EP2250858B1 - Apparatus for inductive heating of oil sand and heavy oil deposits by way of current-carrying conductors - Google Patents

Apparatus for inductive heating of oil sand and heavy oil deposits by way of current-carrying conductors Download PDF

Info

Publication number
EP2250858B1
EP2250858B1 EP09718382A EP09718382A EP2250858B1 EP 2250858 B1 EP2250858 B1 EP 2250858B1 EP 09718382 A EP09718382 A EP 09718382A EP 09718382 A EP09718382 A EP 09718382A EP 2250858 B1 EP2250858 B1 EP 2250858B1
Authority
EP
European Patent Office
Prior art keywords
conductor
groups
conductors
inductor
compensated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09718382A
Other languages
German (de)
French (fr)
Other versions
EP2250858A1 (en
Inventor
Dirk Diehl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to SI200930090T priority Critical patent/SI2250858T1/en
Priority to PL09718382T priority patent/PL2250858T3/en
Publication of EP2250858A1 publication Critical patent/EP2250858A1/en
Application granted granted Critical
Publication of EP2250858B1 publication Critical patent/EP2250858B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/04Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/03Heating of hydrocarbons

Definitions

  • the invention relates to an arrangement for inductive heating of oil sands and heavy oil deposits by means of live conductors.
  • Object of the present invention is in contrast to provide a conductor arrangement which can be used as an inductor for the purpose of oil sand heating.
  • each conductor is insulated individually and consists of a single wire or a plurality of wires, which in turn are insulated for themselves.
  • Multifilament conductor structure is formed, which has already been proposed in electrical engineering for other purposes.
  • a multi-band and / or multi-foil conductor structure can be realized for the same purpose.
  • inductive heating for the intended purpose of the oil sand heating at excitation frequencies of eg 10 - 50 kHz typically requires two conductor groups of 1000 - 5000 filaments if effective resonance lengths in the range of 20 - 100 m are to be obtained. But there may also be more than two conductor groups.
  • the resonant frequency is inversely proportional to the distance of the interruptions of the conductor groups.
  • the construction of a capacitively compensated multifilament conductor can be done by means of specific RF strands.
  • the construction of a capacitively compensated multifilament conductor can also be done alternatively by means of solid wires.
  • a compensated multifilament conductor is advantageously constructed of transposed or intertwined individual conductors in such a way that each individual conductor within the resonance length on each radius is equally common.
  • a compensated multifilament conductor may be constructed of a plurality of conductor groups arranged around the common center.
  • the individual compensated conductor sub-groups are advantageously made of stranded solid or HF stranded wires.
  • the cross sections of the conductor subgroups may deviate from the round or hexagonal shape and be, for example, sector-shaped.
  • the central ladder free area within the cross section of a compensated Milliken type multifilament conductor can be used for mechanical reinforcement to increase tensile strength.
  • permanently inserted or removable synthetic fiber ropes or removable steel ropes can be used.
  • the central, ladder-free region within the cross-section of a compensated Milliken-type multifilament conductor can be used for cooling by means of a circulating liquid, in particular water or oil. Furthermore, there may advantageously be accommodated temperature sensors which can be used for monitoring and controlling the energization and / or liquid cooling.
  • the inductor which consists of capacitively compensated multifilament conductor in the reservoir
  • draw the inductor into a previously introduced plastic tube of larger inner diameter.
  • plastic tube of larger inner diameter.
  • An oil can be introduced as a lubricant.
  • the space between the inductor and plastic pipe with a liquid in particular water of low electrical conductivity or z.
  • B. transformer oil which may also previously serve as a lubricant, be flooded.
  • the interlacing or transposition of the individual conductors within the resonance length avoids ohmic additional losses due to the so-called proximity effect. Furthermore, it reduces the dielectric strength requirements of dielectric isolation by more homogeneous displacement current densities.
  • the arrangement of several conductor subgroups around the common center allows the use of stranded wires - instead of intertwined or transposed wires without sacrificing the reduction of ohmic additional losses due to the proximity effect - while simplifying manufacturing.
  • an active cooling of the arrangement according to the invention may be necessary, for which there are advantageously open spaces or spaces in the arrangement.
  • a plastic tube is used to keep open the hole, the protection of the inductor during installation and operation. Thus, it reduces the tensile load on the inductor during retraction by reducing the friction.
  • a liquid in the gap makes the good thermal contact with the plastic tube and the reservoir, which is needed for passive cooling of the inductor.
  • 200 ° C can ohmic losses in the inductor to about 20 W / m by heat conduction be discharged without the temperature in the inductor exceeds the critical for Teflon insulation values of 250 ° C.
  • FIG. 1 is a designated as a reservoir oil sands deposit shown, with the specific considerations always a cuboid unit 1 with the length 1, the width w and the height h is taken out.
  • the length 1 may for example be up to some 500 m, the width w 60 to 100 m and the height h about 20 to 100 m. It has to be taken into account that starting from the earth's surface E there can be an overburden of thickness s up to 500 m.
  • FIG. 1 an arrangement for inductive heating of the reservoir cutout 1 is shown. This can be formed by a long, ie some 100 m to 1.5 km, laid in the ground conductor loop 10 to 20, the Hinleiter 10 and return conductor 20 side by side, ie at the same depth, are guided and at the end via an element 15 inside or outside of the reservoir are interconnected. Initially, the conductors 10 and 20 are led down vertically or at a shallow angle and are powered by an RF generator 60 which may be housed in an external housing.
  • an RF generator 60 which may be housed in an external housing.
  • the conductors 10 and 20 run side by side at the same depth. But they can also be performed on top of each other. Below the conductor loop 10/20, ie on the ground the reservoir unit 1, a delivery pipe 1020 is indicated, can be transported through the liquefied bitumen or heavy oil.
  • Typical distances between the return and return conductors 10, 20 are 5 to 60 m with an outer diameter of the conductors of 10 to 50 cm (0.1 to 0.5 m).
  • the electric double line 10, 20 off FIG. 1 with the typical dimensions mentioned above has a longitudinal inductivity of 1.0 to 2.7 ⁇ H / m.
  • the transverse capacitance is only 10 to 100 pF / m with the dimensions mentioned, so that the capacitive cross currents can initially be neglected.
  • wave effects should be avoided.
  • the shaft speed is given by the capacitance and inductance of the conductor arrangement.
  • the characteristic frequency of the arrangement is due to the loop length and the wave propagation speed along the arrangement of the double line 10, 20.
  • the loop length is therefore to be chosen so short that no disturbing wave effects result here.
  • a current amplitude of about 350 A for low-impedance reservoirs with resistivities of 30 ⁇ ⁇ m and about 950 A for high-resistance reservoirs with resistivities of 500 ⁇ ⁇ m is required at 50 kHz.
  • the required current amplitude for 1 kW / m falls quadratically with the excitation frequency. i.e. at 100 kHz, the current amplitudes fall to 1/4 of the above values.
  • the inductive voltage drop is about 300 V / m.
  • the conductor arrangement results in a hexagonal grid in cross section and is in FIG. 5 played. It is doing a compression in the cross-sectional plane made such that the wires are brought to a mutual distance of 0.5 mm. The superfluous insulation fills the gussets in the hexagonal grid.
  • the two groups of conductors have, when arranged alternately, the wires on the rings accordingly FIG. 5 then a capacity coverage of 115.4 nF / m. With the resonant length of 20.9 m, the conductor is then capacitively compensated at 20 kHz. The ohmic resistance at 20 kHz is then 30 ⁇ / m.
  • an inductive heating power of 3 kW / m (rms) can be introduced into a reservoir of a specific resistance of 555 ⁇ m if the return conductor is at a distance of 106 m and this configuration is continued periodically.
  • the ohmic losses in the conductor averaged over a resonance length amount to 15.1 W / m (rms).
  • T 200 ° C constant in 0.5 m or 2.5 m distance from the conductor, to a heating of the conductor 230-250 ° C, which still requires no additional liquid cooling becomes.
  • the insulation would have to withstand a voltage of 3.6 kV.
  • dielectric strengths of 20-36 kV / mm are specified. That is, with an insulation thickness of 0.5 mm, about one third of the dielectric strength is required.
  • FIG. 2 As shown in the diagram in FIG. 2 is provided to compensate the line inductance L sections by discrete or continuously running series capacitances C. This is in FIG. 2 shown in simplified form. Shown is a substitute schematic image of a circuit operated with an AC power source 25 with complex resistor 26, in each of which sections inductances L i and capacitances C i are present. There is thus a partial compensation of the line.
  • the peculiarity of compensation integrated in the line is that the frequency of the HF line generator must be matched to the resonance frequency of the current loop. This means that the double line 10, 20 of the FIG. 1 for the inductive heating appropriate, ie with high current amplitudes, only at this frequency can be operated.
  • the decisive advantage of the latter approach is that an addition of the inductive voltages along the line is prevented. If in the above example - ie 500 A, 2 ⁇ H / m, 50 kHz and 300 V / m - for example, every 10 m each a capacitor C i introduced in the return conductor of 1 uF capacitance, the operation of this arrangement can at 50 kHz resonant done. Thus, the occurring inductive and correspondingly capacitive sum voltages are limited to 3 kV.
  • the capacitance values must increase in inverse proportion to the distance-proportional to the distance of the reduced voltage-resistance requirement of the capacitors-to obtain the same resonant frequency.
  • FIG. 3 an advantageous embodiment of capacitors integrated in the line with respective capacitance C is shown.
  • the capacitance is formed by cylindrical capacitors C i between a tubular outer electrode 32 of a first portion and a tubular inner electrode 34 of a second portion, between which a dielectric 33 is located.
  • the adjacent capacitor is formed between subsequent sections.
  • the temperature of z. B. can reach 250 ° C, and the resistive losses in the conductors 10, 20 can lead to further heating of the electrodes.
  • the requirements for the dielectric 33 are met by a large number of capacitor ceramics.
  • the group of aluminum silicates ie porcelains
  • the length should be shorter, is a nesting of several coaxial electrodes according to the FIGS. 2 to 4 to provide a clarified principle.
  • Other common capacitor designs can be integrated into the line, as long as they have the required voltage and temperature resistance. This is the purpose of the radial structure of the conductor arrangements, which is illustrated by the cross-sectional representations.
  • FIG. 4 the schematic diagram of two capacitively coupled filament groups 100 and 200 in the longitudinal direction is shown. It can be seen that individual wire sections of predetermined length repeat periodically and that in this first structure 100 a second structure 200 is arranged with individual wire sections, wherein in each case the same length is given and wherein the first group of wire sections and the second group of wire sections in overlap a given distance. This defines a resonance length R L which is significant for the capacitive coupling of the filament groups in the longitudinal direction.
  • the entire inductor arrangement is already surrounded by an insulation 150.
  • Insulation against the surrounding soil is necessary to prevent resistive currents through the soil between the adjacent sections, especially in the area of the capacitors.
  • the insulation also prevents the resistive current flow between the return and return conductors.
  • the requirements with respect to the dielectric strength to the insulation are compared to the uncompensated line of> 100 kV dropped in the above example, slightly above 3 kV and thus meet by a variety of insulating materials.
  • the insulation must withstand higher temperatures permanently, which in turn offers ceramic insulating materials.
  • the insulation layer thickness must not be too low be selected, otherwise capacitive leakage could flow into the surrounding soil. Insulation thickness greater z. B. 2 mm are sufficient in the above embodiment.
  • Sectional views of a corresponding arrangement with 36 filaments, which in turn consists of two filament groups are in the Figures 5 . 9 . 10 and 12 shown. This illustrates in particular FIG. 5 the construction and the combination of the nested arrangement of 36 filaments.
  • the filament conductors of the first group are denoted by 101 to 118 and the filament conductors of the second group are denoted by 201 to 218.
  • a central area 150 in the center of the conductors is exposed.
  • FIG. 6 For example, a two-group 60 filament conductor assembly is shown in cross-section, again having a hexagonal structure construction.
  • the conductors 401 to 430 (hatched on the left) belong to the first group of filament conductors and the conductors 501 to 530 (shaded to the right) belong to the second group of filament conductors.
  • the conductor groups are embedded in an insulating medium.
  • the specific structure of the conductor groups results in individual conductors, which are connected in groups via a high-intensity electric field and are each connected to other conductors via a low field, which can be confirmed by model calculations.
  • the central area 150 is field-free.
  • This region 150 can be used for introducing coolants or else for introducing mechanical reinforcements in order to increase the tensile strength.
  • permanently inserted or removable synthetic fiber ropes or removable steel cables are used. This will be discussed in detail below.
  • the individual graphs 71 to 72 run parallel with the same, monotonous slope: As expected, the litz wire capacitance increases exponentially with the number of wires, but linearly with the cross section.
  • FIG. 7 It can be deduced that the capacitive compensation can be adjusted on the one hand depending on the number of conductors and on the other hand on the total cross section. It was a geometry of the ladder according to the FIGS. 4 and 5 based on the same Teflon insulation. For a given cross-sectional area, therefore, the necessary number of stranded conductors can be determined.
  • the graphs 81 to 84 are parallel to the abscissa in the initial region and then increase monotonically with essentially the same slope: as expected, the resistance increases exponentially with the frequency on the one hand and the wire diameter on the other hand. It is energized by a temperature assumed 260 ° C.
  • FIG. 9 Six conductor bundles 91 to 96 are arranged in hexagonal geometry around a central cavity 97.
  • six conductor bundles 91 'to 96' are arranged in approximately pie-like manner as segments around a central cavity 97 '.
  • FIG. 11 it follows that, in a basic arrangement accordingly FIG. 10 With sector-like elements made of individual conductors it is advantageous that the individual conductors are twisted in the longitudinal direction of the entire cable.
  • lines of, for example, C to D which illustrate the azimuthal twisting of the individual conductors, result on the circumference of the conductor.
  • the sectional area results in the left quadrant a field profile corresponding to the arrows.
  • plastic pipe 120 in which an arrangement is introduced with stranded conductors.
  • the tube 120 can be made of plastic, for example, with a gap 121 in the tube 120 resulting in which the insulator with the hexagonal conductor structures 122 is introduced.
  • Essential here again is a centric conductor-free region 123 in which necessary aids are introduced for the intended use of the conductors described can be.
  • such an arrangement with the conductor-free center 123 allows the use of stranded wires instead of intertwined or transposed wires, without having to sacrifice the reduction of ohmic additional losses by the proximity effect. As a result, a comparatively simple production is possible.
  • the outer plastic tube 120 serves to keep the bore open, as well as to protect the inductor during installation and operation of the system with the arrangement for inductive heating of the oil sands deposit. This reduces the tensile load on the inductor during retraction by reducing friction.
  • the liquid may be disposed within the plastic tube 120 for cooling an annular space 120.
  • the liquid makes a good thermal contact with the plastic tube 120 and above to the reservoir, again at least a passive cooling of the inductor is required.
  • the ohmic losses in the inductor of about 20 W / m are dissipated by the heat conduction, without the temperature in the inductor itself exceeding the value of 250 ° C. which is critical for Teflon insulation.
  • the arrangement according to FIG. 12 furthermore offers the possibility of an opposite cooling.
  • the central cavity 97 is used for the one direction of the flowing liquid and the annulus 121 within the plastic tube 120 for the other direction of the flowing liquid.
  • FIG. 13 are - in a linear representation - on the abscissa the frequency in kHz and plotted on the ordinate of the inductor current in amperes.
  • the dependence of the inductor current on the frequency is reproduced, whereby the parameters given are different heating powers, for the graph 131 1 kW / m, for the graph 132 3 kW / m, for the graph 133 5 kW / m and for the graph 134 10 kW / m.
  • the individual graphs 131 to 134 each have an approximately hyperbolic course. It follows that the dependence of the Induktorbestromung of the frequency becomes stronger with increasing heating power, provided that constant power losses are assumed in the reservoir. In this respect, graphs 131 to 134 show the currents / or frequencies required for certain heating powers.

