EP2633153A1 - Process for the in situ extraction of bitumen or ultraheavy oil from oil sand deposits as reservoir - Google Patents

Process for the in situ extraction of bitumen or ultraheavy oil from oil sand deposits as reservoir

Info

Publication number
EP2633153A1
EP2633153A1 EP11770719.0A EP11770719A EP2633153A1 EP 2633153 A1 EP2633153 A1 EP 2633153A1 EP 11770719 A EP11770719 A EP 11770719A EP 2633153 A1 EP2633153 A1 EP 2633153A1
Authority
EP
European Patent Office
Prior art keywords
reservoir
conductor
fluid
bitumen
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11770719.0A
Other languages
German (de)
French (fr)
Other versions
EP2633153B1 (en
Inventor
Dirk Diehl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2633153A1 publication Critical patent/EP2633153A1/en
Application granted granted Critical
Publication of EP2633153B1 publication Critical patent/EP2633153B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/001Cooling arrangements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/006Combined heating and pumping means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/04Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimising the spacing of wells
    • E21B43/305Specific pattern of wells, e.g. optimising the spacing of wells comprising at least one inclined or horizontal well

Definitions

  • the present invention relates to a method of "in situ" production of bitumen or heavy oil from oil sands deposits as a reservoir.
  • the reservoir is inductively heated via at least one electrical current-carrying conductor to achieve a reduction in the viscosity of the bitumen or heavy oil.
  • a fluid is introduced into the reservoir via the perforation in the fluid guide via at least one perforated fluid guide which surrounds or comprises the at least one conductor at least in sections.
  • in-situ For the extraction of hydrocarbons such as heavy oils or bitumen from storage sites with oil sands or oil shale deposits, hereinafter referred to as reservoir, open pit methods or “in-situ” methods can be used.
  • An "in-situ” Me ⁇ Thode is the SAGD (Steam Assisted Gravity Drainage) method.
  • SAGD Steam Assisted Gravity Drainage
  • water vapor is introduced through a tube under high pressure into the soil through a pipe running horizontally within the reservoir.
  • the steam heats the heavy oil or bitumen in the reservoir, making it flowable.
  • the heated, flowable heavy oil or bitumen seeps over gravity to a second, for example, about 5 m deeper pipe through which it is pumped or promoted.
  • the reservoir can be heated inductively, for example by an insulated, current-carrying conductor loop, which induces currents in the environment of the reservoir in its environment.
  • the induced currents are mainly carried by the ionic conductivity in liquids.
  • the amount of magnetic flux density around the conductor of the conductor loop decreases approximately inversely proportional to the distance to the conductor. With homogeneous electrical conductivity of the surrounding soil this leads approximately a decrease in the heating power density around the conductor.
  • the heating power density around the conductor is inversely proportional to the square of the distance from the conductor. Thus, the highest heating power occurs in the immediate ⁇ Barer environment for insulated conductors tung dense on.
  • the conductor for inductive heating of the reservoir which is also called inductor and is known for example from DE 102007040605 B3, consists of a number of materials. Ins ⁇ special use pensation in the conductor dielectrics for capacitive com- to keep electrical losses in the conductor itself as low as possible.
  • insulating material for insulating the electrically conductive material, in particular with respect to the surrounding soil, insulating material is used, which consists for example of PFA, PTFE and / or PEEK or includes this or contains.
  • the dielectric and the insulating material are usually thermally stable up to a maximum of 150 ° C, even over long periods such as hours, days, months and years away.
  • Object of the present invention is therefore to provide a method in which the temperature of a conductor for inductive heating of the soil of a reservoir does not exceed a critical value.
  • the inventive method for "in situ" promotion of bitumen or heavy oil from oil sands reservoirs as a reservoir that the reservoir is inductively heated via at least one electric current-carrying conductor to reduce the viscosity of the bitumen or heavy oil, and that at least one perforated fluid guide which at least partially surrounds or comprises the at least one conductor, a fluid is introduced into the reservoir via the Perforie ⁇ tion in the fluid guide.
  • the fluid reduces electrical conductivity in the reservoir, at least in the vicinity of the fluid guide and / or the conductor.
  • That the conductor and the fluid guide themselves are arranged adjacent and eg are surrounded is include to the conductor at least in sections, among other ⁇ rem to understand which has the same and / or the same perforation as the fluid guide by a common insulation against the ground, or is at least partially permeable to fluids.
  • water of low conductivity as the conductivity of water in the reservoir, can be introduced into the reservoir.
  • the amount of water introduced and / or its conductivity should be determined depending on the value at which the temperature T L is to be limited, and in particular depending on the current / voltage used for induction through the conductor.
  • gas can be introduced into the reservoir as fluid.
  • air is particularly kos ⁇ -effectively and easy to use as a gas.
  • carbon dioxide and / or nitrogen may also be used as the gas, or the gas may comprise carbon dioxide and / or nitrogen.
  • a solution of chemical substances in the reservoir can be introduced, the chemical substances react to a sparingly soluble salt in the reservoir and thereby lead to precipitation of ions in the reservoir. It is advantageous if a chemical analysis is carried out before introducing the solution into the reservoir.
  • At least one fluid, in particular water, may be used from the reservoir to determine ions in the fluid withdrawn from the reservoir and to select the chemicals in the solution depending on the particular ions. Concentration determinations can also help to create the correct composition of the solution, with which the temperature of the direct environment of the conductor and thus of the conductor can be kept at a predetermined value or below a limit even with a certain energization of the conductors.
  • the concentration and type of ions in the solution should cause the solution to precipitate ions in the reservoir, for example in the form of a sparingly soluble salt, and thus the total ion concentration of the freely mobile, charged and thus inductively via the current is passed through conductor movable ions is reduced to a value which leads to a predetermined temperature and temperature T L in its direct environment with a predetermined structure and energization of the conductor.
  • T L a predetermined temperature and temperature
  • the temperature T in the direct or indirect environment of the conductor and / or the fluid guide can be limited to a maximum value, in particular to a value less than 150 ° C.
  • a previously described fluid introduction into the reservoir or a combination of the types of fluid introduction described above can be used.
  • the temperature can be limited to a maximum value at which components of a device for "in situ" extraction of bitumen or heavy oil from oil sands deposits as a reservoir, in particular insulating materials of the conductor, dielectrics Zvi ⁇ rule conductor components and / or materials of the fluid guide, are temperature stable.
  • materials such as dielectrics and insulating materials, such as PFA, PTFE and / or PEEK are usually thermally stable and will not be thermally damaged over time. This avoids damage to the conductor caused by high temperatures in its direct environment by keeping the temperatures below a limit.
  • the fluid can reduce the electrical conductivity in the vicinity of the fluid guide, in particular in the region of 3 m around the fluid guide. This may be sufficient to reduce the heat transported through the environment by thermal conductivity to the conductor so as to prevent that the temperature T L of the conductor does not exceed a critical limit for inductive heating of the conductor environment.
  • the electrical conductor may be of an alternating current with a current in the range of more than 100 A, in particular 270 A, and / or with a frequency in the range of 10 kHz to 100 kHz, in particular 75 kHz, are flowed through, whereby in particular the soil of the reservoir in the vicinity of the electrical conductor is heated by induced currents in the ground.
  • a heating power in the range of several MW can be generated at voltages across the electrical conductor in the range of greater than 10 KV.
  • Other values are possible, in particular depending on the design of the conductor, the nature of the soil, the heavy oil or bitumen to be transported and other parameters involved in oil production via inductive heating.
  • FIG. 1 shows a section through an oil sand reservoir 100 with injection 101 and delivery pipe 102
  • FIG. 2 shows a perspective detail of an oil sand reservoir 1 with an electrical conductor loop 2 running horizontally in the reservoir
  • FIG. 3 shows a perforated, tubular conductor 3 with integrated capacitors and a device for the introduction of electrolytes.
  • an oil sand deposit designated as a reservoir 100 is shown, wherein for the further Be ⁇ tions always a cuboid unit 1 with the length 1, the width w and the height h is taken out.
  • the length 1 may for example be up to some 500 m, the width w 60 to 100 m and the height h about 20 to 100 m. It has to be taken into account that starting from the earth's surface E there can be an overburden of thickness s up to 500 m.
  • the reservoir is an in etechnischsrohr 101 available for steam or water / steam mixture, and a delivery pipe 102 for the liquefied bitumen or oil according to figure 1 in ⁇ be known manner in the oil sand reservoir.
  • FIG. 2 shows a known arrangement for inductive heating.
  • This can be gebil ⁇ det by a long, ie some 100 m to 1.5 km, laid in the ground conductor loop 10 to 20, wherein the forward conductor 10 and return conductor 20 side by side, ie at the same depth, are guided and at the end via an element 15 within or partially outside the reservoir 100 are interconnected.
  • the conductors 10 and 20 are led down vertically or at a shallow angle and are powered by an RF generator 60 which may be housed in an external housing.
