einer Lagerstättenheizung 1 gezeigt, die einen ersten und zweiten Wechselstromgenerator 21, 22 zum Betrieb einer Leiterschleife 4 umfasst. FIG. 1 shows a schematic three-dimensional representation of a deposit heater 1, which comprises a first and a second AC generator 21, 22 for operating a conductor loop 4.
Die Leiterschleife 4 ist wenigstens teilweise in ein Erdreich 46 der Lagerstätte eingebracht. Das Erdreich 46 umfasst eine kohlenwasserstoffhaltige Substanz, das heißt zu fördernde Kohlenwasserstoffe, beispielsweise Schweröle, Schwerstöle, Bitumen, Ölsand und/oder Ölschiefer. Weiterhin kann das Erdreich 46 eine geologische Formation und/oder eine kohlenwas¬ serstoffhaltige Erdschicht 42, insbesondere eine Mehrzahl von Erdschichten 41, ...,43, umfassen. The conductor loop 4 is at least partially introduced into a soil 46 of the deposit. The soil 46 comprises a hydrocarbon-containing substance, that is to say hydrocarbons to be transported, for example heavy oils, heavy oils, bitumen, oil sands and / or oil shale. Furthermore, the ground 46 may be a geological formation and / or a kohlenwas ¬ serstoffhaltige layer of soil 42, in particular a plurality of earth layers 41, ..., 43 include.
Die Leiterschleife 4 erstreckt sich wenigstens durch und/oder innerhalb einer Erdschicht 42, die die zu fördernde Kohlen¬ wasserstoffe, insbesondere Schweröle, Schwerstöle, Bitumen, Ölsand oder Ölschiefervorkommen, aufweist. Die kohlenwasser- stoffhaltige Erdschicht 42 ist von einer darüber liegenden Erdschicht 41 und einer darunter liegenden Erdschicht 43 umgeben. Das Erdreich 46 umfasst die genannten Erdschichten 41,..., 43. Die Leiterschleife 4 bildet einen Induktor 4 aus, wobei die Leiterschleife 4, beispielsweise in einer Tiefe von 50 m bis 85 m, in das Erdreich 46 eingebracht ist. Hierbei weist die Leiterschleife 4 zur Ausbildung eines elektrischen Schwingkreises, der zur Blindleistungskompensation vorgesehen ist, eine Mehrzahl von Kondensatoren auf. The conductor loop 4 extends at least through and / or within a layer of soil 42, the hydrocarbons to be promoted hydrogens ¬ , especially heavy oils, heavy oils, bitumen, oil sands or oil shale deposits, has. The hydrocarbonaceous earth layer 42 is from an overlying one Earth layer 41 and an underlying layer of soil 43 surrounded. The soil 46 comprises the said earth layers 41, ..., 43. The conductor loop 4 forms an inductor 4, wherein the conductor loop 4, for example at a depth of 50 m to 85 m, is introduced into the soil 46. Here, the conductor loop 4 for forming an electrical resonant circuit, which is provided for reactive power compensation, a plurality of capacitors.
Weiterhin weist die Leiterschleife 4 einen ersten und einen zweiten Leiterabschnitt 44, 45 auf. Der erste LeiterabschnittFurthermore, the conductor loop 4 has a first and a second conductor section 44, 45. The first ladder section
44 erstreckt sich vom ersten Wechselstromgenerator 21 zum zweiten Wechselstromgenerator 22. Der zweite Leiterabschnitt44 extends from the first alternator 21 to the second alternator 22. The second conductor section
45 erstreckt sich vom zweiten Wechselstromgenerator 22 zurück zum ersten Wechselstromgenerator 21. Der erste und zweite Leiterabschnitt 44, 45 bilden hierbei die Leiterschleife 4 aus . 45 extends from the second alternator 22 back to the first alternator 21. The first and second conductor section 44, 45 in this case form the conductor loop 4 from.
Der erste Wechselstromgenerator 21 ist in einem ersten Bereich 31 und der zweite Wechselstromgenerator 22 in einem zweiten Bereich 32 der Leiterschleife 4 angeordnet. Der erste und zweite Leiterabschnitt 44, 45 erreichen ihren größten Ab- stand, beispielsweise von 50 m, in der Erdschicht 42, die die zu fördernden Kohlenwasserstoffe aufweist. The first AC generator 21 is arranged in a first region 31 and the second AC generator 22 in a second region 32 of the conductor loop 4. The first and second conductor sections 44, 45 reach their greatest distance, for example of 50 m, in the earth layer 42, which has the hydrocarbons to be conveyed.
