EP3201399B1 - Procédé de fabrication d'un réservoir de stockage enterré et réservoir correspondant - Google Patents

Procédé de fabrication d'un réservoir de stockage enterré et réservoir correspondant Download PDF

Info

Publication number
EP3201399B1
EP3201399B1 EP15788123.6A EP15788123A EP3201399B1 EP 3201399 B1 EP3201399 B1 EP 3201399B1 EP 15788123 A EP15788123 A EP 15788123A EP 3201399 B1 EP3201399 B1 EP 3201399B1
Authority
EP
European Patent Office
Prior art keywords
wall
concrete
fluid
prestressing
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15788123.6A
Other languages
German (de)
English (en)
Other versions
EP3201399A1 (fr
Inventor
Bertrand Steff De Verninac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soletanche Freyssinet SA
Original Assignee
Soletanche Freyssinet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soletanche Freyssinet SA filed Critical Soletanche Freyssinet SA
Publication of EP3201399A1 publication Critical patent/EP3201399A1/fr
Application granted granted Critical
Publication of EP3201399B1 publication Critical patent/EP3201399B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/38Foundations for large tanks, e.g. oil tanks
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them

Definitions

  • the present invention relates to the construction of buried structures, more particularly buried storage tanks designed to contain a fluid, in particular a liquid, for example water.
  • These tanks typically comprise an outer wall buried in the ground and forming a ground support system delimiting a first volume to be excavated, a raft, and an inner coating covering the outer wall and sealingly connected to the lower slab, so to seal a storage space for the fluid.
  • This inner liner is traditionally formed of steel or reinforced concrete cast directly against the outer wall and in one piece with the raft.
  • the outer wall and liner face significant tensile and compressive forces due to ground and groundwater pressures as well as internal fluid pressure.
  • the inner lining needs important reinforcements to withstand the shrinkage of the concrete that constitutes it, the thermal stresses during the setting of said concrete, and high circumferential stresses, which can lead to cracking.
  • An object of the present invention is to provide a method of manufacturing a buried storage tank, in particular a buried tank for storing a fluid, in particular a liquid, having improved and durable resistance to cracking, easy to implement, economical and not requiring the use of a significant amount of materials.
  • Another object of the present invention is to provide a buried storage tank having improved and durable crack resistance.
  • the patent BE 418786 discloses a method of manufacturing a buried storage tank with radial prestressing, but without means to easily adjust this prestressing.
  • the inner wall forms an inner liner which delimits, within the first volume, a sealed storage space for a fluid to be stored.
  • this inner wall may be subjected to a radial prestressing force oriented towards the interior of the storage space before a fluid is introduced into this space for storage.
  • the inner wall is deformed inwardly of the storage space, and is subjected to a circumferential compressive stress.
  • a radial direction is defined as a direction perpendicular to the axis of the structure and passing through this axis.
  • a circumferential stress applied to said structure is in this case orthoradial, that is to say perpendicular to such a radial direction and to the axis of the structure.
  • the circumferential stress due to the preload compensates for a portion of the circumferential tensile stress in the inner wall induced by said inner pressure, so that resulting tensile stresses in the inner wall are maintained at sufficiently small amplitudes to not require the implementation of substantial reinforcements, or even completely avoid the implementation of a reinforcement.
  • the inner wall experiences limited traction, and crack formation is limited or even avoided.
  • the concrete walls usually retract during the setting of the concrete.
  • conventional construction methods where the inner wall is cast directly against the outer wall, creating a space between the two walls due to the shrinkage allows the inner wall to deform outwardly when filling the space storage with the stored fluid.
  • the inner wall must then be further strengthened to limit cracking.
  • the circumferential compressive stress created in the inner wall due to prestressing blocks the relative movement of the inner and outer walls so that the tension created in the inner wall, and consequently the width of the cracks created in it, are limited. Reinforcing means of the inner wall can therefore be even more limited or even omitted.
  • the rheology of the fluid and the casting sequence are advantageously chosen to adjust the pressure applied to the inner wall.
  • the method according to the invention may also comprise controlling the rate of introduction of the prestressing fluid into the intermediate space.
  • the method may also include controlling at least one pressure within the space.
  • limit values for the minimum and maximum pressures of the prestressing fluid within the intermediate space are established before starting the casting.
  • compression limit values of the inner wall during the filling of the intermediate space are predetermined.
  • the top of the intermediate space is sealed, the sealed intermediate space remaining connected to pressurized feed means into a filling substance, and the filling substance is introduced into the space intermediate via said supply means so as to increase the prestressing force applied to the inner wall.
  • the filling substance is generally a fluid, which may be the prestressing fluid or which may be a different fluid, which may in this case be added after introduction of the prestressing fluid for example to adjust the prestressing pressure or increase this pressure during the life of the work, if it decreases.
  • the prestressing of the inner wall can also be obtained (in addition or as an alternative to the method described above) using conventional methods.
  • the inner wall may be prestressed using prestressing frames, including frames installed horizontally around the inner wall.
  • the reinforcements may be for example cables or bars.
  • the present invention also relates to a buried storage tank, in particular a tank for storing a fluid such as water, which can be obtained by the manufacturing method mentioned above.
  • the buried storage tank comprises an underground structure comprising an outer wall forming a first closed contour delimiting a first volume, a slab, and an inner wall forming a second closed contour delimiting a fluid-tight storage space for a fluid.
  • the reservoir within the first volume, the reservoir being adapted to be in a filled state in which a fluid is stored in the storage space or in an empty state in which the storage space is empty, the reservoir comprising means preloading means for applying on the inner wall a prestressing force directed towards the inside of the storage space in at least one configuration, so that in the empty state of the reservoir the inner wall is stressed circumferential compression.
  • the outer wall and the inner wall are separated from each other by an intermediate layer, the intermediate layer comprising, as prestressing means, concrete that has set, which, in its fluid state, is provided for applying a force radial prestressing on the inner wall. More specifically, the intermediate layer comprises a first volume of set concrete and a second volume of concrete introduced only after the first volume has set.
  • the inner wall may be a concrete wall, particularly a reinforced concrete wall, or may be formed of steel.
  • the subterranean peripheral structure may have a circular or oval shape.
  • the intermediate layer can extend continuously over the entire periphery of the inner wall.
  • FIGS. 1 to 5 illustrate a buried storage tank according to an exemplary embodiment of the present invention, in particular a tank provided for storing fluids, and in particular liquids such as water.
  • a reservoir has for example an outer diameter of between 10 and 60 meters, and a total height of between 10 and 100 meters.
  • the tank 100 shown in the figure 1 , comprises an underground structure comprising an outer wall 20 forming a first closed contour delimiting a first volume V1, a base 10, and an inner wall 30 forming a second closed contour delimiting, inside the first volume V1, a storage space S-tight for a stored fluid W.
