EP3201445B1 - Cooling system, and internal combustion engine comprising a cooling system of said type - Google Patents

Cooling system, and internal combustion engine comprising a cooling system of said type Download PDF

Info

Publication number
EP3201445B1
EP3201445B1 EP15771629.1A EP15771629A EP3201445B1 EP 3201445 B1 EP3201445 B1 EP 3201445B1 EP 15771629 A EP15771629 A EP 15771629A EP 3201445 B1 EP3201445 B1 EP 3201445B1
Authority
EP
European Patent Office
Prior art keywords
coolant
line
component
cooling system
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15771629.1A
Other languages
German (de)
French (fr)
Other versions
EP3201445A1 (en
Inventor
Oliver Markin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP3201445A1 publication Critical patent/EP3201445A1/en
Application granted granted Critical
Publication of EP3201445B1 publication Critical patent/EP3201445B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0285Venting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/04Arrangements of liquid pipes or hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/12Turbo charger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/005Cooling of pump drives

Definitions

  • the invention relates to a cooling system and an internal combustion engine with such a cooling system.
  • a cooling system of the type discussed here usually has a coolant circuit through which a liquid coolant for absorbing heat from components to be cooled, for example an internal combustion engine, flows.
  • a liquid coolant for absorbing heat from components to be cooled, for example an internal combustion engine.
  • air pockets can occur, which have a disadvantageous effect on the cooling performance of the cooling system.
  • a vent line is fluidly connected to a component to be cooled, which is supplied with coolant via a coolant line, for venting the component.
  • the vent line is different from the coolant line and does not serve to supply coolant, but rather specifically to vent the component.
  • the vent line is typically led to a bubble separator of the cooling system, into which a large number of different components of the vent lines usually open, or the vent line is led into an expansion tank for the coolant circuit, with the air in the bubble separator or the collecting tank being separated from the coolant can be.
  • long ventilation lines are required in any case for components that are arranged further away from them, and these must be laid in a complex manner, in particular on an internal combustion engine. This results in considerable construction, manufacturing, assembly and qualification costs as well as high development costs.
  • vent lines must be assigned to a central feed into a bubble separator or a compensating tank orifice plates, which ensure through different diameters that different pressure levels of the components to be vented are balanced.
  • orifices with a flow diameter of 1 mm or less must be used, resulting in high flow resistance and a risk of clogging, for example if particles are present in the coolant.
  • the invention is based on the object of creating a cooling system and an internal combustion engine with such a cooling system, the disadvantages mentioned not occurring.
  • the object is achieved in that the subject matter of independent claim 1 is created.
  • Advantageous configurations result from the subclaims.
  • the object is achieved in particular by creating a cooling system which has at least one first component to be cooled, into which a first coolant line opens, a first vent line different from the first coolant line being fluidly connected to the first component for venting the first component that the first vent line opens into a second coolant line, the second coolant line being designed as a coolant path in a second component to be cooled or alternatively the first vent line opens into the second coolant line outside a component to be cooled.
  • the vent line emanating from the first component is therefore not routed to a central feed point such as an expansion tank or a bubble separator, but rather - in particular decentrally - into a second coolant line, so that the air discharged from the first component is conveyed through the second coolant line along the coolant circuit can be.
  • the ventilation line can also be used, especially when it is remote Arrangement of the first component to be cooled can be made shorter by an expansion tank than if a central inlet point and a merging of several ventilation lines were provided.
  • the cooling system is preferably set up to use a liquid coolant.
  • liquid here means in particular that the coolant is in a liquid state under the conditions prevailing in the cooling system, in particular the pressures and temperatures prevailing there during operation.
  • the coolant is preferably in liquid form under normal conditions, ie in particular at 1013 mbar and 25 ° C.
  • Such coolants preferably have a higher thermal capacity than, in particular, gaseous coolants. They can therefore transport larger amounts of heat with a smaller volume and / or mass flow and thus enable more efficient cooling.
  • the cooling system is particularly preferably set up to use water, preferably as a mixture with at least one antifreeze agent - for example glycol - as the coolant. Water is characterized by a particularly high heat capacity.
  • a component to be cooled is understood in particular as a part, in particular a component or functional part, of a device that is to be cooled by means of the cooling system.
  • it can be a part, component or functional part of a Act internal combustion engine, for example a turbine housing or a compressor housing of an exhaust gas turbocharger or a crankcase.
  • a coolant line is understood to mean, in particular, a line that is set up to guide coolant, namely to supply, pass through and / or discharge coolant to, through or from a component to be cooled for the purpose of cooling the component to be cooled.
  • a coolant line is designed, in particular in terms of its cross section, in such a way that a component to be cooled can be flowed through with a mass or volume flow of coolant that is sufficient to cool it.
  • Such a coolant line can be formed as a separate line from the component to be cooled but fluidly connected to it, but also as a coolant path within a component to be cooled, for example by a double-walled housing.
  • Coolant lines are preferably arranged in such a way that effective and efficient coolant guidance - in particular with regard to pressure loss, flow velocity, cavitations, and other relevant conditions - is guaranteed to all components to be cooled.
  • a vent line is understood to mean, in particular, a line which is provided for venting a component to be cooled and in particular is set up to remove air or a coolant / air mixture from the component to be cooled.
  • a coolant / air mixture discharged from the component to be cooled for the purpose of venting via the vent line is richer in air than a coolant / air mixture that may flow through a coolant line.
  • the vent line is preferably arranged on the component to be cooled in such a way that it is essentially supplied with air, although it is particularly possible that coolant is entrained by air bubbles entering the vent line.
  • vent line does not have to carry a mass or volume flow of the coolant that is sufficient to cool the component to be cooled, it preferably has a smaller cross section than the coolant line.
  • Vent lines are preferably arranged on a component to be cooled in such a way that suitable pressure levels are achieved or maintained stay to ensure a flow of the coolant.
  • the ventilation lines are preferably made as short as possible.
  • Venting is understood here in particular to mean that air is discharged from a coolant line assigned to a component to be cooled or from a coolant path of the same in order to improve the efficiency of cooling and the flow of coolant through the component to be cooled.
  • Ventilation lines are preferred, as far as possible, with an incline to ensure effective ventilation.
  • At least two lines are fluidly connected to the first component to be cooled, namely the first coolant line on the one hand, and the first vent line different from it and preferably also separate from it, in particular arranged separately, the coolant line being set up in contrast to the vent line, in order to supply the component to be cooled with a mass or volume flow of coolant that is sufficient to cool it, the vent line being set up to ensure venting of the first component.
  • the component to be cooled is preferably also fluidly connected to a further coolant line - as a third line - via which coolant is discharged after it has flowed through the component to be cooled.
  • the vent line is therefore in particular not used to remove coolant, but rather for venting, preferably solely for venting.
  • the vent line is preferably fluidly connected to a coolant path within the first component.
  • a coolant path which itself also represents a coolant line, is particularly preferably formed by a double-walled or multi-walled housing of the first component. Because the vent line opens into this coolant path, the first component can be vented very efficiently.
  • the first vent line preferably branches off from the first component, in particular from the coolant path, or it starts from the first component to be cooled, preferably from the coolant path.
  • the first vent line opens - preferably downstream of the first component - into the second coolant line, the term "downstream" here particularly relating to the direction of flow of the air discharged from the first component.
  • downstream here particularly relating to the direction of flow of the air discharged from the first component.
  • the second coolant line is preferably arranged downstream - in relation to a coolant circuit of the cooling system - the first coolant line. It is in particular possible that the second coolant line - as a third line - branches off from the first component to be cooled and / or is directly fluidly connected to this in order to discharge coolant from the first component to be cooled. Furthermore, it is possible that the second coolant line is not directly in fluid connection with the first component to be cooled, but is arranged fluidically in series downstream of the first component to be cooled in the coolant circuit of the cooling system. However, it is also possible for the second coolant line to be arranged parallel to the first coolant line in the cooling system, for example in a parallel cooling branch of the cooling system.
  • the second coolant line is designed as a coolant path in a second component to be cooled.
  • a second component to be cooled is provided, which has an integral coolant path, for example formed by a double-walled housing of the second component, as a second coolant line, the first vent line opening into this coolant path.
  • the air discharged from the first component to be cooled can thus be guided back into the coolant circuit in the second component to be cooled and from there - possibly via further coolant lines - be transported on.
  • the result is very short ventilation lines.
  • the second coolant line may lead to the second component to be cooled, the first vent line opening into the second coolant line outside the second component to be cooled.
  • An embodiment is therefore also possible in which the vent line opens into a coolant line which does not penetrate a component to be cooled, but rather leads, for example, to a component to be cooled or away from a component to be cooled.
  • the second coolant line can lead to an expansion tank of the cooling system and in particular to be in direct fluid connection therewith. It is also possible for the second coolant line to close an air separator of the cooling system and in particular is directly fluidly connected to this.
  • the first component to be cooled is designed as a turbine housing of an exhaust gas turbocharger.
  • the second component to be cooled is designed as a compressor housing of the exhaust gas turbocharger.
  • a particularly short vent line can thus be provided which branches off from the first component, namely the turbine housing, and opens into the second component, namely the compressor housing immediately adjacent to the turbine housing.
  • the first component is designed as a crankcase of an internal combustion engine.
  • the comparatively short ventilation lines preferably provided in the cooling system are less susceptible to vibrations than longer ventilation lines, they can be made of solid materials, in particular of metal or a plastic. Steel can preferably also be used as the material.
  • the cooling system is preferably compact and in particular designed with the smallest possible number of preferably short vent lines.
  • the cooling system is preferably designed as a closed permanent ventilation system.
  • the cooling system and the cooling system are vented permanently and continuously during operation. This means, in particular, that at any point in time during operation of the cooling system, the coolant flows to or through the at least one air separator and air components present in the coolant flow are preferably separated off.
  • the cooling system can work in a closed manner, in particular it can be designed as a closed permanent ventilation system, so that the separated air is preferably not released directly into an atmosphere, but in particular is stored in a collecting container.
  • a closed cooling system enables one compared to an open one System higher pressure, so that a corresponding coolant has a higher boiling point, which in turn can increase a permissible coolant temperature.
  • a first pressure prevails in the first coolant line, a second pressure prevailing in the second coolant line, the first pressure being greater than the second pressure.
  • the coolant is preferably conveyed by pressure differences along the cooling system and in particular along a coolant circuit of the cooling system.
  • a direction of flow of the coolant is predetermined, in particular, by different pressure levels within the cooling system.
  • the fact that the pressure in the second coolant line is lower than the pressure in the first coolant line during operation of the cooling system ensures that the air removed from the first component to be cooled is conveyed away from the latter and fed into the second coolant line, so that a results in a defined flow direction during venting.
  • the first component to be cooled is therefore vented, in particular, in a pressure-driven manner.
  • the first coolant line has a first cross-sectional area, the first vent line having a second cross-sectional area, the first cross-sectional area being larger than the second cross-sectional area.
  • the vent line is only intended to vent the first component to be cooled, while the first coolant line is provided to supply the first component to be cooled with a mass or volume flow of coolant sufficient to cool it.
  • selected cross-sectional areas ensure that the various lines can meet their various requirements, and also that an excessive coolant flow is not undesirably conveyed along the ventilation line, which could otherwise result in the cooling system not functioning properly.
  • the second coolant line has a third cross-sectional area that is larger than the second cross-sectional area of the first vent line.
  • the first and / or the third cross-sectional area is / are preferably by a factor of at least 16, preferably from at least 16 to at most 400, preferably from at least 25 to at most 225, preferably from at least 36 to at most 100, preferably from at least 25 to at most 49, preferably from at least 25 to at most 36, larger than the second cross-sectional area.
  • the first and / or the second coolant line has / have a first or third diameter or radius with a circular cross section
  • the first and / or the third diameter or radius is / are greater than the second diameter or radius, namely preferably by a factor of at least 4, preferably up to at most 20, preferably from at least 5 to at most 15, preferably from at least 6 to at most 10, preferably from at least 5 to at most 7, particularly preferably from at least 5 to at most 6.
  • first cross-sectional area of the first coolant line and the third cross-sectional area of the second coolant line can be the same size; but it is also possible that they are of different sizes. In addition, they can have the same or different shape or geometry.
  • a coolant line preferably has a line diameter of 40 mm or more.
  • a vent line preferably has a line diameter of at least 5 mm to at most 10 mm, preferably of at least 6 mm to at most 8 mm, preferably of 7 mm.
  • the cross section of a vent line is generally selected independently of the required coolant volume flow of a component to be cooled.
  • the smallest possible pipe size is preferably used here in order to keep the coolant flow along the ventilation line low, since this cannot be used for cooling.
  • the first vent line is in fluid connection with the first component to be cooled at a connection point which is higher than that, that is, in particular geodetically above the opening of the first coolant line into the first component to be cooled.
  • geodetically above here refers in particular to the fact that the force of gravity specifies an excellent direction, which is also referred to as the vertical direction, with a side of the cooling system facing the center of the earth as the geodetically below and a side facing away from the center of the earth is referred to as geodetically above.
  • connection point for the first vent line is geodetically arranged above the mouth of the first coolant line means in particular that it is arranged above the mouth of the first coolant line - viewed in the vertical direction. This ensures that air flowing into the first component through the first coolant line can rise upwards, whereby it can escape into the vent line above the opening point of the first coolant line.
  • the connection point for the ventilation line is particularly preferably arranged at a geodetically highest point of the first component. This has the particular advantage that air in the first component collects at the geodetically highest point and can be discharged from there through the ventilation line. In particular, the formation of an air cushion at the geodetically highest point of the first component can be avoided.
  • the first coolant line opens geodetically into the first component on an underside thereof.
  • the coolant then flows within the first component to be cooled from bottom to top and - depending on the opening point of a coolant line discharging the coolant from the first component - back down again, or it is discharged at a location geodetically above the opening of the first coolant line the first component discharged.
  • the opening of the first vent line into the second coolant line can take place at a geodetically below or geodetically above location, in particular in a second component to be cooled.
  • the advantage of a junction geodetically above in a coolant path of a second component to be cooled is that the air flowing into the coolant path then does not have to rise in the second component, but remains geodetically at the top and is preferably discharged again from the second component here by means of a further vent line can.
  • the cooling system has an air separator which - with respect to the flow direction of the coolant - is arranged downstream of the opening of the first vent line into the second coolant line.
  • the air separator is preferably arranged in particular fluidically in series with the second coolant line, the second coolant line either opening directly into the air separator, or the air separator downstream of the second Coolant line - viewed in the direction of flow of the coolant - is arranged.
  • a second vent line is fluidly connected to the air separator. It is thus possible to separate air conveyed along the second coolant line by means of the air separator from coolant likewise conveyed along the second coolant line and to discharge it through the second vent line.
  • An air separator is understood to mean, in particular, a device which is set up to separate air comprised by a fluid flow from liquid components of the fluid flow.
  • the air separator is set up in particular to feed the separated air to the second vent line and thus vent the coolant circuit of the cooling system. This is not opposed to the fact that in practice a complete separation of air and coolant in the air separator may not succeed, in particular liquid coolant can also get into the second ventilation line with the separated air.
  • the air / coolant mixture conducted in the second vent line is in any case richer in air and less coolant than the coolant / air mixture flowing into the air separator.
  • a coolant / air mixture flowing downstream of the air separator in a coolant line coming from it is richer in coolant and has less air than the coolant / air mixture flowing into the air separator.
  • the air separator preferably has a separating means which is set up to separate air from a coolant flow passing through the air separator and to supply it to the second vent line.
  • the separating means is preferably designed as a lip or lamella arranged in the coolant flow passing through the air separator.
  • the lip or lamella is preferably arranged in such a way that it is flowed against by the air portion and the liquid coolant portion of the coolant flow in such a way that it is passed on a first side by the air portion and on a second side by the liquid coolant, so that the first Side of the lip or lamella separated air can be removed from the coolant circuit.
  • the lip or lamella is arranged in particular on a geodetically upper side of the air separator and, starting there, protrudes into the coolant flow at an angle to and against the flow direction of the coolant.
  • an opening is preferably provided in the air separator, into which the second vent line opens. In this way, air can be siphoned off from the coolant flow through the lip or lamella and fed to the second vent line.
  • the lip or lamella is preferably designed in the shape of a spoon, which results in a particularly good skimming effect for air.
  • air fractions which as a rule flow geodetically above, are skimmed off, so that these air fractions flowing above are diverted from the spoon-shaped lamella or lip on its first side, the coolant flowing towards the lip or lamella - if it collides with the lip or lamella - is thrown back by the spoon shape in a turbulent movement and washed past the second side of the lip or lamella.
  • the air separator is preferably integrated into a coolant line of the cooling system or directly in fluid connection with a coolant line, for example with the second coolant line. It is thus integrated into the coolant circuit. This also allows the cooling system to be made very compact.
  • the separating means of the air separator preferably has a material or consists of a material selected from a group consisting of aluminum, copper, steel, plastic, rubber, carbon, a metal alloy, and a composite material.
  • the cooling system preferably comprises a coolant circuit with coolant lines for conveying the coolant along the coolant circuit, at least one component to be cooled, a heat exchanger for cooling the coolant, the coolant flowing along the coolant circuit both through the at least one component to be cooled and through the heat exchanger, and at least one delivery device for delivering the coolant along the coolant circuit.
  • the conveying device is preferably designed as a pump.
  • the coolant is conveyed along the coolant circuit, preferably by generating different pressure levels in the coolant circuit and by conveying the coolant along pressure gradients.
  • the air separator is preferably arranged in an area of the coolant circuit that has a lower pressure level than the highest pressure level of the coolant circuit - in particular immediately downstream of the conveying device - particularly preferably in an area of the coolant circuit that has the lowest pressure level. It is then possible in a particularly efficient manner to discharge air through an ascending, second ventilation line which opens into the air separator.
  • the opening of the first vent line into the second coolant line is arranged at a distance from the air separator in such a way that the air introduced into the second coolant line through the first vent line rises on the flow path to the air separator in the second coolant line and can collect in a geodetically upper area thereof.
  • the opening of the first vent line into the second coolant line is preferably provided as close as possible to the air separator, so that the air introduced into the second coolant line is guided along the coolant circuit over the shortest possible distance.
  • the spacing of the mouth from the air separator also ensures that air already in the second coolant line is not swirled. At the same time, it is preferably ensured that the air is not introduced into a flow dead zone via the mouth of the first vent line in the second coolant line, since otherwise an air cushion could form at the location of the mouth.
  • the second coolant line and / or the second vent line open into an expansion tank of the cooling system for coolant. This has the advantage that air introduced into the expansion tank via the second coolant line and / or the second vent line can rise in the expansion tank and be separated from the coolant.
  • An expansion tank is understood here in particular as a reservoir for the coolant, which is used to compensate for pressure and / or temperature fluctuations in the cooling system, in that coolant can be fed from the expansion tank into the coolant circuit or returned from the coolant circuit to the expansion tank.
  • the expansion tank is preferably part of the coolant circuit.
  • An exemplary embodiment of the cooling system is preferred in which it has a coolant circuit with an expansion tank which, in particular, is part of the coolant circuit.
  • the expansion tank is not itself a coolant line or a vent line. It is preferably in fluid connection with at least one coolant line and / or at least one vent line.
  • the cooling system preferably has a plurality of coolant lines and / or vent lines. It is possible that in addition to at least one vent line which opens into a further coolant line and / or another component to be cooled, at least one vent line is also provided which opens directly into the expansion tank. It is particularly possible that such a vent line does not have a direct fluid connection to the air separator. Furthermore, it is possible that a coolant line, into which a vent line opens, is connected to the air separator, another coolant line, into which a vent line opens, is connected to the expansion tank bypassing the air separator.
  • a direct venting to the expansion tank can take place in particular from components to be cooled, which are arranged in greater spatial proximity to the expansion tank, while a venting of components to coolant lines or other components to be cooled can be used in particular for components that are spatially further from the Expansion tanks are arranged remotely. In this way, it is possible in particular to use short vent lines that are of a similar length for all components.
  • the cooling system proposed here is particularly suitable for use on various internal combustion engines and / or vehicles, since it avoids coordination work for a specific application, for example on a test bench, as well as associated development and / or construction work or corresponding development loops to reduce the formation of vibrations in the respective ventilation lines can be.
  • the coolant freed from air fractions by the air separator is fed directly into the expansion tank.
  • the second coolant line is arranged spatially closer to the expansion tank than the first component to be cooled.
  • the air discharged from the first component is thus when fed into the second coolant line closer to the expansion tank, thus at the same time promoted along the pressure gradient to a lower pressure level.
  • the second component to be cooled is arranged spatially closer to the expansion tank than the first component to be cooled.
  • the air discharged from the first component is thus conveyed closer to the expansion tank when it is fed into the second component, and thus at the same time along the pressure gradient to a lower pressure level.
  • air discharged from the first component is fed to a second component, discharged from this in turn and then fed to a third component, and this can be continued until the air is finally fed to the air separator and / or the expansion tank.
  • a third component discharged from this in turn and then fed to a third component, and this can be continued until the air is finally fed to the air separator and / or the expansion tank.
  • only one intermediate station in the form of the second component is provided for the air discharged from the first component, so that it is fed directly to the air separator and / or the expansion tank after passing through the second component.
  • the internal combustion engine is preferably designed as a reciprocating piston engine. It is possible that the internal combustion engine is set up to drive a passenger car, a truck or a commercial vehicle. In a preferred exemplary embodiment, the internal combustion engine is used to drive particularly heavy land or water vehicles, for example mining vehicles, trains, the internal combustion engine being used in a locomotive or a railcar, or ships. It is also possible to use the internal combustion engine to drive a vehicle used for defense, for example a tank.
  • One embodiment of the internal combustion engine is preferably also used in a stationary manner, for example for the stationary energy supply in emergency power operation, continuous load operation or peak load operation, the internal combustion engine in this Case preferably drives a generator.
  • the internal combustion engine is preferably designed as a diesel engine, as a gasoline engine, as a gas engine for operation with natural gas, biogas, special gas or another suitable gas.
  • the internal combustion engine is designed as a gas engine, it is suitable for use in a block-type thermal power station for stationary energy generation.
  • Fig. 1 shows a schematic representation of a first exemplary embodiment of an internal combustion engine 1 with a cooling system 3.
  • the cooling system 3 has a first component 5 to be cooled, into which a first coolant line 7 opens.
  • a first vent line 9 different from the first coolant line 7 is fluidly connected to the first component 5 for venting it.
  • the first vent line 9 opens into a second coolant line 11.
  • the second coolant line 11 is designed as a coolant path 13, which is designed in a second component 15 to be cooled, for example in the form of a double-walled housing of the second component 15.
  • the first vent line 9 it is also possible for the first vent line 9 to open into a coolant line of a coolant circuit 17 of the cooling system 3 outside a component to be cooled. This even represents a preferred embodiment, since then no further component is acted upon by the air vented from another component.
  • the geometrical distance of the component to be vented from a skimming component and / or an expansion tank of the cooling system 3 is too great, it is advantageous, with regard to vent lines that are as short as possible and less susceptible to vibration, to vent into another component that is to be cooled closer. If, on the other hand, the component to be vented is arranged in close proximity to an expansion tank, venting is preferably carried out directly into the expansion tank.
  • the first and / or the second coolant line 7, 11 preferably has / have a first cross-sectional area, the first vent line 9 having a second cross-sectional area, the first cross-sectional area being larger than the second cross-sectional area, preferably by a factor of at least 16, preferably to at most 400, preferably from at least 25 to at most 225, preferably from at least 36 to at most 100, preferably from at least 25 to at most 49, preferably from at least 25 to at most 36.
  • the cooling system 3 here has an air separator 19 which is arranged downstream of the opening of the first vent line 9 into the second coolant line 11.
  • a second vent line 21 is fluidly connected to the air separator 19.
  • the air separator 19 preferably has a separating means which is set up to separate air from a coolant flow passing through the air separator 19 and to feed it to the second vent line 21.
  • the second vent line 21 opens here into an expansion tank 23 of the cooling system 3 for coolant.
  • the expansion tank 23 serves in particular to compensate for thermally caused volume fluctuations of the coolant in the coolant circuit 17, and as a bubble separator or separating device in which air rises and out of the coolant escape and can therefore be discharged from the coolant circuit 17.
  • the cooling system 3 can be designed as an open system or also as a closed system, the air in the latter case not being discharged to the atmosphere, but rather being collected in the expansion tank 23.
  • the illustrated arrangement of the various components 5, 15 does not reflect their actual spatial arrangement on the internal combustion engine 1, but rather serves to explain the structure of the cooling system 3 and the coolant circuit 17.
  • the second component 15 is preferably arranged in spatial proximity to the first component 5.
  • the second component 15 is preferably arranged spatially closer to the expansion tank 23 than the first component 5.
  • the coolant circuit 17 of the cooling system 3 comprises in the exemplary embodiment according to FIG Figure 1 specifically, the following elements: A plurality of further coolant lines are all identified here with the reference symbol 25 in order to simplify the illustration. Furthermore, additional ventilation lines are provided, all of which are identified here with the reference numeral 27 for the sake of simplicity.
  • the coolant is conveyed along the coolant circuit 17 by means of a conveying device 29, which is designed as a pump.
  • the coolant circuit 17 comprises, as components to be cooled, in particular a crankcase 31 of the internal combustion engine 1, a cylinder head 33 of the internal combustion engine 1, an exhaust line 35, a charge air cooler 37, an oil heat exchanger 39, and the already mentioned first component 5 to be cooled, which is designed here as a turbine housing 41 of an exhaust gas turbocharger 42, as well as the second component 15 to be cooled, which is designed here as a compressor housing 43 of the exhaust gas turbocharger 42.
  • the turbine housing 41 in particular is vented into the compressor housing 43 via the first vent line 9.
  • the coolant circuit 17 also has a coolant heat exchanger 45 for cooling the coolant.
  • the ventilation lines 9, 21, 27 are preferably routed in such a way that they are designed as short as possible so that they do not tend to oscillate. Furthermore, the number of ventilation lines 9, 21, 27 can be significantly reduced compared to known designs of a cooling system.
  • the expansion tank 23 is preferably arranged at a geodetically highest point of the cooling system 3 so that the air can rise to the expansion tank 23 through the vent lines 21, 27, preventing air from flowing back into the vent lines 21, 27.
  • a further coolant line 25 branches off from the first component 5 to be cooled as a third line in order to flow through the first coolant line 7 To remove coolant supplied to cooling again from the component 5 to be cooled.
  • the first vent line 9 is neither used for supplying nor for removing coolant, but actually specifically for venting the first component 5. This does not contradict the fact that coolant entrained by the vented air may also be routed along the vent line 9 becomes.
  • the air / coolant mixture routed along the first vent line 9 is in any case much richer in air and at the same time lower in coolant than a coolant / air mixture that may be removed from the first component 5 along the coolant line 25, if the coolant routed along this coolant line 25 is still air at all contains.
  • Fig. 2 shows a representation of a second exemplary embodiment of an internal combustion engine 1 with a cooling system 3. Identical and functionally identical elements are provided with the same reference symbols, so that reference is made to the preceding description.
  • Two exhaust gas turbochargers 42.1, 42.2 each with a turbine housing 41.1, 41.2 as the first component 5.1, 5.2 to be cooled are provided here, these first components 5.1, 5.2 each passing through a very short, first vent line 9.1, 9.2 into a respective compressor housing 43.1, 43.2 must be vented.
  • a further vent line 27 through which a coolant line (not shown) of an exhaust line 35 is vented.
  • the expansion tank 23 is also shown.
  • first vent lines 9.1, 9.2 are in fluid connection with the first components 5.1, 5.2 at connection points 47.1, 47.2, which are geodetically arranged above the openings (not shown here) of the first coolant lines (also not shown), in particular on a geodetic one highest point of the first components 5.1, 5.2.
  • This enables a particularly efficient venting of the first components 5.1, 5.2.
  • ventilation lines are preferably arranged at geodetically upper, in particular geodetically highest points of components to be vented.
  • FIG. 3 shows a representation of the embodiment of the internal combustion engine 1 with the cooling system 3 according to FIG Figure 2 from a different perspective and with an enlarged detail D.
  • Identical and functionally identical elements are provided with the same reference numerals, so that in this respect reference is made to the preceding description.
  • ventilation lines 27 branching off from a crankcase 31 are shown, which upstream of an air separator 19 into a coolant line 25 opening into this open out, so that the air vented from the crankcase 31 is fed to the air separator 19 through the coolant line 25. It can then be separated from the coolant in the air separator 19 and fed to the collecting container 23 through the second vent line 21.
  • vent lines 27 are also shown, which lead from other components to be cooled directly into the collecting container 23.
  • a ventilation line 27 leads from the oil heat exchanger 39 directly into the collecting container 23.
  • crankcase 31 is arranged closer to the air separator 19 than the turbine housings 41.1, 41.2 as the first components 5.1, 5.2 to be vented. It is therefore advantageous to vent the crankcase 31 directly into a coolant line 25 opening into the air separator 19, while the turbine housings 41.1, 41.2 are first vented into the compressor housings 43.1, 43.2. This means that the shortest possible and as few ventilation lines as possible can be used everywhere.
  • Fig. 4 shows an embodiment of the air separator 19.
  • This has a separator 49, which is designed here as a lamella. Identical and functionally identical elements are provided with the same reference symbols, so that in this respect reference is made to the preceding description.
  • the separating means 49 is set up to branch off air from a coolant flow passing through the air separator 19 along an arrow P and to supply it to the second vent line 21, which is shown here in the form of an orifice hole in the air separator 19. Accordingly, a part 51 of the air separator 19 arranged downstream of the separating means 49 carries little or even no air, so that an efficient cooling of a component to be cooled is achieved downstream of the air separator 19.
  • Air encompassed by the coolant accumulates geodetically at the top on its way through the air separator 19 and also previously through a coolant line 25 connected to it, in particular on a geodetically upper, first side 53 of the separating means 49.
  • the air therefore always flows to the separating means 49 in such a way that it is passed along the first side 53 into the second ventilation line 21 and is discharged from there.
  • the coolant flows along a geodetically lower, second side 55 of the separating means 49 through the Air separator 19 and in particular through the part 51 arranged downstream of the separating means 49 further along the coolant circuit.
  • the air separator 19 is preferably arranged directly upstream of the coolant heat exchanger 45.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

