EP3196624B1 - Verfahren zur messung von zeitverzögerungen in bezug auf differenzialmodusverzögerung (dmd), eine multimodale faser (mmf) oder eine wenigmodenfaser (fmf) - Google Patents
Verfahren zur messung von zeitverzögerungen in bezug auf differenzialmodusverzögerung (dmd), eine multimodale faser (mmf) oder eine wenigmodenfaser (fmf) Download PDFInfo
- Publication number
- EP3196624B1 EP3196624B1 EP17150102.6A EP17150102A EP3196624B1 EP 3196624 B1 EP3196624 B1 EP 3196624B1 EP 17150102 A EP17150102 A EP 17150102A EP 3196624 B1 EP3196624 B1 EP 3196624B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mmf
- fmf
- laser pulses
- component
- different wavelengths
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims description 82
- 230000001934 delay Effects 0.000 title claims description 43
- 238000000034 method Methods 0.000 title claims description 31
- 238000005259 measurement Methods 0.000 claims description 59
- 230000003287 optical effect Effects 0.000 claims description 24
- 238000001914 filtration Methods 0.000 claims description 9
- 239000013307 optical fiber Substances 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010009 beating Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/33—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
- G01M11/338—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by measuring dispersion other than PMD, e.g. chromatic dispersion
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/33—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
- G01M11/335—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/08—Testing mechanical properties
- G01M11/088—Testing mechanical properties of optical fibres; Mechanical features associated with the optical testing of optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/33—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
- G01M11/332—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using discrete input signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/073—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an out-of-service signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/077—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
- H04B10/0775—Performance monitoring and measurement of transmission parameters
Definitions
- the present invention relates to the field of optical fiber transmissions, and more specifically, to multi-mode fibers, MMF's, and/or few-mode fibers, FMF's.
- the invention relates to a method of measuring time delays with respect to Differential Mode Delay, DMD, of a multi-mode fiber, MMF, or a few-mode fiber, FMF, for at least two different wavelengths in a measurement arrangement.
- DMD Differential Mode Delay
- the invention is applied, in particular but not exclusively, to OM2, OM3 and OM4 multi-mode fibers.
- a wide-band multi-mode fiber like the OM4 multi-mode fiber, is understood as a multi-mode fiber having a relatively operational wavelength range, in particular but not exclusively, a wavelength range comprised between 850 nm and 950 nm.
- Multi-mode fibers are successfully used in high-speed data networks together with high-speed sources that typically use transversally multimode vertical cavity surface emitting lasers, more simply called VCSELs.
- multi-mode fibers are affected by intermodal dispersion, which results from the fact that, for a particular wavelength, several optical modes propagate simultaneously along the fiber, carrying the same information, but travelling with different propagation velocities.
- Modal dispersion is expressed in term of Differential Mode Delay, which is a measure of the difference in pulse delay between the fastest and slowest modes traversing the multi-mode fiber.
- the multi-mode optical fibers used in data communications generally comprise a core showing a refractive index that decreases progressively going from the centre of the fiber to its junction with a cladding.
- high-speed multi-mode optical fibers such as OM4 fibers (which are laser-optimized, high bandwidth 50 ⁇ m multi-mode fibers, standardized by the International Standardization Organization in document IEC 60793-2-10 Ed. 5, Published 19-11-2015, fiber type A1a.3 ), have proved to be the medium of choice for high data rate communications, delivering reliable and cost-effective 10 to 100 Gbps solutions.
- WB Wide-Band
- CWDM Coarse Wavelength Division Multiplexing
- OM4 fibers have until now only been achieved over a narrow wavelength range, typically 850 nm +/- 10nm.
- the feasibility of Wide-Band, WB, multi-mode fibers satisfying OM4 performance requirements over a broader wavelength range is a challenge to overcome for next generation multi-mode systems.
- a multi-mode fiber performance is typically defined by an Effective Modal Bandwidth, EMB, assessment at a given wavelength.
- EMB Effective Modal Bandwidth
- OM4 fibers should exhibit EMB upper than 4,700MHZ-km at a wavelength of 850nm +/- 1 nm.
- the achievement of such high EMB values requires an extremely accurate control of refractive index profile of multi-mode fibers.
- traditional manufacturing processes cannot guarantee so high EMB, and generally it is hard to accurately predict the EMB values from refractive index profile measurements on core rod or cane, especially when high EMB, typically larger than 2,000 MHz-km, are expected, meaning the fiber refractive index profile is close to the optimal profile.
- EMB's are directly assessed on the fibers.
- a few-mode fiber is typically defined by Differential Mode Group Delays, DMGDs.
- the DMGDs are measured using an DMD technique, mostly at a wavelength of 1550 nm. Other wavelengths might also be of future interest once few-mode fibers are used in wide band applications as well.
- the Effective Modal Bandwidth, EMB is assessed by a measurement of the delay due to the modal dispersion, known under the acronym DMD for "Differential Mode Delay". It consists in recording pulse responses of the multi-mode fiber, or few-mode fiber, for single-mode launches that radially scan the core. It provides a DMD plot that is then post-processed in order to asses the minimal EMB a fiber can deliver.