Der erste und zweite Wechselstromgenerator 21, 22 sind außerhalb des Erdreiches 46 und innerhalb einer die Lagerstätte 1 umgebenden Luftschicht 40 angeordnet. Der erste und zweite Wechselstromgenerator 21, 22 werden phasengekoppelt betrieben, das heißt, dass die Phasendifferenz zwischen dem mittels des ersten Wechselstromgenerators 21 erzeugten ersten Wechselstrom und dem mittels des zweiten Wechselstromgenerators 22 erzeugten zweiten Wechselstrom zeitlich nicht oder nur geringfügig variiert. Hierbei ist eine feste Phasendifferenz von 0° oder 180°, je nach Polarität des ersten und zweiten Wechselstromgenerators 21, 22, von Vorteil. Die mittels des ersten und zweiten Wechselstromgenerators 21, 22 erzeugten Wechselströme weisen die gleiche Frequenz und Stromamplitude auf. Bevorzugt weisen der erste und zweite Wechselstromgene¬ rator 21, 22 annähernd dieselbe Spannungsamplitude auf, wobei verschiedene Spannungsamplituden vorgesehen sein können. The first and second alternators 21, 22 are disposed outside of the soil 46 and within an air layer 40 surrounding the reservoir 1. The first and second alternators 21, 22 are operated in phase-locked mode, that is to say that the phase difference between the first alternating current generated by the first alternating-current generator 21 and the second alternating-current generated by the second alternating-current generator 22 does not vary or only slightly varies over time. Here, a fixed phase difference of 0 ° or 180 °, depending on the polarity of the first and second alternator 21, 22, an advantage. The means of the First and second AC generators 21, 22 generated alternating currents have the same frequency and current amplitude. Preferably, the first and second AC Gene ¬ rator 21, 22 is approximately the same voltage amplitude, wherein different voltage amplitudes may be provided.
Weiterhin kann die Leiterschleife 4 mittels mehr als zwei Wechselstromgeneratoren bestromt werden. Dadurch werden vorteilhafterweise die jeweiligen Spannungsamplituden an den Wechselstromgeneratoren und in den Leiterabschnitten zwischen den Wechselstromgeneratoren weiter verringert. Werden beispielsweise N Wechselstromgeneratoren verwendet, so kann sich die elektrische Anforderung an die Isolation der Leiterschleife 4 gegen das Erdreich 46 um einen Faktor 1/N verrin- gern, falls die Wirkspannung höher als die Blindspannung des jeweiligen Leiterabschnittes zwischen jeweils zwei Wechsel¬ stromgeneratoren ist. Hierbei ist N eine natürliche Zahl, die größer gleich zwei ist. Wenigstens ein Teil der N Wechselstromgeneratoren kann innerhalb des Erdreiches 46 angeordnet sein. Dadurch werden vor¬ teilhafterweise Verluste, beispielsweise Wandlungsverluste von in den Wechselstromgeneratoren angeordneten Frequenzumrichter, an das Erdreich 46 abgegeben. Furthermore, the conductor loop 4 can be energized by means of more than two alternators. This advantageously further reduces the respective voltage amplitudes at the AC generators and in the conductor sections between the AC generators. For example, if N alternators are used, the electrical requirements can verrin- to the insulation of the conductor loop 4 against the ground 46 by a factor 1 / N like, if the effective voltage is higher than the reactive voltage of the respective conductor section between in each case two alternating ¬ power generators. Here, N is a natural number greater than or equal to two. At least a portion of the N alternators may be disposed within the soil 46. As a result, losses, for example conversion losses of frequency converters arranged in the alternators, are released to the ground 46 before ¬ geous.
Figur 2 zeigt ein schematisches elektrisches Ersatzschaltbild der Leiterschleife 4 aus Figur 1. Hierbei umfasst die Leiter¬ schleife 4 eine Mehrzahl von Kondensatoren 52. Die Figure 2 shows a schematic equivalent electrical circuit diagram of the conductor loop 4 of Figure 1. This comprises the conductor ¬ loop 4, a plurality of capacitors 52. The
Induktivitäten 51 werden durch die Leiterschleife 4 selbst ausgebildet. Inductors 51 are formed by the conductor loop 4 itself.