Die Erfindung betrifft ein Kühlsystem sowie eine Brennkraftmaschine mit einem solchen Kühlsystem.The invention relates to a cooling system and an internal combustion engine with such a cooling system.

Ein Kühlsystem der hier angesprochenen Art ( EP 1 832 730 A2 ; DE 199 48 160 A1 ; JP 2012 092751 A ) weist üblicherweise einen Kühlmittelkreislauf auf, der von einem flüssigen Kühlmittel zur Aufnahme von Wärme aus zu kühlenden Komponenten, beispielsweise einer Brennkraftmaschine, durchströmt wird. Beim Befüllen oder Nachfüllen von Kühlmittel oder durch gegebenenfalls bestehende Undichtigkeiten eines solchen Kühlsystems kann es zu Lufteinschlüssen kommen, welche sich nachteilig auf eine Kühlleistung des Kühlsystems auswirken. Hierzu ist bei bekannten Kühlsystemen vorgesehen, dass eine Entlüftungsleitung mit einer zu kühlenden Komponente, die über eine Kühlmittelleitung mit Kühlmittel versorgt wird, zur Entlüftung der Komponente fluidverbunden ist. Dabei ist die Entlüftungsleitung von der Kühlmittelleitung verschieden und dient nicht der Zuführung von Kühlmittel, sondern vielmehr spezifisch der Entlüftung der Komponente. Die Entlüftungsleitung wird typischerweise zu einem Blasenabscheider des Kühlsystems geführt, in den in der Regel eine Vielzahl von verschiedenen Komponenten kommender Entlüftungsleitungen mündet, oder die Entlüftungsleitung wird in einen Ausgleichsbehälter für den Kühlmittelkreislauf geführt, wobei die Luft in dem Blasenabscheider oder dem Sammelbehälter von dem Kühlmittel getrennt werden kann. Um den Blasenabscheider oder den Ausgleichsbehälter zu erreichen, sind jedenfalls von Komponenten, die weiter entfernt von diesen angeordnet sind, lange Entlüftungsleitungen nötig, die insbesondere an einer Brennkraftmaschine in komplexer Weise verlegt werden müssen. Hieraus ergeben sich ein erheblicher Konstruktions-, Fertigungs-, Montage- und Qualifizierungsaufwand sowie hohe Entwicklungskosten. Des Weiteren kann die Zugänglichkeit solcher langen Leitungen nicht überall gewährleistet werden, was die Montage entweder aufwendig und teuer oder eine potenzielle Nachkonstruktion nötig macht. Um die Entlüftungsleitungen weniger anfällig gegenüber Vibrationen und einem gegebenenfalls daraus resultierenden Bruch zu machen, müssen diese in regelmäßigen Abständen gehaltert werden. Dies bedingt insbesondere, dass lange Entlüftungsleitungen an verschiedenen Bauteilen befestigt werden, wobei Toleranzen ausgeglichen werden müssen beziehungsweise ein nicht möglicher Toleranzausgleich zu Störungen eines Serienmontageprozesses führen kann. Werden die Entlüftungsleitungen verspannt montiert, kann dies zum Bruch der Leitungen im Betrieb führen. Als weiteres Problem ergibt sich, dass eine Halterung von Entlüftungsleitungen an gewünschten Stellen häufig nicht möglich ist, weil andere Bauteile im Weg sind. Es müssen dann größere Abstände durch die Entlüftungsleitungen frei schwingend überwunden werden. Dabei steigt die Schwingungsanfälligkeit der Entlüftungsleitungen mit ihrer frei schwingenden Länge. Als weiteres Problem tritt hinzu, dass den verschiedenen Entlüftungsleitungen bei zentraler Einspeisung in einen Blasenabscheider oder einen Ausgleichsbehälter Blenden zugeordnet werden müssen, die durch verschiedene Durchmesser gewährleisten, dass verschiedene Druckniveaus der zu entlüftenden Komponenten ausgeglichen werden. Dabei müssen teilweise Blenden mit einem Strömungsdurchmesser von 1 mm oder weniger verwendet werden, wobei hohe Strömungswiderstände entstehen und eine Verstopfungsgefahr auftritt, beispielsweise wenn Partikel im Kühlmittel vorhanden sind.A cooling system of the type discussed here ( EP 1 832 730 A2 ; DE 199 48 160 A1 ; JP 2012 092751 A ) usually has a coolant circuit through which a liquid coolant for absorbing heat from components to be cooled, for example an internal combustion engine, flows. When the coolant is being filled or topped up or if there are any leaks in such a cooling system, air pockets can occur, which have a disadvantageous effect on the cooling performance of the cooling system. For this purpose, it is provided in known cooling systems that a vent line is fluidly connected to a component to be cooled, which is supplied with coolant via a coolant line, for venting the component. The vent line is different from the coolant line and does not serve to supply coolant, but rather specifically to vent the component. The vent line is typically led to a bubble separator of the cooling system, into which a large number of different components of the vent lines usually open, or the vent line is led into an expansion tank for the coolant circuit, with the air in the bubble separator or the collecting tank being separated from the coolant can be. In order to reach the bubble separator or the expansion tank, long ventilation lines are required in any case for components that are arranged further away from them, and these must be laid in a complex manner, in particular on an internal combustion engine. This results in considerable construction, manufacturing, assembly and qualification costs as well as high development costs. Furthermore, the accessibility of such long lines cannot be guaranteed everywhere, which makes the assembly either complex and expensive or a potential reconstruction necessary. In order to make the ventilation lines less susceptible to vibrations and any breakage that may result from them, they must be held at regular intervals. In particular, this means that long ventilation lines are attached to various components, with tolerances must be compensated or a tolerance compensation that is not possible can lead to disruptions in a series assembly process. If the ventilation lines are installed under tension, this can lead to the lines breaking during operation. Another problem arises that it is often not possible to hold vent lines at desired locations because other components are in the way. Larger distances must then be overcome by the ventilation lines swinging freely. The susceptibility of the ventilation lines to vibrations increases with their freely vibrating length. Another problem arises that the various vent lines must be assigned to a central feed into a bubble separator or a compensating tank orifice plates, which ensure through different diameters that different pressure levels of the components to be vented are balanced. In some cases, orifices with a flow diameter of 1 mm or less must be used, resulting in high flow resistance and a risk of clogging, for example if particles are present in the coolant.