- the DMD measurement procedure has been the subject of standardization and is specified by the International Standardization Organization in document IEC 60793-1-49, Ed. 2.0, Published 26-6-2006 .
- the DMD metric, also called DMD value is expressed in units of picoseconds per meter (ps/m).
- the DMD measurement procedure consists in measuring the fiber response when a pulse, or a pulse train, is launched with a fiber that is single mode at the wavelength of interest.
- the excited modes in the multi-mode fiber or the few-mode fiber, i.e. the fiber under test, FUT depend on the lateral position of the single mode fiber with respect to the FUT optical axis. Basically, centered launch excites the lowest order modes while offset launches the highest. Therefore, a collection of records of fiber response when the single mode fiber scans the core of the FUT gives a good overview of the modal dispersion of the FUT. It is noted that DMD measurements typically require an alignment procedure to allow correct centered launch, i.e. when the single mode probe fiber axis is aligned with the FUT optical axis.
- a known measurement arrangement comprises a laser that is arranged to emit a train of laser pulses of a few picoseconds up to hundreds of picoseconds at a single wavelength.
- the laser pulse is coupled into a single mode fiber via a first component comprising, for example, mirrors and/or optics.
- the single mode fiber is coupled to the FUT via a second component which comprises a translation stage allowing a lateral translation of the single-mode fiber with respect to the FUT fiber optical axis.
- the output of the FUT is coupled into a detector module, via a third component, which detector module is arranged to convert the optical waveform into an electrical waveform.
- the detector module is further arranged to sample the received electrical waveform and to allow signal recording. Up till now, DMD measurements are performed at a single wavelength.
- wavelength division multiplexing WDM
- WDM wavelength division multiplexing
- US patent application US 2014/0368809 discloses a differential mode delay measurement system for an optical fiber.
- the system includes an optical test fiber with a plurality of modes, a single mode light source that provides a continuous light wave signal to a modulator and a pulse generator that provides an electrical pulse train signal to the modulator and a triggering signal to a receiver.
- the modulator is configured to generate a modulated optical test signal through the optical fiber based at least in part on the received light wave and pulse train signals
- the receiver is configured to receive the test signal transmitted through the fiber and evaluate the test signal based at least in part on the triggering signal.
- European patent application EP 1,705,471 discloses an apparatus for measuring the differential mode delay of multi-mode optical fibers.
- the apparatus includes a tuneable laser source, an interferometer, a data collecting device, and a computer.
- the tuneable laser source outputs light, frequencies of which vary linearly.
- the interferometer generates multi-mode light and single mode light by separating light, which is output from the tuneable laser source, transmitting the multi-mode light and the single mode light to the multi-mode optical fiber, which is a measurement target, and a single mode path, which is a reference, and generating a beating signal by causing the multi-mode light and the single mode light to interfere with each other.
- One aspect of the present invention is to provide for a method of measuring time delays with respect to Differential Mode Delay, DMD, of a multi-mode fiber, MMF, or a few-mode fiber, FMF, for at least two different wavelengths in a measurement arrangement, in an accurate manner.
- DMD Differential Mode Delay
- Another aspect of the present invention is to provide for a non-transitory computer-readable carrier medium storing a computer program product which is able to support the method according to the present invention.
- the present invention provides, in a first aspect thereof, in a method of measuring time delays with respect to Differential Mode Delay, DMD, of a multi-mode fiber, MMF, or a few-mode fiber, FMF, for at least two different wavelengths in a measurement arrangement, said measurement arrangement comprising a laser device arranged to emit laser pulses at said at least two different wavelengths, a single mode fiber, SMF, arranged to couple emitted laser pulses into said MMF or said FMF, a first component arranged to couple laser pulses emitted by said laser device into said SMF, a second component arranged to align said SMF to said MMF or said FMF, a detector module arranged for detecting emitted laser pulses exiting said MMF or FMF, and a third component arranged to couple said emitted laser pulses exiting said MMF or said FMF to said detector module, said method comprising the subsequent steps a), b), c):
- the modes coupled to the MMF or FMF are sensitive to the exact radial offset position, i.e. alignment of the SMF to the MMF or the FMF. This is especially true at radial offset positions approximately half between the centre of the core and the cladding. Positioning, i.e. "locking", the radial offset position while changing wavelengths will avoid positional differences due to, for example, hysteresis effects of the second component. "Locking" the offset position will therefore increase measurement reliability with respect to wavelength dependency, significantly.
- One of the advantages hereof is that the measurement reliability is increased significantly with respect to wavelength dependent DMD.
- the detector module may be arranged to determine the relative delays of the received laser pulses using some sort of pulse location technique, i.e. peak amplitude, centre of gravity, percentage of maximum power on leading or trailing edge, etc.
- the obtained measured time delays then form the basis for determining the wavelength dependent modal dispersion of the SMF or the FMF.
- the steps of positioning, by said second component, said SMF to said MMF or said FMF at a particular radial offset value entails that the optical axis of the SMF is offset to the optical axis of the MMF or the FMF at the particular radial offset value. This means that the emitted laser pulses enter the MMF or the FMF with a radial offset with respect to the centre core thereof.