Im ersten und zweiten Bereich 31, 32 der Leiterschleife 4 wird die Leiterschleife 4 jeweils mittels der Wechselstromge¬ neratoren 21, 22 jeweils mit einem Wechselstrom beaufschlagt. Durch die Kondensatoren 52 und Induktivitäten 51 bildet sich ein elektrischer Serienschwingkreis mit einer durch die Kondensatoren 52 und Induktivitäten 51 vorgegebenen Resonanzfrequenz aus. Es ist von Vorteil den ersten und zweiten Wechsel- Stromgenerator 21, 22 mit der Resonanzfrequenz des genannten elektrischen Serienschwingkreises zu betreiben. Dadurch erfolgt eine besonders vorteilhafte Blindleistungskompensation. Der erste und zweite Wechselstromgenerator 21, 22 sind bezüglich der Leiterlänge der Leiterschleife 4 symmetrisch ange¬ ordnet, das heißt, dass der erste Leiterabschnitt 44 im We¬ sentlichen dieselbe Leiterlänge wie der zweite Leiterab¬ schnitt 45 aufweist. In the first and second regions 31, 32 of the loop 4, the conductor loop 4 is acted upon in each case by means of the Wechselstromge ¬ generators 21, 22 each with an alternating current. The capacitors 52 and inductors 51 form an electrical series resonant circuit with a predetermined by the capacitors 52 and inductors 51 resonant frequency. It is an advantage to use the first and second Power generator 21, 22 to operate at the resonant frequency of said electrical series resonant circuit. This results in a particularly advantageous reactive power compensation. The first and second alternating current generator 21, 22 with respect to the conductor length of the conductor loop 4 symmetrically ¬ arranged, that is, that the first conductor portion 44 has the We ¬ sentlichen the same conductor length as the second Leiterab ¬ cut 45th
In Figur 3 ist eine schematische elektrische Ersatzschaltung einer Leiterschleife 4 gezeigt, die in vier Bereichen 31, ...,34 jeweils mit einem Wechselstrom beaufschlagt wird. Hierzu ist die Leiterschleife 4 mit einem ersten, zweiten, dritten und vierten Wechselstromgenerator 21,..., 24 elektrisch gekoppelt. Die zwischen jeweils zwei Wechselstromgeneratoren liegenden Leiterabschnitte weisen bevorzugt dieselbe Leiterlänge auf. Mit anderen Worten sind die Wechselstromgeneratoren 21,..., 24 symmetrisch entlang der Leiterschleife 4 angeordnet. Sie tei- len folglich die Leiterschleife 4 in die gleichlangen Leiterabschnitte auf. 3 shows a schematic electrical equivalent circuit of a conductor loop 4, which is in each case subjected to an alternating current in four regions 31,..., 34. For this purpose, the conductor loop 4 with a first, second, third and fourth alternator 21, ..., 24 is electrically coupled. The lying between each two alternators conductor sections preferably have the same conductor length. In other words, the alternators 21,..., 24 are arranged symmetrically along the conductor loop 4. They thus split the conductor loop 4 into the conductor sections of the same length.
Wie bereits in den Figuren 1 und/oder 2 weist die Leiterschleife 4 eine Mehrzahl von Kondensatoren 52 und As already in FIGS. 1 and / or 2, the conductor loop 4 has a plurality of capacitors 52 and
Induktivitäten 51 zur Ausbildung eines elektrischen Serienschwingkreises auf. Der dritte und vierte Wechselstromgenera¬ tor 33, 34 können bevorzugt im Erdreich 46, das heißt unterirdisch, angeordnet sein. Generell kann die Leiterschleife 4 mit mehr als vier Wechsel¬ stromgeneratoren elektrisch gekoppelt sein. Mit anderen Worten erfolgt eine N-fache Bestromung der Leiterschleife 4. Da¬ durch kann die elektrische Anforderung an die Isolation der Leiterschleife 4 gegen das Erdreich 46 um einen Faktor 1/N verringert werden. Inductors 51 for forming an electrical resonant circuit on. The third and fourth Wechselstromgenera ¬ gate 33, 34 can preferably be in the soil 46, that is underground, be disposed. In general, the loop conductor 4 can be electrically coupled to more than four alternating ¬ power generators. In other words, there is an N-fold energization of the conductor loop 4. Since ¬ by the electrical requirement for the isolation of the conductor loop 4 against the soil 46 can be reduced by a factor of 1 / N.
Obwohl die Erfindung im Detail durch die bevorzugten Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt oder andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen. Although the invention has been illustrated and described in detail by the preferred embodiments, so the invention is not limited by the disclosed examples, or other variations can be deduced therefrom by those skilled in the art without departing from the scope of the invention.