Abstract

An apparatus for the inductive heating of oil sand and heavy oil deposits by way of current-carrying conductors is provided. The conductors include individual conductor groups, wherein the conductor groups are designed in periodically repeating sections of defined length defining a resonance length, and wherein two or more of the conductor groups are capacitively coupled. In this way, each conductor can be insulated and can include a single wire.

Description

Die Erfindung bezieht sich auf eine Anordnung zur induktiven Heizung von Ölsand- und Schwerstöllagerstätten mittels stromführender Leiter.The invention relates to an arrangement for inductive heating of oil sands and heavy oil deposits by means of live conductors.

Zur Förderung von Schwerstölen oder Bitumen aus Ölsand- oder Ölschiefervorkommen mittels Rohrsystemen, welche durch Bohrungen eingebracht werden, muss deren Fließfähigkeit erheblich erhöht werden. Dies kann durch Temperaturerhöhung des Vorkommens, das nachfolgend als Reservoir bezeichnet wird, erreicht werden. Wird dazu ausschließlich oder eine induktive Heizung oder ergänzend zur Unterstützung des bekannten SAGD-Verfahrens verwendet, tritt das Problem auf, dass der induktive Spannungsabfall entlang der großen Länge des Induktors von z. B. 1000 m zu sehr hohen Spannungen bis zu einigen 100 kV führen kann, die weder bei der Isolation gegen das Reservoir bzw. das Erdreich noch am Generator bezüglich der Blindleistung beherrscht werden können.For conveying heavy oils or bitumen from oil sands or oil shale deposits by means of pipe systems which are introduced through drilling, their flowability must be increased considerably. This can be achieved by increasing the temperature of the deposit, which is referred to as a reservoir below. Used exclusively or inductive heating or in addition to support the known SAGD method, the problem arises that the inductive voltage drop along the long length of the inductor of z. B. 1000 m can lead to very high voltages up to a few 100 kV, which can be controlled neither in the insulation against the reservoir or the soil nor the generator with respect to the reactive power.

Zur Unterstützung der Reservoir-Heizung mittels Dampfinjektion nach dem bekannten SAGD (Steam Assisted Gravity Drainage)-Verfahren oder als vollständiger Ersatz dieser Dampfinjektion können verschiedene elektromagnetische wirkende Induktoren- und Elektroden-Konfigurationen verwendet werden, die in den nicht vorveröffentlichten Anmeldungen der Anmelderin mit AZ 10 2007 036 832 , AZ 10 2007 008 292 und AZ 10 2007 040 606 im Einzelnen beschrieben sind.To support the reservoir heating by steam injection according to the known SAGD (S team Assisted G ravity D rainage) method or as a complete replacement of the steam injection various electromagnetic acting Induktoren- and electrode configurations may be used, which in the non-prepublished applications of the applicant With AZ 10 2007 036 832 . AZ 10 2007 008 292 and AZ 10 2007 040 606 are described in detail.

Bei allgemeinen Stand der Technik der Induktionsbeheizung kann der Aufbau hoher induktiver Spannungen durch eine Serienschaltung bestehend aus Induktorabschnitten und integrierten Kapazitäten verhindert werden, die auf die Arbeitsfrequenz als Serienschwingkreis abzustimmen sind. In der nicht vorveröffentlichten Anmeldung der Anmelderin mit AZ 10 2007 040 605 sind eine koaxiale Leiteranordnung mit konzentrierten Kapazitäten sowie das Prinzip der verteilten Kapazitäten basierend auf der veröffentlichten deutschen Patentanmeldung DE 10 2004 009 896 A1 detailliert beschrieben. Erstere Leiteranordnung weist verschiedene Eigenheiten, wie geringe Biegsamkeit, hohe Herstellungskosten, teure Hochspannungskeramiken, auf. Letztere Leiteranordnung ist nicht für den eingangs angegebenen bestimmungsgemäßen Zweck ausgerichtet.In general state of the art of induction heating, the construction of high inductive voltages can be prevented by a series circuit consisting of inductor sections and integrated capacitances which are to be tuned to the operating frequency as a series resonant circuit. In the not previously published application of the applicant with AZ 10 2007 040 605 are a concentrated capacitance coaxial conductor arrangement and distributed capacitance principle based on the published German patent application DE 10 2004 009 896 A1 described in detail. The former conductor arrangement has various peculiarities, such as low flexibility, high production costs, expensive high-voltage ceramics. The latter conductor arrangement is not aligned for the intended purpose stated above.

Aufgabe vorliegender Erfindung ist es demgegenüber, eine Leiteranordnung zu schaffen, die als Induktoranordnung für den Zweck der Ölsandheizung einsetzbar ist.Object of the present invention is in contrast to provide a conductor arrangement which can be used as an inductor for the purpose of oil sand heating.

Die Aufgabe ist erfindungsgemäß durch die Gesamtheit der Merkmale von Patentanspruch 1 gelöst. Weiterbildungen sind in den Unteransprüchen angegeben.The object is achieved by the totality of the features of claim 1. Further developments are specified in the subclaims.

Erfindungsgemäß wird vorgeschlagen, zwei oder mehr Leitergruppen in periodisch wiederholten Abschnitten definierter Länge (,resonance length') kapazitiv zu verkoppeln. Dabei ist jeder Leiter einzeln isoliert und besteht aus einem einzigen Draht oder einer Vielzahl von wiederum für sich isolierten Drähten. Insbesondere wird eine sog. Multifilament-Leiterstruktur gebildet, die in der Elektrotechnik für andere Zwecke bereits vorgeschlagen wurde. Gegebenenfalls kann auch eine Multiband- und/oder Multifolien-Leiterstruktur für den gleichen Zweck realisiert werden.According to the invention, it is proposed to capacitively couple two or more conductor groups in periodically repeated sections of defined length ('length of resonance'). Each conductor is insulated individually and consists of a single wire or a plurality of wires, which in turn are insulated for themselves. In particular, a so-called. Multifilament conductor structure is formed, which has already been proposed in electrical engineering for other purposes. Optionally, a multi-band and / or multi-foil conductor structure can be realized for the same purpose.

Bei der praktischen Anwendung werden zur induktiven Heizung für den bestimmungsgemäßen Zweck der Ölsandheizung bei Erregerfrequenzen von z.B. 10 - 50 kHz typischerweise zwei Leitergruppen zu je 1000 - 5000 Filamenten benötigt, wenn wirksame Resonanzlängen im Bereich von 20 - 100 m erhalten werden sollen. Es können aber auch mehr als zwei Leitergruppen vorhanden sein.In practical application, inductive heating for the intended purpose of the oil sand heating at excitation frequencies of eg 10 - 50 kHz typically requires two conductor groups of 1000 - 5000 filaments if effective resonance lengths in the range of 20 - 100 m are to be obtained. But there may also be more than two conductor groups.

Bei den Anordnungen gemäß der Erfindung ist die Resonanzfrequenz umgekehrt proportional zum Abstand der Unterbrechungen der Leitergruppen. Der Aufbau eines kapazitiv kompensierten Multifilamentleiters kann mittels spezifischer HF-Litzen erfolgen. Der Aufbau eines kapazitiv kompensierten Multifilamentleiters kann aber auch alternativ mittels massiver Drähte erfolgen.In the arrangements according to the invention, the resonant frequency is inversely proportional to the distance of the interruptions of the conductor groups. The construction of a capacitively compensated multifilament conductor can be done by means of specific RF strands. The construction of a capacitively compensated multifilament conductor can also be done alternatively by means of solid wires.

Bei der Erfindung ist ein kompensierter Multifilamentleiter vorteilhafterweise aus transponierten bzw. verflochtenen Einzelleitern aufgebaut und zwar derart, dass jeder Einzelleiter innerhalb der Resonanzlänge auf jedem Radius gleichhäufig anzutreffen ist. In Anlehnung an konventionelle Leiter vom Milliken-Typ kann ein kompensierter Multifilamentleiter aus mehreren Leitergruppen, die um das gemeinsame Zentrum angeordnet sind, aufgebaut sein.In the invention, a compensated multifilament conductor is advantageously constructed of transposed or intertwined individual conductors in such a way that each individual conductor within the resonance length on each radius is equally common. Similar to conventional Milliken-type conductors, a compensated multifilament conductor may be constructed of a plurality of conductor groups arranged around the common center.