  • the bottom and the top of a structure are defined along a vertical axis, the lower part referring to the lower part of the structure, directed towards the depth of the ground.
  • the tank 100 is open at its upper end 100a.
  • the tank is provided with a cover structure.
  • a filled state of the tank 100 is defined as a state in which a fluid is stored in the storage space S.
  • a state where the storage space S is empty is defined as an empty state of the tank 100.
  • the reservoir comprises, in the example of the figure 1 , prestressing means provided in at least one configuration for applying to the inner wall 30 a radial prestressing force oriented towards the inside of the storage space and for applying at the same time to the outer wall 20 a Radial preload force oriented outward of the storage space. Because of said means, in the empty state of the reservoir, the inner wall 30 is subjected to a circumferential compressive stress.
  • the outer wall 20 is first formed in the ground G and the soil contained in the first volume V1 thus defined is then excavated.
  • the raft 10 is then formed.
  • the outer wall 20 and the base 10 thus form the basic structure of the reservoir shown on the figure 2 , which defines in the soil a correspondingly shaped excavation.
  • the outer wall 20 forms a thick vertical retaining wall having its outer surface 20c in contact with the ground G.
  • the outer wall 20 has a generally cylindrical shape extending around a main vertical axis X1 .
  • the outer wall 20 when viewed in projection in a horizontal plane, has a circular shape. In other embodiments, however, the outer wall 20 may have any other suitable shape, particularly an oval shape.
  • the outer wall 20 is typically made of reinforced concrete. It can for example be realized by the technique of the walls molded in situ, in particular by producing a plurality of individual molded panels, afterwards or alternately. This example is not, however, limiting, and the outer wall can be manufactured also by the known technique of the Berlin walls or by sheet piling systems or any other technique suitable for the realization of deep foundations. The techniques mentioned above are well known to those skilled in the art and are not described in more detail here.
  • the raft 10 is connected to the outer wall 20, preferably sealingly.
  • the raft 10 extends horizontally from the lower part of the outer wall 20, and is generally made of reinforced concrete.
  • the inner wall 30 is then formed to delimit, within the first volume, a sealed storage space S for the stored fluid W.
  • the inner wall 30 covers the outer wall from the inside and is connected to the base 10 in a sealed manner.
  • watertight seals may be provided at the junction of the inner wall 30 with the raft 10.
  • the inner wall 30 may be made of concrete, especially fiber-reinforced concrete. It can for example be constructed using the sliding formwork technique.
  • the inner wall 30 has a cylindrical shape centered on the axis X1 and thus extends parallel to the outer wall 20.
  • the inner wall 30 is spaced from the outer wall 20 in a radial direction (that is to say a direction perpendicular to the axis X1 and intersecting this axis), over its entire circumference and here over its entire height.
  • a ring or intermediate space 40 is thus formed between the inner and outer walls 30, 20.
  • the aforementioned compression circumferential stress in the inner wall 30 is obtained by introducing a prestressing fluid into the space 40, in a step illustrated in FIG. figure 4 .
  • the prestressing fluid is concrete (marked C in the drawings), which can be poured directly into the intermediate space 40 via one or more hoppers 42.
  • limits for the minimum pressure and the maximum pressure of the concrete C inside the intermediate space are established before starting the casting, and means are used during the casting of the concrete C in the space intermediate 40, to monitor the pressure inside this space 40.
  • These means may comprise sensors 50 as illustrated on the figure 4 , such as pressure sensors, connected to the surface to provide real-time results to operators.
  • the concrete C is chosen to have a slow grip, so that it begins to take up the space 40 only after the intermediate space 40 has been completely filled, thus ensuring that the force of F1 pressure exerted by the poured concrete C at the lower end of the inner wall 30 is maximum.
  • the ring formed between the inner and outer walls 20, 30 forms an intermediate layer 70 of concrete.
  • the intermediate layer forms a structure distinct from the outer and inner walls, a first and a second joining surface being clearly visible between the intermediate layer 70 and the outer wall 20 and the intermediate layer 70 and the inner wall 30, respectively.
  • a molded construction between the outer and inner walls forms a unitary construction with said walls, preventing voids from being formed between them.
  • the figure 5 shows the reservoir once the concrete C has hardened and the storage space S has been filled with stored fluid, including water W.
  • the internal pressure exerted by the stored fluid W on the inner wall 30 is represented by the arrows F3, on the figure 5 .
  • the inner wall 30 tends to deform outward (i.e., out of the storage space), thereby inducing a circumferential tensile stress in the inner wall.
  • the resulting deformation of the inner wall 30 is amplified by the dashed line D2, on the figure 5 .
  • the maximum pressure in the intermediate space does not exceed a predetermined value.
  • compression limit values applied to the inner wall 30 during filling of the intermediate space 40 may be pre-established and means (not shown) may be provided to control deformation of the inner wall 30 during prestressing, by example of strain gauges.
  • the concrete C can be introduced in several phases in the space 40.
  • a first concrete volume C1 is introduced into the space 40 in order to fill a part (here the lower third) of the intermediate space 40.
  • a second volume of concrete C2 is introduced in the intermediate space, thus filling a second part (here a second third) of the space 40.
  • the pressure obtained in the intermediate space at atmospheric pressure may not be sufficient.
  • the top of the intermediate space can be sealed by a cover 62 as shown in FIG. figure 7 , and additional pressure can be applied.
  • the sealed intermediate space can be connected to supply means 60 configured to deliver a filling substance into this intermediate space, the filling substance being the same or different from the prestressing material, and the filling substance can be introduced into the intermediate space under pressure, via the supply means 60.
  • the additional pressure can be applied from the top of the space, through a hole 64 formed in the cover 62, or through holes 66 placed in any locations of the inner wall 30, depending on the compression referred to each location.
  • the prestressing force applied to the inner wall is thus increased.
  • the exemplary embodiment of the figure 8 provides another solution to achieve the desired final compression at each location of the coating.
  • prestressing of the inner wall is further improved here by prestressing reinforcements 80 arranged horizontally inside the intermediate space 40 and surrounding the inner wall 30. cables can be installed in the space 40 before introducing the prestressing fluid.
  • the inner wall may be further prestressed using vertical prestressing reinforcements 82, for example anchored in the concrete base 10 and fixed to the upper end of the inner wall 30.
  • vertical prestressing reinforcements 82 for example anchored in the concrete base 10 and fixed to the upper end of the inner wall 30.
  • FIG. Figure 9A which is a sectional view along line IXA-IXA of the figure 9 a plurality of cables 82 may be distributed in the circumferential direction, preferably in a regular manner.
  • the prestress fluid may not be a hardenable material such as concrete.
  • the prestressing fluid may for example be water or any other fluid remaining in a liquid state.
  • the intermediate layer 70 is made of a liquid, the liquid exerting a force on the inner wall 30 inwardly of the storage space 10 throughout the life of the reservoir.
  • openings such as holes 64, 66 described with reference to FIG. figure 7 can advantageously be kept accessible so that prestressing fluid or any other filling substance can be added to the intermediate space in order to maintain the adequate pressure on the inner wall 30 throughout the life of the reservoir 100 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

