EP3195430A1 - Gütegeschaltetes co2-laser-materialbearbeitungssystem mit akustooptischen modulatoren - Google Patents

Gütegeschaltetes co2-laser-materialbearbeitungssystem mit akustooptischen modulatoren

Info

Publication number
EP3195430A1
EP3195430A1 EP15787282.1A EP15787282A EP3195430A1 EP 3195430 A1 EP3195430 A1 EP 3195430A1 EP 15787282 A EP15787282 A EP 15787282A EP 3195430 A1 EP3195430 A1 EP 3195430A1
Authority
EP
European Patent Office
Prior art keywords
aom
laser
radiation
switched
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15787282.1A
Other languages
German (de)
English (en)
French (fr)
Inventor
Gisbert Staupendahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Feha Lasertec GmbH
Original Assignee
Feha Lasertec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Feha Lasertec GmbH filed Critical Feha Lasertec GmbH
Publication of EP3195430A1 publication Critical patent/EP3195430A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/2232Carbon dioxide (CO2) or monoxide [CO]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0966Cylindrical lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/117Q-switching using intracavity acousto-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/127Plural Q-switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction

Definitions

  • the invention relates to a Q-switched C0 2 laser material processing system with acousto-optical modulators (AOM) for beam shaping.
  • AOM acousto-optical modulators
  • Material processing tasks can be solved very efficiently with C0 2 lasers of a wide variety of concrete designs. Frequently, however, these tasks are bound to pulsed radiation, such as drilling with high
  • the aim of the invention is to provide a C0 2 ⁇ laser material processing system, on the one hand by means of
  • Acousto-optic modulators Q-switched and on the other hand by means of another AOM, which is located externally, ie outside the laser resonator, extremely efficiently decoupled from radiation that is reflected from the workpiece.
  • Laser material processing suitable, Q-switched C0 2 - viewed laser systems, with the external, ie Beam shaping taking place outside the laser resonator, in particular the isolation of the laser from radiation reflected from the workpiece, is also included. in the
  • Center of the invention is a factor that i.a. is neglected, namely the frequency shift of the diffracted at the AOM beam, which has its cause in the diffraction on a moving grid and the frequency with which this running grid is generated. If one uses the diffracted beam, which is often useful or even necessary for reasons explained below, this fact has a decisive influence on the effect of the amplifying active medium on the radiation with positive and negative aspects.
  • the relationship between the spectral width of the gain profile of the active medium and the influence of the radiation frequency in the diffracted beam of an AOM must be considered in more detail. This will also be described in more detail with reference to the figures showing merely exemplary embodiments
  • the gain reduction here has a very similar behavior as in the case of Doppler broadening, when again f A0 M and ⁇ are of the same order of magnitude. It should be noted that for low pressure C0 2 - Laser to about 30 mbar Doppler broadening is dominant, with medium and high pressure lasers above 100 mbar pressure broadening plays an increasing role. In any case, it can be assumed that at the typical AOM frequencies in the range 40 MHz and more, the resulting frequency shift of the diffracted
  • P (g) P 0 exp (gz).
  • the relative gain P (g) / Po is shown in FIG. 3 as a function of the product gz. Since the small signal amplification is typically in the range 10 4 to 10 6 in high-power C0 2 lasers, it can immediately be seen that relatively small reductions in the gz (z is assumed to be constant) by, for example, a factor of 2 from 10 to 5 to a decrease in gain by two
  • FIGS. 5 and 9 can be used.
  • AOM for Q-Switching of the C0 2 Laser
  • the simplest variant in which the AOM for the Q-switching between the active medium and a resonator end mirror is arranged and the undiffracted, transmitted beam is fed back. It fails, however, if, first, the
  • Diffraction efficiency of the AOM is not sufficiently high and / or secondly, the gain of the active medium is so high that complete suppression of the laser function in the desired pulse pauses by activation of the AOM, i.
  • Doppler width of the gain profile of a low-pressure C0 2 - laser is only about 60 MHz, ie the diffracted and returning back to the active medium radiation finds a very low gain before (see Fig. 1) and is therefore only very weak amplified (see Figure 3), an efficient laser function is not possible.
  • the solution to this problem according to the invention consists in the use of an AOM tandem, ie a first AOM divides the incoming beam into transmitted and diffracted portions, a second AOM positioned directly behind it is arranged such that firstly the diffracted portion returns to the optimum Bragg angle secondly, and secondly, the effective direction of the Grid running in the two AOM is exactly opposite, so that the effective frequency shift of the above