Die einzelnen kompensierten Leiteruntergruppen bestehen vorteilhafterweise aus verseilten Massiv- oder HF-Litzen-Drähten. Dabei können die Querschnitte der Leiteruntergruppen von der runden oder hexagonalen Form abweichen und zum Beispiel sektorförmig sein. Der zentrale leiterfreie Bereich innerhalb des Querschnitts eines kompensierten Multifilamentleiter vom Milliken-Typ kann zur mechanischen Verstärkung zur Erhöhung der Zugfestigkeit genutzt werden. Dazu sind permanent eingebrachte oder entfernbare Kunstfaserseile oder entfernbare Stahlseile verwendbar.The individual compensated conductor sub-groups are advantageously made of stranded solid or HF stranded wires. In this case, the cross sections of the conductor subgroups may deviate from the round or hexagonal shape and be, for example, sector-shaped. The central ladder free area within the cross section of a compensated Milliken type multifilament conductor can be used for mechanical reinforcement to increase tensile strength. For this purpose permanently inserted or removable synthetic fiber ropes or removable steel ropes can be used.

Der zentrale leiterfreie Bereich innerhalb des Querschnitts eines kompensierten Multifilamentleiters vom Milliken-Typ kann zur Kühlung mittels einer zirkulierenden Flüssigkeit, insbesondere Wasser oder Öl, genutzt werden. Weiterhin können dort vorteilhafterweise Temperatursensoren untergebracht sein, die zur Überwachung und Steuerung der Bestromung und/ oder der Flüssigkeitskühlung verwendet werden können.The central, ladder-free region within the cross-section of a compensated Milliken-type multifilament conductor can be used for cooling by means of a circulating liquid, in particular water or oil. Furthermore, there may advantageously be accommodated temperature sensors which can be used for monitoring and controlling the energization and / or liquid cooling.

Zur Installation des Induktors, der aus kapazitiv kompensierten Multifilamentleiters im Reservoir besteht, wird vorgeschlagen, den Induktor vorzugsweise in ein zuvor eingebrachtes Kunststoffrohr größeren Innendurchmessers einzuziehen. Dabei kann z. B. ein Öl als Gleitmittel eingebracht werden.To install the inductor, which consists of capacitively compensated multifilament conductor in the reservoir, it is proposed preferably to draw the inductor into a previously introduced plastic tube of larger inner diameter. It can be z. B. an oil can be introduced as a lubricant.

Während des Betriebs, d.h. Bestromung des erfindungsgemäßen Leiteranordnung, kann der Raum zwischen Induktor und Kunststoffrohr mit einer Flüssigkeit, insbesondere Wasser geringer elektrischer Leitfähigkeit oder z. B. Transformatorenöl, das auch zuvor bereits als Gleitmittel dienen kann, geflutet sein.During operation, i. Energization of the conductor arrangement according to the invention, the space between the inductor and plastic pipe with a liquid, in particular water of low electrical conductivity or z. B. transformer oil, which may also previously serve as a lubricant, be flooded.

Sofern eine aktive Kühlung des Induktors mittels eines zirkulierenden Kühlmittels angestrebt wird, wird erfindungsgemäß vorgeschlagen, das Kühlmittel im Zwischenraum und zentralen leiterfreien Bereich zu pumpen und zwar in entgegen gesetzte Richtungen.If an active cooling of the inductor by means of a circulating coolant is desired, it is proposed according to the invention to pump the coolant in the intermediate space and central conductor-free region, namely in opposite directions.

Vorstehend im Einzelnen genannten Weiterbildungen und Konkretisierungen der Erfindung haben insbesondere folgende Vorteile:

  • Die ineinander und räumlich eng beieinander liegenden Leitergruppen sind stark kapazitiv verkoppelt. Damit wird ein Serienresonanzkreis aufgebaut, bei dem sich bei der Resonanzfrequenz die Phasenverschiebungen von Strom und Spannung durch die Leitungsinduktivitäten durch Kapazitäten zwischen den Leitergruppen gerade kompensieren.
  • Über den Abstand der Unterbrechungen wird die Resonanzfrequenz des Leiters eingestellt. Weiterhin bestimmt diese Länge den induktiven Spannungsabfall und legt die Anforderungen an die Spannungsfestigkeit der Isolation bzw. des Dielektrikums fest.
  • Die Verwendung von HF-Litze reduziert bzw. vermeidet die ohmschen Zusatzverluste aufgrund des Skin-Effekts.
The above-mentioned further developments and concretizations of the invention have in particular the following advantages:
  • The interconnected and closely spaced conductor groups are strongly capacitively coupled. Thus, a series resonant circuit is constructed in which the phase shifts of current and voltage through the line inductances by capacitances between the conductor groups just compensate at the resonant frequency.
  • About the distance of the interruptions, the resonance frequency of the conductor is set. Furthermore, this length determines the inductive voltage drop and specifies the requirements for the dielectric strength of the insulation or of the dielectric.
  • The use of HF litz reduces or avoids the additional ohmic losses due to the skin effect.

Sofern beim erfindungsgemäßen Multifilamentleiter geringe Resonanzlängen erreicht werden sollen, sind hohe Kapazitätsbeläge erforderlich. Damit ist eine Aufteilung des Gesamtleiterquerschnitts in eine Vielzahl von Einzelleitern, beispielsweise bis zu mehreren tausend Einzelleitern, notwendig. Vorteilhafterweise ist dann ist der Durchmesser des Einzelleiters bereits so gering, dass eine Widerstandserhöhung durch Skin-Effekt nicht mehr auftritt.If small resonance lengths are to be achieved in the multifilament conductor according to the invention, high capacitance coverings are required. This is a division of the total conductor cross-section in a variety of individual conductors, for example, up to several thousand individual conductors necessary. Advantageously, then the diameter of the individual conductor is already so small that an increase in resistance by skin effect no longer occurs.

Bei der Erfindung vermeidet das Verflechten bzw. Transponieren der Einzelleiter innerhalb der Resonanzlänge vermeidet ohmsche Zusatzverluste aufgrund des sog. Proximity-Effekts. Weiterhin reduziert es die Anforderungen an die Spannungsfestigkeit der Isolation des Dielektrikums durch homogenere Verschiebungsstromdichten. Die Anordnung mehrer Leiteruntergruppen um das gemeinsame Zentrum erlaubt die Verwendung von verseilten Drähten - anstelle von verflochtenen oder transponierten Drähten ohne auf die Verminderung der ohmschen Zusatzverluste durch den Proximity-Effekt verzichten zu müssen - bei gleichzeitig vereinfachter Fertigung.In the invention, the interlacing or transposition of the individual conductors within the resonance length avoids ohmic additional losses due to the so-called proximity effect. Furthermore, it reduces the dielectric strength requirements of dielectric isolation by more homogeneous displacement current densities. The arrangement of several conductor subgroups around the common center allows the use of stranded wires - instead of intertwined or transposed wires without sacrificing the reduction of ohmic additional losses due to the proximity effect - while simplifying manufacturing.

Bei der bestimmungsgemäßen Verlegung des Induktors im Reservoir von Ölsandlagerstätten sind Zugbelastungen von einigen 10 t zu erwarten, die den durch Unterbrechungen geschwächten kompensierten Leiter überfordern könnten, so z. B. die Spannungsfestigkeit des Dielektrikums verringern könnten. Daher ist eine mechanische Verstärkung anzustreben.In the proper installation of the inductor in the reservoir of oil sands deposits tensile loads of some 10 tonnes are expected to overwhelm the weakened by interruptions compensated conductor, such. B. could reduce the dielectric strength of the dielectric. Therefore, a mechanical reinforcement is desirable.

Bei Auslegung des Induktors mit geringem Leiterquerschnitt, insbesondere Querschnitt aus Kupfer, kann eine aktive Kühlung der erfindungsgemäßen Anordnung notwendig werden, wofür vorteilhafterweise offene Freiräume bzw. Zwischenräume in der Anordnung vorhanden sind. Ein Kunststoffrohr dient dem Offenhalten der Bohrung, dem Schutz des Induktors bei der Installation und dem Betrieb. So verringert es die Zugbelastung auf den Induktor während des Einziehens durch Verringerung der Reibung. Eine Flüssigkeit im Zwischenraum stellt den guten thermischen Kontakt zum Kunststoffrohr und zum Reservoir her, der zur passiven Kühlung des Induktors benötigt wird. Bei einer Umgebungstemperatur des Reservoirs von z. B. 200°C können ohmsche Verluste im Induktor bis etwa 20 W/m durch Wärmeleitung abgeführt werden, ohne dass die Temperatur im Induktor den für Teflon-Isolation kritischen Werte von 250°C überschreitet.In the design of the inductor with a small conductor cross section, in particular cross section of copper, an active cooling of the arrangement according to the invention may be necessary, for which there are advantageously open spaces or spaces in the arrangement. A plastic tube is used to keep open the hole, the protection of the inductor during installation and operation. Thus, it reduces the tensile load on the inductor during retraction by reducing the friction. A liquid in the gap makes the good thermal contact with the plastic tube and the reservoir, which is needed for passive cooling of the inductor. At an ambient temperature of the reservoir of z. B. 200 ° C can ohmic losses in the inductor to about 20 W / m by heat conduction be discharged without the temperature in the inductor exceeds the critical for Teflon insulation values of 250 ° C.

Mit der gegenläufigen Kühlmittelströmung innerhalb und außerhalb der Leiter wird eine gleichmäßigere Temperatur entlang des Induktors, der etwa 1000 m lang sein kann, erreicht, als dies für gleichgerichtete Kühlmittelströme der Fall wäre.With the countercurrent coolant flow inside and outside the conductors, a more uniform temperature along the inductor, which may be about 1000 meters long, is achieved than would be the case for rectified coolant flows.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbeispielen anhand der Zeichnung in Verbindung mit den Patentansprüchen.Further details and advantages of the invention will become apparent from the following description of exemplary embodiments with reference to the drawing in conjunction with the claims.

Es zeigen in schematischer Darstellung

Figur 1
einen perspektivischen Ausschnitt aus einem Ölsand- Reservoir mit einer horizontal im Reservoir verlau- fenden elektrischen Leiterschleife,
Figur 2
ein Schaltbild eines Serienresonanzkreises mit kon- zentrierten Kapazitäten zu Kompensation der Lei- tungsinduktivitäten,
Figur 3
ein Schema einer kapazitiv kompensierten Koaxiallei- tung mit verteilten Kapazitäten,
Figur 4
ein Schema der kapazitiv verkoppelten Filamentgrup- pen in Längsrichtung,
Figur 5
den Querschnitt eines Multifilamentleiters,
Figur 6
die Verteilung des elektrischen Feldes eines 2-Grup- pen-60-Filamentleiters im Querschnitt,
Figur 7
graphische Darstellung von Kapazitätsbelag zweier Leitergruppen in Abhängigkeit von der Leiteranzahl,
Figur 8
graphische Darstellung von Frequenzabhängigkeit der ohmschen Widerstands für verschiedene Drahtdurchmes- ser,
Figur 9
einen Querschnitt eines verseilten kompensierten Multifilamentleiter vom Milliken-Typ,
Figur 10
eine Alternative zu Figur 9,
Figur 11
eine perspektivische Darstellung eines Vier- Quadrantenleiters,
Figur 12
den Querschnitt eines verseilten kompensierten Mul- tifilamentleiters vom Milliken-Typ in einem Füh- rungsrohr und
Figur 13
eine graphische Darstellung von Abhängigkeit der In- duktorbestromung von der Frequenz für verschiedene Heizleistungen.
It show in a schematic representation
FIG. 1
3 shows a perspective detail of an oil sand reservoir with an electrical conductor loop running horizontally in the reservoir,
FIG. 2
a circuit diagram of a series resonant circuit with concentrated capacitances for compensation of the line inductances,
FIG. 3
a diagram of a capacitively compensated coaxial line with distributed capacitances,
FIG. 4
a diagram of the capacitively coupled filament groups in the longitudinal direction,
FIG. 5
the cross section of a multifilament conductor,
FIG. 6
the distribution of the electric field of a 2-group 60 filament conductor in cross section,
FIG. 7
graphical representation of the capacitance of two conductor groups as a function of the number of conductors,
FIG. 8
graphical representation of frequency dependence of the ohmic resistance for different wire diameters,
FIG. 9
a cross section of a stranded compensated Milliken type multifilament conductor,
FIG. 10
an alternative to FIG. 9 .
FIG. 11
a perspective view of a four-quadrant ladder,
FIG. 12
the cross-section of a stranded compensated Milliken type multi-filament conductor in a guide tube and
FIG. 13
a graphic representation of the dependence of the Induerkorbestromung of the frequency for different heat outputs.