    DOMAINE DE L'INVENTION
  • La présente invention se rapporte à la construction de structures enterrées, plus particulièrement de réservoirs de stockage enterrés conçus pour contenir un fluide, notamment un liquide, par exemple de l'eau.
  • ARRIERE-PLAN DE L'INVENTION
  • Il est déjà connu de stocker des fluides tels que l'eau dans des réservoirs partiellement ou totalement enterrés dans le sol.
  • Ces réservoirs comportent de manière typique une paroi extérieure enterrée dans le sol et formant un système de soutènement de sol délimitant un premier volume à excaver, un radier, et un revêtement intérieur recouvrant la paroi extérieure et relié de manière étanche à la dalle inférieure, afin d'assurer l'étanchéité d'un espace de stockage pour le fluide. Ce revêtement intérieur est traditionnellement formé en acier ou en béton armé coulé directement contre la paroi extérieure et d'un seul tenant avec le radier.
  • La paroi extérieure et le revêtement intérieur doivent faire face à des forces de traction et de compression importantes dues aux pressions du sol et des eaux souterraines, ainsi qu'à la pression interne due au fluide. En particulier, le revêtement intérieur a besoin de renforts importants pour résister au retrait du béton qui le constitue, aux contraintes thermiques lors de la prise dudit béton, et aux contraintes circonférentielles élevées, qui peuvent conduire à une fissuration.
  • Pour se conformer aux normes récentes relatives aux structures de stockage d'eau, il est nécessaire de limiter davantage la largeur maximale des fissures dans les structures. Avec les procédés courants de construction, ceci conduit à augmenter les dimensions du revêtement dans le cas d'un revêtement en acier, ou à augmenter la quantité de ferraillage dans le cas d'un revêtement en béton. Cependant, les coûts supplémentaires peuvent être significatifs du fait des quantités d'acier à mettre en œuvre. De plus, dans le cas d'un revêtement en béton, la densité du ferraillage peut-être très importante au point qu'il est difficile de placer et de compacter correctement le béton. Enfin, l'étanchéité des structures et leur durabilité peut dépendre fortement de la qualité d'exécution et du contrôle pendant la construction du revêtement.
  • Un objectif de la présente invention est de fournir un procédé de fabrication d'un réservoir de stockage enterré, notamment un réservoir enterré pour le stockage d'un fluide, en particulier un liquide, présentant une résistance améliorée et durable à la fissuration, facile à mettre en œuvre, économique et n'exigeant pas l'utilisation d'une quantité importante de matériaux.
  • Un autre objectif de la présente invention est de fournir un réservoir de stockage enterré présentant une résistance à la fissuration améliorée et durable.
  • Le brevet BE 418786 divulguait un procédé de fabrication d'un réservoir de stockage enterré avec précontrainte radiale, mais sans moyen de régler facilement cette précontrainte.
  • RESUME DE L'INVENTION
  • Un procédé de fabrication d'un réservoir de stockage enterré selon la présente invention comprend au moins les étapes suivantes :
    • on forme dans le sol une structure comportant une paroi extérieure formant un premier contour fermé délimitant un premier volume, un radier, et une paroi intérieure formant un deuxième contour fermé délimitant un espace de stockage étanche pour un fluide à l'intérieur du premier volume, de façon à ce que la paroi extérieure et la paroi intérieure soient espacées l'une de l'autre, de sorte qu'un espace intermédiaire est formé entre elles, et
    • on applique sur la paroi intérieure une force de précontrainte orientée vers l'intérieur de l'espace de stockage, en remplissant l'espace intermédiaire avec au moins un fluide de précontrainte, de sorte que la paroi intérieure est soumise à une contrainte circonférentielle de compression, le fluide de précontrainte exerçant la force de précontrainte radiale sur la paroi intérieure, le fluide de précontrainte étant une matière durcissable, plus particulièrement une matière autodurcissable, et comprenant du béton, en particulier du béton à prise lente. Un deuxième volume de béton est introduit dans l'espace intermédiaire seulement une fois qu'un premier volume de béton a déjà fait prise (durci) à l'intérieur de l'espace. La pression maximale mesurée dans le béton peut ainsi être limitée.
  • La paroi intérieure forme un revêtement intérieur qui délimite, à l'intérieur du premier volume, un espace de stockage étanche pour un fluide devant être stocké. Selon la présente invention, cette paroi intérieure peut être soumise à une force de précontrainte radiale orientée vers l'intérieur de l'espace de stockage avant qu'un fluide ne soit introduit dans cet espace pour y être stocké.
  • La paroi intérieure est déformée vers l'intérieur de l'espace de stockage, et est soumise à une contrainte circonférentielle de compression.
  • Dans le cas d'une structure à section circulaire s'étendant autour d'un axe, on définit une direction radiale comme une direction perpendiculaire à l'axe de la structure et passant par cet axe.
  • Une contrainte circonférentielle appliquée à ladite structure est dans ce cas orthoradiale, c'est-à-dire perpendiculaire à une telle direction radiale et à l'axe de la structure.
  • Lorsqu'on remplit ensuite l'espace de stockage avec le fluide stocké, ce dernier exerce sur la paroi intérieure une pression intérieure radiale, de sorte que la paroi intérieure tend à reprendre sa position initiale.
  • La contrainte circonférentielle due à la précontrainte compense une partie de la contrainte circonférentielle de traction dans la paroi intérieure induite par ladite pression intérieure, de telle sorte que des contraintes de traction résultantes dans la paroi intérieure sont maintenues à des amplitudes suffisamment faibles pour ne pas exiger la mise en œuvre de renforts conséquents, voire éviter complètement la mise en œuvre d'un renfort. La paroi intérieure subit une traction limitée, et la formation de fissures est limitée ou même évitée.
  • Comme on le sait, les parois en béton se rétractent habituellement pendant la prise du béton. Avec des procédés de construction conventionnels où la paroi intérieure est coulée directement contre la paroi extérieure, la création d'un espace entre les deux parois due au retrait permet à la paroi intérieure de se déformer vers l'extérieur lors du remplissage de l'espace de stockage avec le fluide stocké. La paroi intérieure doit alors être encore plus renforcée afin de limiter la fissuration.