- An alignment procedure is initiated first, by the second component, such that the optical axis of the SMF coincides with the optical axis of the MMF or the FMF, before performing the method steps b) and c) according to the present invention.
- the wavelength dependency with respect to differential mode delay in an MMF or an FMF can be determined accurately.
- the main difference between an MMF and a SMF is that the MMF has much larger core diameter, typically 50-100 micrometers, which is typically larger than the wavelength, or wavelengths, of the laser pulses carried in it.
- the emitted laser pulses are coupled into the MMF at different radial offsets in order to accurately determine the wavelength dependency with respect to the differential mode delay of the MMF.
- the radial offset may be substantially equal to zero such that the optical axis of the SMF is in line, i.e. aligned, with the optical axis of the MMF.
- the radial offset may then gradually increase, with steps of, for example, between 0,5 - 10 micrometers, more preferably between 1 - 5 micrometers, even more preferably between 1 - 2 micrometers to the outside of the core of the MMF.
- the key aspect of the invention is that all wavelength measurements are performed before the radial offset is gradually increased with the next step.
- the said steps of emitting comprise:
- the above embodiment entails that the laser device first emits a laser pulse at a first wavelength. The time delays with respect to this emitted laser pulse at the first wavelength are measured by the detector module. Subsequently, the laser device emits a laser pulse at a second wavelength. The time delays with respect to this emitted laser pulse at the second wavelength are then measured by the detector module. This process repeats itself until time delays related to laser pulses with all intended wavelengths have been emitted, and measured.
- the steps of emitting may comprise:
- the third component may comprise filtering means arranged for selectively passing one of said at least two different wavelengths and for filtering out a remainder of said at least two different wavelengths, wherein said steps of measuring comprise:
- the filtering means would, initially, be tuned to a first wavelength. That is, the filtering means will filter out all wavelengths except that first wavelength. So only the laser pulses with the first wavelength will arrive at the detector module. The detector module then measures any time delays of said emitted laser pulses exiting said MMF or said FMF. The filtering means are then tuned to a second wavelength, and the process repeats itself, etc.
- the detector module may also comprise a plurality of detectors, wherein said third component is arranged to de-multiplex said laser pulses such that each of said at least two different wavelengths is coupled to a different detector.
- the laser pulse at the input of the third component is de-multiplexed into a plurality of different detectors. That is, each wavelength is sent to a different detector.
- the detector module comprises a plurality of detectors, each of which are wavelength sensitive at a single wavelength, wherein said third component is arranged to couple said emitted laser pulses exiting said MMF or said FMF to each of said plurality of detectors.
- the third component acts like a splitter such that the incoming laser pulses are split, and send to each of the plurality of detectors.
- Each of the detectors are wavelength sensitive at a particular, different, wavelength such that the time delays of said emitted laser pulses exiting said MMF or said FMF can be measured individually for each of said at least two different wavelengths.
- the third component may comprise any of optical filters and beam splitters.
- An optical filter is, for example, a device that selectively transmits light of different wavelengths, usually implemented as plane glass or plastic devices in the optical path which is either dyed in the bulk or has interference coatings.
- Optical filters are described by their frequency response, which specifies how the magnitude and phase of each frequency component of an incoming signal is modified by the filter.
- the first component may comprise any of a rotating mirror, choppers, optical fiber splitters and a photonic lantern.
- a chopper is, for example, a device which periodically interrupts a light beam, i.e. the laser pulse.
- variable frequency rotating disc choppers variable frequency rotating disc choppers
- fixed frequency tuning fork choppers fixed frequency tuning fork choppers
- optical shutters Three types are presently available on the market: variable frequency rotating disc choppers, fixed frequency tuning fork choppers, and optical shutters.
- the invention provides in a non-transitory computer-readable carrier medium storing a computer program product which comprises program code instructions for implementing the method according to any of the previous claims whenever said program is executed on a computer or a processor.
- the invention provides in a measurement arrangement for measuring time delays with respect to Differential Mode Delay, DMD, of a multi-mode fiber, MMF, or a few-mode fiber, FMF, for at least two different wavelengths, said measurement arrangement comprising:
- the control device may be a computer comprising a processor arranged to facilitate the subsequent steps b) and c) of the present invention.
- the invention is not limited to the particular examples disclosed below or a particular method for measuring time delays with respect to Differential Mode Delay, DMD, of a multi-mode fiber, MMF, or a few-mode fiber, FMF, for at least two different wavelengths.
- the present inventions does not require significant changes to the measurement arrangement that are already in use. Therefore, the solution to the problem presented in the present invention is simple and cost-effective to implement.
- Figure 1 discloses a measurement arrangement 1 in accordance with the prior art.
- a laser device 2 which could be a solid state laser or a fiber laser that is arranged to emit laser pulses of a few picoseconds up to hundreds of picoseconds at a single wavelength.
- An emitted laser pulse is coupled into a single mode fiber, SMF, 4.
- the coupling is made by a first component 3 in free space using mirrors.