Claims

Patentansprüche claims
1. Lagerstättenheizung (1) zur induktiven Heizung eines Erdreiches (46), die wenigstens einen ersten und zweiten Wech- selstromgenerator (21, 22) und eine wenigstens teilweise in¬ nerhalb des Erdreiches (46) angeordnete elektrische Leiter¬ schleife (4) umfasst, dadurch gekennzeichnet, dass die Lei¬ terschleife (4) mit dem ersten und zweiten Wechselstromgene¬ rator (21, 22) derart elektrisch gekoppelt ist, dass die Lei- terschleife (4) in einem ersten Bereich (31) mittels des ers¬ ten Wechselstromgenerators (21) mit einem ersten Wechselstrom und in einem zweiten Bereich (32) mittels des zweiten Wechselstromgenerators (22) mit einem zweiten Wechselstrom beaufschlagbar ist. 1. deposit heating (1) for inductive heating of a soil (46) comprising at least a first and second Wechselstromgenerator (21, 22) and at least partially in ¬ nerhalb the soil (46) arranged electrical conductor ¬ loop (4) characterized in that the Lei ¬ terschleife (4) being electrically coupled to the first and second AC Gene ¬ rator (21, 22), that the leads terschleife (4) in a first region (31) by means of the f ¬ th Alternating current generator (21) with a first alternating current and in a second region (32) by means of the second alternator (22) can be acted upon by a second alternating current.
2. Lagerstättenheizung (1) gemäß Anspruch 1, dadurch gekennzeichnet, dass der erste und zweite Bereich (31, 32) disjunkt entlang der Leiterschleife (4) angeordnet sind. 2. storage heater (1) according to claim 1, characterized in that the first and second region (31, 32) disjointly along the conductor loop (4) are arranged.
3. Lagerstättenheizung (1) gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste und zweite Wechselstromgenera¬ tor (21, 22) außerhalb des Erdreiches (46) angeordnet sind. 3. reservoir heating (1) according to claim 1 or 2, characterized in that the first and second Wechselstromgenera ¬ gate (21, 22) outside of the soil (46) are arranged.
4. Lagerstättenheizung (1) gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste Wechselstromgenerator (21) au¬ ßerhalb und der zweite Wechselstromgenerator (22) innerhalb des Erdreiches (46) angeordnet ist. 4. heaters deposit (1) according to claim 1 or 2, characterized in that the first alternator (21) au ¬ ßerhalb and the second alternator (22) within the soil (46) is arranged.
5. Lagerstättenheizung (1) gemäß einem der vorangegangen An- Sprüche, dadurch gekennzeichnet, dass Leiterabschnitte (44,5. deposit heating (1) according to one of the preceding arrival claims, characterized in that conductor sections (44,
45) der Leiterschleife (4), welche zwischen dem ersten und zweiten Wechselstromgenerator (21, 22) angeordnet sind, bezüglich ihrer Leiterlänge gleich ausgebildet sind. 45) of the conductor loop (4), which are arranged between the first and second alternator (21, 22) are formed equal in terms of their conductor length.
6. Lagerstättenheizung (1) gemäß einem der vorangegangen Ansprüche, dadurch gekennzeichnet, dass der erste und/oder zweite Wechselstromgenerator (21, 22) einen Frequenzumrichter umfassen/umfasst . 6. reservoir heater (1) according to one of the preceding claims, characterized in that the first and / or second alternator (21, 22) comprise / comprises a frequency converter.