Der Erfindung liegt die Aufgabe zugrunde, ein Kühlsystem und eine Brennkraftmaschine mit einem solchen Kühlsystem zu schaffen, wobei die genannten Nachteile nicht auftreten.The invention is based on the object of creating a cooling system and an internal combustion engine with such a cooling system, the disadvantages mentioned not occurring.

Die Aufgabe wird gelöst, indem der Gegenstand des unabhängigen Anspruchs 1 geschaffen wird. Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen. Die Aufgabe wird insbesondere gelöst, indem ein Kühlsystem geschaffen wird, welches wenigstens eine erste zu kühlende Komponente aufweist, in welche eine erste Kühlmittelleitung mündet, wobei eine von der ersten Kühlmittelleitung verschiedene, erste Entlüftungsleitung mit der ersten Komponente zur Entlüftung der ersten Komponente dergestalt fluidverbunden ist, dass die erste Entlüftungsleitung in eine zweite Kühlmittelleitung mündet, wobei die zweite Kühlmittelleitung als Kühlmittelpfad in einer zweiten zu kühlenden Komponente ausgebildet ist oder alternativ die erste Entlüftungsleitung in die zweite Kühlmittelleitung außerhalb einer zu kühlenden Komponente mündet. Die von der ersten Komponente ausgehende Entlüftungsleitung wird also nicht zu einer zentralen Einspeisestelle wie einem Ausgleichsbehälter oder einem Blasenabscheider geführt, sondern vielmehr - insbesondere dezentral - in eine zweite Kühlmittelleitung, sodass die aus der ersten Komponente abgeführte Luft durch die zweite Kühlmittelleitung entlang des Kühlmittelkreislaufs weiter gefördert werden kann. Durch diese dezentrale Ausgestaltung kann die Entlüftungsleitung insbesondere auch bei entfernter Anordnung der ersten zu kühlenden Komponente von einem Ausgleichsbehälter kürzer ausgebildet werden, als wenn eine zentrale Einleitungsstelle und eine Zusammenführung mehrerer Entlüftungsleitungen vorgesehen wäre. Dadurch können mit langen Entlüftungsleitungen verbundene Nachteile - insbesondere konstruktiver Art und in Hinblick auf eine Halterung und Schwingungsanfälligkeit - zumindest weitgehend - vorzugsweise vollständig - vermieden werden. Ferner besteht keine Verwechslungsgefahr von Blenden mehr. Vielmehr können für verschiedene Entlüftungsleitungen identische Blendendurchmesser eingesetzt werden, sodass Gleichteile verwendet werden können. Da es nicht mehr eines Ausgleichs verschiedener Druckniveaus einer Vielzahl von Komponenten an einer zentralen Einleitungsstelle bedarf, können auch Blendendurchmesser größer gewählt werden, sodass eine Verstopfungsgefahr durch im Kühlmittel vorhandene Partikel vermieden wird.The object is achieved in that the subject matter of independent claim 1 is created. Advantageous configurations result from the subclaims. The object is achieved in particular by creating a cooling system which has at least one first component to be cooled, into which a first coolant line opens, a first vent line different from the first coolant line being fluidly connected to the first component for venting the first component that the first vent line opens into a second coolant line, the second coolant line being designed as a coolant path in a second component to be cooled or alternatively the first vent line opens into the second coolant line outside a component to be cooled. The vent line emanating from the first component is therefore not routed to a central feed point such as an expansion tank or a bubble separator, but rather - in particular decentrally - into a second coolant line, so that the air discharged from the first component is conveyed through the second coolant line along the coolant circuit can be. Due to this decentralized configuration, the ventilation line can also be used, especially when it is remote Arrangement of the first component to be cooled can be made shorter by an expansion tank than if a central inlet point and a merging of several ventilation lines were provided. As a result, disadvantages associated with long ventilation lines - in particular of a structural nature and with regard to a mounting and susceptibility to vibration - at least largely - preferably completely - can be avoided. Furthermore, there is no longer any risk of confusion between panels. Rather, identical orifice diameters can be used for different ventilation lines, so that identical parts can be used. Since it is no longer necessary to equalize different pressure levels of a large number of components at a central inlet point, larger orifice diameters can also be selected so that the risk of clogging due to particles in the coolant is avoided.

Das Kühlsystem ist vorzugsweise eingerichtet zur Verwendung eines flüssigen Kühlmittels. Dabei bedeutet der Begriff "flüssig" hier insbesondere, dass das Kühlmittel unter den in dem Kühlsystem herrschenden Bedingungen, insbesondere den dort im Betrieb herrschenden Drücken und Temperaturen, in flüssigem Aggregatzustand vorliegt. Insbesondere liegt das Kühlmittel bevorzugt bei Normalbedingungen, also insbesondere bei 1013 mbar und 25° C in flüssiger Form vor. Solche Kühlmittel weisen vorzugsweise eine höhere Wärmekapazität auf als insbesondere gasförmige Kühlmittel. Sie können daher bei kleinerem Volumen- und/oder Massenstrom größere Wärmemengen transportieren und ermöglichen damit eine effizientere Kühlung. Besonders bevorzugt ist das Kühlsystem eingerichtet zur Verwendung von Wasser, vorzugsweise als Gemisch mit wenigstens einem Frostschutzmittel - beispielsweise Glykol -, als Kühlmittel. Dabei zeichnet sich Wasser durch eine besonders hohe Wärmekapazität aus. Es besteht allerdings das Problem, dass die Wärmekapazität eines in einem betrachteten Leitungsabschnitt vorhandenen Gemischs aus Kühlmittel und Luft im Vergleich zu reinem Kühlmittel herabgesetzt und so die Effizienz der Kühlung vermindert ist. Ferner können sich an geodätisch hoch gelegenen Stellen zu kühlender Komponenten Luftpolster bilden, die gegebenenfalls einen Kühlmitteldurchfluss deutlich reduzieren oder sogar vollständig zum Erliegen bringen können. Daher bedarf es für eine Verbesserung der Kühlleistung eines solchen Kühlsystems einer Entlüftung zu kühlender Komponenten.The cooling system is preferably set up to use a liquid coolant. The term “liquid” here means in particular that the coolant is in a liquid state under the conditions prevailing in the cooling system, in particular the pressures and temperatures prevailing there during operation. In particular, the coolant is preferably in liquid form under normal conditions, ie in particular at 1013 mbar and 25 ° C. Such coolants preferably have a higher thermal capacity than, in particular, gaseous coolants. They can therefore transport larger amounts of heat with a smaller volume and / or mass flow and thus enable more efficient cooling. The cooling system is particularly preferably set up to use water, preferably as a mixture with at least one antifreeze agent - for example glycol - as the coolant. Water is characterized by a particularly high heat capacity. However, there is the problem that the heat capacity of a mixture of coolant and air present in a line section under consideration is reduced in comparison to pure coolant and thus the efficiency of the cooling is reduced. Furthermore, air cushions can form at geodetically high points of components to be cooled, which if necessary can significantly reduce a coolant flow or even bring it to a complete standstill. Therefore, to improve the cooling performance of such a cooling system, it is necessary to vent the components to be cooled.

Unter einer zu kühlenden Komponente wird insbesondere ein Teil, insbesondere ein Bauteil oder Funktionsteil, einer Einrichtung verstanden, die mittels des Kühlsystems gekühlt werden soll. Insbesondere kann es sich hierbei um ein Teil, Bauteil oder Funktionsteil einer Brennkraftmaschine handeln, beispielsweise ein Turbinengehäuse oder ein Verdichtergehäuse eines Abgasturboladers oder ein Kurbelgehäuse.A component to be cooled is understood in particular as a part, in particular a component or functional part, of a device that is to be cooled by means of the cooling system. In particular, it can be a part, component or functional part of a Act internal combustion engine, for example a turbine housing or a compressor housing of an exhaust gas turbocharger or a crankcase.

Unter einer Kühlmittelleitung wird insbesondere eine Leitung verstanden, die eingerichtet ist zur Führung von Kühlmittel, nämlich zur Zuführung, zur Durchleitung und/oder zur Abführung von Kühlmittel zu, durch oder aus einer zu kühlenden Komponente zum Zwecke der Kühlung der zu kühlenden Komponente. Dabei ist eine Kühlmittelleitung insbesondere von ihrem Querschnitt her so ausgelegt, dass eine zu kühlende Komponente mit von einem zu deren Kühlung ausreichenden Massen- oder Volumenstrom an Kühlmittel durchströmt werden kann. Eine solche Kühlmittelleitung kann als von der zu kühlenden Komponente separate, jedoch mit dieser fluidverbundene Leitung, aber auch als Kühlmittelpfad innerhalb einer zu kühlenden Komponente, beispielsweise durch ein doppelwandig ausgebildetes Gehäuse, gebildet sein. Kühlmittelleitungen werden bevorzugt so angeordnet, dass eine effektive und effiziente Kühlmittelführung - insbesondere in Hinblick auf einen Druckverlust, eine Strömungsgeschwindigkeit, Kavitationen, und andere relevante Bedingungen - zu allen zu kühlenden Komponenten gewährleistet ist.A coolant line is understood to mean, in particular, a line that is set up to guide coolant, namely to supply, pass through and / or discharge coolant to, through or from a component to be cooled for the purpose of cooling the component to be cooled. In this case, a coolant line is designed, in particular in terms of its cross section, in such a way that a component to be cooled can be flowed through with a mass or volume flow of coolant that is sufficient to cool it. Such a coolant line can be formed as a separate line from the component to be cooled but fluidly connected to it, but also as a coolant path within a component to be cooled, for example by a double-walled housing. Coolant lines are preferably arranged in such a way that effective and efficient coolant guidance - in particular with regard to pressure loss, flow velocity, cavitations, and other relevant conditions - is guaranteed to all components to be cooled.

Unter einer Entlüftungsleitung wird insbesondere eine Leitung verstanden, die zur Entlüftung einer zu kühlenden Komponente vorgesehen und insbesondere eingerichtet ist, um Luft oder ein Kühlmittel/Luft-Gemisch aus der zu kühlenden Komponente abzuführen. Dabei ist ein zum Zwecke der Entlüftung über die Entlüftungsleitung aus der zu kühlenden Komponente abgeführtes Kühlmittel/Luft-Gemisch luftreicher als ein gegebenenfalls durch eine Kühlmittelleitung strömendes Kühlmittel/Luft-Gemisch. Zum Zwecke einer effizienten Entlüftung ist die Entlüftungsleitung vorzugsweise so an der zu kühlenden Komponente angeordnet, dass ihr im Wesentlichen Luft zugeführt wird, wobei es jedoch insbesondere möglich ist, dass durch in die Entlüftungsleitung gelangende Luftblasen Kühlmittel mitgerissen wird. Dadurch reichert sich in der Entlüftungsleitung jedenfalls im Vergleich zu der Kühlmittelleitung Luft an, und der Kühlmittelanteil an dem durch die Entlüftungsleitung geführten Gemisch ist deutlich geringer als in der Kühlmittelleitung. Da ferner die Entlüftungsleitung keinen zur Kühlung der zu kühlenden Komponente ausreichenden Massen-oder Volumenstrom des Kühlmittels führen muss, weist sie vorzugsweise einen kleineren Querschnitt auf als die Kühlmittelleitung. Entlüftungsleitungen werden bevorzugt so an einer zu kühlenden Komponente angeordnet, dass geeignete Druckniveaus erreicht werden oder erhalten bleiben, um eine Strömung des Kühlmittels zu gewährleisten. Ferner werden die Entlüftungsleitungen bevorzugt möglichst kurz ausgestaltet.A vent line is understood to mean, in particular, a line which is provided for venting a component to be cooled and in particular is set up to remove air or a coolant / air mixture from the component to be cooled. A coolant / air mixture discharged from the component to be cooled for the purpose of venting via the vent line is richer in air than a coolant / air mixture that may flow through a coolant line. For the purpose of efficient venting, the vent line is preferably arranged on the component to be cooled in such a way that it is essentially supplied with air, although it is particularly possible that coolant is entrained by air bubbles entering the vent line. As a result, air accumulates in the vent line, at least in comparison to the coolant line, and the coolant proportion of the mixture passed through the vent line is significantly lower than in the coolant line. Furthermore, since the vent line does not have to carry a mass or volume flow of the coolant that is sufficient to cool the component to be cooled, it preferably has a smaller cross section than the coolant line. Vent lines are preferably arranged on a component to be cooled in such a way that suitable pressure levels are achieved or maintained stay to ensure a flow of the coolant. Furthermore, the ventilation lines are preferably made as short as possible.

Unter Entlüftung wird hier insbesondere verstanden, dass Luft aus einer einer zu kühlenden Komponente zugeordneten Kühlmittelleitung oder einem Kühlmittelpfad derselben abgeführt wird, um die Effizienz der Kühlung und den Durchfluss des Kühlmittels durch die zu kühlende Komponente zu verbessern.Venting is understood here in particular to mean that air is discharged from a coolant line assigned to a component to be cooled or from a coolant path of the same in order to improve the efficiency of cooling and the flow of coolant through the component to be cooled.

Entlüftungsleitungen werden bevorzugt, soweit dies möglich ist, steigend verlegt, um eine effektive Entlüftung zu gewährleisten.Ventilation lines are preferred, as far as possible, with an incline to ensure effective ventilation.

Mit der ersten zu kühlenden Komponente sind insbesondere mindestens zwei Leitungen fluidverbunden, nämlich die erste Kühlmittelleitung einerseits, und die von dieser verschiedene und vorzugsweise auch von dieser separate, insbesondere also getrennt angeordnete, erste Entlüftungsleitung, wobei die Kühlmittelleitung im Unterschied zu der Entlüftungsleitung eingerichtet ist, um der zu kühlenden Komponente einen zu deren Kühlung ausreichenden Massen- oder Volumenstrom an Kühlmittel zuzuführen, wobei die Entlüftungsleitung eingerichtet ist, um eine Entlüftung der ersten Komponente sicherzustellen. Die zu kühlende Komponente ist vorzugsweise zusätzlich mit einer weiteren Kühlmittelleitung - als dritter Leitung - fluidverbunden, über welche Kühlmittel abgeführt wird, nachdem es die zu kühlende Komponente durchströmt hat. Die Entlüftungsleitung dient also insbesondere nicht der Abfuhr von Kühlmittel, sondern der Entlüftung, vorzugsweise allein der Entlüftung.In particular, at least two lines are fluidly connected to the first component to be cooled, namely the first coolant line on the one hand, and the first vent line different from it and preferably also separate from it, in particular arranged separately, the coolant line being set up in contrast to the vent line, in order to supply the component to be cooled with a mass or volume flow of coolant that is sufficient to cool it, the vent line being set up to ensure venting of the first component. The component to be cooled is preferably also fluidly connected to a further coolant line - as a third line - via which coolant is discharged after it has flowed through the component to be cooled. The vent line is therefore in particular not used to remove coolant, but rather for venting, preferably solely for venting.

