EP3194548A1 - Portion für textilbehandlungsmittel - Google Patents
Portion für textilbehandlungsmittelInfo
- Publication number
- EP3194548A1 EP3194548A1 EP15766474.9A EP15766474A EP3194548A1 EP 3194548 A1 EP3194548 A1 EP 3194548A1 EP 15766474 A EP15766474 A EP 15766474A EP 3194548 A1 EP3194548 A1 EP 3194548A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- composition
- solid
- portion according
- liquid composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004753 textile Substances 0.000 title claims abstract description 33
- 239000000203 mixture Substances 0.000 claims abstract description 161
- -1 peroxide compound Chemical class 0.000 claims abstract description 88
- 239000007788 liquid Substances 0.000 claims abstract description 84
- 239000008247 solid mixture Substances 0.000 claims abstract description 73
- 239000007844 bleaching agent Substances 0.000 claims abstract description 47
- 239000012190 activator Substances 0.000 claims abstract description 34
- 239000004094 surface-active agent Substances 0.000 claims abstract description 29
- 239000002736 nonionic surfactant Substances 0.000 claims abstract description 26
- 239000003945 anionic surfactant Substances 0.000 claims abstract description 25
- 239000002195 soluble material Substances 0.000 claims abstract description 17
- 239000002245 particle Substances 0.000 claims description 30
- 150000001875 compounds Chemical class 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 239000002253 acid Substances 0.000 claims description 21
- 125000004432 carbon atom Chemical group C* 0.000 claims description 19
- 239000008187 granular material Substances 0.000 claims description 18
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 claims description 16
- 239000000843 powder Substances 0.000 claims description 16
- 229940045872 sodium percarbonate Drugs 0.000 claims description 16
- 150000007513 acids Chemical class 0.000 claims description 13
- 125000001931 aliphatic group Chemical group 0.000 claims description 6
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 claims description 4
- 229960001922 sodium perborate Drugs 0.000 claims description 3
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 claims description 3
- 229920003169 water-soluble polymer Polymers 0.000 claims description 3
- 239000007787 solid Substances 0.000 abstract description 25
- 238000005406 washing Methods 0.000 abstract description 9
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 40
- 229920000768 polyamine Polymers 0.000 description 27
- 102000004190 Enzymes Human genes 0.000 description 25
- 108090000790 Enzymes Proteins 0.000 description 25
- 229940088598 enzyme Drugs 0.000 description 25
- 230000006870 function Effects 0.000 description 23
- 229920000728 polyester Polymers 0.000 description 21
- 150000004804 polysaccharides Chemical class 0.000 description 21
- 229920001282 polysaccharide Polymers 0.000 description 20
- 239000005017 polysaccharide Substances 0.000 description 20
- 239000003599 detergent Substances 0.000 description 19
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 19
- 108090001060 Lipase Proteins 0.000 description 18
- 239000004367 Lipase Substances 0.000 description 18
- 102000004882 Lipase Human genes 0.000 description 18
- 235000019421 lipase Nutrition 0.000 description 18
- 229920000642 polymer Polymers 0.000 description 16
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 16
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 15
- 108091005804 Peptidases Proteins 0.000 description 14
- 102000035195 Peptidases Human genes 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- 239000004365 Protease Substances 0.000 description 13
- 229920002873 Polyethylenimine Polymers 0.000 description 12
- 229940040461 lipase Drugs 0.000 description 12
- 239000011734 sodium Substances 0.000 description 12
- 239000002689 soil Substances 0.000 description 12
- 150000002191 fatty alcohols Chemical class 0.000 description 11
- 239000004615 ingredient Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 10
- 239000004372 Polyvinyl alcohol Substances 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 229920002451 polyvinyl alcohol Polymers 0.000 description 10
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 10
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 10
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 9
- 239000000654 additive Substances 0.000 description 9
- 230000000996 additive effect Effects 0.000 description 9
- 108090000637 alpha-Amylases Proteins 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 235000014113 dietary fatty acids Nutrition 0.000 description 9
- 239000000194 fatty acid Substances 0.000 description 9
- 229930195729 fatty acid Natural products 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 9
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 8
- 150000001298 alcohols Chemical class 0.000 description 8
- 102000004139 alpha-Amylases Human genes 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 8
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 description 8
- 239000000344 soap Substances 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 108010056079 Subtilisins Proteins 0.000 description 7
- 102000005158 Subtilisins Human genes 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 150000004665 fatty acids Chemical class 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 125000004433 nitrogen atom Chemical group N* 0.000 description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 7
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 6
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 6
- 108010059892 Cellulase Proteins 0.000 description 6
- 108010084185 Cellulases Proteins 0.000 description 6
- 102000005575 Cellulases Human genes 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 239000004115 Sodium Silicate Substances 0.000 description 6
- 229920002125 Sokalan® Polymers 0.000 description 6
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical group OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- 229940024171 alpha-amylase Drugs 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 239000004744 fabric Substances 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- YGUMVDWOQQJBGA-VAWYXSNFSA-N 5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S(O)(=O)=O)C(S(=O)(=O)O)=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 YGUMVDWOQQJBGA-VAWYXSNFSA-N 0.000 description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 5
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 5
- 239000001768 carboxy methyl cellulose Substances 0.000 description 5
- 229940106157 cellulase Drugs 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 239000001913 cellulose Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 235000019419 proteases Nutrition 0.000 description 5
- 238000005029 sieve analysis Methods 0.000 description 5
- 229910052911 sodium silicate Inorganic materials 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000003760 tallow Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 108010065511 Amylases Proteins 0.000 description 4
- 102000013142 Amylases Human genes 0.000 description 4
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 4
- 102100032487 Beta-mannosidase Human genes 0.000 description 4
- 244000060011 Cocos nucifera Species 0.000 description 4
- 235000013162 Cocos nucifera Nutrition 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 108010059820 Polygalacturonase Proteins 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 235000019418 amylase Nutrition 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- UJMDYLWCYJJYMO-UHFFFAOYSA-N benzene-1,2,3-tricarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1C(O)=O UJMDYLWCYJJYMO-UHFFFAOYSA-N 0.000 description 4
- 108010055059 beta-Mannosidase Proteins 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004061 bleaching Methods 0.000 description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 4
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 108010093305 exopolygalacturonase Proteins 0.000 description 4
- 125000003827 glycol group Chemical group 0.000 description 4
- 108010002430 hemicellulase Proteins 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 239000001814 pectin Substances 0.000 description 4
- 229920001277 pectin Polymers 0.000 description 4
- 108020004410 pectinesterase Proteins 0.000 description 4
- 229920001515 polyalkylene glycol Polymers 0.000 description 4
- 229920006316 polyvinylpyrrolidine Polymers 0.000 description 4
- 235000019353 potassium silicate Nutrition 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 4
- 235000017557 sodium bicarbonate Nutrition 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 4
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 4
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 3
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 3
- 102000004157 Hydrolases Human genes 0.000 description 3
- 108090000604 Hydrolases Proteins 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- 239000004435 Oxo alcohol Substances 0.000 description 3
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 229940025131 amylases Drugs 0.000 description 3
- 235000015165 citric acid Nutrition 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 108010005400 cutinase Proteins 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 235000010987 pectin Nutrition 0.000 description 3
- 239000002304 perfume Substances 0.000 description 3
- 150000002978 peroxides Chemical class 0.000 description 3
- 229960004063 propylene glycol Drugs 0.000 description 3
- 239000005871 repellent Substances 0.000 description 3
- 230000002940 repellent Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 150000004671 saturated fatty acids Chemical class 0.000 description 3
- 235000017550 sodium carbonate Nutrition 0.000 description 3
- 238000006277 sulfonation reaction Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000011975 tartaric acid Substances 0.000 description 3
- 235000002906 tartaric acid Nutrition 0.000 description 3
- 238000003856 thermoforming Methods 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 3
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 3
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 3
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 2
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 2
- ZGZHWIAQICBGKN-UHFFFAOYSA-N 1-nonanoylpyrrolidine-2,5-dione Chemical compound CCCCCCCCC(=O)N1C(=O)CCC1=O ZGZHWIAQICBGKN-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- ZTGKHKPZSMMHNM-UHFFFAOYSA-N 3-(2-phenylethenyl)benzene-1,2-disulfonic acid Chemical group OS(=O)(=O)C1=CC=CC(C=CC=2C=CC=CC=2)=C1S(O)(=O)=O ZTGKHKPZSMMHNM-UHFFFAOYSA-N 0.000 description 2
- CARJPEPCULYFFP-UHFFFAOYSA-N 5-Sulfo-1,3-benzenedicarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(S(O)(=O)=O)=C1 CARJPEPCULYFFP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 2
- 241000193422 Bacillus lentus Species 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 2
- 235000021537 Beetroot Nutrition 0.000 description 2
- 108700038091 Beta-glucanases Proteins 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920001634 Copolyester Polymers 0.000 description 2
- 108010025880 Cyclomaltodextrin glucanotransferase Proteins 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical class COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 2
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 2
- 241001480714 Humicola insolens Species 0.000 description 2
- 241000183011 Melanocarpus Species 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004111 Potassium silicate Substances 0.000 description 2
- 229910006069 SO3H Inorganic materials 0.000 description 2
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 2
- 241000223258 Thermomyces lanuginosus Species 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical class CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- LIWAQLJGPBVORC-UHFFFAOYSA-N ethylmethylamine Chemical compound CCNC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 235000011090 malic acid Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 125000006353 oxyethylene group Chemical group 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920005646 polycarboxylate Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 159000000001 potassium salts Chemical class 0.000 description 2
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 2
- 229910052913 potassium silicate Inorganic materials 0.000 description 2
- 239000003586 protic polar solvent Substances 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 235000003441 saturated fatty acids Nutrition 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical class [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 2