- the single mode fiber is coupled to the fiber under test, i.e. the multi-mode fiber 6.
- the coupling between the SMF 4 and the fiber under test 6 is made by a second component 5.
- the second component 5 allows for core scanning of the multi-mode fiber, MMF, 6 by the SMF 4.
- the second component 5 can be a butt coupling controlled by a translation stage which allows a lateral translation of the SMF 4 with resect to the optical axis of the MMF 6.
- the output of the MMF 6 is coupled into a detector module 8, which is able to convert the optical waveform into an electrical waveform.
- the electrical waveform is then sent into a sampling module 9 in order to sample the received waveform train and to allow signal recording.
- the coupling between the MMF 6 and the detector module 8 is made by the third component 7.
- Figure 2 discloses an example of a measurement arrangement 101 in accordance with the present invention.
- the measurement arrangement 101 is suitable for measuring time delays with respect to differential mode delay of a multi-mode fiber, MMF, or a few-mode fiber, FMF, for at least two different wavelengths. As such, using the invention, the wavelength dependency with respect to the differential mode delay of an MMF or an FMF can be determined accurately.
- the laser device comprises a plurality of lasers, i.e. a first laser 102, a second laser 103 up to an N-th laser 104, each of which arranged to emit laser pulses at a different wavelength.
- the invention is not limited to a particular amount of lasers.
- a single tuneable laser may be used arranged to emit laser pulses subsequently at multiple wavelengths.
- the MMF or the FMF 108 is provided in the measurement arrangement 101, and the SMF is aligned to the MMF or the FMF, by the second component. Subsequently, a first set of measurements are performed with respect to a first radial offset value.
- a second component 107 positions the SMF 106 to the MMF or the FMF 108, or vice versa, at a first radial offset value.
- the optical axis of the SMF 106 is positioned with a particular radial offset with respect to the optical axis of the MMF or the FMF 108.
- a first laser pulse is emitted by the first laser 102, which first laser pulse is coupled into the SMF 106 by the first component 105.
- the emitted first laser pulse is then coupled to the MMF or the FMF 108 using the second component 107.
- the first laser pulse exiting the MMF or the FMF 108 is then coupled, using the third component 109, into a detector 110.
- the detector 110 as well as the sampling module 111 are comprised by a detector module which is arranged to measure the time delays of any emitted laser pulse which exits the MMF or the FMF 108.
- a second laser pulse having a second wavelength is emitted by a second laser 103.
- the time delays related to this second laser pulse having the second wavelength i.e. different from the first wavelength, is measured in a same way as described for the laser pulse having the first wavelength. This process repeats itself until laser pulses with all intended wavelengths have been emitted, and the time delays of all of these laser pulses have been measured.
- second measurements are performed with respect to a further radial offset value, by: positioning, by the second component 107, the SMF 106 to the MMF or the FMF 108 at the further radial offset value, wherein the further radial offset is different from any previous radial offset value.
- the laser device 102, 103, 104 each emit laser pulses at different wavelengths, and the detector module measure the time delays of the emitted laser pulses exiting the MMF or the FMF 108 individually for each of the wavelengths.
- the key aspect of the present invention is that the time delays of the laser pulses are measured for each of the wavelengths before the second component 107 positions the SMF 106 to the MMF or the FMF at a further radial offset.
- One of the advantages of the present invention is that the measurement reliability is increased significantly when investigating wavelength dependent differential mode delay as all intended wavelengths are measured with a same radial offset, i.e. the coupling between the SMF 106 and the MMF or the FMF 108 does not change between wavelengths.
- Another advantage of the present example is that the costs of the receiver side do not increase with the number of wavelengths. For example, only one detector module may measure each of the intended laser pulses.
- Yet another advantage is that the preparation time for the SMF or the FMF 108 does not increase with the number of wavelengths. The preparation of the SMF or the FMF 108 needs to be performed only once.
- Figure 3 discloses another example of a measurement arrangement 201 in accordance with the present invention.
- the main difference between the measurement arrangement 201 shown in figure 3 and the measurement arrangement 101 shown in figure 2 is that the laser pulses exiting the laser devices 102, 103, 104 are each coupled, by the first component 105, to the SMF 106 simultaneously .
- the first component 105 in the measurement arrangement 101 shown in figure 2 is arranged to couple only one of the emitted laser pulses to the SMF 106 at a time.
- the third component 202 of the measurement arrangement 201 shown in figure 3 acts like a wavelength demultiplexer. That is, the third component 202 is able to split the received laser pulses in wavelength, and to send each of the wavelengths to a different detector 203, 204, 205, wherein each detector is coupled to a single sampling module 206, 207, 208.
- the result hereof is that a laser pulse at a first wavelength is sent to the first detector 203, a laser pulse at a second wavelength is sent to the second detector 204, a laser pulse at an N-th wavelength is sent to the third detector 205, etc.
- the detector module may comprise a plurality of detectors, each of which wavelength sensitive a particular single wavelength, wherein the third component 202 is arranged to couple the emitted laser pulses exiting the MMF or the FMF 108 to each of the plurality of detector.