  • the conductors 10 and 20 extend at the same depth next to each other, but possibly also one above the other.
  • Typical distances between the return and return conductors 10, 20 are 5 to 60 m with an outer diameter of the conductors of 10 to 50 cm.
  • An electrical double line 10, 20 in Figure 2 with the aforementioned typical dimensions has a Lekssinduktriossbelag of 1.0 to 2.7 ⁇ / m.
  • the Querkapazi- tucissbelag lies with the mentioned dimensions of only 10 to 100 pF / m, so that the capacitive parallel-path currents can be neglected first ver ⁇ . In this wave effects are avoided to ver ⁇ .
  • the shaft speed is determined by the capacity and inductance coating of the conductor arrangement given.
  • the cha ⁇ istic frequency of the arrangement is due to the loop length and the wave propagation velocity ent ⁇ long the arrangement of the double line 10, 20.
  • the loop length should therefore be selected so short that there are no troublefree ⁇ Governing ripple effects here.
  • the required current amplitude for 1 kW / m falls quadratically with the excitation frequency, ie at 100 kHz the current amplitudes fall to 1/4 of the above values.
  • the inductive voltage drop is about 300 V / m.
  • the line inductance L is compensated in sections by discrete or continuous series capacitances C. Is individuality in the integrated in the line compensation, the frequency of the RF line generator must be tuned to the Re ⁇ sonanzfrequenz the current loop. This means that the double line 10, 20 can be operated expediently for heating purposes, ie with high current amplitudes, only at this frequency. As a result, an addition of the inductive voltages along the line is prevented.
  • the dielectric of the capacitor C high temperature resistance, in addition to a ho ⁇ hen dielectric strength continues to demand, as the leader, is in the inductively heated reservoir 100, which can reach a temperature of eg 250 ° C and the resistive losses in the conductors 10 , 20 can lead to further heating of the electrodes.
  • the requirements for the dielectric 33 are met by a large number of capacitor ceramics.
  • the group of aluminum silicates, ie porcelains have temperature resistances of several 100 ° C. and electrical breakdown strengths of> 20 kV / mm at perivivities of 6.
  • the above cylinder capacitors can be realized with the required capacity and have a length of, for example, 1 to 2 m.
  • the entire electrode is already surrounded by insulation.
  • the insulation against the surrounding soil is necessary to prevent resistive currents through the soil between the adjacent sections, in particular in the region of the capacitors.
  • the insulation also prevents the resistive current flow between the return conductor and the return conductor.
  • the requirements with respect to the dielectric strength to the insulation are compared to the uncompensated line of> 100 kV dropped in the above example, slightly above 3 kV and thus meet by a variety of insulating materials.
  • the insulation must withstand higher temperatures permanently, which in turn offers ceramic insulating materials.
  • the insulation layer thickness must not be too low ⁇ chosen, otherwise capacitive leakage currents could flow into the surrounding soil. Insulation thickness greater z. B. 2 mm are sufficient in the above embodiment.
  • the parallel connection of the capacitors can be used to increase the capacitance or to increase its dielectric strength.
  • partial introduction of electrolytes into the ground can be carried out for a targeted increase in the heating effect.
  • water or an electrically conductive aqueous salt solution or other electrolytes can be introduced into the reservoir in order to increase the conductivity of the reservoir.
  • the introduced water can be used to cool the conductor. If the outlet openings are replaced by valves, the change in conductivity can take place temporally and spatially in sections.
  • Increasing the conductivity serves to increase the inductive heating effect without having to increase the current amplitude in the conductors.
  • the longitudinal inductance is compensated by means of predominantly concentrated transverse capacitances.
  • the capacitance coating can be a two-wire line such.
  • the inner and outer conductors are alternately interrupted at equal intervals, thus forcing the flow of current through the distributed transverse capacitances.
  • the advantage of the distributed capacitances lies in a reduced requirement for the dielectric strength of the dielectric.
  • a compensated electrode with distributed capacitances in combination with a device for electrolyte introduction can be used.
  • a heating effect is undesirable:
  • Hinleiter 10 and return conductor 20 in placed at a small distance of, for example, 1 to 3 m, whereby their magnetic fields already compensate at a smaller distance from the double line and the inductive heating effect is reduced accordingly.
  • conductors 10 and return conductors 20 may be surrounded by a shield of high conductivity material surrounding both conductors to prevent inductive heating of the surrounding soil of the cover structure.
  • a coaxial conductor arrangement in vertical section and return conductors is conceivable that results in a perfect cancellation of the magnetic fields in the outer region and thus no inductive heating of the surroundi ⁇ constricting soil.
  • the increased cross-capacitance coating can be used to implement a gyrator, which converts a voltage of a voltage impressing converter into an alternating current according to the prior art, with help.
  • the power generator 60 in FIG. 2 is designed as a high-frequency generator. It can generate power up to 2500 kW. Typically, frequencies between 5 and 20 kHz are used. However, higher frequencies can also be used.
  • the power generator 60 is three-phase and advantageously includes a transformer coupling and power semiconductors as components. Insbesonde ⁇ re, the circuit includes a voltage-inverter. A current injection with load-independent basic Oscillation, which is adjustable by means of filter components, results in this case with a suitable choice of Anpassvierpols. Depending on the topology of the quadripole, a different current load of the feeding inverter results.
  • a single-phase generator can also be used.
  • Such generators with, for example, 440 KW at 50 KHz are commercially available.
  • a targeted increase in the heating effect can be achieved by introducing electrolyte into the ground. It can be ⁇ be introduced, for example water or an electrically conductive aqueous saline or other electrolytes in the reservoir to raised stabili ⁇ hen the conductivity of the reservoir.
  • the heating power in the immediate vicinity of the conductor 3 can be reduced.
  • the conductivity ⁇ speed in the area for example, up to 3 m around the conductor 3 around lowered.
  • the decrease in conductivity is particular ⁇ DERS strong in the immediate vicinity of the conductor 3, where most of the heating occurs by induction.
  • the induced ion currents in the soil around the conductor 3 are reduced by the fluid or the reduction of the conductivity in the ground.
  • more distant regions of the conductor 3, where the heating power by induction is lower there is less, if any, reduction in conductivity by the fluid.
  • this is also introduced in more remote areas of the soil by, for example, diffusion, depending ⁇ but to a much lesser extent than in the immediate vicinity of the conductor 3 around.
  • the lower heating power which in more remote from the conductor 3 areas of
  • Soil occurs, not reduced or only geringmos ⁇ gig reduced.
  • the conductivity decreasing with the distance from the conductor 3, the conductivity, so that the induced heating power and thus the heating is reduced.
  • the lower amount of heat in the vicinity of the conductor 3 leads to a lower heat conduction to the conductor 3 and thus to a lower heating of the conductor 3 itself.
  • the temperature T L of the conductor 3 can thus be limited to a maximum value at which the individual materials of the conductor 3 are not thermally damaged and are long-term stable.
  • the heating power in the vicinity of the electrical conductor 3 is made uniform.
  • the conductivity is at high field strengths indu ⁇ ed reduced by the conductor 3 around by reducing the conductivity of the heating power, while further away do not or only slightly altered is changed and thus the heating power remains substantially the same.
  • the conductor 3 With the same electrical power for the induction via the conductor 3, the conductor 3 is heated less strongly, with the advantages described above. As a result, the power can be further increased as long as the critical temperature value at the conductor 3 is not reached, in which materials such as insulation or dielectric are damaged.
  • the invention is not limited to the above-described exporting ⁇ approximately example of the method. Combinations of prior art methods with the method according to the invention are also possible.
  • a temporally successive introduction of electrolyte to increase the conductivity, followed by an introduction of fluid to reduce the conductivity in the vicinity of the conductor 3 is possible.
  • 3 heavy oil or bitumen can be liquefied more remote from the line 3 and thus promoted at higher power without damaging the line.
  • a repeated, alternating introduction of electrolyte to increase the conductivity and of fluid to reduce the conductivity is possible. This can temporarily a Cooling of the line 3 can be achieved.
  • a pulsewise, repeated introduction of only fluid to reduce the conductivity is possible.
  • Em introduction of electrolyte to increase the conductivity followed by an introduction of fluid to reduce the conductivity in the vicinity of the conductor 3 may also be advantageous if in distant areas of the conductor 3 good promotion of heavy oil or bitumen achieved who should.
  • the electrolyte can be introduced to increase the conductivity in more remote areas, for example by high pressure and / or diffusion, and in the immediate vicinity of the conductor 3, the subsequently introduced fluid to reduce the conductivity displace the electrolyte to increase the conductivity.
  • the induced heating power is increased in more remote areas, while in the immediate vicinity of the conductor 3 and the conductor 3 itself, the heating is reduced.
  • a liquid electrolyte conducts heat better than, for example, a gas.
  • the lower In ⁇ production can be compensated away from the conductor by a better conductivity and immediately in the vicinity of the conductor 3, a gas z lead to a reduced heat transfer to the conductor 3 out.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Induction Heating (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Road Paving Machines (AREA)