- 239000013042 solid detergent Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 125000001302 tertiary amino group Chemical group 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 1
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 description 1
- KTZQTRPPVKQPFO-UHFFFAOYSA-N 1,2-benzoxazole Chemical compound C1=CC=C2C=NOC2=C1 KTZQTRPPVKQPFO-UHFFFAOYSA-N 0.000 description 1
- LYPVKWMHGFMDPD-UHFFFAOYSA-N 1,5-diacetyl-1,3,5-triazinane-2,4-dione Chemical compound CC(=O)N1CN(C(C)=O)C(=O)NC1=O LYPVKWMHGFMDPD-UHFFFAOYSA-N 0.000 description 1
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N 1-Tetradecanol Natural products CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- PTBDIHRZYDMNKB-UHFFFAOYSA-N 2,2-Bis(hydroxymethyl)propionic acid Chemical compound OCC(C)(CO)C(O)=O PTBDIHRZYDMNKB-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- NSMMFSKPGXCMOE-UHFFFAOYSA-N 2-[2-(2-sulfophenyl)ethenyl]benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1C=CC1=CC=CC=C1S(O)(=O)=O NSMMFSKPGXCMOE-UHFFFAOYSA-N 0.000 description 1
- UGFSLKRMHPGLFU-UHFFFAOYSA-N 2-[5-(1,3-benzoxazol-2-yl)thiophen-2-yl]-1,3-benzoxazole Chemical compound C1=CC=C2OC(C3=CC=C(S3)C=3OC4=CC=CC=C4N=3)=NC2=C1 UGFSLKRMHPGLFU-UHFFFAOYSA-N 0.000 description 1
- XEEYSDHEOQHCDA-UHFFFAOYSA-N 2-methylprop-2-ene-1-sulfonic acid Chemical compound CC(=C)CS(O)(=O)=O XEEYSDHEOQHCDA-UHFFFAOYSA-N 0.000 description 1
- YNJSNEKCXVFDKW-UHFFFAOYSA-N 3-(5-amino-1h-indol-3-yl)-2-azaniumylpropanoate Chemical class C1=C(N)C=C2C(CC(N)C(O)=O)=CNC2=C1 YNJSNEKCXVFDKW-UHFFFAOYSA-N 0.000 description 1
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- SFHBJXIEBWOOFA-UHFFFAOYSA-N 5-methyl-3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical compound O=C1OC(C)COC(=O)C2=CC=C1C=C2 SFHBJXIEBWOOFA-UHFFFAOYSA-N 0.000 description 1
- AIXZBGVLNVRQSS-UHFFFAOYSA-N 5-tert-butyl-2-[5-(5-tert-butyl-1,3-benzoxazol-2-yl)thiophen-2-yl]-1,3-benzoxazole Chemical compound CC(C)(C)C1=CC=C2OC(C3=CC=C(S3)C=3OC4=CC=C(C=C4N=3)C(C)(C)C)=NC2=C1 AIXZBGVLNVRQSS-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 241001328119 Bacillus gibsonii Species 0.000 description 1
- 241000194103 Bacillus pumilus Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 101000740449 Bacillus subtilis (strain 168) Biotin/lipoyl attachment protein Proteins 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 101710130006 Beta-glucanase Proteins 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- 125000000739 C2-C30 alkenyl group Chemical group 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 108010083608 Durazym Proteins 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 241000427940 Fusarium solani Species 0.000 description 1
- 102220644676 Galectin-related protein_D96L_mutation Human genes 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 238000003109 Karl Fischer titration Methods 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 101710098554 Lipase B Proteins 0.000 description 1
- 108010048733 Lipozyme Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241001184659 Melanocarpus albomyces Species 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000589755 Pseudomonas mendocina Species 0.000 description 1
- 101000968491 Pseudomonas sp. (strain 109) Triacylglycerol lipase Proteins 0.000 description 1
- 241001292348 Salipaludibacillus agaradhaerens Species 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 108090000787 Subtilisin Proteins 0.000 description 1
- 101710135785 Subtilisin-like protease Proteins 0.000 description 1
- 241001495429 Thielavia terrestris Species 0.000 description 1
- 241000499912 Trichoderma reesei Species 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001346 alkyl aryl ethers Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000005263 alkylenediamine group Chemical group 0.000 description 1
- AEMOLEFTQBMNLQ-BKBMJHBISA-N alpha-D-galacturonic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-BKBMJHBISA-N 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229920006321 anionic cellulose Polymers 0.000 description 1
- 229920001586 anionic polysaccharide Polymers 0.000 description 1
- 150000004836 anionic polysaccharides Chemical class 0.000 description 1
- 229920006320 anionic starch Polymers 0.000 description 1
- 239000012753 anti-shrinkage agent Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000010936 aqueous wash Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical class C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 1
- 108010047754 beta-Glucosidase Proteins 0.000 description 1
- 102000006995 beta-Glucosidase Human genes 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 125000000332 coumarinyl group Chemical class O1C(=O)C(=CC2=CC=CC=C12)* 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- 125000001142 dicarboxylic acid group Chemical group 0.000 description 1
- 229940079919 digestives enzyme preparation Drugs 0.000 description 1
- RXKJFZQQPQGTFL-UHFFFAOYSA-N dihydroxyacetone Chemical compound OCC(=O)CO RXKJFZQQPQGTFL-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000007046 ethoxylation reaction Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 108010061330 glucan 1,4-alpha-maltohydrolase Proteins 0.000 description 1
- 150000004676 glycans Polymers 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 125000001046 glycoluril group Chemical group [H]C12N(*)C(=O)N(*)C1([H])N(*)C(=O)N2* 0.000 description 1
- 229940059442 hemicellulase Drugs 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- FCCDDURTIIUXBY-UHFFFAOYSA-N lipoamide Chemical compound NC(=O)CCCCC1CCSS1 FCCDDURTIIUXBY-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 108010020132 microbial serine proteinases Proteins 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N n-hexadecyl alcohol Natural products CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- 125000005608 naphthenic acid group Chemical group 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 150000004967 organic peroxy acids Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 108010087558 pectate lyase Proteins 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000005385 peroxodisulfate group Chemical group 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- PATMLLNMTPIUSY-UHFFFAOYSA-N phenoxysulfonyl 7-methyloctanoate Chemical compound CC(C)CCCCCC(=O)OS(=O)(=O)OC1=CC=CC=C1 PATMLLNMTPIUSY-UHFFFAOYSA-N 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- YLQLIQIAXYRMDL-UHFFFAOYSA-N propylheptyl alcohol Chemical compound CCCCCC(CO)CCC YLQLIQIAXYRMDL-UHFFFAOYSA-N 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- NVIFVTYDZMXWGX-UHFFFAOYSA-N sodium metaborate Chemical class [Na+].[O-]B=O NVIFVTYDZMXWGX-UHFFFAOYSA-N 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- 235000019351 sodium silicates Nutrition 0.000 description 1
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- 150000001629 stilbenes Chemical class 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 150000003470 sulfuric acid monoesters Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 108010038851 tannase Proteins 0.000 description 1
- 108010075550 termamyl Proteins 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical class CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- MSLRPWGRFCKNIZ-UHFFFAOYSA-J tetrasodium;hydrogen peroxide;dicarbonate Chemical compound [Na+].[Na+].[Na+].[Na+].OO.OO.OO.[O-]C([O-])=O.[O-]C([O-])=O MSLRPWGRFCKNIZ-UHFFFAOYSA-J 0.000 description 1
- 108010031354 thermitase Proteins 0.000 description 1
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 125000005208 trialkylammonium group Chemical group 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 108010068608 xanthan lyase Proteins 0.000 description 1
- 108010083879 xyloglucan endo(1-4)-beta-D-glucanase Proteins 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/04—Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
- C11D17/041—Compositions releasably affixed on a substrate or incorporated into a dispensing means
- C11D17/042—Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
- C11D17/045—Multi-compartment
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/83—Mixtures of non-ionic with anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3902—Organic or inorganic per-compounds combined with specific additives
- C11D3/3905—Bleach activators or bleach catalysts
- C11D3/3907—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3723—Polyamines or polyalkyleneimines
Definitions
- the present invention relates to the technical field of textile treatment, in particular textile cleaning or textile washing.
- the quality of the removal of bleachable soils such as e.g. Colored fruit and vegetable stains is a central quality feature of a detergent.
- the bleachable dirt is to be bleached and / or removed.
- the textile should not be damaged by bleaching.
- a solid bleach composition which can be used as an additive to a liquid detergent should contain little additional ingredients in addition to the bleach-active compound for gentle use of the resources.
- a solid bleach additive in a water-soluble casing as a metering unit, it is advantageous if said bleach additive occupies a small volume.
- the rationalization of additional ingredients and the reduction in the volume of the overall composition inevitably result in a high concentration of bleach-active compound in the solid component. This high concentration can lead to problems in the application, since at the beginning of the textile treatment, the addition of the said metering unit usually takes place via the washing drum of a washing machine and the metering unit thereby comes into direct contact with the textile. If water is now added during the textile treatment, the water-soluble coating dissolves and the bleach additive is released.
- the bleach additive should dissolve quickly in the water. It has been found that the solubility behavior of the bleach additive decreases due to the presence of surfactant and a local over-concentration of surfactant during the textile treatment.
- the skilled worker is aware of surfactant-containing portions as a one-time dosing aid for textile treatment compositions, which in addition to a solid composition additionally contain a liquid composition, which are enveloped by a water-soluble film.
- the document US 4,973,416 relates to a portion as a disposable dosing aid, which contains a liquid detergent and, separately, a bleach granules in the same portion, wherein both compositions are covered by a water-soluble film.
- the document WO 01/83667 A1 relates to multi-chamber bags made of a water-soluble film containing in a first chamber a liquid composition containing at least 50 wt .-% of surfactant; and in a second compartment contains a solid composition, which in turn may optionally contain a bleaching agent and, optionally, a bleach activator.
- High performance bleach-active compounds are usually peroxide compounds in combination with bleach activators, with organic bleach activators being particularly effective.
- Bleach activators are understood by the person skilled in the art to mean chemical compounds which increase the bleaching action in the presence of peroxide compounds. In particular, less polar organic bleach activators require a certain amount of time to dissolve in water. If solid detergents containing solid bleach activators are added to the fabric in solid form in the wash basket, a local over-concentration of bleach activator may occur during the dissolution process (especially with a concomitant local over-concentration of surfactant). The latter can lead to punctiform damage to the textile, e.g. lead to local fading of the textile dye.
- the patent EP 2 01 1 856 B1 relates to multi-chamber bags made of a water-soluble film containing a liquid composition in a first chamber; and in a second chamber, a solid composition containing from 60% to 95% by weight of a peroxide source.
- these multi-chamber bags are explicitly free of bleach activator.
- the document EP 2 014 756 A1 relates to multi-chamber bags made of a water-soluble film, which contain in a first chamber a liquid composition with bleach activator dissolved therein; and in a second chamber, a solid composition containing from 60% to 95% by weight of a peroxide source.
- a surfactant-containing portion for textile treatment which comprises a liquid composition and a solid bleach additive of peroxide compound and bleach activator in a solid composition, the bleach additive rapidly dissolving in water during the textile treatment. Local damage to the textile should be prevented.