Die Entlüftungsleitung ist bevorzugt mit einem Kühlmittelpfad innerhalb der ersten Komponente fluidverbunden. Ein solcher Kühlmittelpfad, der selbst auch eine Kühlmittelleitung darstellt, wird besonders bevorzugt durch ein doppelwandig oder mehrwandig ausgestaltetes Gehäuse der ersten Komponente ausgebildet. Indem die Entlüftungsleitung in diesen Kühlmittelpfad mündet, kann die erste Komponente sehr effizient entlüftet werden. Vorzugsweise zweigt die erste Entlüftungsleitung aus der ersten Komponente, insbesondere aus dem Kühlmittelpfad, ab, oder sie geht von der ersten zu kühlenden Komponente, vorzugsweise von dem Kühlmittelpfad, aus.The vent line is preferably fluidly connected to a coolant path within the first component. Such a coolant path, which itself also represents a coolant line, is particularly preferably formed by a double-walled or multi-walled housing of the first component. Because the vent line opens into this coolant path, the first component can be vented very efficiently. The first vent line preferably branches off from the first component, in particular from the coolant path, or it starts from the first component to be cooled, preferably from the coolant path.

Die erste Entlüftungsleitung mündet - vorzugsweise stromabwärts der ersten Komponente - in die zweite Kühlmittelleitung, wobei sich der Begriff "stromabwärts" hier insbesondere auf die Strömungsrichtung der abgeführten Luft aus der ersten Komponente bezieht. Die Luft oder das luftreiche Kühlmittel/Luft-Gemisch wird also aus der ersten Komponente entlang der ersten Entlüftungsleitung abgeführt und in die zweite Kühlmittelleitung eingeleitet.The first vent line opens - preferably downstream of the first component - into the second coolant line, the term "downstream" here particularly relating to the direction of flow of the air discharged from the first component. The air or that Air-rich coolant / air mixture is thus discharged from the first component along the first vent line and introduced into the second coolant line.

Die zweite Kühlmittelleitung ist vorzugsweise stromabwärts - bezogen auf einen Kühlmittelkreislauf des Kühlsystems - der ersten Kühlmittelleitung angeordnet. Es ist insbesondere möglich, dass die zweite Kühlmittelleitung - als dritte Leitung - aus der ersten zu kühlenden Komponente abzweigt und/oder direkt mit dieser fluidverbunden ist, um Kühlmittel aus der ersten zu kühlenden Komponente abzuführen. Weiterhin ist es möglich, dass die zweite Kühlmittelleitung nicht unmittelbar mit der ersten zu kühlenden Komponente in Fluidverbindung ist, jedoch fluidisch in Reihe stromabwärts der ersten zu kühlenden Komponente im Kühlmittelkreislauf des Kühlsystems angeordnet ist. Es ist aber auch möglich, dass die zweite Kühlmittelleitung parallel zu der ersten Kühlmittelleitung in dem Kühlsystem angeordnet ist, beispielsweise in einem parallelen Kühlzweig des Kühlsystems.The second coolant line is preferably arranged downstream - in relation to a coolant circuit of the cooling system - the first coolant line. It is in particular possible that the second coolant line - as a third line - branches off from the first component to be cooled and / or is directly fluidly connected to this in order to discharge coolant from the first component to be cooled. Furthermore, it is possible that the second coolant line is not directly in fluid connection with the first component to be cooled, but is arranged fluidically in series downstream of the first component to be cooled in the coolant circuit of the cooling system. However, it is also possible for the second coolant line to be arranged parallel to the first coolant line in the cooling system, for example in a parallel cooling branch of the cooling system.

Gemäß der Erfindung ist weiterhin vorgesehen, dass die zweite Kühlmittelleitung als Kühlmittelpfad in einer zweiten zu kühlenden Komponente ausgebildet ist. Dies bedeutet insbesondere, dass eine zweite zu kühlende Komponente vorgesehen ist, welche einen integralen Kühlmittelpfad, beispielsweise ausgebildet durch ein doppelwandiges Gehäuse der zweiten Komponente, als zweite Kühlmittelleitung aufweist, wobei die erste Entlüftungsleitung in diesen Kühlmittelpfad mündet. Die aus der ersten zu kühlenden Komponente abgeführte Luft kann also in der zweiten zu kühlenden Komponente wieder in den Kühlmittelkreislauf geführt und von dort - gegebenenfalls über weitere Kühlmittelleitungen - weitertransportiert werden. Insbesondere dann, wenn die erste Komponente und die zweite Komponente zueinander benachbart angeordnet sind, ergeben sich so sehr kurze Entlüftungsleitungen.According to the invention it is further provided that the second coolant line is designed as a coolant path in a second component to be cooled. This means in particular that a second component to be cooled is provided, which has an integral coolant path, for example formed by a double-walled housing of the second component, as a second coolant line, the first vent line opening into this coolant path. The air discharged from the first component to be cooled can thus be guided back into the coolant circuit in the second component to be cooled and from there - possibly via further coolant lines - be transported on. In particular, when the first component and the second component are arranged adjacent to one another, the result is very short ventilation lines.

Alternativ ist es möglich, dass die zweite Kühlmittelleitung zu der zweiten zu kühlenden Komponente führt, wobei die erste Entlüftungsleitung in die zweite Kühlmittelleitung außerhalb der zweiten zu kühlenden Komponente mündet. Es ist also auch eine Ausgestaltung möglich, bei der die Entlüftungsleitung in eine Kühlmittelleitung mündet, die nicht eine zu kühlende Komponente durchsetzt, sondern beispielsweise zu einer zu kühlenden Komponente oder von einer zu kühlenden Komponente weg führt. Ebenso ist es möglich, dass die zweite Kühlmittelleitung zu einem Ausgleichsbehälter des Kühlsystems führt und insbesondere direkt mit diesem in Fluidverbindung ist. Weiterhin ist es möglich, dass die zweite Kühlmittelleitung zu einem Luftabscheider des Kühlsystems führt und insbesondere mit diesem direkt fluidverbunden ist.Alternatively, it is possible for the second coolant line to lead to the second component to be cooled, the first vent line opening into the second coolant line outside the second component to be cooled. An embodiment is therefore also possible in which the vent line opens into a coolant line which does not penetrate a component to be cooled, but rather leads, for example, to a component to be cooled or away from a component to be cooled. It is also possible for the second coolant line to lead to an expansion tank of the cooling system and in particular to be in direct fluid connection therewith. It is also possible for the second coolant line to close an air separator of the cooling system and in particular is directly fluidly connected to this.

Gemäß der Erfindung ist vorgesehen, dass die erste zu kühlende Komponente als Turbinengehäuse eines Abgasturboladers ausgebildet ist. Die zweite zu kühlende Komponente ist als Verdichtergehäuse des Abgasturboladers ausgebildet. Es kann so eine besonders kurze Entlüftungsleitung vorgesehen werden, welche aus der ersten Komponente, nämlich dem Turbinengehäuse, abzweigt und in die zweite Komponente, nämlich das dem Turbinengehäuse unmittelbar benachbarte Verdichtergehäuse, einmündet.According to the invention it is provided that the first component to be cooled is designed as a turbine housing of an exhaust gas turbocharger. The second component to be cooled is designed as a compressor housing of the exhaust gas turbocharger. A particularly short vent line can thus be provided which branches off from the first component, namely the turbine housing, and opens into the second component, namely the compressor housing immediately adjacent to the turbine housing.

Es ist auch möglich, dass die erste Komponente als Kurbelgehäuse einer Brennkraftmaschine ausgebildet ist.It is also possible that the first component is designed as a crankcase of an internal combustion engine.

Da die bei dem Kühlsystem bevorzugt vorgesehenen, vergleichsweise kurzen Entlüftungsleitungen weniger schwingungsanfällig sind als längere Entlüftungsleitungen, können diese aus festen Materialien, insbesondere aus Metall oder einem Kunststoff gefertigt werden. Als Material kann bevorzugt auch Stahl verwendet werden.Since the comparatively short ventilation lines preferably provided in the cooling system are less susceptible to vibrations than longer ventilation lines, they can be made of solid materials, in particular of metal or a plastic. Steel can preferably also be used as the material.

Das Kühlsystem ist bevorzugt kompakt und insbesondere mit einer möglichst geringen Anzahl von vorzugsweise kurzen Entlüftungsleitungen ausgestaltet.The cooling system is preferably compact and in particular designed with the smallest possible number of preferably short vent lines.

Vorzugsweise ist das Kühlsystem als geschlossenes Dauerentlüftungssystem ausgestaltet.The cooling system is preferably designed as a closed permanent ventilation system.

Durch eine Anordnung des Luftabscheiders in oder an einer Kühlmittelleitung des Kühlsystems wird diese und auch das Kühlsystem insgesamt dauerhaft und im Betrieb kontinuierlich entlüftet. Dies bedeutet insbesondere, dass zu jedem Zeitpunkt bei einem Betrieb des Kühlsystems das Kühlmittel an oder durch den mindestens einen Luftabscheider strömt und vorzugsweise in dem Kühlmittelstrom vorhandene Luftanteile abgeschieden werden.By arranging the air separator in or on a coolant line of the cooling system, the cooling system and the cooling system as a whole are vented permanently and continuously during operation. This means, in particular, that at any point in time during operation of the cooling system, the coolant flows to or through the at least one air separator and air components present in the coolant flow are preferably separated off.

Das Kühlsystem kann geschlossen arbeiten, insbesondere als geschlossenes Dauerentlüftungssystem ausgebildet sein, sodass vorzugsweise die abgeschiedene Luft nicht direkt an eine Atmosphäre abgegeben wird, sondern insbesondere in einem Auffangbehältnis gespeichert wird. Ein geschlossenes Kühlsystem ermöglicht einen gegenüber einem offenen System höheren Druck, sodass ein entsprechendes Kühlmittel einen höheren Siedepunkt aufweist, wodurch wiederum eine zulässige Kühlmitteltemperatur erhöht werden kann.The cooling system can work in a closed manner, in particular it can be designed as a closed permanent ventilation system, so that the separated air is preferably not released directly into an atmosphere, but in particular is stored in a collecting container. A closed cooling system enables one compared to an open one System higher pressure, so that a corresponding coolant has a higher boiling point, which in turn can increase a permissible coolant temperature.

Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass im Betrieb des Kühlsystems in der ersten Kühlmittelleitung ein erster Druck herrscht, wobei in der zweiten Kühlmittelleitung ein zweiter Druck herrscht, wobei der erste Druck größer ist als der zweite Druck. Vorzugsweise wird das Kühlmittel durch Druckunterschiede entlang des Kühlsystems und insbesondere entlang eines Kühlmittelkreislaufs des Kühlsystems gefördert. Dabei ist eine Strömungsrichtung des Kühlmittels insbesondere durch verschiedene Druckniveaus innerhalb des Kühlsystems vorgegeben. Dadurch, dass der Druck in der zweiten Kühlmittelleitung im Betrieb des Kühlsystems niedriger ist als der Druck in der ersten Kühlmittelleitung, wird sichergestellt, dass die der ersten zu kühlenden Komponente entnommene Luft von dieser weg gefördert und in die zweite Kühlmittelleitung eingespeist wird, sodass sich eine definierte Strömungsrichtung bei der Entlüftung ergibt. Die Entlüftung der ersten zu kühlenden Komponente erfolgt also insbesondere druckgetrieben.According to a development of the invention, it is provided that when the cooling system is in operation, a first pressure prevails in the first coolant line, a second pressure prevailing in the second coolant line, the first pressure being greater than the second pressure. The coolant is preferably conveyed by pressure differences along the cooling system and in particular along a coolant circuit of the cooling system. In this case, a direction of flow of the coolant is predetermined, in particular, by different pressure levels within the cooling system. The fact that the pressure in the second coolant line is lower than the pressure in the first coolant line during operation of the cooling system ensures that the air removed from the first component to be cooled is conveyed away from the latter and fed into the second coolant line, so that a results in a defined flow direction during venting. The first component to be cooled is therefore vented, in particular, in a pressure-driven manner.

Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass die erste Kühlmittelleitung eine erste Querschnittsfläche aufweist, wobei die erste Entlüftungsleitung eine zweite Querschnittsfläche aufweist, wobei die erste Querschnittsfläche größer ist als die zweite Querschnittsfläche. Dies ist vorteilhaft, weil bestimmungsgemäß die Entlüftungsleitung lediglich der Entlüftung der ersten zu kühlenden Komponente dienen soll, während die erste Kühlmittelleitung vorgesehen ist, um der ersten zu kühlenden Komponente einen zu deren Kühlung ausreichenden Massen- oder Volumenstrom an Kühlmittel zuzuführen. Durch entsprechend gewählte Querschnittsflächen wird sichergestellt, dass die verschiedenen Leitungen ihren verschiedenen Bestimmungen genügen können, und im Übrigen auch, dass nicht in unerwünschter Weise ein zu hoher Kühlmittelstrom entlang der Entlüftungsleitung gefördert wird, was ansonsten eine mangelhafte Funktion des Kühlsystems zur Folge haben könnte.According to a development of the invention it is provided that the first coolant line has a first cross-sectional area, the first vent line having a second cross-sectional area, the first cross-sectional area being larger than the second cross-sectional area. This is advantageous because, as intended, the vent line is only intended to vent the first component to be cooled, while the first coolant line is provided to supply the first component to be cooled with a mass or volume flow of coolant sufficient to cool it. Correspondingly selected cross-sectional areas ensure that the various lines can meet their various requirements, and also that an excessive coolant flow is not undesirably conveyed along the ventilation line, which could otherwise result in the cooling system not functioning properly.

Alternativ oder zusätzlich weist die zweite Kühlmittelleitung eine dritte Querschnittsfläche auf, die größer ist als die zweite Querschnittsfläche der ersten Entlüftungsleitung.Alternatively or additionally, the second coolant line has a third cross-sectional area that is larger than the second cross-sectional area of the first vent line.

Die erste und/oder die dritte Querschnittsfläche ist/sind vorzugsweise um einen Faktor von mindestens 16, vorzugsweise von mindestens 16 bis höchstens 400, vorzugsweise von mindestens 25 bis höchsten 225, vorzugsweise von mindestens 36 bis höchstens 100, vorzugsweise von mindestens 25 bis höchstens 49, vorzugsweise von mindestens 25 bis höchstens 36, größer als die zweite Querschnittsfläche. Entsprechend ergibt sich, das die erste und/oder die zweite Kühlmittelleitung bei kreisförmigem Querschnitt einen ersten beziehungsweise dritten Durchmesser oder Radius aufweist/aufweisen, wobei die erste Entlüftungsleitung - ebenfalls bei kreisförmigem Querschnitt - einen zweiten Durchmesser oder Radius aufweist, wobei der erste und/oder der dritte Durchmesser oder Radius größer ist/sind als der zweite Durchmesser oder Radius, nämlich vorzugsweise um einen Faktor von mindestens 4, vorzugsweise bis höchstens 20, vorzugsweise von mindestens 5 bis höchstens 15, vorzugsweise von mindestens 6 bis höchstens 10, vorzugsweise von mindestens 5 bis höchstens 7, besonders bevorzugt von mindestens 5 bis höchstens 6.The first and / or the third cross-sectional area is / are preferably by a factor of at least 16, preferably from at least 16 to at most 400, preferably from at least 25 to at most 225, preferably from at least 36 to at most 100, preferably from at least 25 to at most 49, preferably from at least 25 to at most 36, larger than the second cross-sectional area. Correspondingly, it results that the first and / or the second coolant line has / have a first or third diameter or radius with a circular cross section, the first vent line - also with a circular cross section - having a second diameter or radius, the first and / or the third diameter or radius is / are greater than the second diameter or radius, namely preferably by a factor of at least 4, preferably up to at most 20, preferably from at least 5 to at most 15, preferably from at least 6 to at most 10, preferably from at least 5 to at most 7, particularly preferably from at least 5 to at most 6.

Es ist möglich, dass die erste Querschnittsfläche der ersten Kühlmittelleitung und die dritte Querschnittsfläche der zweiten Kühlmittelleitung gleich groß sind; es ist aber auch möglich, dass sie verschieden groß sind. Sie können darüber hinaus eine gleiche oder verschiedene Form oder Geometrie aufweisen.It is possible for the first cross-sectional area of the first coolant line and the third cross-sectional area of the second coolant line to be the same size; but it is also possible that they are of different sizes. In addition, they can have the same or different shape or geometry.