Abstract

The present invention relates to a process for the in situ extraction of bitumen or ultraheavy oil from oil sand deposits (100) as reservoir (1). The reservoir (1) is inductively heated by means of at least one electrical current-passing conductor (3) in order to achieve a reduction in the viscosity of the bitumen or ultraheavy oil. At least one perforated fluid guide (30), which surrounds or encloses the at least one conductor (3) at least in certain portions, is used to introduce a fluid (45) into the reservoir (1) via the perforation in the fluid guide (30). The fluid (45) reduces an electrical conductivity in the reservoir (1), at least in the surroundings of the fluid guide (30).

Description

Beschreibung description
Verfahren zur "in situ"-Förderung von Bitumen oder Schwerstöl aus Ölsand-Lagerstätten als Reservoir Process for "in situ" production of bitumen or heavy oil from oil sands deposits as a reservoir
Die vorliegende Erfindung bezieht sich auf ein Verfahren zur "in situ"-Förderung von Bitumen oder Schwerstöl aus Ölsand- Lagerstätten als Reservoir. Das Reservoir wird induktiv über wenigstens einen elektrischen stromdurchflossenen Leiter erwärmt, um eine Verringerung der Viskosität des Bitumens oder Schwerstöls zu erreichen. Über wenigstens eine perforierte Fluidführung, welche den wenigstens einen Leiter zumindest abschnittsweise umgibt oder umfasst, wird ein Fluid in das Reservoir über die Perforierung in der Fluidführung eingeführt . The present invention relates to a method of "in situ" production of bitumen or heavy oil from oil sands deposits as a reservoir. The reservoir is inductively heated via at least one electrical current-carrying conductor to achieve a reduction in the viscosity of the bitumen or heavy oil. A fluid is introduced into the reservoir via the perforation in the fluid guide via at least one perforated fluid guide which surrounds or comprises the at least one conductor at least in sections.
Zur Förderung von Kohlenwasserstoffen wie z.B. Schwerölen oder Bitumen aus Lagerstellen mit Ölsand- oder Ölschiefervorkommen, im Weiteren Reservoir genannt, können Tagebaumethoden oder "in-situ" Methoden verwendet werden. Eine "in-situ" Me¬ thode ist das SAGD(Steam Assisted Gravity Drainage ) -Verfahren. Dabei wird über ein Rohr Wasserdampf unter hohem Druck in das Erdreich durch ein innerhalb des Reservoirs horizontal verlaufendes Rohr eingebracht. Der Wasserdampf erwärmt das Schweröl oder Bitumen im Reservoir, wobei es fließfähig wird. Das erhitzte, fließfähige Schwerstöl oder Bitumen sickert über Gravität zu einem zweiten, z.B. etwa 5 m tiefer angeordneten Rohr, durch welches es abgepumpt bzw. gefördert wird. For the extraction of hydrocarbons such as heavy oils or bitumen from storage sites with oil sands or oil shale deposits, hereinafter referred to as reservoir, open pit methods or "in-situ" methods can be used. An "in-situ" Me ¬ Thode is the SAGD (Steam Assisted Gravity Drainage) method. In this case, water vapor is introduced through a tube under high pressure into the soil through a pipe running horizontally within the reservoir. The steam heats the heavy oil or bitumen in the reservoir, making it flowable. The heated, flowable heavy oil or bitumen seeps over gravity to a second, for example, about 5 m deeper pipe through which it is pumped or promoted.
Alternativ oder unterstützend kann das Reservoir induktiv erwärmt werden, z.B. durch eine isolierte, stromdurchflossene Leiterschleife, welche in ihrer Umgebung Ströme im Erdreich des Reservoirs induziert. Die induzierten Ströme werden vor allem von der Ionenleitfähigkeit in Flüssigkeiten getragen. Der Betrag der magnetischen Flussdichte um den Leiter der Leiterschleife nimmt nährungsweise umgekehrt proportional mit dem Abstand zum Leiter ab. Bei homogener elektrischer Leitfähigkeit des umliegenden Erdreichs führt dies näherungsweise zu einer Abnahme der Heizleistungsdichte um den Leiter. Die Heizleistungsdichte um den Leiter ist umgekehrt proportional zum Quadrat des Abstands vom Leiter. Somit tritt in unmittel¬ barer Umgebung zum isolierten Leiter die höchste Heizleis- tungsdichte auf. Dies führt zunächst zu einer starken Erwär¬ mung des Erdreichs in unmittelbarer Umgebung vom Leiter, was durch Wärmeleitung auch zu einer entsprechend hohen Temperatur TL des Leiters selbst führt. Dies erfolgt sogar, wenn die ohmschen Verluste im Leiter selbst sehr klein sind. Alternatively or supportively, the reservoir can be heated inductively, for example by an insulated, current-carrying conductor loop, which induces currents in the environment of the reservoir in its environment. The induced currents are mainly carried by the ionic conductivity in liquids. The amount of magnetic flux density around the conductor of the conductor loop decreases approximately inversely proportional to the distance to the conductor. With homogeneous electrical conductivity of the surrounding soil this leads approximately a decrease in the heating power density around the conductor. The heating power density around the conductor is inversely proportional to the square of the distance from the conductor. Thus, the highest heating power occurs in the immediate ¬ Barer environment for insulated conductors tung dense on. This initially results in a strong Erwär ¬ tion of the soil in the immediate vicinity of conductors, leading by conduction and to a correspondingly high temperature T L of the conductor itself. This happens even if the ohmic losses in the conductor itself are very small.
Der Leiter zur induktiven Erwärmung des Reservoirs, welcher auch Induktor genannt wird und z.B. aus der DE 102007040605 B3 bekannt ist, besteht aus einer Reihe von Materialien. Ins¬ besondere werden im Leiter Dielektrika zur kapazitiven Kom- pensation verwendet, um elektrische Verluste im Leiter selbst so gering wie möglich zu halten. Zur Isolation des elektrisch leitfähigen Materials, insbesondere gegenüber dem umliegenden Erdreich, wird Isolationsmaterial verwendet, welches z.B. aus PFA, PTFE und/oder PEEK besteht oder dieses umfasst bzw. ent- hält. Das Dielektrikum und das Isolationsmaterial sind in der Regel bis maximal 150°C thermisch stabil, auch über längere Zeiten wie Stunden, Tage, Monate und Jahre hinweg. The conductor for inductive heating of the reservoir, which is also called inductor and is known for example from DE 102007040605 B3, consists of a number of materials. Ins ¬ special use pensation in the conductor dielectrics for capacitive com- to keep electrical losses in the conductor itself as low as possible. For insulating the electrically conductive material, in particular with respect to the surrounding soil, insulating material is used, which consists for example of PFA, PTFE and / or PEEK or includes this or contains. The dielectric and the insulating material are usually thermally stable up to a maximum of 150 ° C, even over long periods such as hours, days, months and years away.
Um über längere Zeiträume hinweg zuverlässig Schwerstöl und/oder Bitumen fördern zu können, mit Unterstützung durch induktive Erwärmung des Reservoirs über wenigstens eine Lei¬ terschleife mit isoliertem elektrischem Leiter, muss die Temperatur des Leiters unterhalb einer kritischen Temperatur von z.B. 150°C gehalten werden. Nur so kann sichergestellt wer- den, dass die Isolation und das Dielektrikum zeitlich thermisch stabil sind und der Leiter nicht durch hohe Temperatu¬ ren beschädigt wird. Dies ist gerade in Hinblick auf die ho¬ hen elektrischen Spannungen von größer 10 kV und Heizleistungen im Bereich von MW schwierig. To heavy oil to promote bitumen and / or the temperature of the conductor to be kept below a critical temperature of eg 150 ° C for extended periods reliably supported by inductive heating of the reservoir via at least one Lei ¬ terschleife insulated electric conductors must. The only way to ensure the advertising that the insulation and dielectric are thermally stable over time and the circuit will not be damaged by high tempera ¬ ren. This is difficult, especially with regard to the high electrical voltages of greater than 10 kV and heat outputs in the range of MW.
Aufgabe der vorliegenden Erfindung ist es deshalb, ein Verfahren anzugeben, bei welchem die Temperatur eines Leiters zur induktiven Erwärmung des Erdreichs eines Reservoirs einen kritischen Wert nicht übersteigt. Object of the present invention is therefore to provide a method in which the temperature of a conductor for inductive heating of the soil of a reservoir does not exceed a critical value.
Die angegebene Aufgabe wird bezüglich des Verfahrnes zur "in situ"-Förderung von Bitumen oder Schwerstöl aus Ölsand-Lager- stätten als Reservoir mit den Merkmalen des Anspruchs 1 ge- löst . The stated object is achieved with respect to the method for the "in situ" production of bitumen or heavy oil from oil sands deposits as a reservoir having the features of claim 1.
Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens zur "in situ"-Förderung von Bitumen oder Schwerstöl aus Öl- sand-Lagerstätten als Reservoir gehen aus den zugeordneten abhängigen Unteransprüchen hervor. Dabei können die Merkmale des Hauptanspruchs mit Merkmalen der Unteransprüche und Merk¬ male der Unteransprüche untereinander kombiniert werden. Advantageous embodiments of the inventive method for "in situ" promotion of bitumen or heavy oil from oil sand deposits as a reservoir are apparent from the associated dependent claims. The features of the main claim with the features of the dependent claims and notices can ¬ male of the dependent claims with each other are combined.
Das erfindungsgemäße Verfahren zur "in situ"-Förderung von Bitumen oder Schwerstöl aus Ölsand-Lagerstätten als Reservoir umfasst, dass das Reservoir induktiv über wenigstens einen elektrischen stromdurchflossenen Leiter zur Verringerung der Viskosität des Bitumens oder Schwerstöls erwärmt wird, und dass über wenigstens eine perforierte Fluidführung, welche den wenigstens einen Leiter zumindest abschnittsweise umgibt oder umfasst, ein Fluid in das Reservoir über die Perforie¬ rung in der Fluidführung eingeführt wird. Das Fluid verringert eine elektrische Leitfähigkeit im Reservoir, zumindest in der Umgebung der Fluidführung und/oder des Leiters. Mit den Leiter zumindest abschnittsweise umfassen ist unter ande¬ rem zu verstehen, dass der Leiter und die Fluidführung selbst benachbart angeordnet sind und z.B. umgeben sind von einer gemeinsamen Isolierung gegenüber dem Erdreich, welche die gleiche und/oder die selbe Perforierung wie die Fluidführung aufweist oder für Fluide zumindest partiell durchlässig ist. The inventive method for "in situ" promotion of bitumen or heavy oil from oil sands reservoirs as a reservoir, that the reservoir is inductively heated via at least one electric current-carrying conductor to reduce the viscosity of the bitumen or heavy oil, and that at least one perforated fluid guide which at least partially surrounds or comprises the at least one conductor, a fluid is introduced into the reservoir via the Perforie ¬ tion in the fluid guide. The fluid reduces electrical conductivity in the reservoir, at least in the vicinity of the fluid guide and / or the conductor. That the conductor and the fluid guide themselves are arranged adjacent and eg are surrounded is include to the conductor at least in sections, among other ¬ rem to understand which has the same and / or the same perforation as the fluid guide by a common insulation against the ground, or is at least partially permeable to fluids.