Gleiche bzw. gleichwirkende Elemente der Figuren haben gleiche bzw. sich entsprechende Bezugszeichen. Die Figuren werden nachfolgend gruppenweise zusammen beschrieben.The same or equivalent elements of the figures have the same or corresponding reference numerals. The figures are described below in groups together.

In der Figur 1 ist eine als Reservoir bezeichnete Ölsand-Lagerstätte dargestellt, wobei für die spezifischen Betrachtungen immer eine quaderförmige Einheit 1 mit der Länge 1, der Breite w und der Höhe h herausgegriffen wird. Die Länge 1 kann beispielsweise bis zu einigen 500 m, die Breite w 60 bis 100 m und die Höhe h etwa 20 bis 100 m betragen. Zu berücksichtigen ist, dass ausgehend von der Erdoberfläche E ein "Deckgebirge" der Stärke s bis zu 500 m vorhanden sein kann.In the FIG. 1 is a designated as a reservoir oil sands deposit shown, with the specific considerations always a cuboid unit 1 with the length 1, the width w and the height h is taken out. The length 1 may for example be up to some 500 m, the width w 60 to 100 m and the height h about 20 to 100 m. It has to be taken into account that starting from the earth's surface E there can be an overburden of thickness s up to 500 m.

In Figur 1 ist eine Anordnung zur induktiven Heizung des Reservoirausschnittes 1 dargestellt. Diese kann durch eine lange, d.h. einige 100 m bis 1.5 km, im Boden verlegte Leiterschleife 10 bis 20 gebildet werden, wobei der Hinleiter 10 und Rückleiter 20 nebeneinander, also in derselben Tiefe, geführt sind und am Ende über ein Element 15 innerhalb oder außerhalb des Reservoirs miteinander verbunden sind. Am Anfang werden die Leiter 10 und 20 vertikal oder in einem flachen Winkel hinunter geführt und von einem HF-Generator 60, der in einem externen Gehäuse untergebracht sein kann, mit elektrischer Leistung versorgt.In FIG. 1 an arrangement for inductive heating of the reservoir cutout 1 is shown. This can be formed by a long, ie some 100 m to 1.5 km, laid in the ground conductor loop 10 to 20, the Hinleiter 10 and return conductor 20 side by side, ie at the same depth, are guided and at the end via an element 15 inside or outside of the reservoir are interconnected. Initially, the conductors 10 and 20 are led down vertically or at a shallow angle and are powered by an RF generator 60 which may be housed in an external housing.

In Figur 1 verlaufen die Leiter 10 und 20 in gleicher Tiefe nebeneinander. Sie können aber auch übereinander geführt werden. Unterhalb der Leiterschleife 10/20, d.h. auf dem Boden der Reservoireinheit 1, ist ein Förderrohr 1020 angedeutet, über das verflüssigtes Bitumen oder Schwerstöl transportiert werden kann.In FIG. 1 the conductors 10 and 20 run side by side at the same depth. But they can also be performed on top of each other. Below the conductor loop 10/20, ie on the ground the reservoir unit 1, a delivery pipe 1020 is indicated, can be transported through the liquefied bitumen or heavy oil.

Typische Abstände zwischen den Hin- und Rückleitern 10, 20 sind 5 bis 60 m bei einem Außendurchmesser der Leiter von 10 bis 50 cm (0,1 bis 0,5 m).Typical distances between the return and return conductors 10, 20 are 5 to 60 m with an outer diameter of the conductors of 10 to 50 cm (0.1 to 0.5 m).

Die elektrische Doppelleitung 10, 20 aus Figur 1 mit den vorstehend genannten typischen Abmessungen weist einen Längsinduktivitätsbelag von 1,0 bis 2,7 µH/m auf. Der Querkapazitätsbelag liegt bei den genannten Abmessungen bei nur 10 bis 100 pF/m, so dass die kapazitiven Querströme zunächst vernachlässigt werden können. Dabei sind Welleneffekte zu vermeiden. Die Wellengeschwindigkeit ist durch den Kapazitäts- und Induktivitätsbelag der Leiteranordnung gegeben. Die charakteristische Frequenz der Anordnung ist bedingt durch die Schleifenlänge und die Wellenausbreitungsgeschwindigkeit entlang der Anordnung der Doppelleitung 10, 20. Die Schleifenlänge ist daher so kurz zu wählen, dass sich hier keine störenden Welleneffekte ergeben.The electric double line 10, 20 off FIG. 1 with the typical dimensions mentioned above has a longitudinal inductivity of 1.0 to 2.7 μH / m. The transverse capacitance is only 10 to 100 pF / m with the dimensions mentioned, so that the capacitive cross currents can initially be neglected. At the same time wave effects should be avoided. The shaft speed is given by the capacitance and inductance of the conductor arrangement. The characteristic frequency of the arrangement is due to the loop length and the wave propagation speed along the arrangement of the double line 10, 20. The loop length is therefore to be chosen so short that no disturbing wave effects result here.

Es lässt sich zeigen, dass die simulierte Verlustleistungsdichteverteilung in einer Ebene senkrecht zu den Leitern - wie sie sich bei gegenphasiger Bestromung des oberen und unteren Leiters ausbildet - radial abnimmt.It can be shown that the simulated power loss density distribution in a plane perpendicular to the conductors - as it forms in opposite-phase energization of the upper and lower conductor - decreases radially.

Für eine induktiv eingebrachte Heizleistung von 1 kW pro Meter Doppelleitung wird bei 50 kHz eine Stromamplitude von etwa 350 A für niederohmige Reservoirs mit spezifischen Widerständen von 30 Ω·m und etwa 950 A für hochohmige Reservoirs mit spezifischen Widerständen von 500 Ω·m benötigt. Die erforderliche Stromamplitude für 1 kW/m fällt quadratisch mit der Anregungsfrequenz. d.h. bei 100 kHz fallen die Stromamplituden auf 1/4 der obigen Werte.For an inductively introduced heating power of 1 kW per meter of double cable, a current amplitude of about 350 A for low-impedance reservoirs with resistivities of 30 Ω · m and about 950 A for high-resistance reservoirs with resistivities of 500 Ω · m is required at 50 kHz. The required current amplitude for 1 kW / m falls quadratically with the excitation frequency. i.e. at 100 kHz, the current amplitudes fall to 1/4 of the above values.

Bei einer mittleren Stromamplitude von 500 A bei 50 kHz und einem typischen Induktivitätsbelag von 2 µH/m beträgt der induktive Spannungsabfall etwa 300 V/m.At a mean current amplitude of 500 A at 50 kHz and For a typical inductance coating of 2 μH / m, the inductive voltage drop is about 300 V / m.

Im Folgenden wird eine elektrische und thermische Auslegung eines blindleistungskompensierten Multifilamentinduktors im Einzelnen beschrieben. In der älteren nicht vorveröffentlichten deutschen Patentanmeldung AZ 10 2007 040 605 ist bereits das Grundprinzip der abschnittsweisen Kompensierung einer Koaxialleitung mit verteilten Kapazitäten vorbeschrieben. Auf die diesbezügliche Beschreibung der älteren Anmeldung wird nachfolgend zurückgegriffen:

  • Ein konkretes Beispiel einer Auslegung eines kapazitiv kompensierten Multifilamentleiters sieht wie folgt aus: Zwei Leitergruppen haben zusammen beispielsweise 1200 mm2 Kupfer-Querschnitt. Dieser Querschnitt wird verteilt auf 2790 einzelne massive Drähte mit einem Durchmesser von je 0,74 mm.
  • Jeder der Drähte erhält eine Isolation aus Teflon mit einer Wandstärke von etwas mehr als 0,25 mm und wird auf die doppelte Resonanzlänge von 2*20,9 m = 41,8 gebracht. Die Anordnung der Drähte in Längsrichtung erfolgt mit einem Versatz um die Resonanzlänge entsprechend der weiter unten beschriebenen Figur 4.
In the following, an electrical and thermal design of a blind power compensated Multifilamentinduktors will be described in detail. In the older not previously published German patent application AZ 10 2007 040 605 already the basic principle of the partial compensation of a coaxial line with distributed capacitances is described above. The relevant description of the earlier application is referred to below:
  • A concrete example of a design of a capacitively compensated multifilament conductor is as follows: Two conductor groups together have, for example, 1200 mm 2 copper cross section. This cross-section is distributed over 2790 individual solid wires with a diameter of 0.74 mm each.
  • Each of the wires is given a Teflon insulation with a wall thickness of slightly more than 0.25 mm and is brought to twice the resonance length of 2 * 20.9 m = 41.8. The arrangement of the wires in the longitudinal direction is carried out with an offset by the resonance length corresponding to that described below FIG. 4 ,

Die Leiteranordnung ergibt im Querschnitt ein hexagonales Gitter und ist in Figur 5 wiedergegeben. Es wird dabei eine Verpressung in der Querschnittsebene derart vorgenommen, dass die Drähte auf einen gegenseitigen Abstand von 0,5 mm gebracht werden. Die überflüssige Isolation füllt die Zwickel im hexagonalen Gitter. Die beiden Leitergruppen weisen bei abwechselnder Anordnung der Drähte auf den Ringen entsprechend Figur 5 dann einen Kapazitätsbelag von 115,4 nF/m auf. Mit der Resonanzlänge von 20,9 m ist der Leiter dann bei 20 kHz kapazitiv kompensiert. Der ohmsche Widerstand auch bei 20 kHz beträgt dann 30 µΩ/m. Mit einer Wechselstromamplitude von 825 A (peak) kann eine induktive Heizleistung von 3 kW/m (rms) in ein Reservoir eines spezifischen Widerstands von 555 Ωm eingebracht werden, wenn Hin- und Rückleiter einen Abstand von 106 m haben und diese Konfiguration periodisch fortgesetzt wird. Die ohmschen Verluste im Leiter gemittelt über eine Resonanzlänge belaufen sich dabei auf 15,1 W/m (rms). Diese führen je nach zugrunde gelegtem thermischen Modell des Reservoirs zrs, T = 200°C konstant in 0,5 m oder 2,5 m Abstand vom Leiter, zu eine Aufheizung des Leiters von 230 - 250°C, womit noch keine zusätzliche Flüssigkeitskühlung benötigt wird. Die Isolation müsste dabei einer Spannung von 3,6 kV widerstehen. Für Teflon werden Spannungsfestigkeiten von 20 - 36 kV/mm angegeben. D.h. bei einer Isolationsdicke von 0,5 mm wird etwa ein drittel der Spannungsfestigkeit gefordert.The conductor arrangement results in a hexagonal grid in cross section and is in FIG. 5 played. It is doing a compression in the cross-sectional plane made such that the wires are brought to a mutual distance of 0.5 mm. The superfluous insulation fills the gussets in the hexagonal grid. The two groups of conductors have, when arranged alternately, the wires on the rings accordingly FIG. 5 then a capacity coverage of 115.4 nF / m. With the resonant length of 20.9 m, the conductor is then capacitively compensated at 20 kHz. The ohmic resistance at 20 kHz is then 30 μΩ / m. With an AC amplitude of 825 A (peak), an inductive heating power of 3 kW / m (rms) can be introduced into a reservoir of a specific resistance of 555 Ωm if the return conductor is at a distance of 106 m and this configuration is continued periodically. The ohmic losses in the conductor averaged over a resonance length amount to 15.1 W / m (rms). These lead depending on the underlying thermal model of the reservoir zrs, T = 200 ° C constant in 0.5 m or 2.5 m distance from the conductor, to a heating of the conductor 230-250 ° C, which still requires no additional liquid cooling becomes. The insulation would have to withstand a voltage of 3.6 kV. For Teflon, dielectric strengths of 20-36 kV / mm are specified. That is, with an insulation thickness of 0.5 mm, about one third of the dielectric strength is required.