7. Lagerstättenheizung (1) gemäß einem der vorangegangen Ansprüche, dadurch gekennzeichnet, dass der erste und zweite Wechselstromgenerator (21, 22) einen Abstand von wenigstens 100 m aufweisen. 7. storage heaters (1) according to one of the preceding claims, characterized in that the first and second alternator (21, 22) have a distance of at least 100 m.
8. Verfahren zum Betrieb einer Lagerstättenheizung (1), bei dem ein erster Wechselstromgenerator (21) einen ersten Wechselstrom und ein zweiter Wechselstromgenerator (22) einen zweiten Wechselstrom erzeugt, und bei dem eine wenigstens teilweise innerhalb eines Erdreiches (46) angeordnete Leiter¬ schleife (4) in einem ersten Bereich (31) mit dem ersten Wechselstrom und in einem zweiten Bereich (32) mit dem zweiten Wechselstrom beaufschlagt wird. 8. A method for operating a deposit heating (1), wherein a first AC generator (21) generates a first alternating current and a second AC generator (22) generates a second alternating current, and in which at least partially within a soil (46) arranged conductor loop ¬ (4) is acted upon in a first region (31) with the first alternating current and in a second region (32) with the second alternating current.
9. Verfahren gemäß Anspruch 8, bei dem der erste und zweite Wechselstromgenerator (21, 22) phasengekoppelt betrieben werden . 9. The method according to claim 8, wherein the first and second alternator (21, 22) are operated in phase-locked.
10. Verfahren gemäß Anspruch 8 oder 9, bei dem der erste und zweite Wechselstrom mit gleicher Frequenz erzeugt werden. 10. The method according to claim 8 or 9, wherein the first and second alternating current are generated at the same frequency.
11. Verfahren gemäß einem der Ansprüche 8 bis 10, bei dem der erste und zweite Wechselstrom mit gleicher Spannungsamplitude erzeugt werden. 11. The method according to any one of claims 8 to 10, wherein the first and second alternating current are generated with the same voltage amplitude.
12. Verfahren gemäß einem der Ansprüche 8 bis 11, bei dem der erste und zweite Wechselstrom mit einer Frequenz im Bereich von 10 kHz bis 200 kHz erzeugt werden. 12. The method according to any one of claims 8 to 11, wherein the first and second alternating current having a frequency in the range of 10 kHz to 200 kHz are generated.
13. Verfahren gemäß einem der Ansprüche 8 bis 12, bei dem der erste und zweite Wechselstrom mit einer Spannungsamplitude von wenigstens 10 kV erzeugt werden. 13. The method according to any one of claims 8 to 12, wherein the first and second alternating current are generated with a voltage amplitude of at least 10 kV.
14. Verwendung einer Lagerstättenheizung (1) gemäß einem oder mehreren der Ansprüche 1 bis 7 zur Verringerung der Viskosität einer kohlenwasserstoffhaltigen Substanz, die in einem Erdreich (46) vorliegt. 14. Use of a deposit heater (1) according to one or more of claims 1 to 7 for reducing the viscosity of a hydrocarbonaceous substance present in a soil (46).
EP15794866.2A 2014-11-19 2015-11-06 Deposit heating Not-in-force EP3204596B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014223621.5A DE102014223621A1 (en) 2014-11-19 2014-11-19 deposit Heating
PCT/EP2015/075915 WO2016078934A1 (en) 2014-11-19 2015-11-06 Deposit heater