  • Avec le procédé selon l'invention, la contrainte circonférentielle de compression créée dans la paroi intérieure du fait de la précontrainte bloque le mouvement relatif des parois intérieure et extérieure de telle sorte que la tension créée dans la paroi intérieure, et par conséquent la largeur des fissures créées dans celle-ci, sont limitées. Des moyens de renfort de la paroi intérieure peuvent donc être encore plus limités ou même omis.
  • La rhéologie du fluide ainsi que la séquence de coulée sont avantageusement choisies pour ajuster la pression appliquée sur la paroi intérieure.
  • Le procédé selon l'invention peut également comprendre le contrôle de la vitesse d'introduction du fluide de précontrainte dans l'espace intermédiaire.
  • Le procédé peut également comprendre le contrôle d'au moins une pression à l'intérieur de l'espace.
  • Selon un exemple de mise en œuvre, des valeurs limites pour les pressions minimale et maximale du fluide de précontrainte à l'intérieur de l'espace intermédiaire sont établies avant de commencer la coulée.
  • Selon un exemple de mise en œuvre, avant l'étape de précontrainte, des valeurs limites de compression de la paroi intérieure pendant le remplissage de l'espace intermédiaire sont prédéterminées.
  • Selon un exemple de mise en œuvre, le dessus de l'espace intermédiaire est scellé, l'espace intermédiaire scellé restant relié à des moyens d'alimentation sous pression en une substance de remplissage, et on introduit la substance de remplissage dans l'espace intermédiaire par l'intermédiaire des dits moyens d'alimentation de façon à augmenter la force de précontrainte appliquée sur la paroi intérieure. A noter que la substance de remplissage est généralement un fluide, qui peut être le fluide de précontrainte ou qui peut être un fluide différent, qui peut dans ce cas être ajouté après introduction du fluide de précontrainte par exemple pour ajuster la pression de précontrainte ou augmenter cette pression au cours de la vie de l'ouvrage, si celle-ci vient à diminuer.
  • Pour obtenir la compression finale visée à tout endroit du revêtement, la précontrainte de la paroi intérieure peut également être obtenue (en complément ou comme variante du procédé décrit ci-dessus) en utilisant des procédés conventionnels. Par exemple, la paroi intérieure peut être précontrainte en utilisant des armatures de précontrainte, notamment des armatures installées horizontalement autour de la paroi intérieure. Les armatures peuvent être par exemple des câbles ou des barres.
  • La présente invention concerne également un réservoir de stockage enterré, notamment un réservoir pour le stockage d'un fluide tel que de l'eau, qui peut être obtenu grâce au procédé de fabrication mentionné ci-dessus.
  • Le réservoir de stockage enterré selon l'invention comporte une structure souterraine comprenant une paroi extérieure formant un premier contour fermé délimitant un premier volume, un radier, et une paroi intérieure formant un deuxième contour fermé délimitant un espace de stockage étanche au fluide pour un fluide à l'intérieur du premier volume, le réservoir étant adapté à être dans un état rempli dans lequel un fluide est stocké dans l'espace de stockage ou dans un état vide dans lequel l'espace de stockage est vide, le réservoir comportant des moyens de précontrainte prévus pour appliquer sur la paroi intérieure une force de précontrainte orientée vers l'intérieur de l'espace de stockage dans au moins une configuration, de sorte que, dans l'état vide du réservoir, la paroi intérieure est soumise à une contrainte circonférentielle de compression.
  • La paroi extérieure et la paroi intérieure sont séparées l'une de l'autre par une couche intermédiaire, la couche intermédiaire comportant, comme moyens de précontrainte, du béton ayant fait prise, qui, dans son état fluide, est prévu pour appliquer une force de précontrainte radiale sur la paroi intérieure. Plus spécifiquement, la couche intermédiaire comprend un premier volume de béton ayant fait prise et un deuxième volume de béton introduit seulement une fois que le premier volume a fait prise.
  • La paroi intérieure peut être une paroi en béton, en particulier une paroi en béton armé, ou peut être formée en acier.
  • La structure périphérique souterraine peut avoir une forme circulaire ou ovale.
  • Selon une forme de réalisation, la couche intermédiaire peut s'étendre de manière continue sur toute la périphérie de la paroi intérieure.
  • Hormis en cas d'incompatibilité évidente et sauf indication contraire, des caractéristiques d'un exemple de réalisation ou de mise en œuvre décrit ici peuvent être appliquées à d'autres exemples de réalisation ou de mise en œuvre décrits.
  • BREVE DESCRIPTION DES DESSINS
  • L'invention sera mieux comprise à la lecture de la description qui suit de modes de réalisation de l'invention donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels :
    • La figure 1 est une vue en perspective d'une cuve de stockage enterrée selon la présente invention ;
    • Les figures 2 à 5 sont des vues en coupe schématiques selon II-II de la figure 1, montrant les différentes étapes de fabrication de la cuve de stockage enterrée de la figure 1 selon un exemple de mise en œuvre de la présente invention ;
    • Les figures 6a) à 6c) illustrent un deuxième exemple de mise en œuvre dans lequel un fluide de précontrainte est introduit dans l'espace dans un processus pas à pas ;
    • La figure 7 illustre un troisième exemple de mise en œuvre dans lequel l'espace est scellé avant d'y introduire le fluide de précontrainte ;
    • La figure 8 illustre un quatrième exemple de mise en œuvre dans lequel une précontrainte de la paroi intérieure est en outre obtenue à l'aide d'armatures de précontrainte horizontales ;
    • Les figures 9, 9A et 9B illustrent un cinquième exemple de mise en œuvre dans lequel la paroi intérieure est en outre comprimée en utilisant des armatures de précontrainte verticales.
  • Dans les dessins, des références identiques sur les différentes vues se réfèrent de manière générale aux mêmes éléments.
  • DESCRIPTION DETAILLEE
  • Les figures 1 à 5 illustrent un réservoir de stockage enterré selon un exemple de réalisation de la présente invention, en particulier un réservoir prévu pour le stockage de fluides, et en particulier de liquides tels que de l'eau. Un tel réservoir a par exemple un diamètre externe compris entre 10 et 60 mètres, et une hauteur totale comprise entre 10 et 100 mètres.
  • Le réservoir 100, illustré dans la figure 1, comporte une structure souterraine comprenant une paroi extérieure 20 formant un premier contour fermé délimitant un premier volume V1, un radier 10, et une paroi intérieure 30 formant un deuxième contour fermé délimitant, à l'intérieur du premier volume V1, un espace de stockage étanche S pour un fluide stocké W.