Durch Verringerung der elektrischen Leitfähigkeit in der Umgebung der Fluidführung wird der vom stromdurchflossenen Leiter induzierte Strom in der Umgebung der Fluidführung bzw. des Leiters reduziert. Dadurch wird die induktiv erzeugte Heizleistung in der Umgebung des Leiters bzw. der Fluidfüh- rung verringert und die Temperatur des Leiters bzw. der Flu- idführung, insbesondere durch Wärmeleitung von induktiv erzeugter Wärme in der unmittelbaren Umgebung, wird begrenzt. By reducing the electrical conductivity in the vicinity of the fluid guide, the current induced by the current-carrying conductor in the vicinity of the fluid guide or of the conductor is reduced. As a result, the inductively generated heating power in the vicinity of the conductor or the fluid guide Reduced and the temperature of the conductor or the Fluid idführung, in particular by heat conduction of inductively generated heat in the immediate vicinity, is limited.
Als Fluid kann Wasser mit einer geringen Leitfähigkeit, als die Leitfähigkeit von im Reservoir befindlichem Wasser, in das Reservoir eingeführt werden. Die Menge des eingeleiteten Wassers und/oder dessen Leitfähigkeit sollte abhängig von dem Wert bestimmt werden, auf welchen die Temperatur TL begrenzt werden soll, und insbesondere abhängig von der verwendeten Stromstärke/Spannung zur Induktion durch den Leiter. As the fluid, water of low conductivity, as the conductivity of water in the reservoir, can be introduced into the reservoir. The amount of water introduced and / or its conductivity should be determined depending on the value at which the temperature T L is to be limited, and in particular depending on the current / voltage used for induction through the conductor.
Alternativ oder zusätzlich kann als Fluid Gas in das Reservoir eingeführt werden. Dabei ist Luft als Gas besonders kos¬ tengünstig und einfach zu verwenden. Es kann aber auch als Gas Kohlendioxid und/oder Stickstoff verwendet werden oder das Gas kann Kohlendioxid und/oder Stickstoff umfassen. Alternatively or additionally, gas can be introduced into the reservoir as fluid. Here, air is particularly kos ¬-effectively and easy to use as a gas. However, carbon dioxide and / or nitrogen may also be used as the gas, or the gas may comprise carbon dioxide and / or nitrogen.
Als Fluid kann auch eine Lösung aus chemischen Substanzen in das Reservoir eingeführt werden, dessen chemische Substanzen zu einem schwerlöslichen Salz im Reservoir reagieren und dadurch zu einer Ausfällung von Ionen im Reservoir führen. Dabei ist es von Vorteil, wenn eine chemische Analyse vor dem Einführen der Lösung in das Reservoir erfolgt. Es kann wenigstens ein Fluid, insbesondere Wasser, aus dem Reservoir verwendet werden, um Ionen in dem aus dem Reservoir entnommenen Fluid zu bestimmen und abhängig von den bestimmten Ionen die chemischen Substanzen in der Lösung auszuwählen. Auch Konzentrationsbestimmungen können dazu beitragen die richtige Zusammensetzung der Lösung zu erstellen, mit welcher die Temperatur der direkten Umgebung des Leiters und damit des Leiters selbst bei einer bestimmten Bestromung der Leiter auf einen vorgegebenen Wert bzw. unterhalb eines Grenzwertes gehalten werden kann. Die Konzentration und Art der Ionen in der Lösung sollte dazu führen, dass mit der Lösung Ionen im Reservoir z.B. in Form eines schwerlöslichen Salzes ausgefällt werden, und so die Gesamtionenkonzentration der frei beweglichen, geladenen und somit induktiv über den Strom- durchflossenen Leiter bewegbaren Ionen auf einen Wert verringert wird, welcher bei vorgegebenem Aufbau und Bestromung des Leiters zu einer vorgegebenen Temperatur TL in seiner direkten Umgebung führt. Durch Verringerung der elektrischen Leitfähigkeit im Reservoir wird die induktive Erwärmung über den stromdurchflossenen Leiter verringert. As a fluid, a solution of chemical substances in the reservoir can be introduced, the chemical substances react to a sparingly soluble salt in the reservoir and thereby lead to precipitation of ions in the reservoir. It is advantageous if a chemical analysis is carried out before introducing the solution into the reservoir. At least one fluid, in particular water, may be used from the reservoir to determine ions in the fluid withdrawn from the reservoir and to select the chemicals in the solution depending on the particular ions. Concentration determinations can also help to create the correct composition of the solution, with which the temperature of the direct environment of the conductor and thus of the conductor can be kept at a predetermined value or below a limit even with a certain energization of the conductors. The concentration and type of ions in the solution should cause the solution to precipitate ions in the reservoir, for example in the form of a sparingly soluble salt, and thus the total ion concentration of the freely mobile, charged and thus inductively via the current is passed through conductor movable ions is reduced to a value which leads to a predetermined temperature and temperature T L in its direct environment with a predetermined structure and energization of the conductor. By reducing the electrical conductivity in the reservoir, the inductive heating is reduced via the current-carrying conductor.
Die Temperatur T in der direkten oder indirekten Umgebung des Leiters und/oder der Fluidführung kann auf einen maximalen Wert beschränkt werden, insbesondere auf einen Wert kleiner 150°C. Dabei kann eine zuvor beschriebene Fluideinleitung ins Reservoir oder eine Kombination der zuvor beschriebenen Arten an Fluideinleitung verwendet werden. Die Temperatur kann auf einen maximalen Wert beschränkt werden, bei welchem Komponenten einer Vorrichtung zur "in situ"-Förderung von Bitumen oder Schwerstöl aus Ölsand-Lagerstätten als Reservoir, insbesondere Isolationsmaterialien des Leiters, Dielektrika zwi¬ schen Leiterkomponenten und/oder Materialien der Fluidführung, temperaturstabil sind. Bei einer Temperatur von kleiner 150°C sind Materialien wie Dielektrika und Isolierstoffe, z.B. PFA, PTFE und/oder PEEK in der Regel thermisch stabil und werden nicht mit der Zeit thermisch beschädigt. Dadurch wird eine Schädigung des Leiters durch hohe Temperaturen in seiner direkten Umgebung vermieden, indem die Temperaturen unterhalb eines Grenzwertes gehalten werden. The temperature T in the direct or indirect environment of the conductor and / or the fluid guide can be limited to a maximum value, in particular to a value less than 150 ° C. In this case, a previously described fluid introduction into the reservoir or a combination of the types of fluid introduction described above can be used. The temperature can be limited to a maximum value at which components of a device for "in situ" extraction of bitumen or heavy oil from oil sands deposits as a reservoir, in particular insulating materials of the conductor, dielectrics Zvi ¬ rule conductor components and / or materials of the fluid guide, are temperature stable. At a temperature of less than 150 ° C materials such as dielectrics and insulating materials, such as PFA, PTFE and / or PEEK are usually thermally stable and will not be thermally damaged over time. This avoids damage to the conductor caused by high temperatures in its direct environment by keeping the temperatures below a limit.
Das Fluid kann die elektrische Leitfähigkeit in der Umgebung der Fluidführung insbesondere im Bereich von 3 m um die Fluidführung herum verringern. Dies kann ausreichend sein, um über die Umgebung durch Wärmeleitfähigkeit transportierte Wärme zum Leiter hin so zu verringern bis hin zu verhindern, dass die Temperatur TL des Leiters einen kritischen Grenzwert bei induktiver Erwärmung der Leiterumgebung nicht überschreitet . The fluid can reduce the electrical conductivity in the vicinity of the fluid guide, in particular in the region of 3 m around the fluid guide. This may be sufficient to reduce the heat transported through the environment by thermal conductivity to the conductor so as to prevent that the temperature T L of the conductor does not exceed a critical limit for inductive heating of the conductor environment.
Der elektrische Leiter kann von einem Wechselstrom mit einer Stromstärke im Bereich von mehr als 100 A, insbesondere 270 A, und/oder mit einer Frequenz im Bereich von 10 kHz bis 100 kHz, insbesondere 75 kHz, durchflössen werden, wodurch insbesondere das Erdreich des Reservoirs in der Umgebung des elektrischen Leiters durch induzierte Ströme im Erdreich erwärmt wird. Dabei kann eine Heizleistung im Bereich von mehreren MW erzeugt werden, bei Spannungen über den elektrischen Leiter im Bereich von größer 10 KV. Es sind auch andere Werte möglich, insbesondere abhängig von der Aus führungs form des Leiters, der Bodenbeschaffenheit, dem zu fördernden Schwerst- öl oder Bitumen und weiteren bei der Ölförderung über induktives Heizen beteiligten Parametern. The electrical conductor may be of an alternating current with a current in the range of more than 100 A, in particular 270 A, and / or with a frequency in the range of 10 kHz to 100 kHz, in particular 75 kHz, are flowed through, whereby in particular the soil of the reservoir in the vicinity of the electrical conductor is heated by induced currents in the ground. In this case, a heating power in the range of several MW can be generated at voltages across the electrical conductor in the range of greater than 10 KV. Other values are possible, in particular depending on the design of the conductor, the nature of the soil, the heavy oil or bitumen to be transported and other parameters involved in oil production via inductive heating.
Bevorzugte Aus führungs formen der Erfindung mit vorteilhaften Weiterbildungen gemäß den Merkmalen der abhängigen Ansprüche werden nachfolgend anhand der Figuren näher erläutert, ohne jedoch darauf beschränkt zu sein. Preferred embodiments of the invention with advantageous developments according to the features of the dependent claims are explained in more detail below with reference to the figures, but without being limited thereto.
Es wird in den Figuren dargestellt: It is shown in the figures:
Figur 1 ein Schnitt durch ein Ölsand-Reservoir 100 mit In- jektions- 101 und Förderrohr 102, FIG. 1 shows a section through an oil sand reservoir 100 with injection 101 and delivery pipe 102,
Figur 2 ein perspektivischer Ausschnitt aus einem Ölsand- Reservoir 1 mit einer horizontal im Reservoir verlaufenden elektrischen Leiterschleife 2, FIG. 2 shows a perspective detail of an oil sand reservoir 1 with an electrical conductor loop 2 running horizontally in the reservoir,
Figur 3 ein perforierter, rohrförmiger Leiter 3 mit integrierten Kondensatoren und einer Vorrichtung zur Elektrolyteinbringung . 3 shows a perforated, tubular conductor 3 with integrated capacitors and a device for the introduction of electrolytes.
In den Figuren 1 und 2 ist eine als Reservoir bezeichnete Öl- sand-Lagerstätte 100 dargestellt, wobei für die weiteren Be¬ trachtungen immer eine quaderförmige Einheit 1 mit der Länge 1, der Breite w und der Höhe h herausgegriffen wird. Die Länge 1 kann beispielsweise bis zu einigen 500 m, die Breite w 60 bis 100 m und die Höhe h etwa 20 bis 100 m betragen. Zu berücksichtigen ist, dass ausgehend von der Erdoberfläche E ein „Deckgebirge" der Stärke s bis zu 500 m vorhanden sein kann . Bei Realisierung des SAGD-Verfahrens ist gemäß Figur 1 in be¬ kannter Weise in dem Ölsand-Reservoir 100 der Lagerstätte ein In ektionsrohr 101 für Dampf- oder Wasser/Dampf-Gemisch und ein Förderrohr 102 für das verflüssigte Bitumen oder Öl vorhanden . In Figures 1 and 2, an oil sand deposit designated as a reservoir 100 is shown, wherein for the further Be ¬ tions always a cuboid unit 1 with the length 1, the width w and the height h is taken out. The length 1 may for example be up to some 500 m, the width w 60 to 100 m and the height h about 20 to 100 m. It has to be taken into account that starting from the earth's surface E there can be an overburden of thickness s up to 500 m. In realization of the SAGD method 100, the reservoir is an in ektionsrohr 101 available for steam or water / steam mixture, and a delivery pipe 102 for the liquefied bitumen or oil according to figure 1 in ¬ be known manner in the oil sand reservoir.