Publications (2)

Publication Number Publication Date
EP3204596A1 true EP3204596A1 (en) 2017-08-16
EP3204596B1 EP3204596B1 (en) 2018-12-26

Family

ID=54545102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15794866.2A Not-in-force EP3204596B1 (en) 2014-11-19 2015-11-06 Deposit heating

Country Status (6)

Country Link
US (1) US20170328175A1 (en)
EP (1) EP3204596B1 (en)
CA (1) CA2968147C (en)
DE (1) DE102014223621A1 (en)
RU (1) RU2673091C1 (en)
WO (1) WO2016078934A1 (en)

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3388324A (en) * 1965-09-23 1968-06-11 Schlumberger Technology Corp Electrode array methods and apparatus, with undesired induced voltage cancellation, for investigating earth formations
DE2615204A1 (en) * 1976-04-08 1977-10-27 Still Gmbh CIRCUIT FOR THE USEFUL BRAKING OF A DIFFERENTIAL SERIES MOTOR
CA1095400A (en) * 1976-05-03 1981-02-10 Howard J. Rowland In situ processing of organic ore bodies
US4275310A (en) * 1980-02-27 1981-06-23 Summers William A Peak power generation
US4651019A (en) * 1984-11-16 1987-03-17 Pennsylvania Power & Light Company Dual fueled thermoelectric generator
US4608619A (en) * 1985-03-18 1986-08-26 General Motors Corporation Ground fault voltage limiting for a locomotive electric traction motor
US5065819A (en) * 1990-03-09 1991-11-19 Kai Technologies Electromagnetic apparatus and method for in situ heating and recovery of organic and inorganic materials
US5939800A (en) * 1998-02-11 1999-08-17 Alliedsignal Inc. Aircraft electrical power system including air conditioning system generator
US6124646A (en) * 1998-02-11 2000-09-26 Alliedsignal Inc. Aircraft air conditioning system including electric generator for providing AC power having limited frequency range
US7633172B2 (en) * 2003-06-06 2009-12-15 Pentadyne Power Corporation Three plus three phase flywheel power supply
US7109622B2 (en) * 2003-06-06 2006-09-19 Pentadyne Power Corporation Flywheel system with synchronous reluctance and permanent magnet generators
US8030787B2 (en) * 2003-06-06 2011-10-04 Beaver Aerospace And Defense, Inc. Mbackup flywheel power supply
US7126236B2 (en) * 2005-03-15 2006-10-24 General Electric Company Methods and apparatus for pitch control power conversion
US7484561B2 (en) * 2006-02-21 2009-02-03 Pyrophase, Inc. Electro thermal in situ energy storage for intermittent energy sources to recover fuel from hydro carbonaceous earth formations
EP2100004A4 (en) * 2006-04-21 2015-10-21 Shell Int Research High strength alloys
DE102007040606B3 (en) * 2007-08-27 2009-02-26 Siemens Ag Method and device for the in situ production of bitumen or heavy oil
DE102007008292B4 (en) * 2007-02-16 2009-08-13 Siemens Ag Apparatus and method for recovering a hydrocarbonaceous substance while reducing its viscosity from an underground deposit
GB2449651A (en) * 2007-05-29 2008-12-03 Ultra Electronics Ltd Power control system to reduce imbalances
DE102007036832B4 (en) * 2007-08-03 2009-08-20 Siemens Ag Apparatus for the in situ recovery of a hydrocarbonaceous substance
DE102008022176A1 (en) * 2007-08-27 2009-11-12 Siemens Aktiengesellschaft Device for "in situ" production of bitumen or heavy oil
US7687927B2 (en) * 2007-11-21 2010-03-30 The Boeing Company Electrical systems architecture for an aircraft, and related operating methods
DE102008062326A1 (en) * 2008-03-06 2009-09-17 Siemens Aktiengesellschaft Arrangement for inductive heating of oil sands and heavy oil deposits by means of live conductors
EP2283208A1 (en) * 2008-05-05 2011-02-16 Siemens Aktiengesellschaft Method and device for in-situ conveying of bitumen or very heavy oil