  • a second critical point for a Q-switched C0 2 laser is in any case the radiation feedback from the workpiece into the laser. This can reach considerable values, especially in highly reflective materials such as copper or aluminum and flat workpiece surfaces, which far exceed 10% of on the workpiece may be falling radiation power.
  • Polarization of the current to the workpiece radiation is generated.
  • This form of decoupling is e.g. in cw operation of the laser, in which continuously reduces the inversion and maintained at a relatively low level, completely sufficient. But you work with it
  • the inventive solution to this problem is again based on the frequency shift of the diffracted beam in an AOM. This time this effect is used to a positive effect in the following way.
  • an AOM is arranged so that the linearly polarized radiation is optimally diffracted. This diffracted radiation component, which again has the described frequency shift, is sent to the workpiece for processing.
  • FIG. 1 Relative gain as a function of
  • FIG. 4 For radiation feedback of workpiece - laser:
  • FIG. 6 The function of an AOM tandem for the Q-switching
  • FIG. 7 For suppressing the radiation feedback
  • FIG. 8 Complete decoupling by means of AOM, ATFR and ⁇ / 4
  • FIG. 9 AOM insert in a C0 2 laser according to FIG.
  • FIG. 10 Example for suppressing the
  • Fig. 5 shows schematically a first embodiment, which is based on the basic structure of a conventional
  • the jet 8 coming from the direction of the active medium 1 drops to a first AOM 2 which, when a corresponding switching voltage is applied, deflects this beam into the 1st Bragg diffraction order.
  • This beam 9 falls on a second AOM 3, which generates the diffracted beam 10 when the switching voltage is applied. After partial reflection at the adjusted
  • the resulting frequency shift is the feedback one Beam 0 as needed.
  • Laser output coupling 4 arranged.
  • a unit 6 for further beam shaping in particular for generating the desired for many applications circular polarization of the radiation on the workpiece 7 and for compensation (eg by means of cylindrical lenses) often typical for AOM slightly elliptical distortion of the beam, to get integrated.
  • Figures 7 and 8 illustrate the suppression of the radiation feedback again in detail.
  • Fig. 7 focuses on the effect of the frequency shift according to the invention.
  • the decoupled beam 16 falls on the third AOM 5, which sends the diffracted and frequency-shifted by 5f beam 17 on the workpiece upon application of the switching voltage. The thrown back from there
  • the AOM 5 must be selected such that the double frequency shift 25f is at least of the order of the half-width ⁇ of the gain profile.
  • the term "order of magnitude" denotes that the ratio 2 ⁇ / ⁇ should preferably be in the range from 1:10 to 100: 1, in particular from 1: 1 and / or to 10: 1.
  • An essential factor of the arrangement according to the invention is the fact that the usual conversion of the linearly polarized radiation of the laser in circular
  • Polarization 25 transformed. After interaction with the workpiece 7, a certain proportion 26 of this circularly polarized radiation travels back towards the laser. When passing through the ⁇ / 4-phase shifter 21, it is in a beam 27 with linear horizontal polarization 28th
  • the AOM 5 shifts the diffracted beam frequency by 5f from the workpiece
  • Phase shifter is polarized perpendicular to the outgoing polarity and therefore diffracted by the AOM 5 only ineffective, d. H. less radiation is going towards the laser.
  • Magnitudes weakens, so that even with maximum gain in the active medium and at maximum feedback (z. B. by highly reflective metals such as copper) no parasitic oscillations occur.
  • FIG. 9 shows the principal difference from the first embodiment. It consists here above all in the changed outcoupling of the
  • TFP 30 Laser beam over a thin film polarizer (thin film Polarizer - TFP) 30.
  • the TFP 30 shares the weak
  • the laser of FIG. 9 is typically characterized by relatively high average powers. If you now assign the external AOM 5 directly to the laser output, the usable average power would be due to the relatively low
  • ZnSe-based beam splitters are loadable up to the kW range and therefore suitable, for example, a beam of the middle
  • Beam splitter 32, 33 and 34 preferably with a
  • Each sub-beam 38 to 41 then receives its own AOM 42 to 45.
  • a prerequisite for the use of this method is, of course, that the respective desired application with the partial beams is feasible.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Laser Beam Processing (AREA)
EP15787282.1A 2014-09-18 2015-07-22 Gütegeschaltetes co2-laser-materialbearbeitungssystem mit akustooptischen modulatoren Withdrawn EP3195430A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014013567.5A DE102014013567B3 (de) 2014-09-18 2014-09-18 Gütegeschaltetes CO2-Laser-Materialbearbeitungssystem mit akustooptischen Modulatoren
PCT/IB2015/001649 WO2016042387A1 (de) 2014-09-18 2015-07-22 Gütegeschaltetes co2-laser-materialbearbeitungssystem mit akustooptischen modulatoren

Publications (1)

Publication Number Publication Date
EP3195430A1 true EP3195430A1 (de) 2017-07-26

Family

ID=54146669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15787282.1A Withdrawn EP3195430A1 (de) 2014-09-18 2015-07-22 Gütegeschaltetes co2-laser-materialbearbeitungssystem mit akustooptischen modulatoren