In Figur 2 ist eine bekannte Anordnung zur induktiven Heizung dargestellt. Diese kann durch eine lange, d.h. einige 100 m bis 1.5 km, im Boden verlegte Leiterschleife 10 bis 20 gebil¬ det werden, wobei der Hinleiter 10 und Rückleiter 20 nebeneinander, also in derselben Tiefe, geführt sind und am Ende über ein Element 15 innerhalb oder teilweise außerhalb des Reservoirs 100 miteinander verbunden sind. Am Anfang werden die Leiter 10 und 20 vertikal oder in einem flachen Winkel hinunter geführt und von einem HF-Generator 60, der in einem externen Gehäuse untergebracht sein kann, mit elektrischer Leistung versorgt. Insbesondere verlaufen die Leiter 10 und 20 in gleicher Tiefe nebeneinander, ggf. aber auch übereinan- der. FIG. 2 shows a known arrangement for inductive heating. This can be gebil ¬ det by a long, ie some 100 m to 1.5 km, laid in the ground conductor loop 10 to 20, wherein the forward conductor 10 and return conductor 20 side by side, ie at the same depth, are guided and at the end via an element 15 within or partially outside the reservoir 100 are interconnected. Initially, the conductors 10 and 20 are led down vertically or at a shallow angle and are powered by an RF generator 60 which may be housed in an external housing. In particular, the conductors 10 and 20 extend at the same depth next to each other, but possibly also one above the other.
Typische Abstände zwischen den Hin- und Rückleitern 10, 20 sind 5 bis 60 m bei einem Außendurchmesser der Leiter von 10 bis 50 cm. Typical distances between the return and return conductors 10, 20 are 5 to 60 m with an outer diameter of the conductors of 10 to 50 cm.
Eine elektrische Doppelleitung 10, 20 in Figur 2 mit den vorstehend genannten typischen Abmessungen weist einen Längsinduktivitätsbelag von 1.0 bis 2.7 μΗ/m auf. Der Querkapazi- tätsbelag liegt bei den genannten Abmessungen bei nur 10 bis 100 pF/m, so dass die kapazitiven Querströme zunächst ver¬ nachlässigt werden können. Dabei sind Welleneffekte zu ver¬ meiden. Die Wellengeschwindigkeit ist durch den Kapazitäts- und Induktivitätsbelag der Leiteranordnung gegeben. Die cha¬ rakteristische Frequenz der Anordnung ist bedingt durch die Schleifenlänge und die Wellenausbreitungsgeschwindigkeit ent¬ lang der Anordnung der Doppelleitung 10, 20. Die Schleifen- länge ist daher so kurz zu wählen, dass sich hier keine stö¬ renden Welleneffekte ergeben. An electrical double line 10, 20 in Figure 2 with the aforementioned typical dimensions has a Längsinduktivitätsbelag of 1.0 to 2.7 μΗ / m. The Querkapazi- tätsbelag lies with the mentioned dimensions of only 10 to 100 pF / m, so that the capacitive parallel-path currents can be neglected first ver ¬. In this wave effects are avoided to ver ¬. The shaft speed is determined by the capacity and inductance coating of the conductor arrangement given. The cha ¬ istic frequency of the arrangement is due to the loop length and the wave propagation velocity ent ¬ long the arrangement of the double line 10, 20. The loop length should therefore be selected so short that there are no troublefree ¬ Governing ripple effects here.
Es lässt sich zeigen, dass die simulierte Verlustleistungs¬ dichteverteilung in einer Ebene senkrecht zu den Leitern - wie sie sich bei gegenphasiger Bestromung des oberen und unteren Leiters ausbildet - radial abnimmt. It can be shown that the simulated power loss ¬ density distribution to the conductors in a plane perpendicular - as it forms at anti-phase energization of the upper and lower conductor - decreasing radially.
Für eine induktiv eingebrachte Heizleistung von 1 kW pro Meter Doppelleitung wird bei 50 kHz eine Stromamplitude von et- wa 350 A für niederohmige Reservoirs mit spezifischen Wider¬ ständen von 30 Ω-m und etwa 950 A für hochohmige Reservoirs mit spezifischen Widerständen von 500 Ω-m benötigt. Die erforderliche Stromamplitude für 1 kW/m fällt quadratisch mit der Anregungsfrequenz, d.h. bei 100 kHz fallen die Strom- amplituden auf 1/4 der obigen Werte. A inductively heating capacity of 1 kW per meter double line at 50 kHz, a current amplitude of approximately 350 A for low reservoir with specific resistance is ¬ supernatants of 30 Ω-m and about 950 A for high impedance reservoirs having specific resistances of 500 Ω- m needed. The required current amplitude for 1 kW / m falls quadratically with the excitation frequency, ie at 100 kHz the current amplitudes fall to 1/4 of the above values.
Bei einer mittleren Stromamplitude von 500 A bei 50 kHz und einem typischen Induktivitätsbelag von 2 μΗ/m beträgt der induktive Spannungsabfall etwa 300 V/m. With an average current amplitude of 500 A at 50 kHz and a typical inductivity of 2 μΗ / m, the inductive voltage drop is about 300 V / m.
Um den gesamten induktiven Spannungsabfall über eine Leiterschleife 2 auf Werte kleiner 100 kV in der Summe zu beschränken, und um damit Isolationsprobleme zu vermeiden, wird die Leitungsinduktivität L abschnittsweise durch diskret oder kontinuierlich ausgeführte Serienkapazitäten C kompensiert. Eigenart bei einer in die Leitung integrierten Kompensation ist, dass die Frequenz des HF-Leitungsgenerators auf die Re¬ sonanzfrequenz der Stromschleife abgestimmt werden muss. Dies bedeutet, dass die Doppelleitung 10, 20 für Heizzwecke zweck- mäßig, d.h. mit hohen Stromamplituden, nur bei dieser Frequenz betrieben werden kann. Dadurch wird eine Addition der induktiven Spannungen entlang der Leitung verhindert. Werden beim oben genannten Beispiel - d.h. 500 A, 2 μΗ/m, 50 kHz und 300 V/m - beispielsweise alle 10 m je ein Kondensator d in Hin- und Rückleiter von 1 iF Kapazität eingebracht, kann der Betrieb dieser Anordnung bei 50 kHz resonant erfolgen. Damit sind die auftretenden induktiven und entsprechend kapazitiven Summenspannungen auf 3 kV begrenzt . Wird der Abstand zwischen benachbarten Kondensatoren d verringert, müssen die Kapazitätswerte umgekehrt proportional zum Abstand steigen - bei proportional zum Abstand verrin¬ gerter Anforderung an die Spannungsfestigkeit der Kondensato¬ ren -, um dieselbe Resonanzfrequenz zu erhalten. In order to limit the total inductive voltage drop across a conductor loop 2 to values of less than 100 kV in total, and in order to avoid insulation problems, the line inductance L is compensated in sections by discrete or continuous series capacitances C. Is individuality in the integrated in the line compensation, the frequency of the RF line generator must be tuned to the Re ¬ sonanzfrequenz the current loop. This means that the double line 10, 20 can be operated expediently for heating purposes, ie with high current amplitudes, only at this frequency. As a result, an addition of the inductive voltages along the line is prevented. If in the above example - ie 500 A, 2 μΗ / m, 50 kHz and 300 V / m - for example, every 10 m each a capacitor d in the return conductor of 1 iF capacity introduced, the operation of this arrangement at 50 kHz resonantly done. Thus, the occurring inductive and correspondingly capacitive sum voltages are limited to 3 kV. Is the distance between adjacent capacitors d decreases, the capacitance values must increase inversely proportional to the distance - in proportion to the distance verrin ¬ Gerter request to the withstand voltage of condensers ¬ ren - to obtain the same resonant frequency.
Eine vorteilhafte, in Fig. 3 dargestellte und aus dem Stand der Technik bekannte Aus führungs form mit in der Leitung 2 integrierten Kapazitäten sieht vor, dass die Kapazität von Zylinderkondensatoren Ci zwischen einer rohrförmigen Außen- elektrode 32 eines Abschnitts I und einer rohrförmigen Innen¬ elektrode 34 des Abschnitts II gebildet wird, zwischen denen sich ein Dielektrikum 33 befindet. Ganz entsprechend wird der benachbarte Kondensator zwischen den Abschnitten II und III gebildet . An advantageous, as shown in Fig. 3 and known from the prior art disclosed embodiment, with the duct 2 integrated capacitors provides that the capacity of cylindrical capacitors Ci between a tubular outer electrode 32 of a portion I and a tubular inner ¬ electrode 34 of section II is formed, between which a dielectric 33 is located. Likewise, the adjacent capacitor is formed between sections II and III.
Für das Dielektrikum des Kondensators C sind neben einer ho¬ hen Spannungsfestigkeit weiterhin eine hohe Temperaturbeständigkeit zu fordern, da sich der Leiter im induktiv geheizten Reservoir 100, das eine Temperatur von z.B. 250°C erreichen kann, befindet und die resistiven Verluste in den Leitern 10, 20 zu einer weiteren Aufheizung der Elektroden führen können. Die Anforderungen an das Dielektrikum 33 werden von einer Vielzahl von Kondensatorkeramiken erfüllt. Beispielsweise weisen die Gruppe der Aluminiumsilicate, d.h. Porzellane, Temperaturbeständigkeiten von mehreren 100°C und elektrische Durchschlagsfestigkeiten von > 20 kV/mm bei Per- mittivitätszahlen von 6 auf. Damit können obige Zylinderkon- densatoren mit der erforderlichen Kapazität realisiert werden und eine Baulänge von beispielsweise 1 bis 2 m haben. For the dielectric of the capacitor C high temperature resistance, in addition to a ho ¬ hen dielectric strength continues to demand, as the leader, is in the inductively heated reservoir 100, which can reach a temperature of eg 250 ° C and the resistive losses in the conductors 10 , 20 can lead to further heating of the electrodes. The requirements for the dielectric 33 are met by a large number of capacitor ceramics. For example, the group of aluminum silicates, ie porcelains, have temperature resistances of several 100 ° C. and electrical breakdown strengths of> 20 kV / mm at perivivities of 6. Thus, the above cylinder capacitors can be realized with the required capacity and have a length of, for example, 1 to 2 m.
Wenn die Baulänge kürzer ausfallen soll, ist eine Ineinander- schachtelung mehrerer koaxialer Elektroden vorzusehen. Dies ist der Einfachheit halber in den Fig. nicht dargestellt.If the overall length should be shorter, a nesting of several coaxial electrodes should be provided. This is not shown in the figures for the sake of simplicity.
Auch andere übliche Kondensatorbauformen können in die Leitung integriert werden, solange diese die erforderliche Span- nungs- und Temperaturbeständigkeit aufweisen. Other conventional capacitor designs can also be integrated into the line as long as they have the required voltage and temperature resistance.
In der Figur 3 ist die gesamte Elektrode bereits von einer Isolation umgeben. Die Isolierung gegen das umliegende Erdreich ist notwendig, um resistive Ströme durch das Erdreich zwischen den benachbarten Abschnitten insbesondere im Bereich der Kondensatoren zu verhindern. Die Isolation verhindert weiterhin den resistiven Stromfluss zwischen Hin- und Rück- leiter. Die Anforderungen bzgl. der Spannungsfestigkeit an die Isolation sind jedoch gegenüber der unkompensierten Leitung von > 100 kV auf im obigen Beispiel etwas über 3 kV gesunken und damit durch eine Vielzahl von Isolierstoffen zu erfüllen. Die Isolation muss wie bereits das Dielektrikum der Kondensatoren höheren Temperaturen dauerhaft standhalten, womit sich wiederum keramische Isolierstoffe anbieten. Dabei darf die Isolationsschichtdicke nicht zu gering gewählt wer¬ den, da sonst kapazitive Leckströme ins umliegende Erdreich abfließen könnten. Isolierstoffdicken größer z. B. 2 mm sind bei obigem Ausführungsbeispiel ausreichend. In FIG. 3, the entire electrode is already surrounded by insulation. The insulation against the surrounding soil is necessary to prevent resistive currents through the soil between the adjacent sections, in particular in the region of the capacitors. The insulation also prevents the resistive current flow between the return conductor and the return conductor. However, the requirements with respect to the dielectric strength to the insulation are compared to the uncompensated line of> 100 kV dropped in the above example, slightly above 3 kV and thus meet by a variety of insulating materials. Like the dielectric of the capacitors, the insulation must withstand higher temperatures permanently, which in turn offers ceramic insulating materials. The insulation layer thickness must not be too low ¬ chosen, otherwise capacitive leakage currents could flow into the surrounding soil. Insulation thickness greater z. B. 2 mm are sufficient in the above embodiment.