- the washing performance of detergents in particular liquid detergents, improve.
- bleachable stains are effectively removed from the textile in a short time in a manner that protects the textile.
- a first subject of the invention is therefore a portion for use in textile treatment, comprising at least two chambers with walls of water-soluble material, characterized in that
- At least one of these chambers is a liquid composition containing in each case based on the total weight of the liquid composition in each case a total amount of
- At least one further of these chambers is a solid composition containing in each case based on the total weight of the solid composition in each case a total amount of
- said solid and liquid compositions are each in a chamber formed of water-soluble material.
- the water-soluble material forms walls of the chamber and thereby envelops the inventive composition of the first subject of the invention.
- a chamber is a space bounded by walls (e.g., by a foil), which may exist even without the material to be dosed (possibly changing its shape). A layer of a surface coating thus does not explicitly fall under the definition of a wall.
- the walls of the chamber are made of a water-soluble material.
- the water solubility of the material can be determined by means of a quadratic frame (edge length on the inside: 20 mm) fixed square film of said material (film: 22 x 22 mm with a thickness of 76 ⁇ ) according to the following measurement protocol.
- Said framed film is made in 800 mL 20 ° C tempered, distilled water in a 1 liter beaker with a circular bottom surface (Schott, Mainz, beaker 1000 mL, low mold) immersed so that the surface of the clamped film is arranged at right angles to the bottom surface of the beaker, the top of the frame is 1 cm below the water surface and the lower edge of the frame is aligned parallel to the bottom surface of the beaker so that the lower edge of the frame extends along the radius of the bottom surface of the beaker and the center of the lower edge of the frame is located above the center of the radius of the beaker bottom is.
- the material should dissolve with stirring (stirring speed magnetic stirrer 300 rpm, stirring bar: 6.8 cm long, diameter 10 mm) within 600 seconds in such a way that with the naked eye, no single solid-shaped film particles are more visible.
- the walls are preferably made of a water-soluble film.
- This film may according to the invention preferably have a thickness of at most 150 ⁇ (more preferably of at most 120 ⁇ ).
- Preferred walls are therefore made of a water-soluble film and have a thickness of at most 150 ⁇ (more preferably of at most 120 ⁇ , most preferably of at most 90 ⁇ ) on.
- Such water soluble portions can be prepared by either vertical fill seal (VFFS) or thermoforming techniques.
- the thermoforming process generally includes forming a first layer of water-soluble film material to form at least one protrusion for receiving at least one composition therein, filling the composition into the respective protrusion, covering the composition-filled protrusions with a second layer of water-soluble one Film material and sealing the first and second layers together at least around the protrusions.
- the water-soluble material preferably contains at least one water-soluble polymer.
- the water-soluble material preferably contains a water-soluble film material selected from polymers or polymer blends.
- the wrapper may be formed of one or two or more layers of the water-soluble film material.
- the water-soluble film material of the first layer and the further layers, if present, may be the same or different.
- the water-soluble material contains polyvinyl alcohol or a polyvinyl alcohol copolymer.
- Suitable water-soluble films as the water-soluble material are preferably based on a polyvinyl alcohol or a polyvinyl alcohol copolymer whose molecular weight is in the range of 10,000 to 1,000,000 gmol "1 , preferably 20,000 to 500,000 gmol " 1 , more preferably 30,000 to 100,000 gmol and most preferably 40,000 up to 80,000 gmol.
- polyvinyl alcohol is usually carried out by hydrolysis of polyvinyl acetate, since the direct synthesis route is not possible.
- polyvinyl alcohol copolymers which be prepared according to polyvinyl acetate copolymers. It is preferred if at least one layer of the water-soluble material comprises a polyvinyl alcohol whose degree of hydrolysis makes up 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular 82 to 88 mol%.
- the film material suitable as water-soluble material may additionally be added polymers selected from the group comprising acrylic acid-containing polymers, polyacrylamides, oxazoline polymers, polystyrene sulfonates, polyurethanes, polyesters, polyether polylactic acid, and / or mixtures of the above polymers.
- Preferred polyvinyl alcohol copolymers include, in addition to vinyl alcohol, dicarboxylic acids as further monomers.
- Suitable dicarboxylic acids are itaconic acid, malonic acid, succinic acid and mixtures thereof, with itaconic acid being preferred.
- polyvinyl alcohol copolymers include, in addition to vinyl alcohol, an ethylenically unsaturated carboxylic acid, its salt or its esters.
- Such polyvinyl alcohol copolymers particularly preferably contain, in addition to vinyl alcohol, acrylic acid, methacrylic acid, acrylates, methacrylates or mixtures thereof.
- Suitable water-soluble films for use as the water-soluble material of the water-soluble portion according to the invention are films sold under the name Monosol M8630 by MonoSol LLC.
- Other suitable films include films named Solublon® PT, Solublon® KA, Solublon® KC or Solublon® KL from Aicello Chemical Europe GmbH or the films VF-HP from Kuraray, or HiTorrent SH2312 from Nippon Gohsei.
- the solid and liquid compositions may contain, in addition to the mandatory ingredients, other optional ingredients. Said total amounts are selected from the weight ranges given in such a way that together with the amounts of the optional ingredients for said composition based on their total weight 100 wt .-% result.
- a fabric e.g., a composition
- a fabric is, as defined by the invention, solid when in the solid state at 25 ° C and 1013 mbar.
- a substance e.g., a composition
- a chemical compound is an organic compound when the molecule of the chemical compound contains at least one covalent bond between carbon and hydrogen. This definition applies inter alia to "organic bleach activators" as a chemical compound mutatis mutandis.
- a chemical compound is, inversely to the definition of the organic compound, an inorganic compound when the molecule of the chemical compound does not contain a covalent bond between carbon and hydrogen. This definition applies inter alia to inorganic peroxide compounds as a chemical compound mutatis mutandis.
- a peroxide compound is a chemical compound containing, as a structural fragment, the peroxo atomic group -O-O-.
- weight-average molar masses M w which can in principle be determined by means of gel permeation chromatography with the aid of an RI detector, the measurement being expedient against an external standard he follows.
- the solid-shaped composition of the portion is formed from a plurality of solid particles.
- Such an embodiment of the solid composition is preferably present as powder or granules.
- the said solid particles in turn preferably have a particle diameter Xso, 3 (volume average) of 100 to 1500 ⁇ . These particle sizes can be determined by sieving or by means of a particle size analyzer Camsizer from Retsch.
- the portion preferably contains
- the said solid composition in a total amount of 4.0 to 10.0 g, in particular from 5.0 to 9.0 g and / or
- the said liquid composition in a total amount of 10.0 to 20.0 g, in particular from 14.0 to 18.0 g.
- the solid composition of the portion according to the invention necessarily contains a defined amount of peroxide compound. It has proved to be preferred according to the invention if the solid-form composition according to the invention, based on the total weight of the composition, contains peroxide compounds in a total amount of from 30 to 50% by weight, in particular from 33 to 45% by weight.
- the peroxide compound is selected from at least one inorganic peroxide compound.
- Suitable peroxide compounds are, in particular, percarbonate compounds, perborate compounds, peroxodisulfate compounds, hydrogen peroxide, addition compounds of hydrogen peroxide with inorganic compounds, organic peroxyacids or mixtures of at least two of these compounds. It is particularly preferred according to the invention if the peroxide compound is selected from sodium percarbonate, sodium perborate, Natnumperoxodisulfat or mixtures thereof. Sodium percarbonate is a most preferred Peroxide. Sodium percarbonate is an addition compound of hydrogen peroxide to sodium carbonate with the formula y Na2C03 X H2O2, where x is the molar amount of hydrogen peroxide per mole of Na2CO3. Most preferably, the peroxide compound is Na 2 CO 3 - 1.5 hhC 1 having CAS number 15630-89-4.
- the peroxide compound used according to the invention preferably has an active oxygen content of between 9.0% and 15.0%, in particular from 10.0% to 14.0% (measured in each case by titration with potassium permanganate).
- the peroxide compound is particulate, in particular as a powder or granules.
- the particles containing the peroxide compound for example the powder or granules
- the particles containing the peroxide compound have a bulk density of 0.70 to 1.30 kg / dm 3 , more preferably with a bulk density of 0.85 to 1.20 kg / dm 3 (eg in each case measured according to ISO 697) have.
- peroxide compounds whose particles have an average particle size (volume average) Xso, 3 of 0.40 to 0.95 mm, in particular 0.50 to 0.90 mm, are preferred (eg measured with sieve analysis or by a particle size analyzer) Camsizer, retsch company).
- a solid peroxide compound, in particular sodium percarbonate can be provided with a coating for additional protection against decomposition on the surface.
- the coating should protect against decomposition of the percarbonate.
- Suitable coating agents are preferably water-soluble passivating agents, such as, for example, sodium bicarbonate, sodium carbonate, sodium sulfate or metaborate compounds. It may be preferred according to the invention if the solid peroxide compound, in particular sodium percarbonate, is coated on the surface with at least sodium sulfate.
- the festiform peroxide compound has an average particle size Xso, 3 of 0.40 to 0.95 mm, in particular from 0.40 to 0.90 mm (eg measured with sieve analysis or by a particle size analyzer Camsizer, company Retsch) and are coated with sodium sulfate.
- the phthalmatization ie reduction or prevention of possible heat formation by exothermic decomposition of the solid peroxide compound
- a phlegmatizer in particular with a metaborate compound
- the composition according to the invention contains based on the peroxide compound content is from 50 to 100% by weight of Metaborate coated peroxide compound.
- the phlegmatizing coating of the solid peroxide compound is not mandatory.
- the solid composition of the portion according to the invention necessarily contains organic bleach activator in a total amount of 10 to 20 wt .-%, preferably from 1 1 to 18 wt .-%, particularly preferably from 12 to 16 wt .-%, again preferably from 10 to 15 Wt .-%, most preferably from 1 1 to 14 wt .-%.
- organic bleach activators it is possible to use compounds which, under perhydrolysis conditions, give peroxycarboxylic acids (in particular aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms), and / or optionally substituted perbenzoic acid.
- peroxycarboxylic acids in particular aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms
- perbenzoic acid in particular aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms
- Solid compositions which contain organic bleach activator from at least one compound of the group of compounds which form aliphatic peroxycarboxylic acids under perhydrolysis conditions are preferred according to the invention. It is particularly preferred if the organic bleach activator is selected from at least one compound of the poly-N-acylated organic amines. The aforementioned total amounts apply mutatis mutandis for these special organic bleach activators.