  • Dans la présente description, sauf indication contraire, le bas et le haut d'une structure sont définis le long d'un axe vertical, la partie basse se référant à la partie inférieure de la structure, dirigée vers la profondeur du sol.
  • Dans l'exemple illustré, le réservoir 100 est ouvert à son extrémité supérieure 100a. Cependant, bien que cela ne soit pas représenté, il est également possible que le réservoir soit pourvu d'une structure de recouvrement.
  • Dans la présente description, un état rempli du réservoir 100 est défini comme un état dans lequel un fluide est stocké dans l'espace de stockage S. Au contraire, un état où l'espace de stockage S est vide (c'est-à-dire qu'il n'y a pas de fluide stocké à l'intérieur de cet espace) est défini comme un état vide du réservoir 100.
  • Comme il apparaîtra à la lecture de la description qui suit, le réservoir comporte, dans l'exemple de la figure 1, des moyens de précontrainte prévus, dans au moins une configuration, pour appliquer sur la paroi intérieure 30 une force de précontrainte radiale orientée vers l'intérieur de l'espace de stockage et pour appliquer dans le même temps, sur la paroi extérieure 20 une force de précontrainte radiale orientée vers l'extérieur de l'espace de stockage. Du fait desdits moyens, dans l'état vide du réservoir, la paroi intérieure 30 est soumise à une contrainte circonférentielle de compression.
  • Quand le réservoir 100 est rempli avec un fluide stocké comme cela est représenté sur la figure 1, une pression intérieure due au fluide stocké est exercée sur la paroi intérieure 30, induisant une contrainte circonférentielle de traction dans ladite paroi. Du fait de la précontrainte, cette contrainte de traction dans la paroi intérieure 30 est équilibrée par la contrainte de compression déjà existante, empêchant par conséquent la formation de fissures dans la paroi intérieure 30.
  • La structure d'un tel réservoir sera mieux comprise à la lumière des étapes de fabrication de celui-ci décrites ci-dessous en référence aux figures 2 à 5.
  • De façon usuelle, la paroi extérieure 20 est tout d'abord formée dans le sol G et le sol contenu dans le premier volume V1 ainsi délimité est ensuite excavé. Le radier 10 est alors formé. La paroi extérieure 20 et le radier 10 forment ainsi la structure de base du réservoir représentée sur la figure 2, qui définit dans le sol une excavation de forme correspondante.
  • Comme cela est représenté par exemple sur les figures 1 et 2, la paroi extérieure 20 forme une paroi de soutènement verticale épaisse ayant sa surface extérieure 20c en contact avec le sol G. Dans l'exemple illustré, la paroi extérieure 20 a une forme générale cylindrique s'étendant autour d'un axe vertical principal X1. Dans l'exemple, lorsqu'elle est vue en projection dans un plan horizontal, la paroi extérieure 20 présente une forme circulaire. Selon d'autres formes de réalisation cependant, la paroi extérieure 20 peut avoir n'importe quelle autre forme adaptée, en particulier une forme ovale.
  • La paroi extérieure 20 est typiquement fabriquée en béton armé. Elle peut par exemple être réalisée par la technique des parois moulées in situ, en particulier en réalisant une pluralité de panneaux moulés individuels, à la suite ou bien de manière alternée. Cet exemple n'est cependant pas limitatif, et la paroi extérieure peut être fabriquée également par la technique connue des parois berlinoises ou par des systèmes de palplanches ou n'importe quelle autre technique appropriée pour la réalisation de fondations profondes. Les techniques mentionnées ci-dessus sont bien connues de l'homme du métier et ne sont pas décrites plus en détail ici.
  • Le radier 10 est relié à la paroi extérieure 20, de préférence de façon étanche. Le radier 10 s'étend horizontalement depuis la partie inférieure de la paroi extérieure 20, et est généralement réalisé en béton armé.
  • Comme cela est représenté sur la figure 3, la paroi intérieure 30 est alors formée pour délimiter, à l'intérieur du premier volume, un espace de stockage étanche S pour le fluide stocké W.
  • La paroi intérieure 30 recouvre la paroi extérieure par l'intérieur et est liée au radier 10 de manière étanche. De façon avantageuse, des joints étanches à l'eau (non représentés) peuvent être prévus à la jonction de la paroi intérieure 30 avec le radier 10.
  • La paroi intérieure 30 peut être réalisée en béton, notamment en béton fibré. Elle peut par exemple être construite en utilisant la technique du coffrage glissant.
  • Dans l'exemple de réalisation illustré, la paroi intérieure 30 présente une forme cylindrique centrée sur l'axe X1 et s'étend ainsi parallèlement à la paroi extérieure 20. La paroi intérieure 30 est espacée de la paroi extérieure 20 dans une direction radiale (c'est-à-dire une direction perpendiculaire à l'axe X1 et coupant cet axe), sur toute sa circonférence et ici sur toute sa hauteur. Un anneau ou espace intermédiaire 40 est ainsi formé entre les parois intérieure et extérieure 30, 20.
  • Dans le présent exemple de réalisation, la contrainte circonférentielle de compression mentionnée ci-dessus dans la paroi intérieure 30 est obtenue en introduisant un fluide de précontrainte dans l'espace 40, dans une étape illustrée sur la figure 4.
  • Dans l'exemple, le fluide de précontrainte est du béton (repéré C dans les dessins), qui peut être coulé directement dans l'espace intermédiaire 40 via une ou plusieurs trémies 42.
  • Quand le béton C contenu dans l'espace est dans son état fluide, du fait de la pression du béton C, la paroi intérieure 30 subit une déformation vers l'intérieur de l'espace de stockage, avec pour résultat une contrainte circonférentielle de compression. Les traits en pointillés D1 dans la figure 4 montrent de façon amplifiée la déformation de la paroi intérieure 30.
  • De manière avantageuse, des limites pour la pression minimale et la pression maximale du béton C à l'intérieur de l'espace intermédiaire sont établies avant de commencer la coulée, et des moyens sont utilisés, pendant la coulée du béton C dans l'espace intermédiaire 40, pour surveiller la pression à l'intérieur de cet espace 40.
  • Ces moyens peuvent comprendre des capteurs 50 comme illustré sur la figure 4, tels que capteurs de pression, reliés à la surface pour fournir des résultats en temps réel aux opérateurs.
  • De manière avantageuse, le béton C est choisi pour avoir une prise lente, de telle sorte qu'il commence à prendre au fond de l'espace 40 seulement après que l'espace intermédiaire 40 a été entièrement rempli, assurant ainsi que la force de pression F1 exercée par le béton versé C à l'extrémité inférieure de la paroi intérieure 30 soit maximale.