US20090278408A1 (en) * 2008-05-06 2009-11-12 Cioffi Alfonso J Integrated dc power system with one or more fuel cells
DE102008044955A1 (en) * 2008-08-29 2010-03-04 Siemens Aktiengesellschaft Method and apparatus for "in situ" production of bitumen or heavy oil
DE102008044953A1 (en) * 2008-08-29 2010-03-04 Siemens Aktiengesellschaft Plant for the in situ recovery of a carbonaceous substance
CA2738804A1 (en) * 2008-10-13 2010-04-22 Shell Internationale Research Maatschappij B.V. Circulated heated transfer fluid heating of subsurface hydrocarbon formations
FR2948990A1 (en) * 2009-08-04 2011-02-11 Mobile Comfort Holding MODULAR MULTI-ENERGY THERMODYNAMIC DEVICE
US9422922B2 (en) * 2009-08-28 2016-08-23 Robert Sant'Anselmo Systems, methods, and devices including modular, fixed and transportable structures incorporating solar and wind generation technologies for production of electricity
DE102010008779B4 (en) * 2010-02-22 2012-10-04 Siemens Aktiengesellschaft Apparatus and method for recovering, in particular recovering, a carbonaceous substance from a subterranean deposit
DE102010020154B4 (en) * 2010-03-03 2014-08-21 Siemens Aktiengesellschaft Method and apparatus for "in situ" production of bitumen or heavy oil
RU98042U1 (en) * 2010-04-15 2010-09-27 Общество с ограниченной ответственностью "Научно-Производственное Предприятие "МАГНИТРОН" INSTALLATION FOR POWER SUPPLY OF SUBMERSIBLE ELECTRIC MOTOR AND / OR HEATING OF WELL LINE
US9097182B2 (en) * 2010-08-05 2015-08-04 General Electric Company Thermal control system for fault detection and mitigation within a power generation system
US8789599B2 (en) * 2010-09-20 2014-07-29 Harris Corporation Radio frequency heat applicator for increased heavy oil recovery
DE102010043529B4 (en) * 2010-09-27 2013-01-31 Siemens Aktiengesellschaft Apparatus and method for using the apparatus for "in situ" production of bitumen or heavy oil from oil sands deposits
US8453739B2 (en) * 2010-11-19 2013-06-04 Harris Corporation Triaxial linear induction antenna array for increased heavy oil recovery
US8701760B2 (en) * 2011-06-17 2014-04-22 Harris Corporation Electromagnetic heat treatment providing enhanced oil recovery
US20140005844A1 (en) * 2011-09-07 2014-01-02 Eric William Newcomb System, method and apparatus providing power generation and demand management using a thermal hydraulic generator
DE102012000092B4 (en) * 2012-02-24 2014-08-21 Siemens Aktiengesellschaft Apparatus and method for recovering carbonaceous substances from oil sands
US9157303B2 (en) * 2012-02-01 2015-10-13 Harris Corporation Hydrocarbon resource heating apparatus including upper and lower wellbore RF radiators and related methods
DE102012014658B4 (en) * 2012-07-24 2014-08-21 Siemens Aktiengesellschaft Apparatus and method for recovering carbonaceous substances from oil sands
US9513648B2 (en) * 2012-07-31 2016-12-06 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
DE102012223559A1 (en) * 2012-09-28 2014-05-15 Siemens Aktiengesellschaft Inductor for heating heavy oil and oil sand deposits
CA2893876A1 (en) * 2012-12-06 2014-06-12 Wintershall Holding GmbH Arrangement and method for introducing heat into a geological formation by means of electromagnetic induction
RU2659628C1 (en) * 2014-02-03 2018-07-03 ДЭНИЕЛ МЕЖЕМЕНТ энд КОНТРОЛ, ИНК. Safety valve with position indication
RU2741790C2 (en) * 2014-06-11 2021-01-28 Эйсетор Глоубал Текнолоджиз ЛЛС Overvoltage limitation system for medium and high voltage
EP3202006A1 (en) * 2014-10-03 2017-08-09 Pillar USA, Inc. Uninterrupted power supply systems and method for the operation thereof