- Perhydrolysis is known to the person skilled in the art as a reaction in which, in a protic solvent (eg water), an anion ⁇ - ⁇ - ⁇ covalently binds to a reactant RX by nucleophilic substitution to give the compound ROOH and the cleavage of a leaving group X leads to lysis of the compound chemical bond between R and X causes.
- a protic solvent eg water
- acylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT) , acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS) are particularly preferably used.
- the aforementioned total amounts apply mutatis mutandis for these special organic bleach activators.
- the solid composition of the portion contains as bleaching agent 25 to 55 wt .-% (in particular 30 to 50 wt .-%) of at least one inorganic peroxide compound, in particular sodium percarbonate, and
- the solid composition according to the invention of the portion does not contain a surfactant up to a maximum of a total amount of 5% by weight.
- Surfactant ie 0 to 5 wt .-% surfactant
- the solid formulation of the portion of the present invention contains a total amount of from 0 to 3% by weight of surfactant, most preferably the solid composition of the present invention is free of surfactant.
- Suitable surfactants are all surfactants suitable for textile treatment.
- soap is the water-soluble sodium or potassium salts of the saturated and unsaturated fatty acids having from 10 to 20 carbon atoms, the rosin acids of rosin (yellow rosin soaps) and naphthenic acids which are used as solid or semi-solid mixtures mainly for washing and cleaning purposes.
- Sodium or potassium salts of the saturated and unsaturated fatty acids having 10 to 20 carbon atoms, in particular having 12 to 18 carbon atoms, are preferred soaps according to the invention.
- the solid composition having the aforesaid total surfactant content based on the total weight of the solid composition contains a total amount of 0 to 1% by weight (preferably 0 to 0.5% by weight) of nonionic surfactant.
- the solid composition having the aforesaid total surfactant content based on the total weight of the solid composition contains a total amount of 0 to 4% by weight (especially 0 to 2.5% by weight) of anionic surfactant.
- the solid-form composition of the portion according to the invention preferably additionally contains an amount of alkali metal silicate.
- alkali metal silicates are sodium silicate and / or potassium silicate.
- Particularly preferred is sodium silicate.
- sodium silicates very particular preference is given to using sodium metasilicate or water glass, again preferably water glass, in the solid-form composition according to the invention.
- the solid-form composition of the present invention contains the portion of alkali silicate, it preferably contains from 5.0 to 20.0% by weight in a total amount based on the weight of the solid-form composition.
- the amount of alkali metal silicate is calculated without the water content (hydrate) optionally contained in the alkali metal silicate.
- alkali metal silicates contained in the form of particles are present.
- a weight ratio of alkali silicate to peroxide compound in a range of 10 to 1 to 1 to 4 proved to be particularly favorable.
- alkali metal silicates of the formula (SiO 2) n (Na 2 O) m (K 2 O) P are particularly preferred according to the invention, where n is a positive rational number and m and p are, independently of one another, a positive rational number, with the provisos that that at least one of the parameters m or p is different from 0 and the ratio between n and the sum of m and p is between 1: 4 and 4: 1, in particular in the ratio range from 2: 1 to 4: 1.
- the solid-form composition according to the invention contains, as alkali metal silicate, silicate of the formula (SiO 2) n (Na 2 O) m , where n is a positive rational number and m is a positive rational number, provided that the ratio between n and m is between 1: 4 and 4: 1, in particular in the ratio range of 2: 1 to 4: 1.
- silicate of the formula (SiO 2) n (Na 2 O) m where n is a positive rational number and m is a positive rational number, provided that the ratio between n and m is between 1: 4 and 4: 1, in particular in the ratio range of 2: 1 to 4: 1.
- a solid composition of the portion according to the invention containing in each case based on the total weight of the solid composition in each case a total amount of
- silicate of the formula (SiO 2) n (Na 2 O) m where n stands for a positive rational number and m stands for a positive rational number, with the proviso that the ratio between n and m between 1 : 4 and 4: 1, in particular between 2: 1 and 4: 1,
- n stands for a positive rational number and m for a positive rational number, with the proviso that the ratio between n and m is between 1: 4 and 4: 1, especially between 2: 1 and 4: 1,
- the solid composition of the portion may contain, in addition to thermal stabilization, bicarbonate, calculated as sodium bicarbonate.
- Hydrogen carbonate is to be understood according to the invention as meaning a chemical compound which contains at least one hydrogencarbonate ion (HCO3) prior to the preparation of the composition according to the invention and which is different from peroxide compounds according to the invention.
- the amount by weight of bicarbonate in the composition of the present invention is expressed by the definition of the equivalent amount by weight of sodium bicarbonate.
- Solid portion compositions preferably contain, based on the total weight of the composition, bicarbonate in a total amount of from 5 to 50% by weight, more preferably from 7.5 to 30% by weight, calculated as sodium bicarbonate.
- bicarbonate from sodium bicarbonate, potassium bicarbonate or mixtures thereof.
- the bicarbonate of sodium bicarbonate is suitable.
- hydrogen carbonate is particulate, in particular as a powder or granules.
- the bicarbonate-containing particles (for example the powder or granules) have a bulk density of 0.40 to 1, 50 kg / dm 3 , particularly preferably having a bulk density of 0.90 to 1, 10 kg / dm 3 ( eg measured in each case according to ISO 697).
- the particles containing the peroxide compound (for example the powder or granules) have a bulk density of 0.70 to 1.30 kg / dm 3 , particularly preferably with a bulk density of 0, 85 to 1, 20 kg / dm 3 (eg, in each case measured according to ISO 697) have.
- silicate of the formula (SiO 2) n (Na 2 O) m where n stands for a positive rational number and m stands for a positive rational number, with the proviso that the ratio between n and m between 1 : 4 and 4: 1, in particular between 2: 1 and 4: 1,
- a solid composition of the portion according to the invention containing in each case based on the total weight of the solid composition in each case a total amount of
- n stands for a positive rational number and m for a positive rational number, with the proviso that the ratio between n and m is between 1: 4 and 4: 1, especially between 2: 1 and 4: 1,
- the solid form compositions of the portion may preferably contain a total amount of from 1 to 15% by weight of at least one polysaccharide relative to their total weight.
- a polysaccharide is understood as meaning saccharides which contain at least 10 glyceride-linked sugar structural units.
- the polysaccharide is present in the form of particles (preferably as a powder or as granules, particularly preferably as granules). It is again preferred if these particles have an average particle size (volume average) Xso, 3 from 200 to 1600 ⁇ , in particular from 300 to 1400 ⁇ , in particular from 400 to 1200 ⁇ , very particularly preferably from 600 to 1 100 ⁇ , eg measured with sieve analysis or by a particle size analyzer Camsizer, company Retsch).
- an average particle size (volume average) Xso 3 from 200 to 1600 ⁇ , in particular from 300 to 1400 ⁇ , in particular from 400 to 1200 ⁇ , very particularly preferably from 600 to 1 100 ⁇ , eg measured with sieve analysis or by a particle size analyzer Camsizer, company Retsch).
- Preferred polysaccharides are cellulose and its derivatives, starch and derivatives thereof, and mixtures thereof.
- the solid-form composition of the present invention preferably contains methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl hydroxyethyl cellulose, methyl carboxymethyl cellulose,
- the effect according to the invention is particularly pronounced when the polysaccharide contains at least one polysaccharide with at least one anionic group in the solid-form composition according to the invention.
- the anionic group covalently bound to the polysaccharide groups, which are in protic solvents capable of forming an anion with the formal release of an H + -lons, in particular carboxyl groups (-COOH), sulfonic acid groups (- SO3H), sulfate groups (-O-SO3H), phosphonic acid groups (-PO3H).
- Preference is given to the use of at least one polysaccharide containing at least one carboxyl group, more preferably at least one carboxyalkyl-derivatized polysaccharide.
- Carboxyl group is understood according to the invention as meaning both the acid form -COOH and the deprotonated salt form (carboxylate group) with a corresponding cation as counterion.
- Suitable cations are especially monovalent ions, such as sodium ions, potassium ions, ammonium ions. This applies mutatis mutandis for carboxyalkyl-derivatized polysaccharide.
- the polysaccharide of the invention contains at least one anionic polysaccharide selected from anionic cellulose, anionic starch or mixtures thereof.
- the polysaccharide is selected from carboxyalkyl-derivatized cellulose, carboxyalkyl-derivatized starch or mixtures thereof.
- Carboxyalkyl-derivatized cellulose is very particularly preferred according to the invention.
- polysaccharide carboxymethylcellulose in particular sodium carboxymethylcellulose, in the compositions according to the invention.
- the preferred total amount of polysaccharide in particular of preferred polysaccharide (vide supra) (particularly preferably of carboxymethylcellulose), is from 1.5 to 12.0% by weight, particularly preferably from 2.0 to 10.0% by weight, completely particularly preferably from 2.5 to 9.5 wt .-%, each based on the weight of said composition.
- the composition according to the invention additionally contains at least one soil-release agent.
- Soil release agents are often referred to as “soil release” agents or because of their ability to render the treated surface, for example, the fiber, dirt repellent, "soil repellents". Because of their chemical similarity to polyester fibers particularly effective soil release agents, but which can also show the desired effect on fabrics made of other materials, are copolyesters containing dicarboxylic acid units, alkylene glycol units and polyalkylene glycol. Soil-releasing polyesters of the type mentioned as well as their use in detergents have been known for a long time.
- the European Patent EP 066 944 relates to textile treatment compositions containing a copolyester of ethylene glycol, polyethylene glycol, aromatic dicarboxylic acid and sulfonated aromatic dicarboxylic acid in certain molar ratios.
- European Patent EP 185,427 discloses methyl or ethyl end-capped polyesters having ethylene and / or propylene terephthalate and polyethylene oxide terephthalate units and detergents containing such soil release polymer.
- European Patent EP 241 984 relates to a polyester which, besides oxyethylene groups and terephthalic acid units, also contains substituted ethylene units and also glycerol units. From the European patent EP 241 985 polyesters are known which in addition to oxy- ethylene groups and terephthalic acid units 1, 2-propylene, 1, 2-butylene and / or 3-methoxy-1, 2-propylene groups and glycerol units and with Ci- to C4-alkyl groups are end-group-capped.
- European Patent EP 253 567 relates to soil release polymers having a molecular weight of 900 to 9000 from ethylene terephthalate and polyethylene oxide terephthalate, wherein the polyethylene glycol units have molecular weights of 300 to 3000 and the molar ratio of ethylene terephthalate to polyethylene oxide terephthalate 0.6 to 0.95.