- Figure 4 discloses an example of a first component 301 used in a measurement arrangement in accordance with the present invention.
- the first component 301 comprises a rotating mirror 302 to select the wavelength to be coupled into the SMF 106.
- the rotating mirror 302 In a first position, shown on the left side of figure 4 , the rotating mirror 302 reflects, i.e. couples, the laser pulses emitted from the second laser 103 into the SMF 106. The laser pulses emitted by the first laser device 102 are reflected, by the rotating mirror 302, into an absorber 303. In a second position, shown on the right side of figure 4 , the rotating mirror 302 is rotated such that it does not influence any of the emitted laser pulses of the first laser 102 and the second laser 103.
- the laser pulses emitted by the first laser 102 are directly coupled into the SMF 106, and the laser pulses emitted by the second laser 103 are absorbed by the absorber 303.
- the rotating mirror 302 only one laser pulse can be coupled to the SMF 106 at a time.
- Figure 5 discloses another example of a first component 401 used in a measurement arrangement in accordance with the present invention.
- a fiber coupler 404 can be used to couple laser pulses emitted by the first laser device 102 and the second laser device 103 into the SMF 106.
- choppers 403 can be provided, for example in free space, to filter out one of the wavelengths, and to pass all the other wavelengths.
- a photonic lantern 405, as shown on the right side of figure 5 can also be used to couple all emitted lasers from each f the laser devices 102, 103, 104 into the SMF 106.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Dispersion Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Lasers (AREA)
- Spectrometry And Color Measurement (AREA)
Claims (11)
- Verfahren zum Messen von Zeitverzögerungen in Bezug auf Differentialmodus-Verzögerung, DMD, einer Multimodenfaser, MMF (6), oder einer Wenigmodenfaser, FMF (6), für wenigstens zwei verschiedene Wellenlängen in einer Messanordnung (1), wobei die genannte Messanordnung Folgendes umfasst:eine Laservorrichtung (2), die eingerichtet ist, um Laserimpulse bei den genannten wenigstens zwei verschiedenen Wellenlängen zu emittieren,eine Einmodenfaser, SMF (4), die eingerichtet ist, um emittierte Laserimpulse in die genannte MMF oder die genannte FMF einzukoppeln,eine erste Komponente (3), die eingerichtet ist, um durch die genannte Laservorrichtung emittierte Laserimpulse in die genannte SMF einzukoppeln,eine zweite Komponente (5), die eingerichtet ist, um die genannte SMF auf die genannte MMF oder die genannte SMF auszurichten,ein Detektormodul (8), das eingerichtet ist zum Detektieren von emittierten, die genannte MMF oder FMF verlassenden Laserimpulsen, undeine dritte Komponente (7), die eingerichtet ist, um die genannten emittierten, die genannte MMF oder die genannte FMF verlassenden Laserimpulse an das genannte Detektormodul zu koppeln, wobei das genannte Verfahren die nachfolgenden Schritte a), b), c) umfasst:a) Bereitstellen der genannten MMF oder der genannten FMF in der genannten Messanordnung und Ausrichten der genannten SMF auf die genannte MMF oder die genannte FMF durch die genannte zweite Komponente,b) Durchführen von ersten Messungen in Bezug auf einen ersten radialen Versatzwert durch:- Positionieren der genannten SMF zu der genannten MMF oder der genannten FMF bei dem genannten ersten radialen Versatzwert durch die genannte zweite Komponente;- Emittieren der genannten Laserimpulse bei den genannten wenigstens zwei verschiedenen Wellenlängen durch die genannte Laservorrichtung;- Messen der genannten Zeitverzögerungen der genannten emittierten, die genannte MMF oder die genannte FMF verlassenden Laserimpulse einzeln für jede der genannten wenigstens zwei verschiedenen Wellenlängen durch das genannte Detektormodul;c) Durchführen von zweiten Messungen in Bezug auf einen weiteren radialen Versatzwert durch:- Positionieren der genannten SMF zu der genannten MMF oder der genannten FMF bei dem genannten weiteren radialen Versatzwert durch die genannte zweite Komponente, wobei der genannte weitere radiale Versatz von dem genannten ersten radialen Versatzwert verschieden ist;- Emittieren der genannten Laserimpulse bei den genannten wenigstens zwei verschiedenen Wellenlängen durch die genannte Laservorrichtung;- Messen der genannten Zeitverzögerungen der genannten emittierten, die genannte MMF und die genannte FMF verlassenden Laserimpulse einzeln für jede der genannten wenigstens zwei verschiedenen Wellenlängen durch das genannte Detektormodul.
- Verfahren zum Messen von Zeitverzögerungen nach Anspruch 1, wobei die genannten Schritte des Emittierens Folgendes umfassen:- einzelnes und nachfolgendes Emittieren der genannten Laserimpulse bei den genannten wenigstens zwei verschiedenen Wellenlängen durch die genannte Laservorrichtung.
- Verfahren zum Messen von Zeitverzögerungen nach Anspruch 1, wobei die genannten Schritte des Emittierens Folgendes umfassen:- gleichzeitiges Emittieren der genannten Laserimpulse bei den genannten wenigstens zwei verschiedenen Wellenlängen durch die genannte Laservorrichtung.