Country Status (7)

Country Link
US (1) US10224689B2 (zh)
EP (1) EP3195430A1 (zh)
JP (1) JP2017535063A (zh)
KR (1) KR20170056633A (zh)
CN (1) CN107005019A (zh)
DE (1) DE102014013567B3 (zh)
WO (1) WO2016042387A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10274806B2 (en) * 2015-11-06 2019-04-30 Coherent, Inc. Pulse-dividing method and apparatus for a pulsed carbon monoxide laser
DE102016125630B4 (de) * 2016-12-23 2022-07-28 Leica Microsystems Cms Gmbh Optische Anordnung und Verfahren zur Beeinflussung der Strahlrichtung mindestens eines Lichtstrahls
FR3085854B1 (fr) * 2018-09-13 2021-07-30 Irisiome Systeme de laser impulsionnel destine aux traitements dermatologiques
DE102020207949A1 (de) 2020-06-26 2021-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Laservorrichtung und Verfahren zum Ansteuern einer Laservorrichtung
US11958128B2 (en) 2021-06-30 2024-04-16 Mitsubishi Electric Corporation Laser apparatus and laser machining apparatus

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878119A (ja) * 1981-11-04 1983-05-11 Nec Corp 音響光学的光変調素子
JPS5930521A (ja) * 1982-08-14 1984-02-18 Canon Inc 光走査装置
JPS60154238A (ja) * 1984-01-25 1985-08-13 Hitachi Ltd レ−ザビ−ム偏向装置
JPS62172777A (ja) * 1986-01-27 1987-07-29 Yokogawa Electric Corp 可変波長レ−ザ光源
JPH03196818A (ja) * 1989-12-27 1991-08-28 Toshiba Corp 同位体分離用レーザ装置
JP3107096B2 (ja) * 1991-03-08 2000-11-06 日本電信電話株式会社 光パルス試験器
JP3303309B2 (ja) * 1991-09-27 2002-07-22 松下電器産業株式会社 レーザ発振器
US6315772B1 (en) * 1993-09-24 2001-11-13 Transmedica International, Inc. Laser assisted pharmaceutical delivery and fluid removal
CN1029498C (zh) * 1993-06-08 1995-08-09 机械电子工业部第十一研究所 调q单纵模激光器
US5452313A (en) * 1994-03-21 1995-09-19 Hughes Aircraft Company Optical feedback eliminator
US6031852A (en) * 1997-05-30 2000-02-29 The Regents Of The University Of California Rapid acoustooptic tuner and phase-shifter
US8497450B2 (en) * 2001-02-16 2013-07-30 Electro Scientific Industries, Inc. On-the fly laser beam path dithering for enhancing throughput
US6959024B2 (en) * 2002-02-28 2005-10-25 Picarro, Inc. Laser Tuning by spectrally dependent spatial filtering
CN2632895Y (zh) * 2003-08-11 2004-08-11 天津大学 双调Q平-凹腔Nd∶YAG内腔倍频输出百瓦级的绿光激光器
CN1697270A (zh) * 2004-05-13 2005-11-16 天津市浩波激光电子技术开发有限公司 大功率半导体泵浦绿色激光发生方法与装置
US7027199B2 (en) * 2004-06-07 2006-04-11 Electro Scientific Industries, Inc. AOM modulation techniques for facilitating pulse-to-pulse energy stability in laser systems
KR101290665B1 (ko) * 2004-06-07 2013-07-30 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 레이저 시스템 성능 향상을 위한 aom 변조 기술
CN1983746A (zh) * 2005-12-16 2007-06-20 中国科学院福建物质结构研究所 一种多波长调q激光器
CN200987037Y (zh) * 2006-05-12 2007-12-05 何建军 一种带有电吸收光栅结构的q-调制半导体激光器
CN100377453C (zh) * 2006-05-12 2008-03-26 何建军 带有电吸收光栅结构的q-调制半导体激光器
US7564880B2 (en) * 2006-06-02 2009-07-21 The Boeing Company Laser intra-cavity electronic wavelength tuner
CN200944490Y (zh) * 2006-09-19 2007-09-05 天津市天达激光技术开发有限公司 低能耗大功率的双棒串接平凹折叠腔绿光激光器
CN200994037Y (zh) * 2006-12-31 2007-12-19 陕西西大科里奥光电技术有限公司 两百瓦级准连续双棒串接内腔倍频高功率绿光激光器
JP5179776B2 (ja) * 2007-04-20 2013-04-10 ギガフォトン株式会社 極端紫外光源用ドライバレーザ
US8026158B2 (en) * 2007-06-01 2011-09-27 Electro Scientific Industries, Inc. Systems and methods for processing semiconductor structures using laser pulses laterally distributed in a scanning window
CN101257182B (zh) * 2008-03-04 2010-12-15 西北大学 一种双腔互联v型结构单向重叠输出准连续绿光激光器
JP5088623B2 (ja) * 2008-03-27 2012-12-05 株式会社Ihi レーザ共振器
CN101404381B (zh) * 2008-11-18 2010-10-13 中国科学院长春光学精密机械与物理研究所 一种波长可调谐的编码输出声光调q脉冲co2激光器
CN101521350B (zh) * 2009-04-02 2010-08-04 电子科技大学 连续声光衍射全光纤调q的方法
US8509272B2 (en) * 2009-06-10 2013-08-13 Lee Laser, Inc. Laser beam combining and power scaling device
CN101599614A (zh) * 2009-07-01 2009-12-09 天津大学 双调Q复合陶瓷Nd:YAG内腔倍频绿光激光器
CN201549759U (zh) * 2009-10-09 2010-08-11 湖北工业大学 一种532nm波长医用高功率固体激光器
TWI420170B (zh) * 2010-12-14 2013-12-21 Ind Tech Res Inst 用於寬頻雷射之偏振調變裝置及其雷射系統
DE102012002470A1 (de) * 2012-02-03 2013-08-08 Iai Industrial Systems B.V. CO2-Laser mit schneller Leistungssteuerung
KR101487271B1 (ko) * 2013-08-14 2015-01-29 한국과학기술연구원 펄스 레이저 장치
US9966723B2 (en) * 2015-05-14 2018-05-08 Jgm Associates, Inc. High pulse energy and high beam quality mini laser
KR101797118B1 (ko) * 2016-05-09 2017-11-14 한국과학기술연구원 단일 펄스 레이저 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2016042387A1 *