- European Patent Application EP 272 033 discloses, at least in part, polyesters having poly-propylene terephthalate and polyoxyethylene terephthalate units which are end-capped by ⁇ -4-alkyl or acyl radicals.
- European Patent EP 274 907 describes sulfoethyl end-capped terephthalate-containing soil release polyesters. In the European patent application EP 357,280, sulfonation of unsaturated end groups produces soil release polyesters with terephthalate, alkylene glycol and poly-C 2-4 glycol units.
- composition according to the invention contains at least one soil release-capable polyester comprising the structural units I to III or I to IV,
- a, b and c independently of one another each represent a number from 1 to 200, d, e and f independently of one another each represent a number from 1 to 50,
- g is a number from 0 to 5
- Ph is a 1,4-phenylene radical
- sPh is a 1, 3-phenylene radical substituted in position 5 by a group -SO3M,
- M is Li, Na, K, Mg / 2, Ca / 2, Al / 3, ammonium, mono-, di-, tri- or tetraalkylammonium, wherein the alkyl radicals of the ammonium ions are C 1 -C 22 -alkyl- or C2-Cio-hydroxyalkyl radicals or any mixtures thereof,
- R, R 2 , R 3 , R 4 , R 5 and R 6 independently of one another each represent hydrogen or a C 1 -C 18 -n- or iso-alkyl group
- R 7 stands for a linear or branched C 1 -C 30 -alkyl group or for a linear or branched C 2 -C 30 -alkenyl group, for a cycloalkyl group with 5 to 9 carbon atoms, for a C 6 -C 30 -aryl group or for a C 6 -C 30 -arylalkyl group, and
- Polyfunctional unit for a unit having 3 to 6 functional groups capable of esterification reaction for a unit having 3 to 6 functional groups capable of esterification reaction.
- Such polyesters can be obtained, for example, by polycondensation of terephthalic acid dialkyl ester, 5-sulfoisophthalic acid dialkyl ester, alkylene glycols, optionally polyalkylene glycols (at a, b and / or c> 1) and polyalkylene glycols end capped on one side (corresponding to unit III). It should be pointed out that for numbers a, b, c> 1 there is a polymeric skeleton and thus the coefficients as an average can assume any value in the given interval. This value reflects the number average molecular weight.
- polyethylene glycol-co-propylene glycol having number-average molecular weights of 100 to 2000 g / mol.
- from 1 to 50 units (I) can be contained per polymer chain.
- unit (II) is an ester of 5-sulfoisophthalic acid with one or more difunctional, aliphatic alcohols in question, In this case, the abovementioned are preferably used. In the structures, for example, 1 to 50 units (II) may be present.
- the preferred use amount of the structural unit (III) is that which necessary to achieve the mean molecular weights described below.
- the use of crosslinked or branched polyester structures is also according to the invention. This is expressed by the presence of a crosslinking polyfunctional structural unit (IV) having at least three to a maximum of 6 functional groups capable of esterification reaction.
- a crosslinking polyfunctional structural unit (IV) having at least three to a maximum of 6 functional groups capable of esterification reaction.
- acid, alcohol, ester, anhydride or epoxy groups can be named as functional groups. Different functionalities in one molecule are also possible.
- Citric acid malic acid, tartaric acid and gallic acid, particularly preferably 2, 2-dihydroxymethyl-propionic acid, may be used as examples for this purpose.
- polyhydric alcohols such as pentaerythrol, glycerol, sorbitol and / or trimethylolpropane can be used.
- These may also be polybasic aliphatic or aromatic carboxylic acids, such as benzene-1, 2,3-tricarboxylic acid (hemimellitic acid), benzene-1, 2,4-tricarboxylic acid (trimellitic acid), or benzene-1,3,5-tricarboxylic acid ( Trimesithklare) act.
- the proportion by weight of crosslinking monomers, based on the total weight of the polyester, can be, for example, up to 10% by weight, in particular up to 5% by weight and more preferably up to 3% by weight.
- the polyesters containing the structural units (I), (II) and (III) and optionally (IV) generally have number average molecular weights in the range from 700 to 50,000 g / mol, wherein the number average molecular weight can be determined by size exclusion chromatography in aqueous solution using a calibration using narrowly distributed polyacrylic acid Na salt standards.
- the number-average molecular weights are preferably in the range from 800 to 25,000 g / mol, in particular from 1,000 to 15,000 gmol, particularly preferably from 1,200 to 12,000 g / mol.
- solid polyesters which have softening points above 40 ° C. are preferably used as part of the particle of the second type; they preferably have a softening point between 50 and 200 ° C, more preferably between 80 ° C and 150 ° C, and most preferably between 100 ° C and 120 ° C.
- the synthesis of the polyesters can be carried out by known methods, for example by first heating the abovementioned components with addition of a catalyst at normal pressure and then building up the required molecular weights in vacuo by distilling off superstoichiometric amounts of the glycols used.
- Suitable for the reaction are the known transesterification and condensation catalysts, such as Titanium tetraisopropylate, dibutyltin oxide, alkali or alkaline earth metal alcoholates or antimony trioxide / calcium acetate.
- transesterification and condensation catalysts such as Titanium tetraisopropylate, dibutyltin oxide, alkali or alkaline earth metal alcoholates or antimony trioxide / calcium acetate.
- Preferred polyesters are of solid consistency and can easily be ground into powder or compacted or agglomerated into granules of defined particle sizes.
- the granulation can be carried out by solidifying the copolymers obtained as melt in the synthesis by cooling in a cool gas stream, for example air or nitrogen, or by application to a flaking roll or to a treadmill to form flakes or flakes.
- This coarse material can optionally be further ground, for example, in the roll mill or in the screen mill, which can be followed by a sieving and a rounding as described above.
- the granulation can also be carried out in such a way that the polyesters are ground to powder after solidification and then reacted by compaction or agglomeration and the above-described rounding into granules with defined particle sizes.
- the solid composition and / or the liquid composition of the portion may additionally contain at least one enzyme.
- all enzymes established in the state of the art for textile treatment can be used in this regard.
- it is one or more enzymes which can develop a catalytic activity in a detergent, in particular a protease, amylase, lipase, cellulase, hemicellulase, mannanase, pectin-cleaving enzyme, tannase, xylanase, xanthanase, ⁇ -glucosidase, carrageenase, perhydrolase , Oxidase, oxidoreductase and their mixtures.
- Preferred hydrolytic enzymes include, in particular, proteases, amylases, in particular ⁇ -amylases, cellulases, lipases, hemicellulases, in particular pectinases, mannanases, ⁇ -glucanases, and mixtures thereof.
- proteases amylases and / or lipases and mixtures thereof are particularly preferred, and proteases are particularly preferred.
- These enzymes are basically of natural origin; Starting from the natural molecules, improved variants are available for use in detergents or cleaning agents, which are preferably used accordingly.
- subtilisin type those of the subtilisin type are preferable.
- these are the subtilisins BPN 'and Carlsberg, the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the enzymes thermitase, proteinase K and the subtilases, but not the subtilisins in the narrower sense Proteases TW3 and TW7.
- Subtilisin Carlsberg is available in a further developed form under the trade name Alcalase® from Novozymes A / S, Bagsvaerd, Denmark.
- subtilisins 147 and 309 are sold under the trade names Esperase®, and Savinase® by the company Novozymes. From the protease from Bacillus lentus DSM 5483 derived under the name BLAP® protease variants derived.
- proteases are, for example, those under the trade names Durazym®, Relase®, Everlase®, Nafizym®, Natalase®, Kannase® and Ovozyme® from Novozymes, sold under the trade names, Purafect®, Purafect® OxP, Purafect® Prime, Excellase® and Properase® by Genencor, sold under the tradename Protosol® by Advanced Biochemicals Ltd., Thane, India under the trade name Wuxi® by Wuxi Snyder Bioproducts Ltd., China, under the trade names Proleather® and Protease P® by Amano Pharmaceuticals Ltd., Nagoya, Japan, and that under the name Proteinase K-16 by the company Kao Corp., Tokyo, Japan. Particular preference is also given to using the proteases from Bacillus gibsonii and Bacillus pumilus.
- amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, B. amyloliquefaciens or B. stearothermophilus and their further developments improved for use in detergents or cleaners.
- the B. licheniformis enzyme is available from Novozymes under the name Termamyl® and from Genencor under the name Purastar®ST. Further development products of this ⁇ -amylase are available from Novozymes under the trade name Duramyl® and Termamy Dultra, from Genencor under the name Purastar®OxAm and from Daiwa Seiko Inc., Tokyo, Japan, as Keistase®. B.
- amyloliquefaciens ⁇ -amylase is sold by Novozymes under the name BAN®, and variants derived from B. stearothermophilus ⁇ -amylase under the names BSG® and Novamyl®, also from Novozymes. Furthermore, for this purpose, the ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and the cyclodextrin glucanotransferase (CGTase) from B. agaradherens (DSM 9948). Likewise, fusion products of all the molecules mentioned can be used. In addition, the further developments of the ⁇ -amylase from Aspergillus niger and A.
- oryzae available under the trade name Fungamyl® from the company Novozymes are suitable.
- Further advantageously usable commercial products are, for example, the Amylase-LT®, as well as Stainzyme® or Stainzyme ultra® or Stainzyme plus®, the latter also from the company Novozymes.
- variants of these enzymes obtainable by point mutations can be used according to the invention.
- lipases or cutinases which can be used according to the invention, which are contained in particular because of their triglyceride-cleaving activities, but also in order to generate in situ peracids from suitable precursors, are the lipases which are originally obtainable from Humicola lanuginosa (Thermomyces lanuginosus) or further developed, in particular those with the amino acid exchange D96L. They are sold for example by the company Novozymes under the trade names Lipolase®, Lipolase®Ultra, LipoPrime®, Lipozyme® and Lipex®. Furthermore, for example, the cutinases can be used, which were originally isolated from Fusarium solani pisi and Humicola insolens.
- lipases are from the company Amano under the names Lipase CE®, Lipase P®, Lipase B®, and Lipase CES®, respectively, Lipase AKG®, Bacillus sp. Lipase®, Lipase AP®, Lipase M-AP® and Lipase AML®.
- Lipases or cutinases can be used, the initial enzymes were originally isolated from Pseudomonas mendocina and Fusarium solanii.
- Other important commercial products are the preparations M1 Lipase.RTM. And Lipomax.RTM.