Bei einem Ausführungsbeispiel des Kühlsystems weist eine Kühlmittelleitung bevorzugt einen Leitungsdurchmesser von 40 mm oder mehr auf. Eine Entlüftungsleitung weist bevorzugt einen Leitungsdurchmesser von mindestens 5 mm bis höchstens 10 mm, vorzugsweise von mindestens 6 mm bis höchstens 8 mm, vorzugsweise von 7 mm auf.In an exemplary embodiment of the cooling system, a coolant line preferably has a line diameter of 40 mm or more. A vent line preferably has a line diameter of at least 5 mm to at most 10 mm, preferably of at least 6 mm to at most 8 mm, preferably of 7 mm.

Allgemein zeigt sich, dass der Querschnitt einer Entlüftungsleitung in der Regel unabhängig von dem benötigten Kühlmittel-Volumenstrom einer zu kühlenden Komponente gewählt wird. Im Gegenteil wird hier bevorzugt eine möglichst kleine Rohrleitungsgröße verwendet, um den Kühlmittelstrom entlang der Entlüftungsleitung gering zu halten, da dieser nicht zur Kühlung genutzt werden kann.In general, it can be seen that the cross section of a vent line is generally selected independently of the required coolant volume flow of a component to be cooled. On the contrary, the smallest possible pipe size is preferably used here in order to keep the coolant flow along the ventilation line low, since this cannot be used for cooling.

Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass die erste Entlüftungsleitung mit der ersten zu kühlenden Komponente an einer Anschlussstelle in Fluidverbindung ist, die höher als die, das heißt insbesondere geodätisch oberhalb der Mündung der ersten Kühlmittelleitung in die erste zu kühlende Komponente angeordnet ist. Mit dem Begriff "geodätisch oberhalb" ist hier insbesondere angesprochen, dass durch die Schwerkraft eine ausgezeichnete Richtung vorgegeben ist, die auch als vertikale Richtung bezeichnet wird, wobei bei bestimmungsgemäßer Anordnung des Kühlsystems eine dem Erdmittelpunkt zugewandte Seite desselben als geodätisch unten und eine dem Erdmittelpunkt abgewandte Seite als geodätisch oben bezeichnet wird. Dass also die Anschlussstelle für die erste Entlüftungsleitung geodätisch oberhalb der Mündung der ersten Kühlmittelleitung angeordnet ist, bedeutet insbesondere, dass diese - in vertikaler Richtung gesehen - über der Mündung der ersten Kühlmittelleitung angeordnet ist. Hierdurch wird gewährleistet, dass durch die erste Kühlmittelleitung in die erste Komponente einströmende Luft nach oben aufsteigen kann, wobei sie oberhalb der Mündungsstelle der ersten Kühlmittelleitung in die Entlüftungsleitung entweichen kann. Besonders bevorzugt ist die Anschlussstelle für die Entlüftungsleitung an einer geodätisch höchsten Stelle der ersten Komponente angeordnet. Dies hat insbesondere den Vorteil, dass sich in der ersten Komponente befindliche Luft an der geodätisch höchsten Stelle sammeln und von dort durch die Entlüftungsleitung abgeführt werden kann. So kann insbesondere die Ausbildung eines Luftpolsters an der geodätisch höchsten Stelle der ersten Komponente vermieden werden.According to a further development of the invention it is provided that the first vent line is in fluid connection with the first component to be cooled at a connection point which is higher than that, that is, in particular geodetically above the opening of the first coolant line into the first component to be cooled. The term "geodetically above" here refers in particular to the fact that the force of gravity specifies an excellent direction, which is also referred to as the vertical direction, with a side of the cooling system facing the center of the earth as the geodetically below and a side facing away from the center of the earth is referred to as geodetically above. The fact that the connection point for the first vent line is geodetically arranged above the mouth of the first coolant line means in particular that it is arranged above the mouth of the first coolant line - viewed in the vertical direction. This ensures that air flowing into the first component through the first coolant line can rise upwards, whereby it can escape into the vent line above the opening point of the first coolant line. The connection point for the ventilation line is particularly preferably arranged at a geodetically highest point of the first component. This has the particular advantage that air in the first component collects at the geodetically highest point and can be discharged from there through the ventilation line. In particular, the formation of an air cushion at the geodetically highest point of the first component can be avoided.

Es ist möglich, dass die erste Kühlmittelleitung geodätisch an einer Unterseite der ersten Komponente in diese mündet. Das Kühlmittel strömt dann innerhalb der ersten zu kühlenden Komponente von unten nach oben und - abhängig von der Mündungsstelle einer das Kühlmittel aus der ersten Komponente abführenden Kühlmittelleitung - wieder zurück nach unten, oder es wird an einer geodätisch oberhalb der Mündung der ersten Kühlmittelleitung gelegenen Stelle aus der ersten Komponente abgeführt.It is possible that the first coolant line opens geodetically into the first component on an underside thereof. The coolant then flows within the first component to be cooled from bottom to top and - depending on the opening point of a coolant line discharging the coolant from the first component - back down again, or it is discharged at a location geodetically above the opening of the first coolant line the first component discharged.

Die Mündung der ersten Entlüftungsleitung in die zweite Kühlmittelleitung kann an einer geodätisch unten gelegenen oder an einer geodätisch oben gelegenen Stelle, insbesondere in eine zweite zu kühlende Komponente, erfolgen. Vorteilhaft an einer Einmündung geodätisch oben in einen Kühlmittelpfad einer zweiten zu kühlenden Komponente ist, dass die in den Kühlmittelpfad einmündende Luft dann in der zweiten Komponente nicht aufsteigen muss, sondern geodätisch oben bleiben und vorzugsweise hier wieder aus der zweiten Komponente mittels einer weiteren Entlüftungsleitung abgeführt werden kann.The opening of the first vent line into the second coolant line can take place at a geodetically below or geodetically above location, in particular in a second component to be cooled. The advantage of a junction geodetically above in a coolant path of a second component to be cooled is that the air flowing into the coolant path then does not have to rise in the second component, but remains geodetically at the top and is preferably discharged again from the second component here by means of a further vent line can.

Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass das Kühlsystem einen Luftabscheider aufweist, der - in Bezug auf die Strömungsrichtung des Kühlmittels - stromabwärts der Mündung der ersten Entlüftungsleitung in die zweite Kühlmittelleitung angeordnet ist. Der Luftabscheider ist vorzugsweise insbesondere mit der zweiten Kühlmittelleitung fluidisch in Reihe angeordnet, wobei die zweite Kühlmittelleitung entweder direkt in den Luftabscheider mündet, oder wobei der Luftabscheider stromabwärts der zweiten Kühlmittelleitung - in Strömungsrichtung des Kühlmittels gesehen - angeordnet ist. Mit dem Luftabscheider ist eine zweite Entlüftungsleitung fluidverbunden. Somit ist es möglich, entlang der zweiten Kühlmittelleitung geförderte Luft mittels des Luftabscheiders von ebenfalls entlang der zweiten Kühlmittelleitung gefördertem Kühlmittel zu trennen und durch die zweite Entlüftungsleitung abzuführen.According to a further development of the invention, it is provided that the cooling system has an air separator which - with respect to the flow direction of the coolant - is arranged downstream of the opening of the first vent line into the second coolant line. The air separator is preferably arranged in particular fluidically in series with the second coolant line, the second coolant line either opening directly into the air separator, or the air separator downstream of the second Coolant line - viewed in the direction of flow of the coolant - is arranged. A second vent line is fluidly connected to the air separator. It is thus possible to separate air conveyed along the second coolant line by means of the air separator from coolant likewise conveyed along the second coolant line and to discharge it through the second vent line.

Unter einem Luftabscheider wird insbesondere eine Vorrichtung verstanden, die eingerichtet ist, um von einem Fluidstrom umfasste Luft von flüssigen Anteilen des Fluidstroms abzutrennen. Der Luftabscheider ist insbesondere eingerichtet, um die abgetrennte Luft der zweiten Entlüftungsleitung zuzuführen und so den Kühlmittelkreislauf des Kühlsystems zu entlüften. Dem steht nicht entgegen, dass in der Praxis eine vollständige Trennung von Luft und Kühlmittel in dem Luftabscheider gegebenenfalls nicht gelingt, wobei insbesondere auch flüssiges Kühlmittel mit der abgetrennten Luft in die zweite Entlüftungsleitung gelangen kann. Das in der zweiten Entlüftungsleitung geführte Luft/Kühlmittel-Gemisch ist aber jedenfalls luftreicher und kühlmittelärmer als das in den Luftabscheider einströmende Kühlmittel/Luft-Gemisch. Entsprechend ist ein stromabwärts des Luftabscheiders in einer von diesem kommenden Kühlmittelleitung strömendes Kühlmittel/Luft-Gemisch kühlmittelreicher und luftärmer als das in den Luftabscheider einströmende Kühlmittel/Luft-Gemisch.An air separator is understood to mean, in particular, a device which is set up to separate air comprised by a fluid flow from liquid components of the fluid flow. The air separator is set up in particular to feed the separated air to the second vent line and thus vent the coolant circuit of the cooling system. This is not opposed to the fact that in practice a complete separation of air and coolant in the air separator may not succeed, in particular liquid coolant can also get into the second ventilation line with the separated air. The air / coolant mixture conducted in the second vent line is in any case richer in air and less coolant than the coolant / air mixture flowing into the air separator. Correspondingly, a coolant / air mixture flowing downstream of the air separator in a coolant line coming from it is richer in coolant and has less air than the coolant / air mixture flowing into the air separator.

Vorzugsweise weist der Luftabscheider ein Abscheidemittel auf, das eingerichtet ist, um Luft aus einem den Luftabscheider durchsetzenden Kühlmittelstrom abzuscheiden und der zweiten Entlüftungsleitung zuzuführen. Das Abscheidemittel ist vorzugsweise als in dem den Luftabscheider durchsetzenden Kühlmittelstrom angeordnete Lippe oder Lamelle ausgebildet. Die Lippe oder Lamelle ist vorzugsweise derart angeordnet, dass sie durch den Luftanteil und den flüssigen Kühlmittelanteil des Kühlmittelstroms derart angeströmt wird, dass sie an einer ersten Seite von dem Luftanteil und an einer zweiten Seite von dem flüssigen Kühlmittel passiert wird, sodass die an der ersten Seite der Lippe oder Lamelle abgeschiedene Luft aus dem Kühlmittelkreislauf entfernt werden kann. Die Lippe oder Lamelle ist insbesondere an einer geodätisch oberen Seite des Luftabscheiders angeordnet und ragt ausgehend von dort schräg zur und entgegen der Strömungsrichtung des Kühlmittels gesehen in den Kühlmittelstrom hinein. Oberhalb der Lippe oder Lamelle ist bevorzugt eine Öffnung in dem Luftabscheider vorgesehen, in welchen die zweite Entlüftungsleitung mündet. Auf diese Weise kann durch die Lippe oder Lamelle Luft aus dem Kühlmittelstrom abgeschöpft und der zweiten Entlüftungsleitung zugeführt werden.The air separator preferably has a separating means which is set up to separate air from a coolant flow passing through the air separator and to supply it to the second vent line. The separating means is preferably designed as a lip or lamella arranged in the coolant flow passing through the air separator. The lip or lamella is preferably arranged in such a way that it is flowed against by the air portion and the liquid coolant portion of the coolant flow in such a way that it is passed on a first side by the air portion and on a second side by the liquid coolant, so that the first Side of the lip or lamella separated air can be removed from the coolant circuit. The lip or lamella is arranged in particular on a geodetically upper side of the air separator and, starting there, protrudes into the coolant flow at an angle to and against the flow direction of the coolant. Above the lip or lamella, an opening is preferably provided in the air separator, into which the second vent line opens. In this way, air can be siphoned off from the coolant flow through the lip or lamella and fed to the second vent line.

Die Lippe oder Lamelle ist bevorzugt löffelförmig ausgebildet, woraus sich eine besonders gute Abschöpfwirkung für Luft ergibt. Dabei werden insbesondere Luftanteile, die in der Regel geodätisch oben strömen, abgeschöpft, sodass diese oben strömenden Luftanteile von der löffelförmigen Lamelle oder Lippe an deren erster Seite abgeleitet werden, wobei das die Lippe oder Lamelle anströmende Kühlmittel - falls es mit der Lippe oder Lamelle kollidiert - durch die Löffelform in einer turbulenten Bewegung zurückgeworfen und an der zweiten Seite der Lippe oder Lamelle vorbeigespült wird.The lip or lamella is preferably designed in the shape of a spoon, which results in a particularly good skimming effect for air. In particular, air fractions, which as a rule flow geodetically above, are skimmed off, so that these air fractions flowing above are diverted from the spoon-shaped lamella or lip on its first side, the coolant flowing towards the lip or lamella - if it collides with the lip or lamella - is thrown back by the spoon shape in a turbulent movement and washed past the second side of the lip or lamella.

Vorzugsweise ist der Luftabscheider in eine Kühlmittelleitung des Kühlsystems integriert oder direkt mit einer Kühlmittelleitung, beispielsweise mit der zweiten Kühlmittelleitung, in Fluidverbindung. Er ist somit in den Kühlmittelkreislauf eingebunden. Auch hierdurch kann das Kühlsystem sehr kompakt ausgestaltet werden.The air separator is preferably integrated into a coolant line of the cooling system or directly in fluid connection with a coolant line, for example with the second coolant line. It is thus integrated into the coolant circuit. This also allows the cooling system to be made very compact.

Das Abscheidemittel des Luftabscheiders weist bevorzugt ein Material auf oder besteht aus einem Material, ausgewählt aus einer Gruppe bestehend aus Aluminium, Kupfer, Stahl, Kunststoff, Gummi, Carbon, einer Metalllegierung, und einem Verbundwerkstoff.The separating means of the air separator preferably has a material or consists of a material selected from a group consisting of aluminum, copper, steel, plastic, rubber, carbon, a metal alloy, and a composite material.

Das Kühlsystem umfasst bevorzugt einen Kühlmittelkreislauf mit Kühlmittelleitungen zur Förderung des Kühlmittels entlang des Kühlmittelkreislaufs, wenigstens eine zu kühlende Komponente, einen Wärmeübertrager zur Kühlung des Kühlmittels, wobei das Kühlmittel entlang des Kühlmittelkreislaufs sowohl durch die wenigstens eine zu kühlende Komponente als auch durch den Wärmeübertrager strömt, und wenigstens eine Fördereinrichtung zur Förderung des Kühlmittels entlang des Kühlmittelkreislaufs. Die Fördereinrichtung ist bevorzugt als Pumpe ausgebildet. Insbesondere erfolgt die Förderung des Kühlmittels entlang des Kühlmittelkreislaufs bevorzugt durch Erzeugen verschiedener Druckniveaus in dem Kühlmittelkreislauf und durch Förderung des Kühlmittels entlang von Druckgradienten.The cooling system preferably comprises a coolant circuit with coolant lines for conveying the coolant along the coolant circuit, at least one component to be cooled, a heat exchanger for cooling the coolant, the coolant flowing along the coolant circuit both through the at least one component to be cooled and through the heat exchanger, and at least one delivery device for delivering the coolant along the coolant circuit. The conveying device is preferably designed as a pump. In particular, the coolant is conveyed along the coolant circuit, preferably by generating different pressure levels in the coolant circuit and by conveying the coolant along pressure gradients.

Der Luftabscheider ist vorzugsweise in einem Bereich des Kühlmittelkreislaufs angeordnet, der ein niedrigeres Druckniveau aufweist, als es dem höchsten Druckniveau des Kühlmittelkreislaufs - insbesondere unmittelbar stromabwärts der Fördereinrichtung - entspricht, besonders bevorzugt in einem Bereich des Kühlmittelkreislaufs, der ein niedrigstes Druckniveau aufweist. Es ist dann besonders effizient möglich, Luft durch eine aufsteigende, zweite Entlüftungsleitung, welche in den Luftabscheider mündet, abzuführen.The air separator is preferably arranged in an area of the coolant circuit that has a lower pressure level than the highest pressure level of the coolant circuit - in particular immediately downstream of the conveying device - particularly preferably in an area of the coolant circuit that has the lowest pressure level. It is then possible in a particularly efficient manner to discharge air through an ascending, second ventilation line which opens into the air separator.