Es können auch mehrere rohförmige Elektroden parallel ge¬ schaltet sein. Vorteilhafterweise kann die Parallelschaltung der Kondensatoren zur Erhöhung der Kapazität oder zur Erhöhung ihrer Spannungsfestigkeit genutzt werden. Bei einer Anordnung gemäß Figur 3 kann nach dem Stand der Technik abschnittsweise eine Elektrolyteinbringung ins Erdreich zur gezielten Steigerung der Heizwirkung erfolgen. Dazu weist die Leitung 2 neben der kompensierten Elektrode ein isoliertes Innenrohr 40 mit isolierten Austrittsöffnungen 41, 42 und 43 auf, was im Weiteren auch als perforiert bezeichnet wird. Dadurch kann beispielsweise Wasser oder eine elektrisch leitfähige wässrige Salzlösung oder andere Elektrolyte in das Reservoir eingebracht werden, um die Leitfähigkeit des Reser- voirs zu erhöhen. It may be parallel ge ¬ switched several rohförmige electrodes. Advantageously, the parallel connection of the capacitors can be used to increase the capacitance or to increase its dielectric strength. In an arrangement according to FIG. 3, according to the state of the art, partial introduction of electrolytes into the ground can be carried out for a targeted increase in the heating effect. For this purpose, the line 2 next to the compensated electrode on an insulated inner tube 40 with insulated outlet openings 41, 42 and 43, which is also referred to as perforated hereinafter. As a result, for example, water or an electrically conductive aqueous salt solution or other electrolytes can be introduced into the reservoir in order to increase the conductivity of the reservoir.
Weiterhin kann das eingebrachte Wasser zur Kühlung des Leiters dienen. Werden die Austrittsöffnungen durch Ventile ersetzt, kann die Leitfähigkeitsänderung zeitlich und räumlich abschnittsweise gezielt erfolgen. Furthermore, the introduced water can be used to cool the conductor. If the outlet openings are replaced by valves, the change in conductivity can take place temporally and spatially in sections.
Die Erhöhung der Leitfähigkeit dient der Steigerung der induktiven Heizwirkung, ohne die Stromamplitude in den Leitern erhöhen zu müssen. Increasing the conductivity serves to increase the inductive heating effect without having to increase the current amplitude in the conductors.
In Fig. 3 erfolgt eine Kompensation der Längsinduktivität mittels vorwiegend konzentrierter Querkapazitäten. Anstelle mehr oder weniger kurzer Kondensatoren als konzentrierte Elemente in die Leitung einzubringen, kann auch der Kapazitäts- belag den eine Zweidrahtleitung wie z. B. eine Koaxialleitung oder Mehrdrahtleitungen ohnehin über ihre gesamt Länge bereitstellen zur Kompensation der Längsinduktivitäten verwendet werden. Dazu wird in gleichen Abständen abwechselnd der Innen- und Außenleiter unterbrochen und so der Stromfluss über die verteilten Querkapazitäten erzwungen. Der Vorteil der verteilten Kapazitäten liegt in einer verringerten Anforderung an die Durchschlagsfestigkeit des Dielektrikums. In FIG. 3, the longitudinal inductance is compensated by means of predominantly concentrated transverse capacitances. Instead of introducing more or less short capacitors as concentrated elements in the line, and the capacitance coating can be a two-wire line such. As a coaxial line or multi-wire cables anyway over their entire length provide for the compensation of the longitudinal inductances are used. For this purpose, the inner and outer conductors are alternately interrupted at equal intervals, thus forcing the flow of current through the distributed transverse capacitances. The advantage of the distributed capacitances lies in a reduced requirement for the dielectric strength of the dielectric.
Selbstverständlich ist auch eine kompensierte Elektrode mit verteilten Kapazitäten in Kombination mit einer Vorrichtung zur Elektrolyteinbringung einsetzbar. Im Deckgefüge, durch das Hin- und Rückleiter zum Reservoir 100 vertikal geführt sind, ist eine Heizwirkung unerwünscht: Im vertikalen Bereich der Doppelleiter 10, 20, die noch nicht im Reservoir 100 liegt, sondern zu diesem hinunterführt, können Hinleiter 10 und Rückleiter 20 in einem kleinen Abstand von beispielsweise 1 bis 3 m platziert werden, wodurch sich deren Magnetfelder bereits in geringerem Abstand von der Doppelleitung kompensieren und die induktive Heizwirkung entsprechend verringert wird. Of course, a compensated electrode with distributed capacitances in combination with a device for electrolyte introduction can be used. In the deck structure, are vertically guided by the forward and return conductors to the reservoir 100, a heating effect is undesirable: In the vertical region of the double conductor 10, 20, which is not yet in the reservoir 100, but leads down to this can Hinleiter 10 and return conductor 20 in placed at a small distance of, for example, 1 to 3 m, whereby their magnetic fields already compensate at a smaller distance from the double line and the inductive heating effect is reduced accordingly.
Als Alternative können Hinleiter 10 und Rückleiter 20 durch eine beide Leiter umschließende Schirmung aus hochleitfähigem Material umgeben werden, um die induktive Erhitzung des umliegenden Erdreichs des Deckgefüges zu vermeiden. Alternatively, conductors 10 and return conductors 20 may be surrounded by a shield of high conductivity material surrounding both conductors to prevent inductive heating of the surrounding soil of the cover structure.
In weiterer Alternative ist eine koaxiale Leiteranordnung in vertikalen Bereich von Hin- und Rückleiter denkbar, die zu einer vollkommenen Auslöschung der Magnetfelder im Außenbereich und damit zu keinerlei induktiven Erhitzung des umlie¬ genden Erdreichs führt. Der dabei erhöhte Querkapazitätsbelag kann für die Ausführung eines Gyrators, der gemäß dem Stand der Technik eine Spannung eines spannungseinprägenden Stromrichters in einen Wechselstrom umsetzt, mit zu Hilfe gezogen werden . In a further alternative, a coaxial conductor arrangement in vertical section and return conductors is conceivable that results in a perfect cancellation of the magnetic fields in the outer region and thus no inductive heating of the surroundi ¬ constricting soil. The increased cross-capacitance coating can be used to implement a gyrator, which converts a voltage of a voltage impressing converter into an alternating current according to the prior art, with help.
Bei allen drei genannten Methoden ist eine Kompensation des jeweiligen Induktivitätsbelags der Leiteranordnung einschließlich der evtl. vorhandenen Schirmung notwendig. For all three mentioned methods, a compensation of the respective inductance coating of the conductor arrangement including the possibly existing shielding is necessary.
Der Leistungsgenerator 60 in Fig. 2 ist als Hochfrequenzgenerator ausgebildet. Er kann Leistungen bis zu 2500 kW erzeugen. Typischerweise werden Frequenzen zwischen 5 und 20 kHz verwendet. Es können aber auch höhere Frequenzen verwendet werden. Der Leistungsgenerator 60 ist dreiphasig aufgebaut und beinhaltet vorteilhafterweise eine transformatorische Kopplung und Leistungshalbleiter als Bauelemente. Insbesonde¬ re beinhaltet die Schaltung einen spannungseinprägenden Wechselrichter. Eine Stromeinprägung mit Lastunabhängiger Grund- Schwingung, die mittels mittels Filterbauelementen einstellbar ist, ergibt sich bei geeigneter Wahl des Anpassvierpols hinter diesem. Je nach Topologie des Anpassvierpols ergibt sich eine unterschiedliche Strombelastung des speisenden Wechselrichters. The power generator 60 in FIG. 2 is designed as a high-frequency generator. It can generate power up to 2500 kW. Typically, frequencies between 5 and 20 kHz are used. However, higher frequencies can also be used. The power generator 60 is three-phase and advantageously includes a transformer coupling and power semiconductors as components. Insbesonde ¬ re, the circuit includes a voltage-inverter. A current injection with load-independent basic Oscillation, which is adjustable by means of filter components, results in this case with a suitable choice of Anpassvierpols. Depending on the topology of the quadripole, a different current load of the feeding inverter results.
Wie bereits erwähnt, ist bei einem solchen Generator für den bestimmungsgemäßen Gebrauch ein Betrieb unter Resonanzbedingungen erforderlich, um eine Blindleistungskompensation zu erreichen. Gegebenenfalls ist die Ansteuerfrequenz im Betrieb geeignet nachzustellen. As already mentioned, in such a generator for the intended use an operation under resonance conditions is required in order to achieve a reactive power compensation. If necessary, the drive frequency is suitably adjusted during operation.
Bei einer Leiterschleife 10, 15, 20 gemäß Figur 2, die einen zweipoligen Induktor darstellt, kann auch ein einphasiger Ge- nerator genutzt werden. Solche Generatoren mit beispielsweise 440 KW bei 50 KHz sind kommerziell erhältlich. In the case of a conductor loop 10, 15, 20 according to FIG. 2, which represents a two-pole inductor, a single-phase generator can also be used. Such generators with, for example, 440 KW at 50 KHz are commercially available.
Wie zuvor beschrieben und aus dem Stand der Technik bekannt, kann über Einbringung von Elektrolyt ins Erdreich eine ge- zielte Steigerung der Heizwirkung erfolgen. Es kann beispielsweise Wasser oder eine elektrisch leitfähige wässrige Salzlösung oder andere Elektrolyte in das Reservoir einge¬ bracht werden, um die Leitfähigkeit des Reservoirs zu erhö¬ hen . As described above and known from the prior art, a targeted increase in the heating effect can be achieved by introducing electrolyte into the ground. It can be ¬ be introduced, for example water or an electrically conductive aqueous saline or other electrolytes in the reservoir to raised stabili ¬ hen the conductivity of the reservoir.
Problematisch dabei, wie auch ohne Einbringung von Elektrolyt, ist die Erwärmung des Leiters 3 bzw. der Leiterschleife 10, 20, 15 durch Wärmeleitung vom Erdreich zum Leiter 3. Wie zuvor erwähnt sind die Materialien wie Isolator und Dielek- trikum nur bis zu bestimmten Temperaturen stabil, abhängig von der Materialwahl. Bei hohen Heizleistungen kann deshalb alternativ oder zusätzlich (zeitlich folgend), über Einbringung eines Fluids in das Erdreich erfindungsgemäß die Leitfä¬ higkeit der Umgebung der Leiter 3 gezielt herabgesetzt wer- den. Als Fluide dienen dabei unter anderem Wasser, und/oder Gase wie Luft, Stickstoff, Kohlendioxid, und/oder Lösungen aus chemischen Substanzen, welche im Reservoir zu schwerlös- liehen Salzen reagieren und dadurch zu einer Ausfällung von Ionen im Reservoir führen. The problem here, as well as without the introduction of electrolyte, the heating of the conductor 3 and the conductor loop 10, 20, 15 by heat conduction from the soil to the conductor 3. As mentioned above, the materials such as insulator and Dielek- are only up to certain temperatures stable, depending on the choice of material. Advertising at high heating capacity, therefore, may alternatively or additionally (following time), via introduction of a fluid into the soil according to the invention the Leitfä ¬ ability around the conductor 3 selectively reduced to. Water, and / or gases such as air, nitrogen, carbon dioxide, and / or solutions of chemical substances which are too poorly soluble in the reservoir, serve as fluids. salts and thereby lead to precipitation of ions in the reservoir.