Also Published As

Publication number Publication date
CN107005019A (zh) 2017-08-01
US20170310070A1 (en) 2017-10-26
KR20170056633A (ko) 2017-05-23
DE102014013567B3 (de) 2015-10-08
JP2017535063A (ja) 2017-11-24
WO2016042387A1 (de) 2016-03-24
US10224689B2 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
EP3195430A1 (de) Gütegeschaltetes co2-laser-materialbearbeitungssystem mit akustooptischen modulatoren
WO2013113306A1 (de) Co2-laser mit schneller leistungssteuerung
EP3167693B1 (de) Treiberlaseranordnung, euv-strahlungserzeugungsvorrichtung und verfahren zum verstärken von gepulster laserstrahlung
EP0229285A2 (de) Verfahren und Anordnung zur Erzeugung von CO2-Laserimpulsen hoher Leistung
EP3103167B1 (de) Optische anordnung mit strahlaufteilung
EP3864726A1 (de) Multi-apertur-lasersystem
DE2020104B2 (de) Verstärkerkettenstufe für Laserlichtimpulse
DE102008025824A1 (de) Miniaturisierter Laseroszillator-Verstärker
EP3078088B1 (de) Verstärkeranordnung und treiberlaseranordnung für eine euv-lichtquelle damit
AT506600B1 (de) Anordnung zur optischen verstärkung von lichtpulsen
DE102008003575B4 (de) Verfahren und Hybrid-Lasersystem zum Erzeugen wahlweise eines Ultrakurzpulses oder eines Kurzpulses
EP3707787B1 (de) Verfahren zur laserverstärkung
DE102016005421B4 (de) Frei triggerbare Master-Oszillator-Leistungsverstärker
DE102020115753B3 (de) Kurzpuls-Lasersystem
EP3954005A1 (de) Verfahren und vorrichtung zum erzeugen von laserpulsen
DE102020000999B4 (de) Anordnung zur Pulskontrolle in Oszillator-Verstärker-Systemen mittels Dual- Oszillatoren
DE102017104392A1 (de) Schnelle Modulation von Laserstrahlung hoher Leistung
EP1775806A1 (de) Verfahren und Ultrakurzpuls-Laser Vorrichtung zur Erzeugung zeitlich rechteckiger Ultrakurzpulse
DE102011114474B3 (de) Laseranordnung
WO2021175412A1 (de) Anordnung zur unterdrückung von strahlungsrückkopplung und laseranlage mit einer solchen anordnung
WO2017088929A1 (de) Treiberlaseranordnung, euv-strahlungserzeugungsvorrichtung und verfahren zum verstärken von laserpulsen
DE10214960A1 (de) Einrichtung zur Verstärkung kurzer, insbesondere ultrakurzer Laserpulse
DE1439486C3 (de) Optische Sendeanordnung
DE102016101108A1 (de) Pulslasersystem und Verfahren zum Betrieb eines Pulslasersystems
EP2246944A1 (de) Laserverstärker und Laserverstärkungsverfahren

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170418

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200311

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200722