Gemäß Schemazeichnung in Figur 2 ist vorgesehen, die Leitungsinduktivität L abschnittsweise durch diskret oder kontinuierlich ausgeführte Serienkapazitäten C zu kompensieren. Dies ist in Figur 2 vereinfacht dargestellt. Dargestellt ist ein Ersatzschemabild eines mit einer Wechselstromquelle 25 betriebenen Leiterkreises mit komplexem Widerstand 26, bei dem jeweils abschnittsweise Induktivitäten Li und Kapazitäten Ci vorhanden sind. Es erfolgt somit eine abschnittsweise Kompensation der Leitung.As shown in the diagram in FIG. 2 is provided to compensate the line inductance L sections by discrete or continuously running series capacitances C. This is in FIG. 2 shown in simplified form. Shown is a substitute schematic image of a circuit operated with an AC power source 25 with complex resistor 26, in each of which sections inductances L i and capacitances C i are present. There is thus a partial compensation of the line.

Letztere Art der Kompensation ist zwar vom Stand der Technik bei Systemen der induktiven Energieübertragung auf translatorisch bewegte Systeme bekannt. Im vorliegenden Zusammenhang ergeben sich dadurch besondere Vorteile.Although the latter type of compensation is known from the prior art in systems of inductive energy transfer to translationally moving systems. In the present context, this results in particular advantages.

Eigenart bei einer in die Leitung integrierten Kompensation ist, dass die Frequenz des HF-Leitungsgenerators auf die Resonanzfrequenz der Stromschleife abgestimmt werden muss. Dies bedeutet, dass die Doppelleitung 10, 20 der Figur 1 für die induktive Beheizung zweckmäßig, d.h. mit hohen Stromamplituden, nur bei dieser Frequenz betrieben werden kann.The peculiarity of compensation integrated in the line is that the frequency of the HF line generator must be matched to the resonance frequency of the current loop. This means that the double line 10, 20 of the FIG. 1 for the inductive heating appropriate, ie with high current amplitudes, only at this frequency can be operated.

Der entscheidende Vorteil bei letzterer Vorgehensweise besteht darin, dass eine Addition der induktiven Spannungen entlang der Leitung verhindert wird. Werden beim oben genannten Beispiel - d.h. 500 A, 2 µH/m, 50 kHz und 300 V/m - beispielsweise alle 10 m je ein Kondensator Ci in Hin- und Rückleiter von 1 µF Kapazität eingebracht, kann der Betrieb dieser Anordnung bei 50 kHz resonant erfolgen. Damit sind die auftretenden induktiven und entsprechend kapazitiven Summenspannungen auf 3 kV begrenzt.The decisive advantage of the latter approach is that an addition of the inductive voltages along the line is prevented. If in the above example - ie 500 A, 2 μH / m, 50 kHz and 300 V / m - for example, every 10 m each a capacitor C i introduced in the return conductor of 1 uF capacitance, the operation of this arrangement can at 50 kHz resonant done. Thus, the occurring inductive and correspondingly capacitive sum voltages are limited to 3 kV.

Wird der Abstand zwischen benachbarten Kondensatoren Ci verringert, müssen die Kapazitätswerte umgekehrt proportional zum Abstand steigen - bei proportional zum Abstand verringerter Anforderung an die Spannungsfestigkeit der Kondensatoren -, um dieselbe Resonanzfrequenz zu erhalten.If the distance between adjacent capacitors C i is reduced, the capacitance values must increase in inverse proportion to the distance-proportional to the distance of the reduced voltage-resistance requirement of the capacitors-to obtain the same resonant frequency.

In Figur 3 ist eine vorteilhafte Ausführungsform von in die Leitung integrierten Kondensatoren mit jeweiliger Kapazität C gezeigt. Die Kapazität wird von Zylinderkondensatoren Ci zwischen einer rohrförmigen Außenelektrode 32 eines ersten Abschnittes und einer rohrförmigen Innenelektrode 34 eines zweiten Abschnittes gebildet, zwischen denen sich ein Dielektrikum 33 befindet. Ganz entsprechend wird der benachbarte Kondensator zwischen darauffolgenden Abschnitten gebildet.In FIG. 3 an advantageous embodiment of capacitors integrated in the line with respective capacitance C is shown. The capacitance is formed by cylindrical capacitors C i between a tubular outer electrode 32 of a first portion and a tubular inner electrode 34 of a second portion, between which a dielectric 33 is located. Likewise, the adjacent capacitor is formed between subsequent sections.

Für das Dielektrikum des Kondensators C sind neben einer hohen Spannungsfestigkeit weiterhin eine hohe Temperaturbeständigkeit zu fordern, da sich der Leiter im induktiv geheizten Reservoir 100, das eine Temperatur von z. B. 250°C erreichen kann, befindet und die resistiven Verluste in den Leitern 10, 20 zu einer weiteren Aufheizung der Elektroden führen können. Die Anforderungen an das Dielektrikum 33 werden von einer Vielzahl von Kondensatorkeramiken erfüllt.For the dielectric of the capacitor C in addition to a high dielectric strength continue to demand a high temperature resistance, since the conductor in the inductively heated reservoir 100, the temperature of z. B. can reach 250 ° C, and the resistive losses in the conductors 10, 20 can lead to further heating of the electrodes. The requirements for the dielectric 33 are met by a large number of capacitor ceramics.

In der Praxis weisen beispielsweise die Gruppe der Aluminiumsilicate, d.h. Porzellane, Temperaturbeständigkeiten von mehreren 100°C und elektrische Durchschlagsfestigkeiten von > 20 kV/mm bei Permittivitätszahlen von 6 auf. Damit können obige Zylinderkondensatoren mit der erforderlichen Kapazität realisiert werden und eine Baulänge von beispielsweise 1 bis 2 m haben.In practice, for example, the group of aluminum silicates, ie porcelains, have temperature resistances of several 100 ° C. and electrical breakdown strengths of> 20 kV / mm at permittivity numbers of 6. This allows the above cylinder capacitors with the required capacity be realized and have a length of for example 1 to 2 m.

Wenn die Baulänge kürzer ausfallen soll, ist eine Ineinanderschachtelung mehrerer koaxialer Elektroden entsprechend dem anhand der Figuren 2 bis 4 verdeutlichten Prinzip vorzusehen. Auch andere übliche Kondensatorbauformen können in die Leitung integriert werden, solange diese die erforderliche Spannungs- und Temperaturbeständigkeit aufweisen. Dafür dient der radiale Aufbau der Leiteranordnungen, der anhand der Querschnittsdarstellungen verdeutlicht wird.If the length should be shorter, is a nesting of several coaxial electrodes according to the FIGS. 2 to 4 to provide a clarified principle. Other common capacitor designs can be integrated into the line, as long as they have the required voltage and temperature resistance. This is the purpose of the radial structure of the conductor arrangements, which is illustrated by the cross-sectional representations.

In der Figur 4 ist das prinzipielle Schema von zwei kapazitiv verkoppelten Filamentgruppen 100 und 200 in Längsrichtung dargestellt. Ersichtlich ist, dass sich einzelne Drahtabschnitte vorgegebener Länge periodisch wiederholen und dass in dieser ersten Struktur 100 eine zweite Struktur 200 mit einzelnen Drahtabschnitten angeordnet ist, wobei jeweils die gleiche Länge gegeben ist und wobei sich die erste Gruppe der Drahtabschnitte und die zweite Gruppe der Drahtabschnitte in einem vorgegebenen Abstand überlappen. Damit wird eine Resonanzlänge RL definiert, welche signifikant für die kapazitive Verkopplung der Filamentgruppen in Längsrichtung ist.In the FIG. 4 the schematic diagram of two capacitively coupled filament groups 100 and 200 in the longitudinal direction is shown. It can be seen that individual wire sections of predetermined length repeat periodically and that in this first structure 100 a second structure 200 is arranged with individual wire sections, wherein in each case the same length is given and wherein the first group of wire sections and the second group of wire sections in overlap a given distance. This defines a resonance length R L which is significant for the capacitive coupling of the filament groups in the longitudinal direction.

In der Figur 5 ist die gesamte Induktoranordnung bereits von einer Isolation 150 umgeben. Eine Isolierung gegen das umliegende Erdreich ist notwendig, um resistive Ströme durch das Erdreich zwischen den benachbarten Abschnitten insbesondere im Bereich der Kondensatoren zu verhindern. Die Isolation verhindert weiterhin den resistiven Stromfluss zwischen Hin- und Rückleiter. Die Anforderungen bzgl. der Spannungsfestigkeit an die Isolation sind jedoch gegenüber der unkompensierten Leitung von > 100 kV auf im obigen Beispiel etwas über 3 kV gesunken und damit durch eine Vielzahl von Isolierstoffen zu erfüllen. Die Isolation muss wie bereits das Dielektrikum der Kondensatoren höheren Temperaturen dauerhaft standhalten, womit sich wiederum keramische Isolierstoffe anbieten. Dabei darf die Isolationsschichtdicke nicht zu gering gewählt werden, da sonst kapazitive Leckströme ins umliegende Erdreich abfließen könnten. Isolierstoffdicken größer z. B. 2 mm sind bei obigem Ausführungsbeispiel ausreichend.In the FIG. 5 the entire inductor arrangement is already surrounded by an insulation 150. Insulation against the surrounding soil is necessary to prevent resistive currents through the soil between the adjacent sections, especially in the area of the capacitors. The insulation also prevents the resistive current flow between the return and return conductors. However, the requirements with respect to the dielectric strength to the insulation are compared to the uncompensated line of> 100 kV dropped in the above example, slightly above 3 kV and thus meet by a variety of insulating materials. Like the dielectric of the capacitors, the insulation must withstand higher temperatures permanently, which in turn offers ceramic insulating materials. The insulation layer thickness must not be too low be selected, otherwise capacitive leakage could flow into the surrounding soil. Insulation thickness greater z. B. 2 mm are sufficient in the above embodiment.

Schnittdarstellungen einer entsprechenden Anordnung mit 36 Filamenten, die wiederum aus zwei Filamentgruppen besteht, sind in den Figuren 5, 9, 10 und 12 dargestellt. Dabei verdeutlicht insbesondere Figur 5 den Aufbau und die Kombination der verschachtelten Anordnung aus 36 Filamenten. Im Einzelnen sind dabei die Filamentleiter der ersten Gruppe mit 101 bis 118 und die Filamentleiter der zweiten Gruppe mit 201 bis 218 bezeichnet. Bei der Struktur nach Art einer hexagonalen Anordnung ist ein Mittenbereich 150 im Zentrum der Leiter frei.Sectional views of a corresponding arrangement with 36 filaments, which in turn consists of two filament groups are in the Figures 5 . 9 . 10 and 12 shown. This illustrates in particular FIG. 5 the construction and the combination of the nested arrangement of 36 filaments. In detail, the filament conductors of the first group are denoted by 101 to 118 and the filament conductors of the second group are denoted by 201 to 218. In the structure of a hexagonal arrangement, a central area 150 in the center of the conductors is exposed.

Insgesamt ergeben sich damit entsprechend der Intensitätsstruktur vorgegebene Isolierungen. In Figur 6 ist ein Zweigruppen-60-Filamentleiteranordnung im Querschnitt dargestellt, der wiederum einen Aufbau einer hexagonalen Struktur hat. Dabei gehören die Leiter 401 bis 430 (links schraffiert) zur ersten Gruppe der Filamentleiter und die Leiter 501 bis 530 (rechts schraffiert) zur zweiten Gruppe der Filamentleiter. Die Leitergruppen sind in einem isolierenden Medium eingebettet. Durch die spezifische Struktur der Leitergruppen ergeben sich jeweils einzelne Leiter, die gruppenweise über ein elektrisches Feld hoher Intensität verbunden sind und jeweils zu anderen Leitern über ein niedriges Feld verbunden sind, was durch Modellrechnungen bestätigt werden kann.Overall, this results in given insulation according to the intensity structure. In FIG. 6 For example, a two-group 60 filament conductor assembly is shown in cross-section, again having a hexagonal structure construction. The conductors 401 to 430 (hatched on the left) belong to the first group of filament conductors and the conductors 501 to 530 (shaded to the right) belong to the second group of filament conductors. The conductor groups are embedded in an insulating medium. The specific structure of the conductor groups results in individual conductors, which are connected in groups via a high-intensity electric field and are each connected to other conductors via a low field, which can be confirmed by model calculations.