  • Comme cela est représenté sur les figures 1 et 5, l'anneau formé entre les parois intérieure et extérieure 20, 30 forme une couche intermédiaire 70 de béton. La couche intermédiaire forme une structure bien distincte des parois extérieure et intérieure, une première et une deuxième surface de jonction étant bien visibles entre respectivement la couche intermédiaire 70 et la paroi extérieure 20 et la couche intermédiaire 70 et la paroi intérieure 30. La couche intermédiaire 70 moulée entre les parois extérieure et intérieure forme, cependant, une construction unitaire avec lesdites parois, empêchant que des vides soient formés entre elles.
  • La figure 5 montre le réservoir une fois que le béton C a durci et que l'espace de stockage S a été rempli avec du fluide stocké, notamment de l'eau W.
  • La pression intérieure exercée par le fluide stocké W sur la paroi intérieure 30 est représentée par les flèches F3, sur la figure 5.
  • La réaction de ladite paroi intérieure 30, précontrainte par le fluide de précontrainte C, est représentée par la flèche F2.
  • Comme conséquence de la pression du fluide stocké F3, la paroi intérieure 30 tend à se déformer vers l'extérieur (c'est-à-dire vers l'extérieur de l'espace de stockage), induisant ainsi une contrainte circonférentielle de traction dans la paroi intérieure.
  • La contrainte circonférentielle de compression de la paroi intérieure 30, due à la précontrainte, équilibre cette tension résultant de la pression de fluide stocké, de telle sorte que les contraintes de traction exercées sur la paroi intérieure restent à des niveaux acceptables. La paroi intérieure subit une traction limitée, et la formation de fissures est limitée ou même évitée.
  • La déformation résultante de la paroi intérieure 30 est représentée de façon amplifiée par le trait en pointillés D2, sur la figure 5.
  • Dans certains cas, on souhaite que la pression maximale dans l'espace intermédiaire ne dépasse pas une valeur prédéterminée.
  • De plus, des valeurs limites de compression appliquée à la paroi intérieure 30 pendant le remplissage de l'espace intermédiaire 40 peuvent être préétablies et des moyens (non représentés) peuvent être prévus pour contrôler la déformation de la paroi intérieure 30 pendant la précontrainte, par exemple des jauges de contrainte.
  • Selon un exemple de mise en œuvre illustré sur les figures 6a) à 6c), on peut, afin de ne pas dépasser ces valeurs limites, contrôler la vitesse d'introduction du béton dans l'espace intermédiaire.
  • En particulier, le béton C peut être introduit en plusieurs phases dans l'espace 40.
  • Comme cela est représenté sur la figure 6a), un premier volume de béton C1 est introduit dans l'espace 40 afin de remplir une partie (ici le tiers inférieur) de l'espace intermédiaire 40.
  • Après prise complète du premier volume de béton, et comme représenté sur la figure 6b), un deuxième volume de béton C2 est introduit dans l'espace intermédiaire, remplissant ainsi une deuxième partie (ici un deuxième tiers) de l'espace 40.
  • Ensuite, après la prise du deuxième volume C2, un troisième volume de béton C3 est introduit dans l'espace, au-dessus des premier et deuxième volumes C1, C2 (figure 6c)).
  • La pression maximale dans le béton augmentant avec la hauteur maximale de béton liquide, on comprend facilement que, selon ce processus en plusieurs phases, la pression maximale mesurée dans le béton est limitée en comparaison de l'exemple de réalisation décrit en référence à la figure 4. En conséquence, la force de précontrainte appliquée sur la paroi intérieure est également limitée.
  • Dans d'autres cas, au contraire, la pression obtenue dans l'espace intermédiaire, sous pression atmosphérique, peut ne pas être suffisante.
  • Dans ces cas, le dessus de l'espace intermédiaire peut être scellé par un couvercle 62 comme cela est représenté sur la figure 7, et une pression supplémentaire peut être appliquée.
  • L'espace intermédiaire scellé peut être relié à des moyens d'alimentation 60 configurés pour délivrer une substance de remplissage dans cet espace intermédiaire, la substance de remplissage étant la même ou étant différente de la matière de précontrainte, et la substance de remplissage peut être introduite dans l'espace intermédiaire sous pression, par l'intermédiaire des moyens d'alimentation 60. La pression supplémentaire peut être appliquée par le haut de l'espace, à travers un trou 64 formé dans le couvercle 62, ou à travers des trous 66 placés dans des emplacements quelconques de la paroi intérieure 30, en fonction de la compression visée à chaque endroit.
  • La force de précontrainte appliquée sur la paroi intérieure est ainsi augmentée.
  • L'exemple de réalisation de la figure 8 fournit une autre solution permettant d'obtenir la compression finale souhaitée à chaque emplacement du revêtement.
  • Comme illustré, la précontrainte de la paroi intérieure est encore améliorée ici par des armatures de précontrainte 80 disposées horizontalement à l'intérieur de l'espace intermédiaire 40 et entourant la paroi intérieure 30. Ces câbles peuvent être installés dans l'espace 40 avant d'y introduire le fluide de précontrainte.
  • Selon encore un autre exemple de réalisation illustré sur les figures 9, 9A et 9B, la paroi intérieure peut être davantage précontrainte en utilisant des armatures de précontrainte verticales 82 par exemple ancrées dans le radier en béton 10 et fixées à l'extrémité supérieure de la paroi intérieure 30. Comme cela est représenté sur la figure 9A qui est une vue en coupe le long de la ligne IXA-IXA de la figure 9, une pluralité de câbles 82 peut être répartie dans la direction circonférentielle, de préférence de manière régulière.
  • Les exemples de réalisation décrits ci-dessus ne sont cependant pas limitatifs de la présente invention.
  • Comme exemple, le fluide de précontrainte peut ne pas être une matière durcissable telle que du béton. Le fluide de précontrainte peut par exemple être de l'eau ou n'importe quel autre fluide restant dans un état liquide.
  • Dans ce cas, la couche intermédiaire 70 est constituée d'un liquide, le liquide exerçant une force sur la paroi intérieure 30 vers l'intérieur de l'espace de stockage 10 pendant toute la durée de vie du réservoir.
  • De plus, dans ce cas, des ouvertures telles que les trous 64, 66 décrits en référence à la figure 7 peuvent avantageusement être maintenues accessibles de telle sorte que du fluide de précontrainte ou toute autre substance de remplissage peut être ajouté(e) dans l'espace intermédiaire afin de maintenir la pression adéquate sur la paroi intérieure 30 pendant toute la durée de vie du réservoir 100.