- Verfahren zum Messen von Zeitverzögerungen nach Anspruch 3, wobei die genannte dritte Komponente Filtermittel umfasst, die eingerichtet sind zum selektiven Passierenlassen einer der genannten wenigstens zwei verschiedenen Wellenlängen und zum Herausfiltern einer Übriggebliebenen der genannten wenigstens zwei verschiedenen Wellenlängen;
wobei die genannten Schritte des Messens Folgendes umfassen:- Messen der genannten Zeitverzögerungen der genannten emittierten, die genannte MMF oder die genannte FMF verlassenden Laserimpulse einzeln für jede der genannten wenigstens zwei verschiedenen Wellenlängen durch das genannte Detektormodul und durch Verwenden der genannten Filtermittel. - Verfahren zum Messen von Zeitverzögerungen nach Anspruch 3, wobei das genannte Detektormodul eine Mehrzahl von Detektoren umfasst, wobei die genannte dritte Komponente eingerichtet ist, um die genannten Laserimpulse zu demultiplexen, sodass jede der genannten wenigstens zwei verschiedenen Wellenlängen an einen anderen Detektor gekoppelt ist.
- Verfahren zum Messen von Zeitverzögerungen nach Anspruch 3, wobei das genannte Detektormodul eine Mehrzahl von Detektoren umfasst, von denen jeder bei einer einzigen Wellenlänge wellenlängenempfindlich ist, wobei die genannte dritte Komponente eingerichtet ist, um die genannten emittierten, die genannte MMF oder die genannte FMF verlassenden Laserimpulse an jeden der genannten Mehrzahl von Detektoren zu koppeln.
- Verfahren zum Messen von Zeitverzögerungen nach einem der vorherigen Ansprüche, wobei die genannte dritte Komponente eines von optischen Filtern und Strahlteilern umfasst.
- Verfahren zum Messen von Zeitverzögerungen nach einem der vorherigen Ansprüche, wobei die genannte erste Komponente eines von einem rotierenden Spiegel, Chopper, optischen Faserteilern und einer photonischen Laterne umfasst.
- Verfahren zum Messen von Zeitverzögerungen nach einem der vorherigen Ansprüche, wobei der genannte Schritt zum Bereitstellen der genannten MMF oder der genannten FMF in der genannten Messanordnung Folgendes umfasst:- Bereitstellen einer OM2, OM3 oder OM4 Multimodenfaser in der genannten Messanordnung.
- Ein nicht-transitorisches computerlesbares Trägermedium, das ein Computerprogrammprodukt speichert, das Programmcodeinstruktionen zum Implementieren des Verfahrens nach einem der vorherigen Ansprüche, wann immer das genannte Programm auf einem Computer oder einem Prozessor ausgeführt wird, umfasst.
- Messanordnung (1) zum Messen von Zeitverzögerungen in Bezug auf Differentialmodus-Verzögerung, DMD, einer Multimodenfaser, MMF (6), oder einer Wenigmodenfaser, FMF (6), für wenigstens zwei verschiedene Wellenlängen, wobei die genannte Messanordnung Folgendes umfasst:- eine Laservorrichtung (2), die eingerichtet ist, um Laserimpulse bei den genannten wenigstens zwei verschiedenen Wellenlängen zu emittieren,- eine Einmodenfaser, SMF (4), die eingerichtet ist, um emittierte Laserimpulse in die genannte MMF oder die genannte FMF einzukoppeln,- eine erste Komponente (3), die eingerichtet ist, um die durch die genannte Laservorrichtung emittierten Laserimpulse in die genannte SMF einzukoppeln,- eine zweite Komponente (5), die eingerichtet ist um die genannte SMF zu der genannten MMF oder der genannten FMF auszurichten,- ein Detektormodul (8), das eingerichtet ist zum Detektieren von emittierten, die genannte MMF oder FMF verlassenden Laserimpulsen,- eine dritte Komponente (7), die eingerichtet ist, um die genannten emittierten, die genannte MMF oder die genannte FMF verlassenden Laserimpulse an das genannte Detektormodul zu koppeln, und- eine Steuervorrichtung, die eingerichtet ist zum Steuern der nachfolgenden Schritte b) und c):b) Durchführen von ersten Messungen in Bezug auf einen ersten radialen Versatzwert durch:- Positionieren der genannten SMF zu der genannten MMF oder der genannten FMF bei dem genannten ersten radialen Versatzwert durch die genannte zweite Komponente;- Emittieren der genannten Laserimpulse bei den genannten wenigstens zwei verschiedenen Wellenlängen durch die genannte Laservorrichtung;- Messen der genannten Zeitverzögerungen der genannten emittierten, die genannte MMF oder die genannte FMF verlassenden Laserimpulse einzeln für jede der genannten wenigstens zwei verschiedenen Wellenlängen durch das genannte Detektormodul;c) Durchführen von zweiten Messungen in Bezug auf einen weiteren radialen Versatzwert durch:- Positionieren der genannten SMF zu der genannten MMF oder der genannten FMF bei dem genannten weiteren radialen Versatzwert durch die genannte zweite Komponente, wobei der genannte weitere radiale Versatz von dem genannten ersten radialen Versatzwert verschieden ist;- Emittieren der genannten Laserimpulse bei den genannten wenigstens zwei verschiedenen Wellenlängen durch die genannte Laservorrichtung;- Messen der genannten Zeitverzögerungen der genannten emittierten, die genannte MMF oder die genannte FMF verlassenden Laserimpulse einzeln für jede der genannten wenigstens zwei verschiedenen Wellenlängen durch das genannte Detektormodul.