- Lipase MY-30® Lipase OF®
- Lipase PL® Lipase PL® to mention also the product Lumafast® from the company Genencor.
- cellulases may be present as pure enzymes, as enzyme preparations or in the form of mixtures in which the individual components advantageously complement each other in terms of their various performance aspects.
- These performance aspects include in particular the contributions of the cellulase to the primary washing performance of the composition (cleaning performance), to the secondary washing performance of the composition (anti-redeposition effect or graying inhibition), to softening (tissue effect) or to the exercise of a "stone-washed" effect.
- cleaning performance cleaning performance
- anti-redeposition effect or graying inhibition anti-redeposition effect or graying inhibition
- tissue effect tissue effect
- a useful fungal, endoglucanase (EC ) -rich cellulase preparation or its further developments is offered by the company Novozymes under the trade name Celluzyme®
- the products Endolase® and Carezyme® likewise available from the company Novozymes are based on the 50 kD-EG or the 43 kD-EG H.
- insolens DSM 1800 Other commercially available products of this company are Cellusoft®, Renozyme® and Celluclean.RTM .. Also usable are, for example, the 20 kD-EG from Melanocarpus, those from AB Enzymes, Finland, under the trade names Ecostone® and Biotouch® Other commercial products of AB Enzymes are Econa se® and Ecopulp®. Other suitable cellulases are from Bacillus sp. CBS 670.93 and CBS 669.93, those derived from Bacillus sp. CBS 670.93 from the company Genencor under the trade name Puradax® is available. Further commercial products of Genencor are "Genencor detergent cellulase L" and lndiAge®Neutra.
- variants of these enzymes obtainable by point mutations can be used according to the invention.
- Particularly preferred cellulases are Thielavia terrestris cellulase variants, cellulases from melanocarpus, in particular melanocarpus albomyces, cellulases of the EGIII type from Trichoderma reesei or variants obtainable therefrom.
- hemicellulases include, for example, mannanases, xanthan lyases, xanthanases, xyloglucanases, xylanases, pullulanases, pectin-splitting enzymes and ⁇ -glucanases.
- the ⁇ -glucanase obtained from Bacillus subtilis is available under the name Cereflo® from Novozymes.
- Hemicellulases which are particularly preferred according to the invention are mannanases which are sold, for example, under the trade names Mannaway® by the company Novozymes or Purabrite® by the company Genencor.
- pectin-splitting enzymes are also counted in the context of the present invention enzymes with the names pectinase, Pectate lyase, pectin esterase, pectin methethoxylase, pectin methoxylase, pectin methyl esterase, pectase, pectin methyl esterase, pectin esterase, pectin-pectin hydrolase, pectin-polymerase, endopolygalacturonase, pectolase, pectin hydrolase, pectin-polygalacturonase, endo-polygalacturonase, poly-a-1, 4-galacturonide glycanohydrolase, endogalacturonase, endo-D galacturonase, galacturan 1, 4-a-galacturonidase, exopolygalacturonase, poly (galacturonate) hydrolase, exo
- enzymes suitable for this purpose are, for example, under the name Gamanase®, Pektinex AR®, X-Pect® or Pectaway® from Novozymes, under the name Rohapect UF®, Rohapect TPL®, Rohapect PTE100®, Rohapect MPE®, Rohapect MA plus HC, Rohapect DA12L®, Rohapect 10L®, Rohapect B1 L® from AB Enzymes, and available under the name Pyrolase® from Diversa Corp., San Diego, CA, USA.
- the portion according to the invention preferably contains enzymes in total amounts of 1 ⁇ 10 -8 to 5 percent by weight, based on active protein.
- the enzymes are present in a total amount of from 0.001 to 2 wt.%, More preferably from 0.01 to 1.5 wt.%, Even more preferably from 0.05 to 1.25 wt.%, And most preferably from 0.01 to 0.5 wt .-% in this portion.
- builders, complexing agents, optical brighteners, pH adjusters, perfume, dye, dye transfer inhibitor or mixtures thereof in the solid-form composition and / or the liquid composition of the portion can be contained as additional ingredients.
- Builders which may be present in the composition according to the invention are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function.
- these are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, and mixtures of these.
- Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof.
- polymeric polycarboxylates are suitable. These are, for example, the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example, those having a molecular weight of 600 to 750,000 g / mol.
- Suitable polymers are in particular polyacrylates, which preferably have a molecular weight of from 1,000 to 15,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molecular weights of from 1,000 to 10,000 g / mol, and particularly preferably from 1,000 to 5,000 g / mol, may again be preferred from this group.
- copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
- the polymers may also contain allylsulfonic acids, such as allyloxybenzenesulfonic acid and methallylsulfonic acid, as a monomer.
- An optical brightener is preferably stilbenedisulfonic acids from the substance classes of distyrylbiphenyls, the stilbenes, the 4,4 'diamino-2,2', coumarins, the dihydroquinolinones, the 1, 3-diaryl pyrazolines, naphthalimides of the benzoxazole systems, benzisoxazole systems, benzimidazole systems, heterocyclic substituted pyrene derivatives, and mixtures thereof.
- optical brighteners include disodium 4,4'-bis (2-morpholino-4-anilino-s-triazin-6-ylamino) stilbene disulfonate (available, for example, as Tinopal® DMS from BASF SE), disodium 2,2 '.
- the dye transfer inhibitor is a polymer or copolymer of cyclic amines such as vinylpyrrolidone and / or vinylimidazole.
- Suitable color transfer inhibiting polymers include polyvinylpyrrolidone (PVP), polyvinylimidazole (PVI), copolymers of vinylpyrrolidone and vinylimidazole (PVP / PVI), polyvinylpyridine-N-oxide, poly-N-carboxymethyl-4-vinylpyridium chloride, polyethylene glycol-modified copolymers of vinylpyrrolidone and vinylimidazole and mixtures thereof.
- polyvinylpyrrolidone PVP
- polyvinylimidazole PVI
- copolymers of vinylpyrrolidone and vinylimidazole PVP / PVI
- the polyvinylpyrrolidones (PVP) used preferably have an average molecular weight of 2,500 to 400,000 and are commercially available from ISP Chemicals as PVP K 15, PVP K 30, PVP K 60 or PVP K 90 or from BASF as Sokalan® HP 50 or Sokalan® HP 53 available.
- the copolymers of vinylpyrrolidone and vinylimidazole (PVP / PVI) used preferably have a molecular weight in the range from 5,000 to 100,000.
- PVP / PVI copolymer for example from BASF under the name Sokalan® HP 56.
- Another extremely preferred color transfer inhibitor are polyethylene glycol-modified copolymers of vinylpyrrolidone and Vinylimidazole, which are available, for example, under the name Sokalan® HP 66 from BASF.
- the solid composition of the portion according to the invention is prepared by mixing the raw materials.
- a batch process or a continuous mixing process can be used. It is preferred in accordance with the invention to employ those mixing processes in which the particles of the ingredients (e.g., the powder or granules) are not mechanically disrupted.
- Suitable mixers are especially tumble mixers, paddle mixers (Forberg, Fa. Lödige, Fa. Gericke) or Helix mixers (Fa. Amixon, Fa. Gebrueder Ruberg).
- the ingredients of the solid composition according to the invention are mixed with low energy input, in particular mixing tools are used, which mix with 0.1 to 5 m / s peripheral speed.
- the portion of the invention contains in its liquid composition mandatory total amounts of anionic surfactant and nonionic surfactant.
- the anionic surfactant used may preferably be sulfonates and / or sulfates.
- surfactants of the sulfonate type are preferably C9-i3-alkylbenzenesulfonates, Olefinsulfonate, i. Mixtures of alkene and hydroxyalkanesulfonates and disulfonates, as obtained for example from Ci2-i8 monoolefins with terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation, into consideration.
- C 12 -is alkanesulfonates and the esters of ⁇ -sulfo fatty acids for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids.
- Alk (en) ylsulfates are the alkali metal salts and, in particular, the sodium salts of the sulfuric monoesters of C 12-18 fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those monoesters secondary Alcohols of these chain lengths are preferred.
- the Ci2-Ci6-alkyl sulfates and Ci2-Ci5-alkyl sulfates and Cw-cis-alkyl sulfates are preferred.
- 2,3-alkyl sulfates are also suitable anionic surfactants.
- fatty alcohol ether sulfates such as the sulfuric acid monoesters of straight-chain or branched C7-2i alcohols ethoxylated with from 1 to 6 mol of ethylene oxide, such as 2-methyl-branched C9-11 alcohols having on average 3.5 moles of ethylene oxide (EO) or C12-alcohols. Fatty alcohols with 1 to 4 EO are suitable.
- anionic surfactants are soaps. Suitable are saturated and unsaturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, (hydrogenated) erucic acid and behenic acid and, in particular, soap mixtures derived from natural fatty acids, for example coconut, palm kernel, olive oil or tallow fatty acids.
- the anionic surfactants and the soaps may be in the form of their sodium, potassium or magnesium or ammonium salts.
- the anionic surfactants are in the form of their ammonium salts.
- Preferred counterions for the anionic surfactants are the protonated forms of choline, triethylamine, monoethanolamine or methylethylamine.
- the liquid composition of the portion contains a monoethanolamine-neutralized alkylbenzenesulfonic acid, in particular C 9-13 -alkylbenzenesulfonic acid, and / or a monoethanolamine-neutralized fatty acid.
- the content of the anionic surfactant content liquid composition is preferably from 30 to 40% by weight, based on the weight of the liquid composition.
- Suitable nonionic surfactants include alkoxylated fatty alcohols, alkoxylated fatty acid alkyl esters, fatty acid amides, alkoxylated fatty acid amides, polyhydroxy fatty acid amides, alkylphenol polyglycol ethers, amine oxides, alkyl polyglucosides, and mixtures thereof.
- the nonionic surfactant used is preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 4 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture can contain, as they are usually present in Oxoalkoholresten.
- alcohol ethoxylates having linear radicals of alcohols of native origin having 12 to 18 carbon atoms, for example coconut, palm, tallow or oleyl alcohol, and on average 5 to 8 EO per mole of alcohol are preferred.
- the preferred ethoxylated alcohols include, for example, C12-14 alcohols with 4 EO or 7 EO, Cg-n-alcohol with 7 EO, cis-is alcohols with 5 EO, 7 EO or 8 EO, C12-18 alcohols with 5 EO or 7 EO and mixtures of these.
- the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
- Preferred alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
- fatty alcohols with more than 12 EO can also be used.