Claims (10)

  1. Procédé de fabrication d'un réservoir de stockage enterré (100) comprenant au moins les étapes suivantes :
    - on forme dans le sol une structure comportant une paroi extérieure (20) formant un premier contour fermé délimitant un premier volume (V1), un radier (10), et une paroi intérieure (30) formant un deuxième contour fermé délimitant un espace de stockage étanche (S) pour un fluide à l'intérieur du premier volume (V1), de façon à ce que la paroi extérieure (20) et la paroi intérieure (30) soient espacées l'une de l'autre, de sorte qu'un espace intermédiaire (40) est formé entre elles, et
    - on applique sur la paroi intérieure (30) une force de précontrainte orientée vers l'intérieur de l'espace de stockage (S), en remplissant l'espace intermédiaire (40) avec au moins un fluide de précontrainte (C), de sorte que la paroi intérieure est soumise à une contrainte circonférentielle de compression, le fluide de précontrainte (C) exerçant la force de précontrainte sur la paroi intérieure (30), le fluide de précontrainte (C) étant une matière durcissable et comprenant du béton, en particulier du béton à prise lente ;
    le procédé étant caractérisé en ce qu'un deuxième volume de béton est introduit dans l'espace intermédiaire (30) seulement une fois qu'un premier volume de béton a déjà fait prise à l'intérieur de l'espace intermédiaire.
  2. Procédé selon la revendication 1, dans lequel on contrôle la vitesse d'introduction du fluide de précontrainte (C) dans l'espace intermédiaire (40).
  3. Procédé selon l'une quelconque des revendications 1 ou 2, dans lequel on contrôle au moins une pression à l'intérieur de l'espace intermédiaire (40).
  4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel on scelle le dessus de l'espace intermédiaire (40), l'espace intermédiaire scellé restant relié à des moyens d'alimentation (60) en une substance de remplissage, et on introduit la substance de remplissage dans l'espace intermédiaire par l'intermédiaire des moyens d'alimentation (60) de façon à augmenter la force de précontrainte appliquée sur la paroi intérieure (30).
  5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la paroi intérieure (30) est formée après que la paroi extérieure (20) a été formée et après que le sol à l'intérieur du premier volume (V1) a été retiré.
  6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la paroi intérieure (30) est précontrainte en utilisant des armatures de précontrainte (80, 82).
  7. Réservoir de stockage enterré (100) comportant une structure souterraine comprenant une paroi extérieure (20) formant un premier contour fermé délimitant un premier volume (V1), un radier et une paroi intérieure (30) formant un deuxième contour fermé délimitant un espace de stockage étanche (S) pour un fluide à l'intérieur du premier volume, le réservoir étant adapté à être dans un état rempli dans lequel un fluide est stocké dans l'espace de stockage ou dans un état vide dans lequel l'espace de stockage est vide, le réservoir comportant des moyens de précontrainte prévus pour appliquer sur la paroi intérieure (30) une force de précontrainte orientée vers l'intérieur de l'espace de stockage (S) dans au moins une configuration, de sorte que, dans l'état vide du réservoir, la paroi intérieure (20) est soumise à une contrainte circonférentielle de compression, la paroi extérieure (20) et la paroi intérieure (30) étant séparées l'une de l'autre par une couche intermédiaire (70), et la couche intermédiaire (70) comportant, comme moyens de précontrainte, du béton ayant fait prise, le réservoir (100) étant caractérisé en ce que la couche intermédiaire (70) comprend un premier volume de béton ayant fait prise et un deuxième volume de béton introduit seulement une fois que le premier volume a fait prise.
  8. Réservoir de stockage enterré (100) selon la revendication 7, dans lequel la couche intermédiaire (70) s'étend de manière continue sur toute la périphérie de la paroi intérieure (30).
  9. Réservoir de stockage enterré (100) selon l'une quelconque des revendications 7 ou 8, dans lequel la paroi intérieure (30) est une paroi en béton.
  10. Réservoir de stockage enterré (100) selon l'une quelconque des revendications 7 à 9, dans lequel la paroi intérieure (30) est composée d'acier.
EP15788123.6A 2014-10-01 2015-10-01 Procédé de fabrication d'un réservoir de stockage enterré et réservoir correspondant Active EP3201399B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1459353A FR3026755B1 (fr) 2014-10-01 2014-10-01 Procede de fabrication d'un reservoir de stockage enterre et reservoir correspondant
PCT/FR2015/052627 WO2016051097A1 (fr) 2014-10-01 2015-10-01 Procede de fabrication d'un reservoir de stockage enterre et reservoir correspondant