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL2016112A NL2016112B1 (en) | 2016-01-18 | 2016-01-18 | Method of measuring time delays with respect to Differential Mode Delay, DMD, of a multi-mode fiber, MMF, or a few-mode fiber, FMF. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3196624A1 EP3196624A1 (de) | 2017-07-26 |
EP3196624B1 true EP3196624B1 (de) | 2018-06-06 |
Family
ID=57838171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17150102.6A Active EP3196624B1 (de) | 2016-01-18 | 2017-01-03 | Verfahren zur messung von zeitverzögerungen in bezug auf differenzialmodusverzögerung (dmd), eine multimodale faser (mmf) oder eine wenigmodenfaser (fmf) |
Country Status (7)
Country | Link |
---|---|
US (1) | US10241003B2 (de) |
EP (1) | EP3196624B1 (de) |
JP (1) | JP6949493B2 (de) |
CN (1) | CN106979855B (de) |
DK (1) | DK3196624T3 (de) |
ES (1) | ES2675180T3 (de) |
NL (1) | NL2016112B1 (de) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108370267B (zh) * | 2015-12-07 | 2022-06-07 | 德拉克通信科技公司 | 根据单波长表征选择宽带多模光纤的方法 |
US9857529B2 (en) * | 2016-01-29 | 2018-01-02 | Corning Incorporated | Optical fiber span with low differential mode delay |
US20180259370A1 (en) * | 2017-03-08 | 2018-09-13 | Nicolas K. Fontaine | Multimode Fiber Sensor and Sensing Using Forward and Backward Scattering |
CN107677452B (zh) * | 2017-10-24 | 2020-06-02 | 长飞光纤光缆股份有限公司 | 一种少模光纤综合测试仪及测试方法 |
US11249249B2 (en) * | 2018-06-14 | 2022-02-15 | Corning Incorporated | Method of identifying wideband MMF from 850 nm DMD measurements |
CN109120337A (zh) * | 2018-10-31 | 2019-01-01 | 吉林大学 | 一种少模时域反射仪 |
US11442224B2 (en) * | 2018-12-03 | 2022-09-13 | Panduit Corp. | Optical channel bandwidth analyzer |
CN110109219B (zh) * | 2019-04-17 | 2021-03-16 | 烽火通信科技股份有限公司 | 一种低串扰弱耦合空分复用光纤 |
CN111030750B (zh) * | 2019-10-09 | 2021-05-07 | 长飞光纤光缆股份有限公司 | 一种多模光纤dmd测试设备的探针配准方法及系统 |
CN110995341B (zh) * | 2019-12-26 | 2020-12-29 | 苏州六幺四信息科技有限责任公司 | 基于光载微波干涉的光纤时延测量方法及装置 |
CN113155741B (zh) * | 2020-01-22 | 2022-06-24 | 中国海洋大学 | 一种石英音叉自调自检的波长扫描调q光声光谱气体检测系统及其应用 |
WO2021231083A1 (en) | 2020-05-12 | 2021-11-18 | Corning Incorporated | Reduced diameter single mode optical fibers with high mechanical reliability |
CN114448502B (zh) * | 2020-11-04 | 2024-06-11 | 中国移动通信有限公司研究院 | 简并模式内差分模式时延的测量方法及装置 |
CN112713505B (zh) * | 2021-01-29 | 2022-03-15 | 太原理工大学 | 利用差分群时延抑制混沌激光延时特征的装置和方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4286979A (en) * | 1980-06-23 | 1981-09-01 | Bell Telephone Laboratories, Incorporated | Fabrication of optical fibers using differential mode-group delay measurement |
JP2002541474A (ja) | 1999-04-09 | 2002-12-03 | コーニング・インコーポレーテッド | 光ファイバ特性測定装置 |
US6801306B2 (en) * | 2001-04-04 | 2004-10-05 | Corning Incorporated | Streak camera system for measuring fiber bandwidth and differential mode delay |
JP2002365165A (ja) * | 2001-06-08 | 2002-12-18 | Sumitomo Electric Ind Ltd | 波長分散測定装置および方法 |
KR100719892B1 (ko) | 2005-03-23 | 2007-05-18 | 광주과학기술원 | 다중모드광섬유의 모드간 차등지연시간 측정장치 |
US7639249B2 (en) | 2006-05-05 | 2009-12-29 | Microsoft Corporation | Direct inset beveling of geometric figures |
US7773844B2 (en) * | 2008-05-16 | 2010-08-10 | International Business Machines Corporation | Method for reducing bandwidth loss in data center applications with multiple fiber type connectivity |
US8135275B2 (en) * | 2008-05-29 | 2012-03-13 | Heismann Fred L | Measuring chromatic dispersion in an optical wavelength channel of an optical fiber link |
US9304058B2 (en) * | 2012-10-09 | 2016-04-05 | Ofs Fitel, Llc | Measuring modal content of multi-moded fibers |
US10260990B2 (en) | 2013-06-12 | 2019-04-16 | Corning Incorporated | Multi-wavelength DMD measurement apparatus and methods |
US10451803B2 (en) * | 2014-05-16 | 2019-10-22 | Corning Optical Communications LLC | Multimode optical transmission system employing modal-conditioning fiber |
-
2016
- 2016-01-18 NL NL2016112A patent/NL2016112B1/en active
-
2017
- 2017-01-03 ES ES17150102.6T patent/ES2675180T3/es active Active
- 2017-01-03 DK DK17150102.6T patent/DK3196624T3/en active
- 2017-01-03 EP EP17150102.6A patent/EP3196624B1/de active Active