- Nonionic surfactants containing EO and PO groups together in the molecule can also be used according to the invention. Also suitable are also a mixture of a (more) branched ethoxylated fatty alcohol and an unbranched ethoxylated fatty alcohol, such as a mixture of a Ci6 -18 fatty alcohol with 7 EO and 2-propylheptanol with 7 EO.
- the first composition contains a C 12-18 fatty alcohol with 7 EO, a Ci3-is-oxoalcohol with 7 EO and / or a Ci3-is-oxoalcohol with 8 EO as nonionic surfactant.
- the content of the liquid composition of the nonionic surfactant portion is preferably a total amount of 18 to 28% by weight based on the weight of the liquid composition.
- Portions which are particularly preferred according to the invention each contain in the liquid composition in each case based on the total weight of the liquid composition a total amount of
- anionic surfactant at least one C9-i3-alkylbenzenesulfonate is contained, and
- nonionic surfactant containing as nonionic surfactant at least one alkoxylated alcohol having 8 to 18 carbon atoms and an average of 4 to 12 moles of ethylene oxide (EO) per mole of alcohol.
- EO ethylene oxide
- anionic surfactant From 25 to 60% by weight of at least one anionic surfactant, the anionic surfactant containing at least 25 to 60% by weight of at least one C9-i3-alkylbenzenesulfonate, and
- nonionic surfactant From 2 to 35% by weight of at least one nonionic surfactant, containing as nonionic surfactant at least 2 to 35% by weight of at least one alkoxylated alcohol having 8 to 18 carbon atoms and on average 4 to 12 moles of ethylene oxide (EO) per mole of alcohol.
- EO ethylene oxide
- anionic surfactant From 30 to 40% by weight of at least one anionic surfactant, the anionic surfactant containing at least one C9-i3-alkylbenzenesulfonate, and
- nonionic surfactant 18 to 28 wt .-% of at least one nonionic surfactant, wherein as nonionic surfactant at least one alkoxylated alcohol having 8 to 18 carbon atoms and an average of 4 to 12 moles of ethylene oxide (EO) per mole of alcohol is included.
- EO ethylene oxide
- anionic surfactant From 30 to 40% by weight of at least one anionic surfactant, the anionic surfactant containing at least 30 to 40% by weight of at least one C9-i3-alkylbenzenesulfonate, and 18 to 28 wt .-% of at least one nonionic surfactant, wherein as nonionic surfactant at least 18 to 28 wt .-% of at least one alkoxylated alcohol having 8 to 18 carbon atoms and an average of 4 to 12 moles of ethylene oxide (EO) per mole of alcohol.
- EO ethylene oxide
- liquid composition of the portion contains at least one polyalkoxylated polyamine in addition to the anionic and nonionic surfactant.
- the polyalkoxylated polyamine is a polymer having an N-atom-containing backbone which carries polyalkoxy groups on the N atoms.
- the polyamine has at the ends (terminus and / or side chains) primary amino functions and internally preferably both secondary and tertiary amino functions; if appropriate, it may also have only secondary amino functions on the inside, so that the result is not a branched-chain but a linear polyamine.
- the ratio of primary to secondary amino groups in the polyamine is preferably in the range of 1: 0.5 to 1: 1, 5, in particular in the range of 1: 0.7 to 1: 1.
- the ratio of primary to tertiary amino groups in the polyamine is preferably in the range of 1: 0.2 to 1: 1, in particular in the range of 1: 0.5 to 1: 0.8.
- the polyamine has an average molecular weight in the range of 500 g / mol to 50,000 g / mol, in particular from 550 g / mol to 5000 g / mol.
- the N atoms in the polyamine are separated from one another by alkylene groups, preferably by alkylene groups having 2 to 12 C atoms, in particular 2 to 6 C atoms, wherein not all alkylene groups must have the same C atom number.
- PEI polyethyleneimine
- the primary amino functions in the polyamine can carry 1 or 2 polyalkoxy groups and the secondary amino functions 1 polyalkoxy group, although not every amino function must be alkoxy-substituted.
- the average number of alkoxy groups per primary and secondary amino function in the polyalkoxylated polyamine is preferably from 1 to 100, in particular from 5 to 50.
- the alkoxy groups in the polyalkoxylated polyamine are preferably polypropoxy groups which are bonded directly to N atoms, and / or Polyethoxy groups which are attached to any existing propoxy and N atoms which do not carry propoxy groups.
- Polyethoxylated polyamines are obtained by reacting polyamines with ethylene oxide (EO for short).
- EO ethylene oxide
- the polyalkoxylated polyamines containing ethoxy and propoxy groups are preferably by reaction of polyamines with propylene oxide (in short: PO) and subsequent reaction with ethylene oxide accessible.
- the average number of propoxy groups per primary and secondary amino function in the polyalkoxylated polyamine is preferably 1 to 40, in particular 5 to 20,
- the average number of ethoxy groups per primary and secondary amino function in the polyalkoxylated polyamine is preferably 10 to 60, especially 15 to 30.
- the terminal OH function polyalkoxy substituents in the polyalkoxylated polyamine may be partially or completely etherified with an O-C10, in particular C1-C3-alkyl group.
- Polyalkoxylated polyamines which are particularly preferred according to the invention can be selected from polyamine reacted with 45EO per primary and secondary amino function, PEI's reacted with 43EO per primary and secondary amino function, PEI's reacted with 15EO + 5PO per primary and secondary amino function, PEI's reacted with 15PO + 30EO per primary and secondary amino function secondary amino function, PEI's reacted with 5PO + 39.5EO per primary and secondary amino function, PEI's reacted with 5PO + 15EO per primary and secondary amino function, PEI's reacted with 10PO + 35EO per primary and secondary amino function, PEI's reacted with 15PO + 30EO per primary and secondary amino function secondary amino function and PEI's reacted with 15PO + 5EO per primary and secondary amino function.
- a most preferred alkoxylated polyamine is PEI containing 10 to 20 nitrogen atoms reacted with 20 units of EO per primary or secondary amino function of the polyamine.
- a further preferred subject of the invention is the use of polyalkoxylated polyamines which are obtainable by reacting polyamines with ethylene oxide and optionally additionally propylene oxide. If polyalkyoxylated polyamines are used with ethylene oxide and propylene oxide, the proportion of propylene oxide in the total amount of the alkylene oxide is preferably 2 mol% to 18 mol%, in particular 8 mol% to 15 mol%.
- the liquid composition contains polyalkoxylated polyamines, based on their weight, preferably in a total amount of from 0.5 to 12% by weight, in particular from 5.0 to 9.0% by weight.
- the liquid composition prepared in the water-soluble portion in the first chamber may contain water, wherein, in particular for liquid first compositions, the content of water relative to the entire first composition is at most 20% by weight, preferably at most 15% by weight. is.
- the water content is determined according to the invention by Karl Fischer titration.
- the liquid composition of the portion may contain other ingredients which further improve the performance and / or aesthetic properties of the liquid composition.
- contains the liquid composition preferably additionally one or more substances from the group of builders, enzymes, electrolytes, pH adjusters, perfumes, perfume carriers, fluorescers, dyes, hydrotopes, foam inhibitors, silicone oils, antiredeposition agents, grayness inhibitors, anti-shrinkage agents, anti-wrinkling agents, antimicrobial agents, nonaqueous solvents, Germicides, fungicides, antioxidants, preservatives, corrosion inhibitors, antistatic agents, bittering agents, ironing auxiliaries, repellents and impregnating agents, skin-care active ingredients, swelling and anti-slip agents, softening components and UV absorbers.
- the portion according to the invention is characterized in that upon contact of the portion with water from the portion of the solid-like composition is released before the liquid composition. It is again preferred if, upon contact of the portion with water, the portion releases the solid-like composition at least 60 seconds, in particular at least 100 seconds, before the liquid composition from the portion.
- the wall of the chamber having the solid composition is thinner than the walls of the chamber having the liquid composition.
- at least one contiguous area of 5% (particularly preferably at least 10%) of the total area of the walls of the chamber with the solid composition has a smaller wall thickness (eg thickness of the water-soluble material, for example thickness of the water-soluble film) than the smallest wall thickness of the wall of the liquid composition chamber.
- This embodiment of the film is preferably achieved by means of a thermoforming process wherein the water-soluble film material of the first layer is drawn into a deeper trough of the mold body to form a recess for the chamber of the solid composition than for forming the recess for the chamber of the liquid composition.
- a trough molding having at least two troughs is used, wherein the trough for the recess of the chamber of the solid composition, measured perpendicularly from the bearing surface of the water-soluble foil material before the molding process to the lowest point of the topography of the trough, is deeper than the trough for the bulge of the liquid composition chamber.
- the walls of the chamber of the liquid composition have no continuous surface with a wall thickness less than 40 ⁇ and a size of more than 2% of the total area and the walls of the chamber of the solid composition at least one contiguous area of at least 5% of the total area (more preferably at least 10% of the total area) has a wall thickness of at most 35 ⁇ m, more preferably of at most 30 ⁇ m.
- the wall thickness and area can be experimentally for example by means of computed tomography determine.
- the total area refers to the entire outer surface of the walls of the respective chamber.
- a second subject of the invention is the use of a portion of the first subject of the invention for textile treatment.
- a third subject of the invention is a textile treatment process comprising the steps of dosing a portion of the first subject of the invention to produce a hydrous wash liquor and contacting the resulting wash liquor with fabrics.
- First portion for use in textile treatment comprising at least two chambers with walls of water-soluble material, characterized in that
- At least one of these chambers is a liquid composition containing in each case based on the total weight of the liquid composition in each case a total amount of
- At least one further of these chambers is a solid composition containing in each case based on the total weight of the solid composition in each case a total amount of
- Portion according to item 1 characterized in that based on the total weight of the solid composition peroxide compound in a total amount of 30 to 50% by weight, in particular from 33 to 45 wt .-%, are included.
- Portion according to one of the items 1 to 5 characterized in that as organic bleach activator one or more compounds which form under perhydrolysis aliphatic peroxycarbonic acids having preferably 1 to 10 carbon atoms (in particular 2 to 4 carbon atoms) in the solid composition are included.
- the alkali metal silicate is sodium silicate and / or potassium silicate, in particular sodium silicate.
- the alkali metal silicates are selected from the formula (SiO 2) n (Na 2 O) m (K 2 O) P , where n stands for a positive rational number and m and p independently of one another for a positive rational number, with the provisos that at least one of the parameters m or p is different from 0 and the ratio between n and the sum of m and p between 1: 4 and 4: 1, in particular in the ratio range of 2: 1 to 4 : 1 is.