Bei der hexagonalen Struktur gemäß Figur 5 und Figur 6 ist der zentrale Bereich 150 feldfrei. Dieser Bereich 150 kann zum Einbringen von Kühlmitteln oder aber auch zum Einbringen von mechanischen Verstärkungen zwecks Erhöhung der Zugfestigkeit genutzt werden. Dazu sind beispielsweise permanent eingebrachte oder entfernbare Kunstfaserseile oder auch entfernbare Stahlseile verwendbar. Hierauf wird weiter unten noch im Einzelnen eingegangen.In the hexagonal structure according to FIG. 5 and FIG. 6 the central area 150 is field-free. This region 150 can be used for introducing coolants or else for introducing mechanical reinforcements in order to increase the tensile strength. For this example, permanently inserted or removable synthetic fiber ropes or removable steel cables are used. This will be discussed in detail below.

In der graphischen Darstellung gemäß Figur 7 ist - jeweils im logarithmischen Maßstab - auf der Abszisse die Anzahl n der einzelnen Drähte dargestellt und auf der Ordinate die Längskapazität in µF/m. Es sind Graphen 71 bis 74 für unterschiedliche Leiterquerschnitte dargestellt und zwar 71 für einen Querschnitt von 600 mm2, 72 für einen Querschnitt von 1200 mm2, 73 für einen Querschnitt von 2400 mm2 und 71 für einen Querschnitt von 4800 mm2.In the graph according to FIG. 7 is - in each case logarithmic scale - the abscissa represents the number n of the individual wires and the ordinate represents the longitudinal capacitance in μF / m. Graphs 71 to 74 for different conductor cross sections are shown, namely 71 for a cross section of 600 mm 2 , 72 for a cross section of 1200 mm 2 , 73 for a cross section of 2400 mm 2 and 71 for a cross section of 4800 mm 2 .

Die einzelnen Graphen 71 bis 72 verlaufen parallel mit gleicher, monotoner Steigung: Wie zu erwarten, steigt die Litzendraht-Kapazität exponentiell mit der Drahtzahl, aber linear mit dem Querschnitt an.The individual graphs 71 to 72 run parallel with the same, monotonous slope: As expected, the litz wire capacitance increases exponentially with the number of wires, but linearly with the cross section.

Aus Figur 7 ist ableitbar, dass sich die kapazitive Kompensation einerseits in Abhängigkeit von der Zahl der Leiter und andererseits vom Gesamtquerschnitt einstellen lässt. Dabei wurde eine Geometrie der Leiter gemäß den Figuren 4 und 5 mit einer jeweils gleichen Teflonisolation zugrunde gelegt. Bei vorgegebener Querschnittsfläche kann also die notwendige Zahl von Litzenleitern bestimmt werden.Out FIG. 7 It can be deduced that the capacitive compensation can be adjusted on the one hand depending on the number of conductors and on the other hand on the total cross section. It was a geometry of the ladder according to the FIGS. 4 and 5 based on the same Teflon insulation. For a given cross-sectional area, therefore, the necessary number of stranded conductors can be determined.

In der graphischen Darstellung der Figur 8 ist die Frequenzabhängigkeit des ohmschen Widerstandes für verschiedene Drahtdurchmesser dargestellt. Auf der Abszisse ist die Frequenz in Hz aufgetragen und auf der Ordinate ist der Widerstand pro Längeneinheit R in Ω/m, wobei wiederum für beide Koordinaten der logarithmischer Maßstab gewählt ist. Es sind Graphen 81 bis 84 für unterschiedliche Drahtdurchmesser als Parameter dargestellt, und zwar 81 für einen Durchmesser von 0,5 mm, 82 für einen Durchmesser von 1 mm, 83 für einen Durchmesser von 2 mm und 84 für einen Durchmesser von 5 mm.In the graph of the FIG. 8 the frequency dependence of the ohmic resistance for different wire diameters is shown. On the abscissa the frequency is plotted in Hz and on the ordinate the resistance per unit length R is in Ω / m, again for both coordinates the logarithmic scale is chosen. Graphs 81 to 84 for different wire diameters are shown as parameters, 81 for a diameter of 0.5 mm, 82 for a diameter of 1 mm, 83 for a diameter of 2 mm and 84 for a diameter of 5 mm.

Die Graphen 81 bis 84 verlaufen im Anfangsbereich parallel zur Abszisse und steigen dann mit im Wesentlichen gleicher Steigung monoton an: Wie zu erwarten steigt der Widerstand exponentiell mit der Frequenz einerseits und dem Drahtdurchmesser andererseits. Dabei wird bei Bestromung von einer Temperatur von 260°C ausgegangen.The graphs 81 to 84 are parallel to the abscissa in the initial region and then increase monotonically with essentially the same slope: as expected, the resistance increases exponentially with the frequency on the one hand and the wire diameter on the other hand. It is energized by a temperature assumed 260 ° C.

Aus dem Verlauf der Graphen 81 bis 84 in Figur 9 ist insbesondere der Einfluss des Skineffektes bei der angegebenen Temperatur entnehmbar. Aus den Graphen 81 bis 84 ergibt sich, dass der ohmsche Widerstand zunächst im Bereich bis zu unterschiedlichen Grenzfrequenzen zwischen 103 und 105 Hz im Wesentlichen konstant ist, wobei der Widerstand umgekehrt proportional dem Drahtdurchmesser ist und dass dann bei ansteigenden Frequenzen auch der Widerstand ansteigt.From the graph of graphs 81 to 84 in FIG FIG. 9 In particular, the influence of the skin effect at the indicated temperature can be removed. It can be seen from the graphs 81 to 84 that the ohmic resistance is initially substantially constant in the range up to different cutoff frequencies between 10 3 and 10 5 Hz, the resistance being inversely proportional to the wire diameter and then the resistance also increases with increasing frequencies ,

In Figur 9 sind sechs Leiterbündel 91 bis 96 in hexagonaler Geometrie um einen zentralen Hohlraum 97 angeordnet. In Figur 10 sind dagegen sechs Leiterbündel 91' bis 96' in etwa tortenstückartig als Segmente um einen zentralen Hohlraum 97' angeordnet. Die Freiräume 97 bzw. 97' beinhalten Möglichkeiten zur Aufnahme von Kühleinrichtungen oder mechanischen Verstärkungseinrichtungen. Entsprechende Mittel sind in den Figuren 9 und 10 nicht im Einzelnen dargestellt.In FIG. 9 Six conductor bundles 91 to 96 are arranged in hexagonal geometry around a central cavity 97. In FIG. 10 on the other hand, six conductor bundles 91 'to 96' are arranged in approximately pie-like manner as segments around a central cavity 97 '. The free spaces 97 and 97 'contain possibilities for accommodating cooling devices or mechanical reinforcement devices. Corresponding means are not shown in detail in FIGS. 9 and 10.

Aus Figur 11 ergibt sich, dass bei einer prinzipiellen Anordnung entsprechend Figur 10 mit sektorartigen Elementen aus Einzelleitern es vorteilhaft ist, dass die einzelnen Leiter in Längsrichtung des gesamten Kabels verdrillt sind. Es ergeben sich somit auf dem Umfang des Leiters Linien von beispielsweise C bis D, welche die azimutale Verdrillung der einzelnen Leiter verdeutlichen. In der Schnittfläche ergibt sich dabei im linken Quadranten ein Feldverlauf entsprechend den eingezeichneten Pfeilen.Out FIG. 11 it follows that, in a basic arrangement accordingly FIG. 10 With sector-like elements made of individual conductors it is advantageous that the individual conductors are twisted in the longitudinal direction of the entire cable. Thus, lines of, for example, C to D, which illustrate the azimuthal twisting of the individual conductors, result on the circumference of the conductor. In the sectional area results in the left quadrant a field profile corresponding to the arrows.

In der Figur 12 ist Kunststoffrohr 120 dargestellt, in das eine Anordnung mit Litzenleitern eingebracht ist. Das Rohr 120 kann beispielsweise aus Kunststoff bestehen, wobei sich ringförmig im Rohr 120 ein Zwischenraum 121 ergibt, in dem der Isolator mit den hexagonalen Leiterstrukturen 122 eingebracht ist. Wesentlich ist dabei wiederum ein zentrischer leiterfreier Bereich 123, in dem für den bestimmungsgemäßen Gebrauch der beschriebenen Leiter notwendige Hilfsmittel eingebracht werden können. Insbesondere erlaubt eine solche Anordnung mit dem leiterfreien Zentrum 123 die Verwendung von verseilten Drähten anstelle von verflochtenen oder transponierten Drähten, ohne auf die Verminderung der ohmschen Zusatzverluste durch den Proximity-Effekt verzichten zu müssen. Dadurch ist eine vergleichsweise einfache Fertigung möglich.In the FIG. 12 plastic pipe 120 is shown, in which an arrangement is introduced with stranded conductors. The tube 120 can be made of plastic, for example, with a gap 121 in the tube 120 resulting in which the insulator with the hexagonal conductor structures 122 is introduced. Essential here again is a centric conductor-free region 123 in which necessary aids are introduced for the intended use of the conductors described can be. In particular, such an arrangement with the conductor-free center 123 allows the use of stranded wires instead of intertwined or transposed wires, without having to sacrifice the reduction of ohmic additional losses by the proximity effect. As a result, a comparatively simple production is possible.

Für den bestimmungsgemäßen Gebrauch der insbesondere anhand der Figuren 4, 5 sowie 9 bis 12 im Einzelnen beschriebenen Leiteranordnungen zur Beheizung von Ölsand-Reservoirs von einigen 100 m Ausdehnung sind die jeweiligen Randbedingungen zu beachten. Bei der Verlegung des Induktors sind insbesondere erhebliche Zugbelastungen zu erwarten, die im Bereich von einigen 10 Tonnen liegen können. Dadurch kann der durch Unterbrechungen gemäß Figur 4 geschwächte kompensierte Leiter überfordert werden, insoweit dass die Spannungsfestigkeit des Dielektrikums verringert ist. Hierfür sind mechanische Verstärkungen vorzusehen, die insbesondere durch Stahlseile erfolgen können. Weiterhin kann eine aktive Kühlung notwendig werden.For the intended use of the particular with reference to FIGS. 4, 5 and 9 to 12 described in detail conductor arrangements for heating oil sand reservoirs of some 100 m expansion, the respective boundary conditions are observed. When laying the inductor in particular considerable tensile loads are expected, which can be in the range of some 10 tons. As a result, the interruptions in accordance with FIG. 4 Weakened compensated conductors are overwhelmed to the extent that the dielectric strength of the dielectric is reduced. For this purpose, mechanical reinforcements are provided, which can be done in particular by steel cables. Furthermore, active cooling may be necessary.

Bei der Anordnung gemäß Figur 12 dient das äußere Kunststoffrohr 120 insbesondere dem Offenhalten der Bohrung, sowie dem Schutz des Induktors bei der Installation und beim Betrieb der Anlage mit der Anordnung zur induktiven Beheizung der Ölsand-Lagerstätte. Dadurch wird die Zugbelastung auf den Induktor während des Einziehens durch Verringerung der Reibung verringert.In the arrangement according to FIG. 12 In particular, the outer plastic tube 120 serves to keep the bore open, as well as to protect the inductor during installation and operation of the system with the arrangement for inductive heating of the oil sands deposit. This reduces the tensile load on the inductor during retraction by reducing friction.