Also Published As

Publication number Publication date
US20170328175A1 (en) 2017-11-16
RU2673091C1 (en) 2018-11-22
WO2016078934A1 (en) 2016-05-26
CA2968147A1 (en) 2016-05-26
DE102014223621A1 (en) 2016-05-19
CA2968147C (en) 2018-09-25
EP3204596B1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
WO2009027305A2 (en) Apparatus for in situ extraction of bitumen or very heavy oil
DE102008044955A1 (en) Method and apparatus for "in situ" production of bitumen or heavy oil
DE102008044953A1 (en) Plant for the in situ recovery of a carbonaceous substance
EP2925956B1 (en) Shielded multi-pair arrangement as supply line to an inductive heating loop in heavy oil deposits
EP2283208A1 (en) Method and device for in-situ conveying of bitumen or very heavy oil
DE102008056257A1 (en) Method and device for heating a pipeline
DE102010020154B4 (en) Method and apparatus for "in situ" production of bitumen or heavy oil
DE102012223559A1 (en) Inductor for heating heavy oil and oil sand deposits
EP3204596B1 (en) Deposit heating
EP2633153A1 (en) Process for the in situ extraction of bitumen or ultraheavy oil from oil sand deposits as reservoir
DE102010043529B4 (en) Apparatus and method for using the apparatus for "in situ" production of bitumen or heavy oil from oil sands deposits
WO2016198212A1 (en) Heating device for inductively heating a hydrocarbon deposit and comprising a filter element, an arrangement, and a method
WO2012038424A2 (en) Apparatus for heating the ground
EP3005831B1 (en) Inductor for induction heating
DE102013008216A1 (en) Method for introducing steam and / or hot water into an oil reservoir
WO2016198208A1 (en) Heating device for inductively heating a hydrocarbon deposit and comprising conductor devices connected in series, an arrangement, and a method
WO2015090646A1 (en) Method for introducing an inductor loop into a rock formation
DE102015215463A1 (en) Heating device for inductive heating of an oil sands deposit and / or an oil shale deposit and / or a bitumen deposit and / or a heavy oil deposit
WO2016173962A1 (en) Heating device for inductively heating a hydrocarbon deposit
DE102015208110A1 (en) Heating device for inductive heating of a hydrocarbon reservoir
DE102014225705A1 (en) Heating device for inductive heating of an oil sands deposit and / or an oil shale deposit and / or a bitumen deposit and / or a heavy oil deposit
WO2015090649A1 (en) Method for inserting an inductor loop into a rock formation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180704

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1081682

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015007470

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190326

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190426

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015007470

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015007470

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191106

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151106

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1081682

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226