Gemäß einer Ausgestaltung der Erfindung ist bevorzugt vorgesehen, dass die Mündung der ersten Entlüftungsleitung in die zweite Kühlmittelleitung derart beabstandet von dem Luftabscheider angeordnet ist, dass die in die zweite Kühlmittelleitung durch die erste Entlüftungsleitung eingebrachte Luft auf dem Strömungsweg zu dem Luftabscheider in der zweiten Kühlmittelleitung aufsteigen und sich in einem geodätisch oberen Bereich derselben sammeln kann. Zugleich ist die Mündung der ersten Entlüftungsleitung in die zweite Kühlmittelleitung vorzugsweise möglichst nah an dem Luftabscheider vorgesehen, sodass die in die zweite Kühlmittelleitung eingebrachte Luft über eine möglichst kurze Strecke entlang des Kühlmittelkreislaufs geführt wird. Die Beabstandung der Mündung von dem Luftabscheider stellt auch sicher, dass bereits in der zweiten Kühlmittelleitung befindliche Luft nicht verwirbelt wird. Zugleich wird bevorzugt sichergestellt, dass die Luft über die Mündung der ersten Entlüftungsleitung in die zweite Kühlmittelleitung nicht in ein Strömungstotgebiet eingeleitet wird, da sich sonst am Ort der Mündung ein Luftpolster bilden könnte.According to one embodiment of the invention it is preferably provided that the opening of the first vent line into the second coolant line is arranged at a distance from the air separator in such a way that the air introduced into the second coolant line through the first vent line rises on the flow path to the air separator in the second coolant line and can collect in a geodetically upper area thereof. At the same time, the opening of the first vent line into the second coolant line is preferably provided as close as possible to the air separator, so that the air introduced into the second coolant line is guided along the coolant circuit over the shortest possible distance. The spacing of the mouth from the air separator also ensures that air already in the second coolant line is not swirled. At the same time, it is preferably ensured that the air is not introduced into a flow dead zone via the mouth of the first vent line in the second coolant line, since otherwise an air cushion could form at the location of the mouth.

Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass die zweite Kühlmittelleitung und/oder die zweite Entlüftungsleitung in einen Ausgleichsbehälter des Kühlsystems für Kühlmittel münden. Dies hat den Vorteil, dass in den Ausgleichsbehälter über die zweite Kühlmittelleitung und/oder die zweite Entlüftungsleitung eingebrachte Luft in dem Ausgleichsbehälter aufsteigen und von dem Kühlmittel getrennt werden kann.According to a further development of the invention, it is provided that the second coolant line and / or the second vent line open into an expansion tank of the cooling system for coolant. This has the advantage that air introduced into the expansion tank via the second coolant line and / or the second vent line can rise in the expansion tank and be separated from the coolant.

Unter einem Ausgleichsbehälter wird hier insbesondere ein Reservoir für das Kühlmittel verstanden, welches dazu dient, Druck- und/oder Temperaturschwankungen im Kühlsystem auszugleichen, indem Kühlmittel aus dem Ausgleichsbehälter in den Kühlmittelkreislauf eingespeist oder aus dem Kühlmittelkreislauf in den Ausgleichsbehälter zurückgeführt werden kann. Dabei ist der Ausgleichsbehälter vorzugsweise Bestandteil des Kühlmittelkreislaufs.An expansion tank is understood here in particular as a reservoir for the coolant, which is used to compensate for pressure and / or temperature fluctuations in the cooling system, in that coolant can be fed from the expansion tank into the coolant circuit or returned from the coolant circuit to the expansion tank. The expansion tank is preferably part of the coolant circuit.

Es wird ein Ausführungsbeispiel des Kühlsystems bevorzugt, bei welchem dieses einen Kühlmittelkreislauf mit einem Ausgleichsbehälter aufweist, der insbesondere Bestandteil des Kühlmittelkreislaufs ist. Der Ausgleichsbehälter ist selbst keine Kühlmittelleitung oder Entlüftungsleitung. Vorzugsweise ist er mit wenigstens einer Kühlmittelleitung und/oder wenigstens einer Entlüftungsleitung in Fluidverbindung.An exemplary embodiment of the cooling system is preferred in which it has a coolant circuit with an expansion tank which, in particular, is part of the coolant circuit. The expansion tank is not itself a coolant line or a vent line. It is preferably in fluid connection with at least one coolant line and / or at least one vent line.

Es ist möglich, dass das Kühlsystem mehr als eine erste zu kühlende Komponente aufweist. Zusätzlich oder alternativ ist es möglich, dass das Kühlsystem mehr als eine zweite zu kühlende Komponente aufweist. Bevorzugt weist das Kühlsystem eine Mehrzahl von Kühlmittelleitungen und/oder Entlüftungsleitungen auf. Dabei ist es möglich, dass zusätzlich zu wenigstens einer Entlüftungsleitung, die in eine weitere Kühlmittelleitung und/oder eine weitere zu kühlende Komponente mündet, auch wenigstens eine Entlüftungsleitung vorgesehen ist, welche direkt in den Ausgleichsbehälter mündet. Dabei ist es insbesondere möglich, dass eine solche Entlüftungsleitung keine direkte Fluidverbindung zu dem Luftabscheider aufweist. Weiterhin ist es möglich, dass eine Kühlmittelleitung, in welche eine Entlüftungsleitung mündet, mit dem Luftabscheider verbunden ist, wobei eine andere Kühlmittelleitung, in welche eine Entlüftungsleitung mündet, unter Umgehung des Luftabscheiders mit dem Ausgleichsbehälter verbunden ist. Eine direkte Entlüftung zu dem Ausgleichsbehälter hin kann insbesondere von zu kühlenden Komponenten erfolgen, welche in größerer räumlicher Nähe zu dem Ausgleichsbehälter angeordnet sind, während eine Entlüftung von Komponenten zu Kühlmittelleitungen oder anderen zu kühlenden Komponenten insbesondere angewendet werden kann bei Komponenten, die räumlich weiter von dem Ausgleichsbehälter entfernt angeordnet sind. Auf diese Weise können insbesondere kurze und auch für alle Komponenten ähnlich lange Entlüftungsleitungen verwendet werden.It is possible for the cooling system to have more than one first component to be cooled. Additionally or alternatively, it is possible for the cooling system to have more than one second component to be cooled. The cooling system preferably has a plurality of coolant lines and / or vent lines. It is possible that in addition to at least one vent line which opens into a further coolant line and / or another component to be cooled, at least one vent line is also provided which opens directly into the expansion tank. It is particularly possible that such a vent line does not have a direct fluid connection to the air separator. Furthermore, it is possible that a coolant line, into which a vent line opens, is connected to the air separator, another coolant line, into which a vent line opens, is connected to the expansion tank bypassing the air separator. A direct venting to the expansion tank can take place in particular from components to be cooled, which are arranged in greater spatial proximity to the expansion tank, while a venting of components to coolant lines or other components to be cooled can be used in particular for components that are spatially further from the Expansion tanks are arranged remotely. In this way, it is possible in particular to use short vent lines that are of a similar length for all components.

Das hier vorgeschlagene Kühlsystem eignet sich besonders für einen Einsatz an verschiedenen Brennkraftmaschinen und/oder Fahrzeugen, da Abstimmungsarbeiten für eine konkrete Anwendung, beispielsweise auf einem Prüfstand, sowie damit verbundene Entwicklungs-und/oder Konstruktionsarbeiten beziehungsweise entsprechende Entwicklungsschleifen zum Reduzieren von Schwingungsbildungen in jeweiligen Entlüftungsleitungen vermieden werden können.The cooling system proposed here is particularly suitable for use on various internal combustion engines and / or vehicles, since it avoids coordination work for a specific application, for example on a test bench, as well as associated development and / or construction work or corresponding development loops to reduce the formation of vibrations in the respective ventilation lines can be.

Es ist möglich, dass durch den Luftabscheider von Luftanteilen befreites Kühlmittel direkt in den Ausgleichsbehälter geführt wird. Alternativ oder zusätzlich ist es möglich, dass solches Kühlmittel von dem Luftabscheider direkt einer zu kühlenden Komponente zugeführt wird, ohne zuvor den Ausgleichsbehälter zu passieren.It is possible that the coolant freed from air fractions by the air separator is fed directly into the expansion tank. As an alternative or in addition, it is possible for such a coolant to be fed directly from the air separator to a component to be cooled without first passing through the expansion tank.

Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass die zweite Kühlmittelleitung räumlich näher an dem Ausgleichsbehälter angeordnet ist, als die erste zu kühlende Komponente. Die aus der ersten Komponente abgeführte Luft wird so bei Einspeisung in die zweite Kühlmittelleitung näher zu dem Ausgleichsbehälter, damit zugleich entlang des Druckgradienten auf ein niedrigeres Druckniveau, gefördert.According to a development of the invention, it is provided that the second coolant line is arranged spatially closer to the expansion tank than the first component to be cooled. The air discharged from the first component is thus when fed into the second coolant line closer to the expansion tank, thus at the same time promoted along the pressure gradient to a lower pressure level.

Gemäß einer Weiterbildung der Erfindung ist vorgesehen, dass die zweite zu kühlende Komponente räumlich näher an dem Ausgleichsbehälter angeordnet ist, als die erste zu kühlende Komponente. Die aus der ersten Komponente abgeführte Luft wird so bei Einspeisung in die zweite Komponente näher zu dem Ausgleichsbehälter, damit zugleich entlang des Druckgradienten auf ein niedrigeres Druckniveau, gefördert.According to a further development of the invention it is provided that the second component to be cooled is arranged spatially closer to the expansion tank than the first component to be cooled. The air discharged from the first component is thus conveyed closer to the expansion tank when it is fed into the second component, and thus at the same time along the pressure gradient to a lower pressure level.

Es ist möglich, dass aus der ersten Komponente abgeführte Luft einer zweiten Komponente zugeführt, aus dieser wiederum abgeführt und anschließend einer dritten Komponente zugeführt wird, wobei dies solange fortgesetzt werden kann, bis die Luft schließlich dem Luftabscheider und/oder dem Ausgleichsbehälter zugeführt wird. Alternativ ist es aber auch möglich, dass für die aus der ersten Komponente abgeführte Luft nur genau eine Zwischenstation in Form der zweiten Komponente vorgesehen ist, sodass diese nach Passieren der zweiten Komponente direkt dem Luftabscheider und/oder dem Ausgleichsbehälter zugeführt wird.It is possible that air discharged from the first component is fed to a second component, discharged from this in turn and then fed to a third component, and this can be continued until the air is finally fed to the air separator and / or the expansion tank. Alternatively, however, it is also possible that only one intermediate station in the form of the second component is provided for the air discharged from the first component, so that it is fed directly to the air separator and / or the expansion tank after passing through the second component.

Die Aufgabe wird schließlich auch gelöst, indem eine Brennkraftmaschine geschaffen wird, welche ein Kühlsystem nach einem der zuvor beschriebenen Ausführungsbeispiele aufweist. Dabei ergeben sich in Zusammenhang mit der Brennkraftmaschine insbesondere die Vorteile, die bereits in Zusammenhang mit Kühlsystem erläutert wurden.Finally, the object is also achieved by creating an internal combustion engine which has a cooling system according to one of the exemplary embodiments described above. In connection with the internal combustion engine, there are in particular the advantages that have already been explained in connection with the cooling system.

Die Brennkraftmaschine ist vorzugsweise als Hubkolbenmotor ausgebildet. Es ist möglich, dass die Brennkraftmaschine zum Antrieb eines Personenkraftwagens, eines Lastkraftwagens oder eines Nutzfahrzeugs eingerichtet ist. Bei einem bevorzugten Ausführungsbeispiel dient die Brennkraftmaschine dem Antrieb insbesondere schwerer Land- oder Wasserfahrzeuge, beispielsweise von Minenfahrzeugen, Zügen, wobei die Brennkraftmaschine in einer Lokomotive oder einem Triebwagen eingesetzt wird, oder von Schiffen. Auch ein Einsatz der Brennkraftmaschine zum Antrieb eines der Verteidigung dienenden Fahrzeugs, beispielsweise eines Panzers, ist möglich. Ein Ausführungsbeispiel der Brennkraftmaschine wird vorzugsweise auch stationär, beispielsweise zur stationären Energieversorgung im Notstrombetrieb, Dauerlastbetrieb oder Spitzenlastbetrieb eingesetzt, wobei die Brennkraftmaschine in diesem Fall vorzugsweise einen Generator antreibt. Auch eine stationäre Anwendung der Brennkraftmaschine zum Antrieb von Hilfsaggregaten, beispielsweise von Feuerlöschpumpen auf Bohrinseln, ist möglich. Weiterhin ist eine Anwendung der Brennkraftmaschine im Bereich der Förderung fossiler Roh- und insbesondere Brennstoffe, beispielswiese Öl und/oder Gas, möglich. Auch eine Verwendung der Brennkraftmaschine im industriellen Bereich oder im Konstruktionsbereich, beispielsweise in einer Konstruktions- oder Baumaschine, zum Beispiel in einem Kran oder einem Bagger, ist möglich. Die Brennkraftmaschine ist vorzugsweise als Dieselmotor, als Benzinmotor, als Gasmotor zum Betrieb mit Erdgas, Biogas, Sondergas oder einem anderen geeigneten Gas, ausgebildet. Insbesondere wenn die Brennkraftmaschine als Gasmotor ausgebildet ist, ist sie für den Einsatz in einem Blockheizkraftwerk zur stationären Energieerzeugung geeignet.The internal combustion engine is preferably designed as a reciprocating piston engine. It is possible that the internal combustion engine is set up to drive a passenger car, a truck or a commercial vehicle. In a preferred exemplary embodiment, the internal combustion engine is used to drive particularly heavy land or water vehicles, for example mining vehicles, trains, the internal combustion engine being used in a locomotive or a railcar, or ships. It is also possible to use the internal combustion engine to drive a vehicle used for defense, for example a tank. One embodiment of the internal combustion engine is preferably also used in a stationary manner, for example for the stationary energy supply in emergency power operation, continuous load operation or peak load operation, the internal combustion engine in this Case preferably drives a generator. Stationary use of the internal combustion engine to drive auxiliary units, for example fire pumps on drilling rigs, is also possible. It is also possible to use the internal combustion engine in the field of conveying fossil raw materials and, in particular, fuels, for example oil and / or gas. It is also possible to use the internal combustion engine in the industrial sector or in the construction sector, for example in a construction or construction machine, for example in a crane or an excavator. The internal combustion engine is preferably designed as a diesel engine, as a gasoline engine, as a gas engine for operation with natural gas, biogas, special gas or another suitable gas. In particular, if the internal combustion engine is designed as a gas engine, it is suitable for use in a block-type thermal power station for stationary energy generation.

Die Erfindung wird im Folgenden anhand der Zeichnung näher erläutert. Dabei zeigen:

Figur 1
eine schematische Darstellung eines ersten Ausführungsbeispiels einer Brennkraftmaschine mit einem Kühlsystem;
Figur 2
eine Darstellung eines zweiten Ausführungsbeispiels einer Brennkraftmaschine mit einem Kühlsystem;
Figur 3
eine Darstellung einer anderen Ansicht der Brennkraftmaschine gemäß Figur 2, und
Figur 4
eine Schnittdarstellung durch ein Ausführungsbeispiel eines Luftabscheiders eines Ausführungsbeispiels eines Kühlsystems.
The invention is explained in more detail below with reference to the drawing. Show:
Figure 1
a schematic representation of a first embodiment of an internal combustion engine with a cooling system;
Figure 2
a representation of a second embodiment of an internal combustion engine with a cooling system;
Figure 3
a representation of another view of the internal combustion engine according to Figure 2 , and
Figure 4
a sectional view through an embodiment of an air separator of an embodiment of a cooling system.

Fig. 1 zeigt eine schematische Darstellung eines ersten Ausführungsbeispiels einer Brennkraftmaschine 1 mit einem Kühlsystem 3. Das Kühlsystem 3 weist eine erste zu kühlende Komponente 5 auf, in die eine erste Kühlmittelleitung 7 mündet. Eine von der ersten Kühlmittelleitung 7 verschiedene, erste Entlüftungsleitung 9 ist mit der ersten Komponente 5 zu deren Entlüftung fluidverbunden. Die erste Entlüftungsleitung 9 mündet in eine zweite Kühlmittelleitung 11. Fig. 1 shows a schematic representation of a first exemplary embodiment of an internal combustion engine 1 with a cooling system 3. The cooling system 3 has a first component 5 to be cooled, into which a first coolant line 7 opens. A first vent line 9 different from the first coolant line 7 is fluidly connected to the first component 5 for venting it. The first vent line 9 opens into a second coolant line 11.

Dabei ist hier die zweite Kühlmittelleitung 11 als Kühlmittelpfad 13 ausgebildet, der in einer zweiten zu kühlenden Komponente 15 ausgebildet ist, beispielsweise in Form eines doppelwandigen Gehäuses der zweiten Komponente 15.Here, the second coolant line 11 is designed as a coolant path 13, which is designed in a second component 15 to be cooled, for example in the form of a double-walled housing of the second component 15.