Speziell bei der Anordnung gemäß Figur 12 kann die Flüssigkeit zur Kühlung eines ringförmigen Zwischenraums 120 innerhalb des Kunststoffrohres 120 angeordnet sein. Hier stellt die Flüssigkeit einen guten thermischen Kontakt zum Kunststoffrohr 120 und darüber zum Reservoir her, wobei wiederum zumindest eine passive Kühlung des Induktors erforderlich ist. Beispielsweise bei einer Umgebungstemperatur des Reservoirs von z. B. 200°C sollen die ohmschen Verluste im Induktor von etwa 20 W/m durch die Wärmeleitung abgeführt werden, ohne dass die Temperatur im Induktor selbst den für Teflonisolationen kritischen Wert von 250°C überschreitet.Especially in the arrangement according to FIG. 12 For example, the liquid may be disposed within the plastic tube 120 for cooling an annular space 120. Here, the liquid makes a good thermal contact with the plastic tube 120 and above to the reservoir, again at least a passive cooling of the inductor is required. For example, at an ambient temperature of the reservoir of z. B. 200 ° C, the ohmic losses in the inductor of about 20 W / m are dissipated by the heat conduction, without the temperature in the inductor itself exceeding the value of 250 ° C. which is critical for Teflon insulation.

Die Anordnung gemäß Figur 12 bietet weiterhin die Möglichkeit einer gegenläufigen Kühlung. Dabei wird der zentrale Hohlraum 97 für die eine Richtung der strömenden Flüssigkeit und der Ringraum 121 innerhalb des Kunststoffrohrs 120 für die andere Richtung der strömenden Flüssigkeit genutzt.The arrangement according to FIG. 12 furthermore offers the possibility of an opposite cooling. In this case, the central cavity 97 is used for the one direction of the flowing liquid and the annulus 121 within the plastic tube 120 for the other direction of the flowing liquid.

In Figur 13 sind - jeweils in linearer Darstellung - auf der Abszisse die Frequenz in kHz und auf der Ordinate der Induktorstrom in Ampere aufgetragen. Es wird die Abhängigkeit des Induktorstromes von der Frequenz wiedergegeben, wobei als Parameter unterschiedliche Heizleistungen angegeben sind und zwar für den Graphen 131 1 kW/m, für den Graphen 132 3 kW/m, für den Graphen 133 5 kW/m und für den Graphen 134 10 kW/m.In FIG. 13 are - in a linear representation - on the abscissa the frequency in kHz and plotted on the ordinate of the inductor current in amperes. The dependence of the inductor current on the frequency is reproduced, whereby the parameters given are different heating powers, for the graph 131 1 kW / m, for the graph 132 3 kW / m, for the graph 133 5 kW / m and for the graph 134 10 kW / m.

Die einzelnen Graphen 131 bis 134 haben jeweils einen in etwa hyperbolischen Verlauf. Daraus ergibt sich, dass die Abhängigkeit der Induktorbestromung von der Frequenz mit zunehmender Heizleistung stärker wird, sofern konstante Leistungsverluste im Reservoir vorausgesetzt werden. Insofern können anhand der Graphen 131 bis 134 die für bestimmte Heizleistungen notwendigen Ströme/bzw Frequenzen abgelesen werden.The individual graphs 131 to 134 each have an approximately hyperbolic course. It follows that the dependence of the Induktorbestromung of the frequency becomes stronger with increasing heating power, provided that constant power losses are assumed in the reservoir. In this respect, graphs 131 to 134 show the currents / or frequencies required for certain heating powers.

Die anhand der Figuren im Einzelnen beschriebene Anordnungen mit den kapazitiv kompensierten Multifilamentleitern ermöglichen eine wirksame induktive Beheizung von Ölsänden oder anderer Schwerstöl-Lagerstätten. Berechnungen und Erprobungen haben ergeben, dass eine effektive Erwärmung des Reservoirs erreicht wird, womit die Viskosität des im Sand gebundenen Bitumens bzw. des Schwerstöls erniedrigt und damit eine hinreichend Fließfähigkeit des vorher hochviskosen Rohstoffes erreicht wird.The arrangements described in detail with reference to the figures with the capacitively compensated multifilament conductors allow effective inductive heating of oil sands or other heavy oil deposits. Calculations and tests have shown that an effective heating of the reservoir is achieved, whereby the viscosity of the sand bound bitumen or the heavy oil is lowered and thus a sufficient flowability of the previously highly viscous raw material is achieved.

Claims (19)

  1. Apparatus for the inductive heating of oil sand and heavy oil deposits by way of current-carrying conductors that consist of individual conductor groups, characterised in that the conductor groups are formed in periodically repeated portions of defined length that define a resonance length (RL), and in that two or more conductor groups of this type are capacitively coupled, forming a multifilament, multiband and/or multifilm conductor structure.
  2. Apparatus according to claim 1, characterised in that each conductor is individually insulated and consists of a single wire.
  3. Apparatus according to claim 1, characterised in that each conductor consists of a large number of insulated wires that form a 'HF litz wire'.
  4. Apparatus according to claim 3, characterised in that two groups, each comprising 1000 to 5000 filaments, are provided and resonance lengths (RL) ranging from approximately 20 to approximately 100 m are obtained.
  5. Apparatus according to either claim 3 or claim 4, characterised in that a capacitively compensated multifilament conductor of transposed and/or woven individual conductors is formed in such a way that each individual conductor within the resonance length (RL) is found the same number of times on each radius of the apparatus.
  6. Apparatus according to one of claim 3 or claim 4, characterised in that, similarly to conventional conductors, a compensated multifilament conductor is formed of a plurality of conductor sub-groups that are arranged about a common centre.
  7. Apparatus according to claim 6, characterised in that the individual compensated conductor sub-groups consist of stranded solid or HF litz wires.
  8. Apparatus according to claim 6, characterised in that the cross-sections of the conductor sub-groups are round or hexagonal. (Figs 9 to 12)
  9. Apparatus according to claim 8, characterised in that the conductor sub-groups are segment-shaped.
  10. Apparatus according to any one of the preceding claims, characterised in that the central conductor-free region within the cross-section of a compensated multifilament conductor is used to provide mechanical reinforcement and to increase tensile strength.
  11. Apparatus according to claim 10, characterised in that plastics material fibre cables or glass fibre cables or steel cables are used to provide reinforcement and are insertable and/or removable at least temporarily.
  12. Apparatus according to any one of the preceding claims, characterised in that the central conductor-free region within the cross-section of a compensated multifilament conductor comprises means for cooling.
  13. Apparatus according to claim 12, characterised in that a liquid, in particular water or oil, is provided or can be introduced as means for cooling.
  14. Apparatus according to claim 12, characterised in that temperature sensors, in particular glass fibre sensors or Bragg fibres, are arranged in the central region and can be used to monitor and/or control the current feed and/or the liquid cooler.
  15. Apparatus according to any one of the preceding claims, characterised in that the inductor is inserted in a plastics material pipe having a larger inner diameter.
  16. Apparatus according to claim 15, characterised in that lubricant is provided between the plastics material pipe and the inductor.
  17. Apparatus according to claim 15, characterised in that a liquid, for example water, of low electric conductivity and/or a lubricating liquid or insulating liquid is provided during operation between the inductor and the plastics material pipe.
  18. Apparatus according to claim 16, characterised in that a coolant is pumped into the gap and/or into the central conductor-free region, in particular in opposite directions.
  19. Apparatus according to any one of the preceding claims, characterised in that a defined inductance and a defined capacitance per unit length of the inductor are provided in such a way that the apparatus can be operated in a serially compensated manner at a previously determined frequency.
EP09718382A 2008-03-06 2009-02-25 Apparatus for inductive heating of oil sand and heavy oil deposits by way of current-carrying conductors Not-in-force EP2250858B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200930090T SI2250858T1 (en) 2008-03-06 2009-02-25 Apparatus for inductive heating of oil sand and heavy oil deposits by way of current-carrying conductors
PL09718382T PL2250858T3 (en) 2008-03-06 2009-02-25 Apparatus for inductive heating of oil sand and heavy oil deposits by way of current-carrying conductors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008012855 2008-03-06
DE102008062326A DE102008062326A1 (en) 2008-03-06 2008-12-15 Arrangement for inductive heating of oil sands and heavy oil deposits by means of live conductors
PCT/EP2009/052183 WO2009109489A1 (en) 2008-03-06 2009-02-25 Apparatus for inductive heating of oil sand and heavy oil deposits by way of current-carrying conductors

Publications (2)

Publication Number Publication Date
EP2250858A1 EP2250858A1 (en) 2010-11-17
EP2250858B1 true EP2250858B1 (en) 2011-08-03

Family

ID=40953206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09718382A Not-in-force EP2250858B1 (en) 2008-03-06 2009-02-25 Apparatus for inductive heating of oil sand and heavy oil deposits by way of current-carrying conductors

Country Status (11)

Country Link
US (2) US8766146B2 (en)
EP (1) EP2250858B1 (en)
AT (1) ATE519354T1 (en)
CA (1) CA2717607C (en)
DE (1) DE102008062326A1 (en)
ES (1) ES2367561T3 (en)
PL (1) PL2250858T3 (en)
PT (1) PT2250858E (en)
RU (1) RU2455796C2 (en)
SI (1) SI2250858T1 (en)
WO (1) WO2009109489A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013079201A1 (en) 2011-12-02 2013-06-06 Leoni Kabel Holding Gmbh Method for producing a cable core having a conductor surrounded by an insulation for a cable, in particular for an induction cable, and cable core and cable
CN104518575A (en) * 2013-09-27 2015-04-15 西门子公司 Wireless energy-transfer coupling by way of an alternating magnetic field
WO2015128483A1 (en) 2014-02-28 2015-09-03 Leoni Kabel Holding Gmbh Induction cable, coupling device, and method for producing an induction cable
WO2015128487A1 (en) 2014-02-28 2015-09-03 Leoni Kabel Holding Gmbh Cable, in particular induction cable, method for laying such a cable and laying aid
WO2015128491A1 (en) 2014-02-28 2015-09-03 Leoni Kabel Holding Gmbh Cable, in particular induction cable, and method for producing a cable
WO2015128484A1 (en) 2014-02-28 2015-09-03 Leoni Kabel Holding Gmbh Cable core for a cable, in particular an induction cable, cable, and method for producing a cable core