- 2017-01-17 CN CN201710036315.5A patent/CN106979855B/zh active Active
- 2017-01-17 JP JP2017005744A patent/JP6949493B2/ja active Active
- 2017-01-18 US US15/408,746 patent/US10241003B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3196624A1 (de) | 2017-07-26 |
JP2017142236A (ja) | 2017-08-17 |
ES2675180T3 (es) | 2018-07-09 |
JP6949493B2 (ja) | 2021-10-13 |
CN106979855B (zh) | 2020-10-30 |
CN106979855A (zh) | 2017-07-25 |
US10241003B2 (en) | 2019-03-26 |
US20170205311A1 (en) | 2017-07-20 |
DK3196624T3 (en) | 2018-07-02 |
NL2016112B1 (en) | 2017-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3196624B1 (de) | Verfahren zur messung von zeitverzögerungen in bezug auf differenzialmodusverzögerung (dmd), eine multimodale faser (mmf) oder eine wenigmodenfaser (fmf) | |
EP1847044B1 (de) | Optische kommunikation mit hoher bitrate über multimodale fasern | |
JP6862712B2 (ja) | 光ファイバ評価方法及び光ファイバ評価装置 | |
US9513189B2 (en) | Device and method to measure the DMD and other parameters of a multicore optical fiber | |
US9279741B2 (en) | Method of measuring multi-mode fiber optical properties during processing of the fiber | |
AU755073B2 (en) | Method and system for removal of low order optical transmission modes to improve modal bandwidth in a multimode optical fiber computer network | |
JPS6343110A (ja) | 光伝送装置 | |
US8797519B2 (en) | Method of measuring multi-mode fiber bandwidth through accessing one fiber end | |
WO2016087892A1 (en) | Method for characterizing performance of a multimode fiber optical link and corresponding methods for fabricating a multimode optical fiber link showing improved performance and for improving performance of a multimode optical fiber link | |
JP6475591B2 (ja) | モード分散係数測定装置及びモード分散係数測定方法 | |
EP1387158B1 (de) | Einphasen-Kipp Verschiebungsverfahren und Apparat zur Messung der chromatischen und polarisationsabhängigen Dispersion. | |
US12068779B2 (en) | Fibre-optic measurement system, method of adaptation of the communication optical fibre into a measurement system, and fibre-optic measurement and communication system | |
US20170030802A1 (en) | Apparatus and Method for Measuring Group Velocity Delay in Optical Waveguide | |
Karim | Multimode dispersion in step-index polymer optical fibers | |
EP4279949A1 (de) | Abstandsmessung | |
JP2010101669A (ja) | マルチモード光ファイバの帯域測定装置及び帯域測定方法 | |
KR100803488B1 (ko) | 간섭계를 이용한 다중모드 광섬유의 고차 모드에 대한색분산 측정 시스템 | |
Bunge et al. | Tolerant launching scheme for short-reach multimode fibre connections with non-ideal offset connectors | |
EP3847489A1 (de) | Smf-zu-mmf-koppler | |
Yi et al. | PMD and CD characterization of chirped fiber Bragg gratings employing photonic microwave technique | |
JPH10339686A (ja) | 光ファイバ遅延時間差測定方法 | |
JPWO2020261207A5 (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171025 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01M 11/08 20060101AFI20171115BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04B 10/077 20130101ALI20171120BHEP Ipc: G01M 11/08 20060101ALI20171120BHEP Ipc: G01M 11/00 20060101AFI20171120BHEP |
|
INTG | Intention to grant announced |
Effective date: 20171211 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1006646 Country of ref document: AT Kind code of ref document: T Effective date: 20180615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20180627 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2675180 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180709 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017000079 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180606 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180906 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180906 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180907 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1006646 Country of ref document: AT Kind code of ref document: T Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181006 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017000079 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190103 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190131 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190103 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181008 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240201 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240129 Year of fee payment: 8 Ref country code: GB Payment date: 20240129 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240125 Year of fee payment: 8 Ref country code: DK Payment date: 20240125 Year of fee payment: 8 |