Alternativ ist es auch möglich, dass die erste Entlüftungsleitung 9 außerhalb einer zu kühlenden Komponente in eine Kühlmittelleitung eines Kühlmittelkreislaufs 17 des Kühlsystems 3 mündet. Dies stellt sogar eine bevorzugte Ausgestaltung dar, da dann keine weiter Komponente mit der aus einer anderen Komponente entlüfteten Luft beaufschlagt wird. Ist allerdings eine geometrische Entfernung der zu entlüftenden Komponente von einem Abschöpfbauteil und/oder einem Ausgleichsbehälter des Kühlsystems 3 zu groß, ist es in Hinblick auf möglichst kurze und wenig vibrationsanfällige Entlüftungsleitungen vorteilhaft, in eine nähergelegene, weitere zu kühlende Komponente zu entlüften. Ist dagegen die zu entlüftende Komponente in räumlicher Nähe zu einem Ausgleichsbehälter angeordnet, wird bevorzugt direkt in den Ausgleichsbehälter entlüftet.Alternatively, it is also possible for the first vent line 9 to open into a coolant line of a coolant circuit 17 of the cooling system 3 outside a component to be cooled. This even represents a preferred embodiment, since then no further component is acted upon by the air vented from another component. However, if the geometrical distance of the component to be vented from a skimming component and / or an expansion tank of the cooling system 3 is too great, it is advantageous, with regard to vent lines that are as short as possible and less susceptible to vibration, to vent into another component that is to be cooled closer. If, on the other hand, the component to be vented is arranged in close proximity to an expansion tank, venting is preferably carried out directly into the expansion tank.

Im Betrieb des Kühlsystems 3 herrscht in der ersten Kühlmittelleitung 7 ein erster Druck, der größer ist als ein zweiter Druck, der in der zweiten Kühlmittelleitung 11 herrscht. Die Entlüftung der ersten Komponente 5 erfolgt also insbesondere druckgetrieben.When the cooling system 3 is in operation, there is a first pressure in the first coolant line 7 that is greater than a second pressure that prevails in the second coolant line 11. The venting of the first component 5 is therefore in particular pressure-driven.

Die erste und/oder die zweite Kühlmittelleitung 7, 11 weist/weisen bevorzugt eine erste Querschnittsfläche auf, wobei die erste Entlüftungsleitung 9 eine zweite Querschnittsfläche aufweist, wobei die erste Querschnittsfläche größer ist als die zweite Querschnittsfläche, vorzugsweise um einen Faktor von mindestens 16, vorzugsweise bis höchstens 400, vorzugsweise von mindestens 25 bis höchstens 225, vorzugsweise von mindestens 36 bis höchstens 100, vorzugsweise von mindestens 25 bis höchstens 49, vorzugsweise von mindestens 25 bis höchstens 36.The first and / or the second coolant line 7, 11 preferably has / have a first cross-sectional area, the first vent line 9 having a second cross-sectional area, the first cross-sectional area being larger than the second cross-sectional area, preferably by a factor of at least 16, preferably to at most 400, preferably from at least 25 to at most 225, preferably from at least 36 to at most 100, preferably from at least 25 to at most 49, preferably from at least 25 to at most 36.

Das Kühlsystem 3 weist hier einen Luftabscheider 19 auf, der stromabwärts der Mündung der ersten Entlüftungsleitung 9 in die zweite Kühlmittelleitung 11 angeordnet ist. Mit dem Luftabscheider 19 ist eine zweite Entlüftungsleitung 21 fluidverbunden. Der Luftabscheider 19 weist bevorzugt ein Abscheidemittel auf, das eingerichtet ist, um Luft aus einem den Luftabscheider 19 durchsetzenden Kühlmittelstrom abzuscheiden und der zweiten Entlüftungsleitung 21 zuzuführen.The cooling system 3 here has an air separator 19 which is arranged downstream of the opening of the first vent line 9 into the second coolant line 11. A second vent line 21 is fluidly connected to the air separator 19. The air separator 19 preferably has a separating means which is set up to separate air from a coolant flow passing through the air separator 19 and to feed it to the second vent line 21.

Die zweite Entlüftungsleitung 21 mündet hier in einen Ausgleichsbehälter 23 des Kühlsystems 3 für Kühlmittel. Dabei dient der Ausgleichsbehälter 23 insbesondere zum Ausgleich thermisch bedingter Volumenschwankungen des Kühlmittels in dem Kühlmittelkreislauf 17, und als Blasenabscheider oder Trenneinrichtung, in welcher Luft aufsteigen und aus dem Kühlmittel entweichen und mithin aus dem Kühlmittelkreislauf 17 abgeführt werden kann. Dabei kann das Kühlsystem 3 als offenes System oder aber auch als geschlossenes System ausgebildet sein, wobei die Luft in letzterem Fall nicht an die Atmosphäre abgeführt, sondern vielmehr in dem Ausgleichsbehälter 23 gesammelt wird.The second vent line 21 opens here into an expansion tank 23 of the cooling system 3 for coolant. The expansion tank 23 serves in particular to compensate for thermally caused volume fluctuations of the coolant in the coolant circuit 17, and as a bubble separator or separating device in which air rises and out of the coolant escape and can therefore be discharged from the coolant circuit 17. The cooling system 3 can be designed as an open system or also as a closed system, the air in the latter case not being discharged to the atmosphere, but rather being collected in the expansion tank 23.

Die in Figur 1 dargestellte Anordnung der verschiedenen Komponenten 5, 15 gibt nicht deren tatsächliche räumliche Anordnung an der Brennkraftmaschine 1 wieder, sondern dient der strukturellen Erläuterung des Kühlsystems 3 und des Kühlmittelkreislaufs 17. Bevorzugt ist insbesondere die zweite Komponente 15 in räumlicher Nähe zu der ersten Komponente 5 angeordnet. Weiterhin ist die zweite Komponente 15 bevorzugt räumlich näher an dem Ausgleichsbehälter 23 angeordnet als die erste Komponente 5.In the Figure 1 The illustrated arrangement of the various components 5, 15 does not reflect their actual spatial arrangement on the internal combustion engine 1, but rather serves to explain the structure of the cooling system 3 and the coolant circuit 17. In particular, the second component 15 is preferably arranged in spatial proximity to the first component 5. Furthermore, the second component 15 is preferably arranged spatially closer to the expansion tank 23 than the first component 5.

Der Kühlmittelkreislauf 17 des Kühlsystems 3 umfasst in dem Ausführungsbeispiel gemäß Figur 1 konkret folgende Elemente: Eine Mehrzahl von weiteren Kühlmittelleitungen sind hier sämtlich mit dem Bezugszeichen 25 gekennzeichnet, um die Darstellung zu vereinfachen. Weiterhin sind zusätzliche Entlüftungsleitungen vorgesehen, die hier zur Vereinfachung sämtlich mit dem Bezugszeichen 27 gekennzeichnet sind.The coolant circuit 17 of the cooling system 3 comprises in the exemplary embodiment according to FIG Figure 1 specifically, the following elements: A plurality of further coolant lines are all identified here with the reference symbol 25 in order to simplify the illustration. Furthermore, additional ventilation lines are provided, all of which are identified here with the reference numeral 27 for the sake of simplicity.

Das Kühlmittel wird mittels einer Fördereinrichtung 29, die als Pumpe ausgebildet ist, entlang des Kühlmittelkreislaufs 17 gefördert. Dabei umfasst der Kühlmittelkreislauf 17 als zu kühlende Komponenten insbesondere ein Kurbelgehäuse 31 der Brennkraftmaschine 1, einen Zylinderkopf 33 der Brennkraftmaschine 1, eine Abgasleitung 35, einen Ladeluftkühler 37, einen Öl-Wärmetauscher 39, und die bereits erwähnte, erste zu kühlende Komponente 5, die hier als Turbinengehäuse 41 eines Abgasturboladers 42 ausgebildet ist, sowie die zweite zu kühlende Komponente 15, die hier als Verdichtergehäuse 43 des Abgasturboladers 42 ausgebildet ist.The coolant is conveyed along the coolant circuit 17 by means of a conveying device 29, which is designed as a pump. The coolant circuit 17 comprises, as components to be cooled, in particular a crankcase 31 of the internal combustion engine 1, a cylinder head 33 of the internal combustion engine 1, an exhaust line 35, a charge air cooler 37, an oil heat exchanger 39, and the already mentioned first component 5 to be cooled, which is designed here as a turbine housing 41 of an exhaust gas turbocharger 42, as well as the second component 15 to be cooled, which is designed here as a compressor housing 43 of the exhaust gas turbocharger 42.

Bei dem hier dargestellten Ausführungsbeispiel wird also insbesondere das Turbinengehäuse 41 über die erste Entlüftungsleitung 9 in das Verdichtergehäuse 43 entlüftet.In the exemplary embodiment shown here, the turbine housing 41 in particular is vented into the compressor housing 43 via the first vent line 9.

Der Kühlmittelkreislauf 17 weist außerdem einen Kühlmittelwärmetauscher 45 zur Kühlung des Kühlmittels auf.The coolant circuit 17 also has a coolant heat exchanger 45 for cooling the coolant.

Es zeigt sich nun, dass bestimmte Komponenten in andere Komponenten entlüftet sein können, hier insbesondere das Turbinengehäuse 41 in das Verdichtergehäuse 43, wobei die dann in die zweite Kühlmittelleitung 11 entlüftete Luft über diese weitertransportiert wird und schließlich zwischen dem Ladeluftkühler 37 und dem Luftabscheider 19 wieder in eine weitere, zu dem Luftabscheider 19 führende Kühlmittelleitung 25 eingespeist wird, wobei die Luft dann in dem Luftabscheider 19 aus dem Kühlmittelstrom abgeschieden und über die zweite Entlüftungsleitung 21 dem Ausgleichsbehälter 23 zugeführt wird.It is now evident that certain components can be vented into other components, here in particular the turbine housing 41 into the compressor housing 43, which then into the second coolant line 11 vented air is transported on this and finally between the charge air cooler 37 and the air separator 19 is fed back into a further coolant line 25 leading to the air separator 19, the air then being separated from the coolant flow in the air separator 19 and via the second Vent line 21 is fed to the expansion tank 23.

Andere Komponenten, die insbesondere räumlich näher an dem Luftabscheider 19 angeordnet sind, werden bevorzugt direkt in die unmittelbar mit dem Luftabscheider 19 fluidverbundene Kühlmittelleitung 25 zwischen dem Ladeluftkühler 37 und dem Luftabscheider 19 hinein entlüftet, ohne dass die entlüftete Luft zuvor durch eine weitere zu kühlende Komponente geführt wird. Dies ist beispielsweise bei dem Ladeluftkühler 37 selbst sowie bei dem Kurbelgehäuse 31 der Fall. Die entlüftete Luft beziehungsweise das entlang der Entlüftungsleitung 27 strömende Luft/Kühlmittel-Gemisch wird stromaufwärts des Luftabscheiders 19 und von diesem beabstandet in die Kühlmittelleitung 25 eingespeist, damit die Luft Zeit hat, noch vor dem Luftabscheider 19 in der Kühlmittelleitung 25 aufzusteigen und so besonders effizient in dem Luftabscheider 19 abgeschieden zu werden.Other components, which are in particular spatially closer to the air separator 19, are preferably vented directly into the coolant line 25, which is fluidly connected to the air separator 19, between the charge air cooler 37 and the air separator 19, without the vented air previously being passed through another component to be cooled to be led. This is the case, for example, with the charge air cooler 37 itself and with the crankcase 31. The vented air or the air / coolant mixture flowing along the vent line 27 is fed into the coolant line 25 upstream of the air separator 19 and at a distance from it, so that the air has time to rise in the coolant line 25 before the air separator 19 and is therefore particularly efficient to be deposited in the air separator 19.

Weitere zu kühlende Komponenten, insbesondere solche, die in größerer räumlicher Nähe zu dem Ausgleichsbehälter 23 angeordnet sind, werden direkt über Entlüftungsleitungen 27 in den Ausgleichsbehälter 23 entlüftet. Dies ist hier insbesondere zusätzlich für das Kurbelgehäuse 31, für die Abgasleitung 35 und für den Öl-Wärmetauscher 39 der Fall.Further components to be cooled, in particular those which are arranged in greater spatial proximity to the expansion tank 23, are vented directly into the expansion tank 23 via vent lines 27. This is also the case here in particular for the crankcase 31, for the exhaust gas line 35 and for the oil heat exchanger 39.

Generell werden die Entlüftungsleitungen 9, 21, 27 bevorzugt so geführt, dass sie möglichst kurz ausgebildet sind, sodass sie nicht zum Aufschwingen neigen. Weiterhin kann die Zahl der Entlüftungsleitungen 9, 21, 27 gegenüber bekannten Ausführungen eines Kühlsystems deutlich reduziert werden.In general, the ventilation lines 9, 21, 27 are preferably routed in such a way that they are designed as short as possible so that they do not tend to oscillate. Furthermore, the number of ventilation lines 9, 21, 27 can be significantly reduced compared to known designs of a cooling system.

Der Ausgleichsbehälter 23 ist bevorzugt an einer geodätisch höchsten Stelle des Kühlsystems 3 angeordnet, sodass die Luft zu dem Ausgleichsbehälter 23 durch die Entlüftungsleitungen 21, 27 aufsteigen kann, wobei ein Zurückströmen von Luft in die Entlüftungsleitungen 21, 27 vermieden wird.The expansion tank 23 is preferably arranged at a geodetically highest point of the cooling system 3 so that the air can rise to the expansion tank 23 through the vent lines 21, 27, preventing air from flowing back into the vent lines 21, 27.

Es zeigt sich auch, dass aus der ersten zu kühlenden Komponente 5 eine weitere Kühlmittelleitung 25 als dritte Leitung abzweigt, um das durch die erste Kühlmittelleitung 7 zur Kühlung zugeführte Kühlmittel wieder aus der zu kühlenden Komponente 5 abzuführen. Dabei wird deutlich, dass die erste Entlüftungsleitung 9 weder zur Zufuhr, noch zur Abfuhr von Kühlmittel dient, sondern tatsächlich spezifisch zu Entlüftung der ersten Komponente 5. Hierzu steht nicht im Widerspruch, dass durch die entlüftete Luft mitgerissenes Kühlmittel gegebenenfalls auch entlang der Entlüftungsleitung 9 geführt wird. Das entlang der ersten Entlüftungsleitung 9 geführte Luft/Kühlmittel-Gemisch ist jedenfalls sehr viel luftreicher und zugleich kühlmittelärmer als ein gegebenenfalls entlang der Kühlmittelleitung 25 von der ersten Komponente 5 abgeführtes Kühlmittel/Luft-Gemisch, falls das entlang dieser Kühlmittelleitung 25 geführte Kühlmittel überhaupt noch Luft enthält.It can also be seen that a further coolant line 25 branches off from the first component 5 to be cooled as a third line in order to flow through the first coolant line 7 To remove coolant supplied to cooling again from the component 5 to be cooled. It becomes clear that the first vent line 9 is neither used for supplying nor for removing coolant, but actually specifically for venting the first component 5. This does not contradict the fact that coolant entrained by the vented air may also be routed along the vent line 9 becomes. The air / coolant mixture routed along the first vent line 9 is in any case much richer in air and at the same time lower in coolant than a coolant / air mixture that may be removed from the first component 5 along the coolant line 25, if the coolant routed along this coolant line 25 is still air at all contains.

Fig. 2 zeigt eine Darstellung eines zweiten Ausführungsbeispiels einer Brennkraftmaschine 1 mit einem Kühlsystem 3. Gleiche und funktionsgleiche Elemente sind mit gleichen Bezugszeichen versehen, sodass insofern auf die vorangegangene Beschreibung verwiesen wird. Dabei sind hier zwei Abgasturbolader 42.1, 42.2 mit jeweils einem Turbinengehäuse 41.1, 41.2 als jeweils erste zu kühlende Komponente 5.1, 5.2 vorgesehen, wobei diese ersten Komponenten 5.1, 5.2 jeweils durch eine sehr kurze, erste Entlüftungsleitung 9.1, 9.2 in ein jeweiliges Verdichtergehäuse 43.1, 43.2 entlüftet werden. Dargestellt ist auch eine weitere Entlüftungsleitung 27, durch welche eine nicht dargestellte Kühlmittelleitung einer Abgasleitung 35 entlüftet wird. Weiterhin ist der Ausgleichsbehälter 23 dargestellt. Fig. 2 shows a representation of a second exemplary embodiment of an internal combustion engine 1 with a cooling system 3. Identical and functionally identical elements are provided with the same reference symbols, so that reference is made to the preceding description. Two exhaust gas turbochargers 42.1, 42.2 each with a turbine housing 41.1, 41.2 as the first component 5.1, 5.2 to be cooled are provided here, these first components 5.1, 5.2 each passing through a very short, first vent line 9.1, 9.2 into a respective compressor housing 43.1, 43.2 must be vented. Also shown is a further vent line 27 through which a coolant line (not shown) of an exhaust line 35 is vented. The expansion tank 23 is also shown.

Es wird hier insbesondere deutlich, dass die ersten Entlüftungsleitungen 9.1, 9.2 mit den ersten Komponenten 5.1, 5.2 an Anschlussstellen 47.1, 47.2 in Fluidverbindung sind, die geodätisch oberhalb von hier nicht dargestellten Mündungen der ebenfalls nicht dargestellten ersten Kühlmittelleitungen angeordnet sind, insbesondere an einer geodätisch höchsten Stelle der ersten Komponenten 5.1, 5.2. Dies ermöglicht eine besonders effiziente Entlüftung der ersten Komponenten 5.1, 5.2. Generell sind Entlüftungsleitungen vorzugsweise an geodätisch oberen, insbesondere geodätisch höchsten Stellen von zu entlüftenden Komponenten angeordnet.It is particularly clear here that the first vent lines 9.1, 9.2 are in fluid connection with the first components 5.1, 5.2 at connection points 47.1, 47.2, which are geodetically arranged above the openings (not shown here) of the first coolant lines (also not shown), in particular on a geodetic one highest point of the first components 5.1, 5.2. This enables a particularly efficient venting of the first components 5.1, 5.2. In general, ventilation lines are preferably arranged at geodetically upper, in particular geodetically highest points of components to be vented.