Dadurch kann bei induktiver Heizung des Erdreichs über den Leiter 3 die Heizleistung in unmittelbarer Umgebung des Leiters 3 reduziert werden. Durch das Fluid wird die Leitfähig¬ keit in der Umgebung, z.B. bis hin zu 3 m um den Leiter 3 herum, herabgesetzt. Die Abnahme der Leitfähigkeit ist beson¬ ders stark in unmittelbarer Umgebung vom Leiter 3, dort wo die meiste Heizleistung durch Induktion auftritt. Die induzierten Ionenströme im Erdreich um den Leiter 3 herum werden durch das Fluid bzw. die Herabsetzung der Leitfähigkeit im Erdreich verringert. In weiter entfernten Bereichen des Leiters 3, wo die Heizleistung durch Induktion geringer ist, er- folgt weniger bis hin zu keiner Herabsetzung der Leitfähigkeit durch das Fluid. Dieses wird zwar auch in entfernteren Bereichen des Erdreichs durch z.B. Diffusion eingebracht, je¬ doch in einem viel geringerem Ausmaß als in unmittelbarer näher um den Leiter 3 herum. Dadurch wird die geringere Heiz- leistung, welche in vom Leiter 3 entfernteren Bereichen desAs a result, in the case of inductive heating of the ground via the conductor 3, the heating power in the immediate vicinity of the conductor 3 can be reduced. Through the fluid, the conductivity ¬ speed in the area, for example, up to 3 m around the conductor 3 around lowered. The decrease in conductivity is particular ¬ DERS strong in the immediate vicinity of the conductor 3, where most of the heating occurs by induction. The induced ion currents in the soil around the conductor 3 are reduced by the fluid or the reduction of the conductivity in the ground. In more distant regions of the conductor 3, where the heating power by induction is lower, there is less, if any, reduction in conductivity by the fluid. Although this is also introduced in more remote areas of the soil by, for example, diffusion, depending ¬ but to a much lesser extent than in the immediate vicinity of the conductor 3 around. As a result, the lower heating power, which in more remote from the conductor 3 areas of
Erdreichs auftritt, nicht weiter reduziert bzw. nur geringfü¬ gig reduziert. In unmittelbarer Umgebung, mit der Entfernung vom Leiter 3 hin abnehmend, wird die Leitfähigkeit, damit die induzierte Heizleistung und somit die Erwärmung reduziert. Die geringere Wärmemenge in der Umgebung des Leiters 3 führt zu einer geringeren Wärmeleitung zum Leiter 3 hin und somit zu einer geringeren Erwärmung des Leiters 3 selbst. Die Temperatur TL des Leiters 3 kann so auf einen maximalen Wert beschränkt werden, bei welchem die einzelnen Materialien des Leiters 3 thermisch nicht geschädigt werden und langzeitsta- bil sind. Soil occurs, not reduced or only geringfü ¬ gig reduced. In the immediate vicinity, decreasing with the distance from the conductor 3, the conductivity, so that the induced heating power and thus the heating is reduced. The lower amount of heat in the vicinity of the conductor 3 leads to a lower heat conduction to the conductor 3 and thus to a lower heating of the conductor 3 itself. The temperature T L of the conductor 3 can thus be limited to a maximum value at which the individual materials of the conductor 3 are not thermally damaged and are long-term stable.
Durch das zuvor beschriebene erfindungsgemäße Verfahren wird die Heizleistung in der Umgebung des elektrischen Leiters 3 vergleichmäßigt. In direkter Umgebung wird bei hohen indu¬ zierten Feldstärken um den Leiter 3 herum durch Verringerung der Leitfähigkeit die Heizleistung verringert, während weiter entfernt die Leitfähigkeit nicht bzw. nur geringfügig geän- dert wird und somit die Heizleistung im Wesentlichen gleich bleibt. Bei gleicher elektrischer Leistung für die Induktion über den Leiter 3 wird der Leiter 3 weniger stark erwärmt, mit den zuvor beschriebenen Vorteilen. Dadurch kann die Leistung solange weiter gesteigert werden, solange der kritische Temperaturwert am Leiter 3 nicht erreicht wird, bei welchen Materialien wie z.B. Isolation oder Dielektrikum beschädigt werden. So wird erreicht, dass entfernt vom Leiter 3 über mehr Induktion eine bessere Erwärmung des Erdreichs erfolgt und somit eine bessere Verflüssigung bzw. Fließbarmachung des Schwerstöls oder Bitumen. Über Reduktion der Leitfähigkeit in der Umgebung des Leiters 3 wird gleichzeitig weniger Erwär¬ mung in der direkten Umgebung des Leiters 3 erreicht und somit ein geringerer Wärmetransport zum Leiter 3 hin, was eine geringere Erwärmung des Leiters 3 selbst zur Folge hat. Somit kann mit dem erfindungsgemäßen Verfahren ohne Schädigung des Leiters 3 in einer größeren Umgebung des Leiters 3 Schwerstöl oder Bitumen verflüssigt werden und eine Fördermenge erhöht werden . By the method according to the invention described above, the heating power in the vicinity of the electrical conductor 3 is made uniform. In the immediate vicinity, the conductivity is at high field strengths indu ¬ ed reduced by the conductor 3 around by reducing the conductivity of the heating power, while further away do not or only slightly altered is changed and thus the heating power remains substantially the same. With the same electrical power for the induction via the conductor 3, the conductor 3 is heated less strongly, with the advantages described above. As a result, the power can be further increased as long as the critical temperature value at the conductor 3 is not reached, in which materials such as insulation or dielectric are damaged. It is thus achieved that a better heating of the soil takes place away from the conductor 3 by way of more induction, and thus better liquefaction or fluidization of the heavy oil or bitumen. By reducing the conductivity in the vicinity of the conductor 3 less Erwär ¬ tion is achieved in the immediate vicinity of the conductor 3 and thus a lower heat transfer to the conductor 3, which results in less heating of the conductor 3 itself. Thus, with the inventive method without damaging the conductor 3 in a larger environment of the conductor 3 heavy oil or bitumen can be liquefied and a flow rate can be increased.
Die Erfindung ist nicht auf das zuvor beschriebene Ausfüh¬ rungsbeispiel des Verfahrens beschränkt. Auch Kombinationen von Verfahren aus dem Stand der Technik mit dem erfindungsgemäßen Verfahren sind möglich. So ist z.B. ein zeitlich aufeinander folgendes Einbringen von Elektrolyt zur Erhöhung der Leitfähigkeit, gefolgt von einer Einbringung von Fluid zur Verringerung der Leitfähigkeit in der Umgebung des Leiters 3 möglich. Dadurch kann z.B. eine erste Förderung von Schwerstöl und Bitumen in der direkten Umgebung des Leiters 3 bei geringerer Induktion und Heizleistung erfolgen. Darauffolgend, nach Einbringung des Fluids zur Verringerung der Leitfähigkeit, kann bei höherer Leistung ohne Schädigung der Leitung 3 Schwerstöl oder Bitumen entfernter von der Leitung 3 verflüssigt und somit gefördert werden. The invention is not limited to the above-described exporting ¬ approximately example of the method. Combinations of prior art methods with the method according to the invention are also possible. Thus, for example, a temporally successive introduction of electrolyte to increase the conductivity, followed by an introduction of fluid to reduce the conductivity in the vicinity of the conductor 3 is possible. As a result, for example, a first promotion of heavy oil and bitumen in the immediate vicinity of the conductor 3 with less induction and heating power done. Subsequently, after introduction of the fluid to reduce the conductivity, 3 heavy oil or bitumen can be liquefied more remote from the line 3 and thus promoted at higher power without damaging the line.
Auch ein wiederholt, abwechselndes Einbringen von Elektrolyt zur Erhöhung der Leitfähigkeit und von Fluid zur Verringerung der Leitfähigkeit ist möglich. Dadurch kann zeitweise eine Abkühlung der Leitung 3 erreicht werden. Auch ein pulsweises, wiederholtes Einbringen nur von Fluid zur Verringerung der Leitfähigkeit ist möglich. A repeated, alternating introduction of electrolyte to increase the conductivity and of fluid to reduce the conductivity is possible. This can temporarily a Cooling of the line 3 can be achieved. A pulsewise, repeated introduction of only fluid to reduce the conductivity is possible.
Em Einbringen von Elektrolyt zur Erhöhung der Leitfähigkeit gefolgt von einer Einbringung von Fluid zur Verringerung der Leitfähigkeit in der Umgebung des Leiters 3 kann auch von Vorteil sein, wenn in entfernteren Bereichen vom Leiter 3 eine gute Förderung von Schwerstöl oder Bitumen erreicht wer den soll. So kann der Elektrolyt zur Erhöhung der Leitfähigkeit in entferntere Bereiche eingebracht werden, z.B. durch hohen Druck und/oder Diffusion, und in der direkten Umgebung des Leiters 3 kann das darauffolgend eingebrachte Fluid zur Verringerung der Leitfähigkeit den Elektrolyt zur Erhöhung der Leitfähigkeit verdrängen. Dadurch wird in entfernteren Bereichen die induzierte Heizleistung erhöht, während in der direkten Umgebung des Leiters 3 und am Leiter 3 selbst die Erwärmung verringert wird. Dabei kann gerade von Vorteil sein, dass ein flüssiger Elektrolyt Wärme besser leitet als z.B. ein Gas. So kann entfernt vom Leiter die geringere In¬ duktion kompensiert werden durch eine bessere Leitfähigkeit und unmittelbar in der Umgebung des Leiters 3 kann ein Gas z einem verringertem Wärmetransport zum Leiter 3 hin führen. Em introduction of electrolyte to increase the conductivity followed by an introduction of fluid to reduce the conductivity in the vicinity of the conductor 3 may also be advantageous if in distant areas of the conductor 3 good promotion of heavy oil or bitumen achieved who should. Thus, the electrolyte can be introduced to increase the conductivity in more remote areas, for example by high pressure and / or diffusion, and in the immediate vicinity of the conductor 3, the subsequently introduced fluid to reduce the conductivity displace the electrolyte to increase the conductivity. As a result, the induced heating power is increased in more remote areas, while in the immediate vicinity of the conductor 3 and the conductor 3 itself, the heating is reduced. It may just be an advantage that a liquid electrolyte conducts heat better than, for example, a gas. Thus, the lower In ¬ production can be compensated away from the conductor by a better conductivity and immediately in the vicinity of the conductor 3, a gas z lead to a reduced heat transfer to the conductor 3 out.
Die zuvor beschriebenen erfindungsgemäßen Verfahren führen selbst oder in Kombination zu einer verbesserten Schwerstöl- oder Bitumen-Förderung, durch hohe einsetzbare elektrische Leistung und damit verbundene Induktion bei verringerter Gefahr der thermischen Schädigung des Leiters 3 bzw. der Materialien seiner Komponenten, wie z.B. Dielektrikum und/oder Isolation . The above-described inventive methods, even or in combination, lead to improved heavy oil or bitumen production, by high usable electrical power and associated induction with reduced risk of thermal damage to the conductor 3 or the materials of its components, e.g. Dielectric and / or insulation.