Publications (2)

Publication Number Publication Date
EP3201399A1 EP3201399A1 (fr) 2017-08-09
EP3201399B1 true EP3201399B1 (fr) 2019-11-27

Family

ID=51866272

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15788123.6A Active EP3201399B1 (fr) 2014-10-01 2015-10-01 Procédé de fabrication d'un réservoir de stockage enterré et réservoir correspondant

Country Status (4)

Country Link
EP (1) EP3201399B1 (fr)
FR (1) FR3026755B1 (fr)
SG (1) SG11201702698SA (fr)
WO (1) WO2016051097A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112523220B (zh) * 2020-12-03 2022-09-27 中国葛洲坝集团第一工程有限公司 明浇廊道外侧结构面附着式工作台车施工系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917514A (fr) * 1972-06-12 1974-02-16
WO2012025911A2 (fr) * 2010-08-24 2012-03-01 Thierry Labrosse Procédé de construction de réservoir et réservoir de stockage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
SG11201702698SA (en) 2017-04-27
EP3201399A1 (fr) 2017-08-09
WO2016051097A1 (fr) 2016-04-07
FR3026755B1 (fr) 2016-12-02
FR3026755A1 (fr) 2016-04-08

Similar Documents

Publication Publication Date Title
EP3146155B1 (fr) Élément de construction pour la réalisation d'un tunnel, tunnel comprenant un tel élément et procédés de fabrication d'un tel élément et d'un tel tunnel
EP2390420B1 (fr) Paroi formée dans un sol, comprenant un élément préfabriqué creux, et procédé de réalisation d'une telle paroi
EP0081402B1 (fr) Procédé d'obtention de structures creuses, telles que des conduites, silos ou abris.
EP0373997B1 (fr) Conteneur de stockage pour déchets radioactifs
EP2964837B1 (fr) Paroi moulee precontrainte et procede de realisation d'une telle paroi
FR2948153A1 (fr) Eolienne maritime a pylone ajuste verticalement par calage
EP0244890B1 (fr) Procédé de réalisation de structures creuses, de grande section, telles que des conduites, silos ou abris, et structures obtenues par ce procédé
EP3201399B1 (fr) Procédé de fabrication d'un réservoir de stockage enterré et réservoir correspondant
EP3652056A1 (fr) Corps mort pour l'ancrage d'une structure flottante
EP3277925B1 (fr) Élément de construction pour la réalisation d'un tunnel, tunnel comprenant un tel élément et procédés de fabrication d'un tel élément et d'un tel tunnel
EP3172383B1 (fr) Dispositif d'ancrage dans un sol multicouches comprenant une bague de liaison
FR2927097A1 (fr) Pieu de fondation apte a soutenir au moins un element d'usine de liquefaction et/ou separation de gaz
EP2563975B1 (fr) Paroi moulee avec parement prefabrique
FR2953231A1 (fr) Procede de confortement d’un terrain et ouvrage de confortement
FR2712002A1 (fr) Procédé de construction d'un élément de digue sur un fond immergé et utilisation s'y rapportant.
EP0844403A1 (fr) Dispositif de support d'une structure par une paroi de béton
FR2574443A1 (fr) Procede de realisation d'une cave etanche et cave obtenue pour la mise en oeuvre du procede
WO2016038279A1 (fr) Fondation pour constructions en mer et procédés de fabrication, de réglage et de démantèlement d'une telle fondation
FR2523628A1 (fr) Reservoir de stockage de grandes dimensions
FR3053519A1 (fr) Procede de formation et d'installation in situ d'un double tubage d'une alveole de stockage souterrain de dechets radioactifs
FR3038627A1 (fr) Procede de fabrication d'une fondation comportant une etape de recepage
FR2640410A1 (en) Storage container for radioactive waste

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180416

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190430

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STEFF DE VERNINAC, BERTRAND

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1206785

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015042592

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191127

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200228

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200327

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015042592

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1206785

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015042592

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210921

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20210924

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 9