Fig. 3 zeigt eine Darstellung des Ausführungsbeispiels der Brennkraftmaschine 1 mit dem Kühlsystem 3 gemäß Figur 2 aus einer anderen Perspektive und mit einer Detailvergrößerung D. Gleiche und funktionsgleiche Elemente sind mit gleichen Bezugszeichen versehen, sodass insofern auf die vorangegangene Beschreibung verwiesen wird. Dabei sind hier insbesondere von einem Kurbelgehäuse 31 abzweigende Entlüftungsleitungen 27 dargestellt, die stromaufwärts eines Luftabscheiders 19 in eine in diesen mündende Kühlmittelleitung 25 einmünden, sodass die von dem Kurbelgehäuse 31 entlüftete Luft durch die Kühlmittelleitung 25 dem Luftabscheider 19 zugeführt wird. Sie kann dann in dem Luftabscheider 19 von dem Kühlmittel separiert und durch die zweite Entlüftungsleitung 21 dem Sammelbehälter 23 zugeführt werden. Fig. 3 shows a representation of the embodiment of the internal combustion engine 1 with the cooling system 3 according to FIG Figure 2 from a different perspective and with an enlarged detail D. Identical and functionally identical elements are provided with the same reference numerals, so that in this respect reference is made to the preceding description. Here, in particular, ventilation lines 27 branching off from a crankcase 31 are shown, which upstream of an air separator 19 into a coolant line 25 opening into this open out, so that the air vented from the crankcase 31 is fed to the air separator 19 through the coolant line 25. It can then be separated from the coolant in the air separator 19 and fed to the collecting container 23 through the second vent line 21.

Es sind auch weitere Entlüftungsleitungen 27 dargestellt, die von anderen zu kühlenden Komponenten direkt in den Sammelbehälter 23 führen. Beispielsweise führt eine Entlüftungsleitung 27 von dem Öl-Wärmetauscher 39 direkt in den Sammelbehälter 23.Further vent lines 27 are also shown, which lead from other components to be cooled directly into the collecting container 23. For example, a ventilation line 27 leads from the oil heat exchanger 39 directly into the collecting container 23.

Ein Vergleich der Figuren 2 und 3 zeigt insbesondere, dass das Kurbelgehäuse 31 näher an dem Luftabscheider 19 angeordnet ist als die Turbinengehäuse 41.1, 41.2 als erste zu entlüftende Komponenten 5.1, 5.2. Daher ist es günstig, das Kurbelgehäuse 31 direkt in eine in den Luftabscheider 19 mündende Kühlmittelleitung 25 zu entlüften, während die Turbinengehäuse 41.1, 41.2 zunächst in die Verdichtergehäuse 43.1, 43.2 entlüftet werden. So können nach Möglichkeit überall möglichst kurze und möglichst wenige Entlüftungsleitungen verwendet werden.A comparison of the Figures 2 and 3 shows in particular that the crankcase 31 is arranged closer to the air separator 19 than the turbine housings 41.1, 41.2 as the first components 5.1, 5.2 to be vented. It is therefore advantageous to vent the crankcase 31 directly into a coolant line 25 opening into the air separator 19, while the turbine housings 41.1, 41.2 are first vented into the compressor housings 43.1, 43.2. This means that the shortest possible and as few ventilation lines as possible can be used everywhere.

Fig. 4 zeigt ein Ausführungsbeispiel des Luftabscheiders 19. Dieser weist ein Abscheidemittel 49 auf, das hier als Lamelle ausgebildet ist. Gleiche und funktionsgleiche Elemente sind mit gleichen Bezugszeichen versehen, sodass insofern auf die vorangegangene Beschreibung verwiesen wird. Das Abscheidemittel 49 ist eingerichtet, um Luft aus einem den Luftabscheider 19 entlang eines Pfeils P durchsetzenden Kühlmittelstroms abzuzweigen und der zweiten Entlüftungsleitung 21, die hier in Form einer Mündungsbohrung in den Luftabscheider 19 dargestellt ist, zuzuführen. Dementsprechend führt ein stromabwärts des Abscheidemittels 49 angeordneter Teil 51 des Luftabscheiders 19 wenig oder sogar keine Luft, sodass stromabwärts des Luftabscheiders 19 eine effiziente Kühlung einer zu kühlenden Komponente erreicht wird. Fig. 4 shows an embodiment of the air separator 19. This has a separator 49, which is designed here as a lamella. Identical and functionally identical elements are provided with the same reference symbols, so that in this respect reference is made to the preceding description. The separating means 49 is set up to branch off air from a coolant flow passing through the air separator 19 along an arrow P and to supply it to the second vent line 21, which is shown here in the form of an orifice hole in the air separator 19. Accordingly, a part 51 of the air separator 19 arranged downstream of the separating means 49 carries little or even no air, so that an efficient cooling of a component to be cooled is achieved downstream of the air separator 19.

Von dem Kühlmittel umfasste Luft reichert sich auf ihrem Weg durch den Luftabscheider 19 und auch schon zuvor durch eine mit diesem verbundene Kühlmittelleitung 25 geodätisch oben, insbesondere auf einer geodätisch oberen, ersten Seite 53 des Abscheidemittels 49 an. Die Luft strömt also stets so an das Abscheidemittel 49, dass sie entlang der ersten Seite 53 in die zweite Entlüftungsleitung 21 geleitet und von dort abgeführt wird. Das Kühlmittel strömt dagegen entlang einer geodäisch unteren, zweiten Seite 55 des Abscheidemittels 49 durch den Luftabscheider 19 und insbesondere durch den stromabwärts des Abscheidemittels 49 angeordneten Teil 51 weiter entlang des Kühlmittelkreislaufs.Air encompassed by the coolant accumulates geodetically at the top on its way through the air separator 19 and also previously through a coolant line 25 connected to it, in particular on a geodetically upper, first side 53 of the separating means 49. The air therefore always flows to the separating means 49 in such a way that it is passed along the first side 53 into the second ventilation line 21 and is discharged from there. In contrast, the coolant flows along a geodetically lower, second side 55 of the separating means 49 through the Air separator 19 and in particular through the part 51 arranged downstream of the separating means 49 further along the coolant circuit.

Es ist möglich, dass der Luftabscheider 19 vorzugsweise unmittelbar stromaufwärts des Kühlmittelwärmetauschers 45 angeordnet ist.It is possible that the air separator 19 is preferably arranged directly upstream of the coolant heat exchanger 45.

Insgesamt zeigt sich, dass mittels des hier vorgeschlagenen Kühlsystems 3 und der Brennkraftmaschine 1 eine sehr effiziente Kühlung unter Vermeidung langer und vibrationsanfälliger Entlüftungsleitungen mit optimierter Entlüftung möglich ist.Overall, it can be seen that by means of the cooling system 3 and the internal combustion engine 1 proposed here, very efficient cooling is possible while avoiding long and vibration-prone ventilation lines with optimized ventilation.

Claims (8)

  1. A cooling system (3) comprising
    - at least one first component (5), which is to be cooled and into which a first coolant line (7) opens, wherein
    - a first ventilation line (9) is fluidically connected to the first component (5) for ventilating the first component (5) in such a way that
    - the first ventilation line (9) opens into a second coolant line (11), wherein
    - the second coolant line (11) is formed as coolant path (13) in a second component (15), which is to be cooled, or wherein
    - the second coolant line (11) leads to the second component (15), wherein the first ventilation line (9) opens into the second coolant line (11) outside of the second component (15),
    characterized in that
    - the first component (5) is formed as turbine housing (41) of an exhaust-gas turbocharger (42), wherein the second component (15) is formed as compressor housing (43) of the exhaust-gas turbocharger (42).
  2. The cooling system (3) according to any one of the preceding claims, characterized in that a first pressure prevails in the first coolant line (7) during operation of the cooling system (3), wherein a second pressure prevails in the second coolant line (11), wherein the first pressure is higher than the second pressure.
  3. The cooling system (3) according to any one of the preceding claims, characterized in that the first coolant line (7) has a first cross-sectional surface, wherein the first ventilation line (9) has a second cross-sectional surface, wherein the first cross-sectional surface is larger than the second cross-sectional surface, preferably by a factor of at least 16, preferably up to maximally 400, preferably of at least 25 to maximally 225, preferably of at least 36 to maximally 100.
  4. The cooling system (3) according to any one of the preceding claims, characterized in that the first ventilation line (9) is fluidically connected to the first component (5) at a connection point (47), which is arranged higher than the opening of the first coolant line (7) into the first component (5).
  5. The cooling system (3) according to any one of the preceding claims, characterized in that the cooling system (3) has an air separator (19), which is arranged downstream from the opening of the first ventilation line (9) into the second coolant line (11), wherein a second ventilation line (21) is fluidically connected to the air separator (19), wherein the air separator (19) preferably has a separating means (49), which is set up to separate air from a coolant flow permeating the air separator (19) and to supply said air to the second ventilation line (21).
  6. The cooling system (3) according to any one of the preceding claims, characterized in that the second coolant line (11) and/or the second ventilation line (21) open into a compensation tank (23) of the cooling system (3) for coolant.
  7. The cooling system (3) according to any one of the preceding claims, characterized in that the second coolant line (11) is arranged spatially closer to the compensation tank (23) than the first component (5).
  8. An internal combustion engine (1), comprising a cooling system (3) according to any one of claims 1 to 7.
EP15771629.1A 2014-10-02 2015-10-01 Cooling system, and internal combustion engine comprising a cooling system of said type Active EP3201445B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014014718 2014-10-02
PCT/EP2015/072748 WO2016050939A1 (en) 2014-10-02 2015-10-01 Cooling system, and internal combustion engine comprising a cooling system of said type

Publications (2)

Publication Number Publication Date
EP3201445A1 EP3201445A1 (en) 2017-08-09
EP3201445B1 true EP3201445B1 (en) 2020-09-30

Family

ID=54207528

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15771629.1A Active EP3201445B1 (en) 2014-10-02 2015-10-01 Cooling system, and internal combustion engine comprising a cooling system of said type

Country Status (6)

Country Link
US (1) US10895194B2 (en)
EP (1) EP3201445B1 (en)
KR (1) KR101950261B1 (en)
CN (1) CN106715858B (en)
RU (1) RU2680278C2 (en)
WO (1) WO2016050939A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015111407A1 (en) * 2015-07-14 2017-01-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling system for a vehicle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU699211A1 (en) * 1977-06-23 1979-11-25 Ленинградское высшее военное инженерное строительное Краснознаменное училище Ic engine cooling system
EP0143182A1 (en) * 1983-09-01 1985-06-05 BBC Brown Boveri AG Two-stage exhaust turbo charger having a device to avoid lubricant losses
DE3621837A1 (en) 1986-06-28 1988-01-07 Man Nutzfahrzeuge Gmbh BUBBLE SEPARATOR FOR WATER-COOLED ENGINES
DE3642121A1 (en) * 1986-12-10 1988-06-23 Mtu Muenchen Gmbh DRIVE SYSTEM
JPH063143B2 (en) * 1988-08-30 1994-01-12 富士重工業株式会社 Cooling device for internal combustion engine with turbocharger
SE514227C2 (en) * 1999-01-20 2001-01-22 Tore Kaellander Apparatus adapted to cool a machine assembly adapted to be associated with a motor
JP4212196B2 (en) * 1999-09-03 2009-01-21 本田技研工業株式会社 Lubricating device for internal combustion engine
DE19948160B4 (en) * 1999-10-07 2010-07-15 Wilhelm Kuhn Cooling device for a liquid-cooled internal combustion engine of a motor vehicle
DE102006010470A1 (en) * 2006-03-07 2007-09-20 GM Global Technology Operations, Inc., Detroit Turbocharger with convection cooling
US7531026B2 (en) 2006-11-13 2009-05-12 Ise Corporation Deaeration device and method of use
JP5782702B2 (en) * 2010-10-27 2015-09-24 トヨタ自動車株式会社 Engine cooling system
DE102011002554A1 (en) * 2011-01-12 2012-07-12 Ford Global Technologies, Llc Internal combustion engine with cylinder head and turbine
DE102012210320B3 (en) * 2012-06-19 2013-09-26 Ford Global Technologies, Llc Liquid-cooled combustion engine for vehicle, has steering valve arranged in connecting line between pump and vent tank and providing enlarged passage area as result of reduced pressure refrigerant in work position

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3201445A1 (en) 2017-08-09
KR20170065566A (en) 2017-06-13
US20170204776A1 (en) 2017-07-20
CN106715858A (en) 2017-05-24
RU2680278C2 (en) 2019-02-19
US10895194B2 (en) 2021-01-19
RU2017115013A3 (en) 2018-11-02
CN106715858B (en) 2021-12-17
RU2017115013A (en) 2018-11-02
WO2016050939A1 (en) 2016-04-07
KR101950261B1 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
DE102015016185A1 (en) Exhaust gas recirculation system for a motor
DE10361657A1 (en) Cooling air supply system for the cooling of various cooling air requiring systems in an aircraft
DE112012003317B4 (en) EGR device for internal combustion engine
EP3434873B1 (en) Cooling system and motor vehicle
DE102011102248A1 (en) Combustion engine i.e. diesel-combustion engine, for motor car, has combustion chamber, suction area attached to chamber and provided for supplying fluid to chamber and condensate collecting device arranged in suction area
DE102017128483A1 (en) Aircraft engine
DE102015109189A1 (en) Debris removal system
EP1788206A2 (en) Internal combustion engine with a device for separating oil from the blow-by gas
DE102006017924A1 (en) Internal-combustion engine`s dry sump lubrication system for use in motor vehicle, has lubricating oil filter arranged on pressure side of suction pump preferably in lubricating oil tank
DE102011114354B3 (en) Underfloor cooling system for a rail vehicle
EP3201445B1 (en) Cooling system, and internal combustion engine comprising a cooling system of said type
DE102008038235A1 (en) Internal combustion engine
DE102009050749B4 (en) System and method for inerting a volume in a vehicle
DE102011118837A1 (en) Coolant circuit of an internal combustion engine and a specific for this coolant circuit expansion tank
DE19925779A1 (en) Exhaust turbocharger with emergency oil tank has oil feed device from oil reservoir located within turbocharger bearing housing above oil return
DE102012022762A1 (en) Fuel supply system for vehicle, comprises water separator arranged in flow path of fuel between fuel inlet and fuel outlet of fuel tank, and hydrophobic barrier layer with fine-mesh lattice arranged between water separator and fuel outlet
DE102012001459A1 (en) Device for cooling heat generating element in operating chamber of motor vehicle by flow of fluid, comprises heat exchanger with fluid flow machine, which is arranged downstream such that outflow of fluid strikes on heat generating element
DE102005045930B4 (en) Method of filtering the oil used to lubricate an internal combustion engine
DE20318633U1 (en) Device for return and degreasing of crank housing ventilation gases comprises one module attachable by flange connection to engine producing flow connections for ventilation pipe and oil return pipe
DE102004056295A1 (en) Oil supply device for aircraft engines, ensuring uninterrupted supply under negative g-force conditions, comprising supply and return lines with pumps, connected by line including valve element
DE102014208259A1 (en) Cooling device for cooling a fluid medium, exhaust gas recirculation system for an internal combustion engine and internal combustion engine
DE102005023227A1 (en) Oil separation system has mutually independently operating cascaded separation stages through which the ventilation gas flows arranged on the crankcase housing or the gearbox housing
EP3914812B1 (en) Cylinder head
DE102011115410A1 (en) Arrangement of an oil module and an oil pump on an internal combustion engine
DE102019001025B4 (en) Internal combustion engine with an open crankcase ventilation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170313

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MARKIN, OLIVER

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180530

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200415

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1319012

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015013563

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201231

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015013563

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

26N No opposition filed

Effective date: 20210701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1319012

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20211020

Year of fee payment: 7

REG Reference to a national code

Ref country code: FI

Ref legal event code: PCE

Owner name: ROLLS-ROYCE SOLUTIONS GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20211021

Year of fee payment: 7

Ref country code: GB

Payment date: 20211022

Year of fee payment: 7

Ref country code: DE

Payment date: 20211020

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211028

Year of fee payment: 7

Ref country code: FR

Payment date: 20211022

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015013563

Country of ref document: DE

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210130

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: FI

Ref legal event code: PCE

Owner name: ROLLS-ROYCE SOLUTIONS GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: ROLLS-ROYCE SOLUTIONS GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: MTU FRIEDRICHSHAFEN GMBH

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015013563

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20221101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221101

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001