Claims

Patentansprüche claims
1. Verfahren zur "in situ"-Förderung von Bitumen oder 1. Method of "in situ" production of bitumen or
Schwerstöl aus Ölsand-Lagerstätten (100) als Reservoir (1), wobei das Reservoir (1) induktiv über wenigstens einen elektrischen stromdurchflossenen Leiter (3) zur Verringerung der Viskosität des Bitumens oder Schwerstöls erwärmt wird, und wobei über wenigstens eine perforierte Fluidführung (30), welche den wenigstens einen Leiter (3) zumindest abschnitts- weise umgibt oder umfasst, ein Fluid (45) in das Reservoir (1) über die Perforierung (41, 42, 43) in der Fluidführung (30) eingeführt wird, dadurch gekennzeichnet, dass das Fluid (45) eine elektrische Leitfähigkeit im Reservoir (1) zumin¬ dest in der Umgebung der Fluidführung (30) verringert. Heavy oil from oil sands deposits (100) as a reservoir (1), wherein the reservoir (1) is inductively heated by at least one electrical current-carrying conductor (3) to reduce the viscosity of the bitumen or heavy oil, and wherein at least one perforated fluid guide (30 ), which at least partially surrounds or comprises the at least one conductor (3), a fluid (45) is introduced into the reservoir (1) via the perforation (41, 42, 43) in the fluid guide (30), characterized in that the fluid (45) at least ¬ reduced electrical conductivity in the reservoir (1) in the vicinity of the fluid guide (30).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Fluid (45) Wasser mit einer geringeren Leitfähigkeit, als die Leitfähigkeit von im Reservoir (1) befindlichem Wasser, in das Reservoir (1) eingeführt wird. 2. The method according to claim 1, characterized in that as a fluid (45) water with a lower conductivity than the conductivity of water in the reservoir (1) located in the reservoir (1) is introduced.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Fluid (45) Gas in das Reservoir (1) eingeführt wird. 3. The method according to any one of the preceding claims, characterized in that as a fluid (45) gas is introduced into the reservoir (1).
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass als Gas Luft verwendet wird oder das Gas Luft umfasst. 4. The method according to claim 3, characterized in that air is used as the gas or the gas comprises air.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass als Gas Kohlendioxid und/oder Stickstoff verwendet wird oder das Gas Kohlendioxid und/oder Stickstoff umfasst. 5. The method according to claim 3, characterized in that carbon dioxide and / or nitrogen is used as the gas or the gas comprises carbon dioxide and / or nitrogen.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Fluid (45) eine Lösung aus chemi¬ schen Substanzen in das Reservoir (1) eingeführt wird, dessen chemische Substanzen zu einem schwerlöslichen Salz im Reservoir (1) reagieren und dadurch zu einer Ausfällung von Ionen im Reservoir (1) führen. 6. The method according to any one of the preceding claims, characterized in that as a fluid (45) a solution of chemi ¬ cal substances in the reservoir (1) is introduced, the chemical substances to a sparingly soluble salt in the reservoir (1) and thereby react a precipitation of ions in the reservoir (1) lead.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass eine chemische Analyse wenigstens eines Fluids, insbesondere Wasser, aus dem Reservoir (1) verwendet wird, um Ionen zu bestimmen und abhängig von den bestimmten Ionen die chemischen Substanzen in der Lösung (45) ausgewählt werden, um dann mit der Lösung (45) Ionen im Reservoir (1) auszufällen. 7. The method according to claim 6, characterized in that a chemical analysis of at least one fluid, in particular water, from the reservoir (1) is used to determine ions and depending on the particular ions, the chemical substances in the solution (45) selected to then precipitate ions in the reservoir (1) with the solution (45).
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch die Verringerung der elektrischen Leitfähigkeit im Reservoir (1) die induktive Erwärmung über den stromdurchflossenen Leiter (3) verringert wird. 8. The method according to any one of the preceding claims, characterized in that by reducing the electrical conductivity in the reservoir (1), the inductive heating via the current-carrying conductor (3) is reduced.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Temperatur T in der direkten oder indirekten Umgebung des Leiters (3) und/oder der Fluidführung (30) auf einen maximalen Wert beschränkt wird, insbesondere auf einen Wert kleiner 250°C. 9. The method according to claim 8, characterized in that the temperature T in the direct or indirect environment of the conductor (3) and / or the fluid guide (30) is limited to a maximum value, in particular to a value less than 250 ° C.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Temperatur T auf einen maximalen Wert beschränkt wird, bei welchem Komponenten einer Vorrichtung zur "in situ"-För- derung von Bitumen oder Schwerstöl aus Ölsand-Lagerstätten (100) als Reservoir (1), insbesondere Isolationsmaterialien des Leiters (3), Dielektrika (33) zwischen Leiterkomponenten und/oder Materialien der Fluidführung (30), temperaturstabil sind . 10. The method according to claim 9, characterized in that the temperature T is limited to a maximum value at which components of a device for "in situ" promotion of bitumen or heavy oil from oil sands deposits (100) as a reservoir (1 ), in particular insulating materials of the conductor (3), dielectrics (33) between conductor components and / or materials of the fluid guide (30), are temperature-stable.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fluid (45) die elektrische Leitfähigkeit in der Umgebung der Fluidführung (30), insbesondere im Bereich von 3 m um die Fluidführung (30) herum, verringert . 11. The method according to any one of the preceding claims, characterized in that the fluid (45) reduces the electrical conductivity in the vicinity of the fluid guide (30), in particular in the range of 3 m around the fluid guide (30) around.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der elektrische Leiter (3) von einem Wechselstrom mit einer Stromstärke im Bereich von mehr als 100 A, insbesondere 270 A, und/oder mit einer Frequenz im Bereich von 10 kHz bis 100 kHz, insbesondere 75 kHz, durch- flössen wird, wodurch insbesondere das Erdreich des Reservoirs (1) in der Umgebung des elektrischen Leiters (3) durch induzierte Ströme im Erdreich erwärmt wird, insbesondere mit einer Heizleistung im Bereich von mehreren MW bei Spannungen über den elektrischen Leiter (3) im Bereich von größer 10 KV 12. The method according to any one of the preceding claims, characterized in that the electrical conductor (3) of an alternating current having a current in the range of more than 100 A, in particular 270 A, and / or having a frequency in the range of 10 kHz to 100 kHz, in particular 75 kHz, through- In particular, the soil of the reservoir (1) in the vicinity of the electrical conductor (3) is heated by induced currents in the ground, in particular with a heating power in the range of several MW at voltages across the electrical conductor (3) in the range of greater than 10 kV
EP11770719.0A 2010-09-28 2011-09-28 Process for the in situ extraction of bitumen or ultraheavy oil from oil sand deposits as reservoir Not-in-force EP2633153B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010041535 2010-09-28
DE201010043302 DE102010043302A1 (en) 2010-09-28 2010-11-03 Process for "in situ" production of bitumen or heavy oil from oil sands deposits as a reservoir
PCT/EP2011/066814 WO2012041877A1 (en) 2010-09-28 2011-09-28 Process for the in situ extraction of bitumen or ultraheavy oil from oil sand deposits as reservoir

Publications (2)

Publication Number Publication Date
EP2633153A1 true EP2633153A1 (en) 2013-09-04
EP2633153B1 EP2633153B1 (en) 2018-11-07

Family

ID=45804558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11770719.0A Not-in-force EP2633153B1 (en) 2010-09-28 2011-09-28 Process for the in situ extraction of bitumen or ultraheavy oil from oil sand deposits as reservoir

Country Status (4)

Country Link
EP (1) EP2633153B1 (en)
CA (1) CA2812711C (en)
DE (1) DE102010043302A1 (en)
WO (1) WO2012041877A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2886792A1 (en) * 2013-12-18 2015-06-24 Siemens Aktiengesellschaft Method for introducing an inductor loop into a rock formation
EP2886793A1 (en) * 2013-12-18 2015-06-24 Siemens Aktiengesellschaft Method for introducing an inductor loop into a rock formation
DE102015210701A1 (en) * 2015-06-11 2016-12-15 Siemens Aktiengesellschaft Heating device for inductive heating of a hydrocarbon reservoir with filter element, arrangement and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228853A (en) * 1978-06-21 1980-10-21 Harvey A Herbert Petroleum production method
CA2304938C (en) * 1999-08-31 2008-02-12 Suncor Energy Inc. Slanted well enhanced extraction process for the recovery of heavy oil and bitumen using heat and solvent
DE102007040605B3 (en) 2007-08-27 2008-10-30 Siemens Ag Device for conveying bitumen or heavy oil in-situ from oil sand deposits comprises conductors arranged parallel to each other in the horizontal direction at a predetermined depth of a reservoir
DE102008062326A1 (en) * 2008-03-06 2009-09-17 Siemens Aktiengesellschaft Arrangement for inductive heating of oil sands and heavy oil deposits by means of live conductors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012041877A1 *

Also Published As

Publication number Publication date
CA2812711C (en) 2019-01-29
EP2633153B1 (en) 2018-11-07
DE102010043302A1 (en) 2012-03-29
WO2012041877A1 (en) 2012-04-05
CA2812711A1 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
DE102007040605B3 (en) Device for conveying bitumen or heavy oil in-situ from oil sand deposits comprises conductors arranged parallel to each other in the horizontal direction at a predetermined depth of a reservoir
WO2009027305A2 (en) Apparatus for in situ extraction of bitumen or very heavy oil
EP2315910B1 (en) Installation for the<i> in situ </i>extraction of a substance containing carbon
EP2250858B1 (en) Apparatus for inductive heating of oil sand and heavy oil deposits by way of current-carrying conductors
DE102008044955A1 (en) Method and apparatus for "in situ" production of bitumen or heavy oil
EP2283208A1 (en) Method and device for in-situ conveying of bitumen or very heavy oil
EP2925956B1 (en) Shielded multi-pair arrangement as supply line to an inductive heating loop in heavy oil deposits
EP2633153B1 (en) Process for the in situ extraction of bitumen or ultraheavy oil from oil sand deposits as reservoir
EP2900909A2 (en) Inductor for heating ultraheavy oil and oil sand deposits
DE102010043529B4 (en) Apparatus and method for using the apparatus for "in situ" production of bitumen or heavy oil from oil sands deposits
DE102009019287B4 (en) Method for heating up soil, associated plant and their use
WO2015090646A1 (en) Method for introducing an inductor loop into a rock formation
EP3204596B1 (en) Deposit heating
DE102015210701A1 (en) Heating device for inductive heating of a hydrocarbon reservoir with filter element, arrangement and method
WO2015090649A1 (en) Method for inserting an inductor loop into a rock formation
DE102015215463A1 (en) Heating device for inductive heating of an oil sands deposit and / or an oil shale deposit and / or a bitumen deposit and / or a heavy oil deposit
WO2016091584A1 (en) Heating device for the inductive heating of an oil sand deposit and/or an oil shale deposit and/or a bitumen deposit and/or a heavy oil reservoir
DE102015208110A1 (en) Heating device for inductive heating of a hydrocarbon reservoir

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130320

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171017

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180716

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1062273

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011014978

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181107

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190208

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011014978

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011014978

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190928

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190928

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190928

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1062273

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110928

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107