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008062326A1 (en) * 2008-03-06 2009-09-17 Siemens Aktiengesellschaft Arrangement for inductive heating of oil sands and heavy oil deposits by means of live conductors
DE102009010289A1 (en) 2009-02-24 2010-09-02 Siemens Aktiengesellschaft Device for measuring temperature in electromagnetic fields, use of this device and associated measuring arrangement
DE102009019287B4 (en) * 2009-04-30 2014-11-20 Siemens Aktiengesellschaft Method for heating up soil, associated plant and their use
DE102009042127A1 (en) * 2009-09-18 2011-03-24 Siemens Aktiengesellschaft Inductive conductor for non-contact power transmission and its use for vehicles
DE102010008776A1 (en) * 2010-02-22 2011-08-25 Siemens Aktiengesellschaft, 80333 Apparatus and method for recovering, in particular recovering, a carbonaceous substance from a subterranean deposit
DE102010023542B4 (en) * 2010-02-22 2012-05-24 Siemens Aktiengesellschaft Apparatus and method for recovering, in particular recovering, a carbonaceous substance from a subterranean deposit
DE102010008779B4 (en) * 2010-02-22 2012-10-04 Siemens Aktiengesellschaft Apparatus and method for recovering, in particular recovering, a carbonaceous substance from a subterranean deposit
US8692170B2 (en) * 2010-09-15 2014-04-08 Harris Corporation Litz heating antenna
DE102010043302A1 (en) * 2010-09-28 2012-03-29 Siemens Aktiengesellschaft Process for "in situ" production of bitumen or heavy oil from oil sands deposits as a reservoir
DE102010043720A1 (en) * 2010-11-10 2012-05-10 Siemens Aktiengesellschaft System and method for extracting a gas from a gas hydrate occurrence
EP2623709A1 (en) * 2011-10-27 2013-08-07 Siemens Aktiengesellschaft Condenser device for a conducting loop of a device for in situ transport of heavy oil and bitumen from oil sands deposits
DE102012220237A1 (en) * 2012-11-07 2014-05-08 Siemens Aktiengesellschaft Shielded multipair arrangement as a supply line to an inductive heating loop in heavy oil deposit applications
US9991029B2 (en) * 2012-11-27 2018-06-05 Pratt & Whitney Canada Corp. Multi-phase cable
EP2740809A1 (en) * 2012-12-06 2014-06-11 Siemens Aktiengesellschaft Arrangement and method for inserting heat into a collection of ores and/or sands by electromagnetic induction
US9653812B2 (en) 2013-03-15 2017-05-16 Chevron U.S.A. Inc. Subsurface antenna for radio frequency heating
US9598945B2 (en) 2013-03-15 2017-03-21 Chevron U.S.A. Inc. System for extraction of hydrocarbons underground
DE102013219368A1 (en) 2013-09-26 2015-03-26 Siemens Aktiengesellschaft Inductor for inductive heating
EP2886793A1 (en) * 2013-12-18 2015-06-24 Siemens Aktiengesellschaft Method for introducing an inductor loop into a rock formation
DE102014206747A1 (en) * 2014-04-08 2015-10-08 Siemens Aktiengesellschaft inductor
EP2947262B1 (en) * 2014-05-21 2016-12-14 Siemens Aktiengesellschaft Inductor and method for heating a geological formation
EP2947261B1 (en) * 2014-05-21 2016-12-14 Siemens Aktiengesellschaft Inductor and method for heating a geological formation
US10012060B2 (en) 2014-08-11 2018-07-03 Eni S.P.A. Radio frequency (RF) system for the recovery of hydrocarbons
RU2694319C2 (en) 2014-08-11 2019-07-11 Эни С.П.А. Coaxial distribution mode converters
US9938809B2 (en) 2014-10-07 2018-04-10 Acceleware Ltd. Apparatus and methods for enhancing petroleum extraction
DE102014220709A1 (en) * 2014-10-13 2016-04-14 Siemens Aktiengesellschaft Mechanically supporting and electrically insulating mechanical connection
DE102014223621A1 (en) * 2014-11-19 2016-05-19 Siemens Aktiengesellschaft deposit Heating
DE102015208056A1 (en) * 2015-04-30 2016-11-03 Siemens Aktiengesellschaft Heating device for inductive heating of a hydrocarbon reservoir
DE102015215448A1 (en) * 2015-08-13 2017-02-16 Siemens Aktiengesellschaft Cable, inductor and method of making an inductor for heating a geological formation
BR112018075632B1 (en) * 2016-06-10 2022-06-21 Neotechnology, LLC Processes and systems for upgrading heavy crude oil using induction heating
US11008841B2 (en) 2017-08-11 2021-05-18 Acceleware Ltd. Self-forming travelling wave antenna module based on single conductor transmission lines for electromagnetic heating of hydrocarbon formations and method of use
CA3083827A1 (en) 2017-12-21 2019-06-27 Acceleware Ltd. Apparatus and methods for enhancing a coaxial line
CN108119115B (en) * 2017-12-25 2020-06-19 张佳彦 Application method of coiled tubing thick oil heating device
JP7204904B2 (en) * 2018-10-08 2023-01-16 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム HEATER SHELL OF HEATER ASSEMBLY FOR AEROSOL GENERATOR
WO2020181368A1 (en) 2019-03-11 2020-09-17 Acceleware Ltd. Apparatus and methods for transporting solid and semi-solid substances
WO2020191481A1 (en) 2019-03-25 2020-10-01 Acceleware Ltd. Signal generators for electromagnetic heating and systems and methods of providing thereof
WO2021212210A1 (en) 2020-04-24 2021-10-28 Acceleware Ltd. Systems and methods for controlling electromagnetic heating of a hydrocarbon medium
US11401787B2 (en) * 2020-09-02 2022-08-02 Saudi Arabian Oil Company Systems and methods to chemically liven dead wells

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2678368A (en) * 1951-05-25 1954-05-11 Ohio Crankshaft Co Apparatus for high-frequency induction seam welding
US4101731A (en) * 1976-08-20 1978-07-18 Airco, Inc. Composite multifilament superconductors
SU1350848A1 (en) 1985-10-24 1987-11-07 Московский энергетический институт Induction heating installation
JPH0742664B2 (en) * 1988-11-10 1995-05-10 日本石油株式会社 Fiber reinforced composite cable
US4980517A (en) * 1989-09-25 1990-12-25 Tp Orthodontics, Inc. Multi-strand electrical cable
FR2740645B1 (en) 1995-10-27 1997-11-21 Europ Equip Menager LITZ-TYPE MULTI-STRANDED INDUCING COIL FOR INDUCTION COOKING
WO1998058156A1 (en) 1997-06-18 1998-12-23 Robert Edward Isted Method and apparatus for subterranean magnetic induction heating
US6960984B1 (en) 1999-12-08 2005-11-01 University Of North Carolina Methods and systems for reactively compensating magnetic current loops
NZ521229A (en) 2000-02-25 2004-02-27 Personal Chemistry I Uppsala Microwave heating apparatus
US6631761B2 (en) * 2001-12-10 2003-10-14 Alberta Science And Research Authority Wet electric heating process
RU2240659C2 (en) 2002-09-23 2004-11-20 Общество с ограниченной ответственностью (ООО) "Магнит" Sectionalized-inductor inductive heating device (alternatives)
DE102004009896A1 (en) 2004-02-26 2005-09-15 Paul Vahle Gmbh & Co. Kg Inductive contactless energy transmission system primary line has compensating capacitance formed by double length coaxial conductors
US7091460B2 (en) * 2004-03-15 2006-08-15 Dwight Eric Kinzer In situ processing of hydrocarbon-bearing formations with variable frequency automated capacitive radio frequency dielectric heating
US20080047733A1 (en) * 2006-08-25 2008-02-28 W.E.T. Automotive Systems Ag Spiral heating wire
DE102007040606B3 (en) 2007-08-27 2009-02-26 Siemens Ag Method and device for the in situ production of bitumen or heavy oil
DE102007008292B4 (en) 2007-02-16 2009-08-13 Siemens Ag Apparatus and method for recovering a hydrocarbonaceous substance while reducing its viscosity from an underground deposit
DE102007036832B4 (en) 2007-08-03 2009-08-20 Siemens Ag Apparatus for the in situ recovery of a hydrocarbonaceous substance
DE102007040605B3 (en) 2007-08-27 2008-10-30 Siemens Ag Device for conveying bitumen or heavy oil in-situ from oil sand deposits comprises conductors arranged parallel to each other in the horizontal direction at a predetermined depth of a reservoir
DE102008062326A1 (en) * 2008-03-06 2009-09-17 Siemens Aktiengesellschaft Arrangement for inductive heating of oil sands and heavy oil deposits by means of live conductors

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013079201A1 (en) 2011-12-02 2013-06-06 Leoni Kabel Holding Gmbh Method for producing a cable core having a conductor surrounded by an insulation for a cable, in particular for an induction cable, and cable core and cable
CN104518575A (en) * 2013-09-27 2015-04-15 西门子公司 Wireless energy-transfer coupling by way of an alternating magnetic field
WO2015128483A1 (en) 2014-02-28 2015-09-03 Leoni Kabel Holding Gmbh Induction cable, coupling device, and method for producing an induction cable
WO2015128487A1 (en) 2014-02-28 2015-09-03 Leoni Kabel Holding Gmbh Cable, in particular induction cable, method for laying such a cable and laying aid
WO2015128491A1 (en) 2014-02-28 2015-09-03 Leoni Kabel Holding Gmbh Cable, in particular induction cable, and method for producing a cable
WO2015128484A1 (en) 2014-02-28 2015-09-03 Leoni Kabel Holding Gmbh Cable core for a cable, in particular an induction cable, cable, and method for producing a cable core
US10614930B2 (en) 2014-02-28 2020-04-07 Leoni Kabel Holding Gmbh Induction cable, coupling device, and method for producing an induction cable
US10763650B2 (en) 2014-02-28 2020-09-01 Leoni Kabel Holding Gmbh Cable, in particular induction cable, method for laying such a cable and laying aid
EA035984B1 (en) * 2014-02-28 2020-09-09 Леони Кабель Гмбх Induction cable, coupling device, and method for producing an induction cable

Also Published As

Publication number Publication date
RU2010140801A (en) 2012-04-20
DE102008062326A1 (en) 2009-09-17
US8766146B2 (en) 2014-07-01
ATE519354T1 (en) 2011-08-15
PL2250858T3 (en) 2011-12-30
CA2717607A1 (en) 2009-09-11
RU2455796C2 (en) 2012-07-10
PT2250858E (en) 2011-09-05
US20110006055A1 (en) 2011-01-13
SI2250858T1 (en) 2011-12-30
EP2250858A1 (en) 2010-11-17
ES2367561T3 (en) 2011-11-04
WO2009109489A1 (en) 2009-09-11
US10000999B2 (en) 2018-06-19
CA2717607C (en) 2014-04-01
US20140326444A1 (en) 2014-11-06

Similar Documents

Publication Publication Date Title
EP2250858B1 (en) Apparatus for inductive heating of oil sand and heavy oil deposits by way of current-carrying conductors
DE102007040605B3 (en) Device for conveying bitumen or heavy oil in-situ from oil sand deposits comprises conductors arranged parallel to each other in the horizontal direction at a predetermined depth of a reservoir
EP2315910B1 (en) Installation for the<i> in situ </i>extraction of a substance containing carbon
WO2009027305A2 (en) Apparatus for in situ extraction of bitumen or very heavy oil
WO2013060610A1 (en) Capacitor device for a conductor loop in a device for the in-situ production of heavy oil and bitumen from oil-sand deposits
EP2925956B1 (en) Shielded multi-pair arrangement as supply line to an inductive heating loop in heavy oil deposits
EP3179485B1 (en) High-power coaxial cable
EP2900909A2 (en) Inductor for heating ultraheavy oil and oil sand deposits
DE102013112325B4 (en) Toroidal coil and manufacturing process for a toroidal coil
EP2633153B1 (en) Process for the in situ extraction of bitumen or ultraheavy oil from oil sand deposits as reservoir
DE102009019797A1 (en) Arrangement for magnetic field compensation in power cables
DE102011050855A1 (en) Hose with dielectric heating
EP2947262B1 (en) Inductor and method for heating a geological formation
EP2947261B1 (en) Inductor and method for heating a geological formation
EP2898754B1 (en) Induction device for the heating of an oil reservoir, in particular a heavy oil reservoir
EP3005831B1 (en) Inductor for induction heating
WO2017025468A1 (en) Cable, inductor, and method for producing an inductor for heating a geological formation
WO2015176909A1 (en) Inductor
WO2016173978A1 (en) Heating device for inductively heating a hydrocarbon deposit
WO2016173962A1 (en) Heating device for inductively heating a hydrocarbon deposit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100813

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20110825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009001052

Country of ref document: DE

Effective date: 20110929

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2367561

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111104

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110803

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 10442

Country of ref document: SK

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111203

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111103

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E012185

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111104

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

26N No opposition filed

Effective date: 20120504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009001052

Country of ref document: DE

Effective date: 20120504

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120225

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 519354

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20180221

Year of fee payment: 10

Ref country code: RO

Payment date: 20180130

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20180223

Year of fee payment: 10

Ref country code: IT

Payment date: 20180226

Year of fee payment: 10

Ref country code: SI

Payment date: 20180129

Year of fee payment: 10

Ref country code: PL

Payment date: 20180123

Year of fee payment: 10

Ref country code: PT

Payment date: 20180124

Year of fee payment: 10

Ref country code: FR

Payment date: 20180221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180516

Year of fee payment: 10

Ref country code: ES

Payment date: 20180525

Year of fee payment: 10

Ref country code: DE

Payment date: 20180419

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20180413

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009001052

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190225

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190826

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190226

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190225

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 10442

Country of ref document: SK

Effective date: 20190225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190226

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20191007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190225

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190225