- n (Na20) m is selected as the alkali metal silicates of the formula (Si02), where n is a positive rational number and m is a positive rational number, with the proviso the ratio between n and m is between 1: 4 and 4: 1, in particular in the ratio range from 2: 1 to 4: 1.
- Portion according to one of the items 8 to 1 characterized in that the weight ratio of alkali silicate to peroxide compound in a range of 10 to 1 to 1 to 4.
- the solid composition contains, based on its total weight, a total amount of 1 to 15% by weight polysaccharide.
- composition according to one of the items 1 to 13, characterized in that as polysaccharide at least one polysaccharide containing at least one anionic group (preferably at least one polysaccharide containing at least one carboxyl group, most preferably carboxymethylcellulose) is included.
- polysaccharide at least one polysaccharide containing at least one anionic group (preferably at least one polysaccharide containing at least one carboxyl group, most preferably carboxymethylcellulose) is included.
- Portion according to one of the items 1 to 14 characterized in that in the liquid composition in each case based on the total weight of the liquid composition in each case a total amount of
- Portion according to one of the items 1 to 17 characterized in that the water-soluble material contains at least one water-soluble polymer.
- Portion according to one of the items 1 to 20 characterized in that a wall of the chamber with the solid composition is thinner than the walls of the chamber with the liquid composition.
- a textile treatment process comprising the steps of dosing a portion of any one of items 1 to 24 to produce an aqueous wash liquor and contacting the resulting wash liquor with fabrics.
- the sodium percarbonate granules were homogeneously coated with 6 g of sodium sulfate by a known method (WO 2008/012181 A1) and placed in a tumble mixer. Instead of this coated sodium percarbonate, 53.3% by weight of sodium percarbonate Q35 (containing 88, 18% by weight of sodium percarbonate, Evonik) can be initially charged. The remaining components were added to the tumble mixer and the compositions prepared by dry blending the components for 3 minutes at 10 revolutions / minute.
- a film M8613 Fa. Monosol (88 ⁇ ) was clamped on a mold with Doppelkavtician.
- the stretched film was heated by contact heating for a period of 2400 ms at 105 ° C and then pulled into the cavity by a vacuum.
- an appropriate amount of the solid composition of Table 1 was pre-weighed into the first cavity and then the amount of liquid composition L1 of Table 2 was added by syringe into the second cavity.
- a top film (M8630, 90 ⁇ ) is placed to seal the cavities and heat-sealed (150 ° C, 1000 ms) with the first film.
- breaking the vacuum the portion of the cavity was removed.
- a wall of the portion's powder chamber was subsequently perforated with a needle. As a result, excess air escaped from the powder chamber of the portion and the film of the wall relaxed.
- test composition from this point on the stopwatch is started, optionally after a predetermined time T in seconds add further test composition
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014218953.5A DE102014218953A1 (de) | 2014-09-19 | 2014-09-19 | Portion für Textilbehandlungsmittel |
PCT/EP2015/071445 WO2016042130A1 (de) | 2014-09-19 | 2015-09-18 | Portion für textilbehandlungsmittel |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3194548A1 true EP3194548A1 (de) | 2017-07-26 |
EP3194548B1 EP3194548B1 (de) | 2019-08-14 |
Family
ID=54148519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15766474.9A Active EP3194548B1 (de) | 2014-09-19 | 2015-09-18 | Portion für textilbehandlungsmittel |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3194548B1 (de) |
DE (1) | DE102014218953A1 (de) |
WO (1) | WO2016042130A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015213943A1 (de) | 2015-07-23 | 2017-01-26 | Henkel Ag & Co. Kgaa | Wasch- oder Reinigungsmittel umfassend wenigstens zwei Phasen |
PL3974505T3 (pl) * | 2020-09-25 | 2024-05-06 | Henkel Ag & Co. Kgaa | Stężony płynny preparat środka piorącego o ulepszonych właściwościach |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4116885A (en) | 1977-09-23 | 1978-09-26 | The Procter & Gamble Company | Anionic surfactant-containing detergent compositions having soil-release properties |
CA1190695A (en) | 1981-05-14 | 1985-07-16 | George J. Stockburger | Anionic textile treating compositions |
DE3324258A1 (de) | 1982-07-09 | 1984-01-12 | Colgate-Palmolive Co., 10022 New York, N.Y. | Nichtionogene waschmittelzusammensetzung mit verbesserter schmutzauswaschbarkeit |
DE3585505D1 (de) | 1984-12-21 | 1992-04-09 | Procter & Gamble | Blockpolyester und aehnliche verbindungen, verwendbar als verschmutzungsentferner in waschmittelzusammensetzungen. |
US4713194A (en) | 1986-04-15 | 1987-12-15 | The Procter & Gamble Company | Block polyester and like compounds having branched hydrophilic capping groups useful as soil release agents in detergent compositions |
US4711730A (en) | 1986-04-15 | 1987-12-08 | The Procter & Gamble Company | Capped 1,2-propylene terephthalate-polyoxyethylene terephthalate polyesters useful as soil release agents |
GB8617255D0 (en) | 1986-07-15 | 1986-08-20 | Procter & Gamble Ltd | Laundry compositions |
GB8629936D0 (en) | 1986-12-15 | 1987-01-28 | Procter & Gamble | Laundry compositions |
US4721580A (en) | 1987-01-07 | 1988-01-26 | The Procter & Gamble Company | Anionic end-capped oligomeric esters as soil release agents in detergent compositions |
SG76454A1 (en) | 1988-08-26 | 2000-11-21 | Procter & Gamble | Soil release agents having allyl-derived sulfonated end caps |
US4973416A (en) | 1988-10-14 | 1990-11-27 | The Procter & Gamble Company | Liquid laundry detergent in water-soluble package |
DE4001415A1 (de) | 1990-01-19 | 1991-07-25 | Basf Ag | Polyester, die nichtionische tenside einkondensiert enthalten, ihre herstellung und ihre verwendung in waschmitteln |
GB2361688A (en) | 2000-04-28 | 2001-10-31 | Procter & Gamble | Multi-compartment water soluble pouch for detergents |
GB2365018A (en) * | 2000-07-24 | 2002-02-13 | Procter & Gamble | Water soluble pouches |
DE10149719A1 (de) * | 2001-12-21 | 2003-04-24 | Henkel Kgaa | Kompartiment-Hohlkörper |
EP1378562A1 (de) * | 2002-07-03 | 2004-01-07 | The Procter & Gamble Company | Waschmittelzusammensetzung |
GB2390840A (en) * | 2002-07-17 | 2004-01-21 | Reckitt Benckiser | Water-soluble container with plural compartments |
ATE411375T1 (de) | 2006-07-27 | 2008-10-15 | Evonik Degussa Gmbh | Umhüllte natriumpercarbonatpartikel |
ATE534724T1 (de) | 2007-07-02 | 2011-12-15 | Procter & Gamble | Wäschebehandlungsverfahren |
DE602007013545D1 (de) | 2007-07-02 | 2011-05-12 | Procter & Gamble | Mehrkammerbeutel enthaltend Waschmittel |
US20110240510A1 (en) * | 2010-04-06 | 2011-10-06 | Johan Maurice Theo De Poortere | Optimized release of bleaching systems in laundry detergents |
EP2527421A1 (de) * | 2011-05-23 | 2012-11-28 | The Procter & Gamble Company | Wasserlöslicher Dosiereinheitbeutel mit Chelant |
-
2014
- 2014-09-19 DE DE102014218953.5A patent/DE102014218953A1/de not_active Withdrawn
-
2015
- 2015-09-18 WO PCT/EP2015/071445 patent/WO2016042130A1/de active Application Filing
- 2015-09-18 EP EP15766474.9A patent/EP3194548B1/de active Active
Also Published As
Publication number | Publication date |
---|---|
WO2016042130A1 (de) | 2016-03-24 |
EP3194548B1 (de) | 2019-08-14 |
DE102014218953A1 (de) | 2016-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018229039A1 (de) | Viskoelastische, festförmige tensidzusammensetzung | |
WO2016042132A1 (de) | Mittel für die textilbehandlung, enthaltend mindestens einen anionischen, aromatischen polyester und mindestens einen nichtionischen, aromatischen polyester | |
EP3194548B1 (de) | Portion für textilbehandlungsmittel | |
EP2958984A1 (de) | Wasch- oder reinigungsmittel mit verbesserter reinigungsleistung | |
EP3194550B1 (de) | Festförmige zusammensetzung für die textilbehandlung | |
EP3472289B1 (de) | Konzentrierte flüssigwaschmittel enthaltend polymere | |
EP3472290B1 (de) | Konzentrierte isotrope flüssigwaschmittel enthaltend polymere | |
EP3194551B1 (de) | Festförmige zusammensetzung für die textilbehandlung | |
EP3350300A1 (de) | Wasserlöslicher behälter mit einer beschichtung | |
EP3472293B1 (de) | Konzentriertes flüssigwaschmittel mit konstantem ph-wert | |
DE102016209326A1 (de) | Kombination von Textilbehandlungsmittel und Farbfangtuch | |
DE102017209213A1 (de) | Konzentrierte isotrope Flüssigwaschmittel enthaltend Polymere | |
DE102016206645A1 (de) | Waschmittel mit verbesserter Enzymstabilität | |
EP3472291B1 (de) | Konzentrierte isotrope flüssigwaschmittel enthaltend polymere | |
DE102016209323A1 (de) | Kombination von Textilbehandlungsmittel und Farbfangtuch | |
EP3130656B1 (de) | Wasserarme mittel für die textilbehandlung, enthaltend mindestens eine spezielle kationische verbindung und mindestens ein zusätzliches tensid | |
DE102017209212A1 (de) | Konzentrierte isotrope Flüssigwaschmittel enthaltend Polymere | |
EP3390605A1 (de) | Flüssige wasch- oder reinigungsmittel enthaltend acylhydrazon und reduktionsmittel | |
DE102014221905A1 (de) | Waschmittel mit verbesserter Enzymstabilität |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20161209 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190402 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1167030 Country of ref document: AT Kind code of ref document: T Effective date: 20190815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015010006 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190814 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191114 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191114 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191115 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015010006 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190918 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190918 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 |
|
26N | No opposition filed |
Effective date: 20200603 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150918 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1167030 Country of ref document: AT Kind code of ref document: T Effective date: 20200918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190814 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230920 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230928 Year of fee payment: 9 Ref country code: DE Payment date: 20230920 Year of fee payment: 9 |