EP3189557B1 - Antenna with mechanically reconfigurable radiation pattern - Google Patents

Antenna with mechanically reconfigurable radiation pattern Download PDF

Info

Publication number
EP3189557B1
EP3189557B1 EP15757496.3A EP15757496A EP3189557B1 EP 3189557 B1 EP3189557 B1 EP 3189557B1 EP 15757496 A EP15757496 A EP 15757496A EP 3189557 B1 EP3189557 B1 EP 3189557B1
Authority
EP
European Patent Office
Prior art keywords
slots
antenna
antenna according
grooves
open end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15757496.3A
Other languages
German (de)
French (fr)
Other versions
EP3189557A1 (en
Inventor
Antoine CHAULOUX
Mohamed Himdi
Franck Colombel
Antoine JOUADE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3189557A1 publication Critical patent/EP3189557A1/en
Application granted granted Critical
Publication of EP3189557B1 publication Critical patent/EP3189557B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/01Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the shape of the antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines

Definitions

  • the present invention relates to a reconfigurable radiation pattern antenna.
  • the variation of the radiation pattern of an antenna can be effected by various methods. It is known, for example, to use a change in the characteristics specific to a radiating source by polarization of a dielectric. It is also known to introduce active circuits ensuring, among others, phase shift or switching functions. In addition to the need to implement electronic circuits with potentially limited power handling, some of these techniques require a discontinuous reconfiguration of a radiation pattern.
  • US 3,274,602 discloses a reconfigurable radiation pattern horn antenna. The antenna includes flaps for varying the height of the radiating aperture of the horn, which adjusts the width of the lobe in the vertical plane.
  • the present invention aims to overcome these disadvantages.
  • the slots have a depth substantially equal to one quarter of the predefined wavelength.
  • the slots and the second open end have a length substantially equal to three times the predefined wavelength.
  • this antenna further comprises first grooves in the ground plane, between the radiating slots and the second open end.
  • the radiating slots and the first grooves preferably have substantially the same depth.
  • each radiating slot is discontinuous and consists of a set of elongated elementary slots, spaced apart from each other.
  • the length of each elementary slot is substantially equal to half the predefined wavelength.
  • the antenna object of the invention further comprises second grooves in the ground plane, these second grooves connecting the elementary slots of the same radiating slot to each other.
  • each of the second grooves has a length substantially equal to 1.5 times the predefined wavelength.
  • the second grooves preferably have a depth substantially equal to one quarter of the predefined wavelength.
  • the sectoral horn is folded and has a minimum radius of curvature, chosen to maintain substantially constant the distribution of the phase of the electromagnetic field present in the second open end of the sectoral horn.
  • the antenna is sized to operate at a frequency F equal to 2.47 GHz. It is recalled that the predefined wavelength ⁇ , associated with this predefined frequency F, is equal to c / F where c represents the speed of light in a vacuum.
  • the radiation pattern of the antenna varies continuously in the vertical plane: the half-power aperture of the main lobe varies continuously from 20 ° to 70 °.
  • the radiation pattern in the horizontal plane remains stable; and the corresponding half-power aperture of the main lobe is 30 °.
  • the described antenna uses a sectoral horn, associated with radiating slots. Shutters move mechanically over the horn and slots. This mechanical movement generates the reconfiguration of the radiation pattern.
  • This antenna is made of an electrically conductive material, preferably a metal. This limits the losses and gives the antenna a potentially high power capacity, allowing it to withstand power levels of the order of 1 kW.
  • the antenna A comprises. It firstly comprises a metal sectoral horn 2 ( Figures 1A and 1B ) which is dimensioned to obtain a half-power opening of the main lobe, equal to 20 ° in the vertical plane. This horn 2 will flare from a first open end 4 to a second open end 6 called "radiating opening". The interior of the cornet is filled with air.
  • the radiating opening 6 of the horn 2 is integrated in a metal ground plane 8 and has an elongated shape.
  • the half-power opening of such a radiating source is very wide in the horizontal plane: it is about 130 °.
  • radiating slots short-circuited 10, 12 ( Figures 2A and 2B ) are associated to the horn to produce a network effect (English, grating) which focuses the radiation pattern in the horizontal plane and reduced opening at half power.
  • These slots are integrated in the ground plane 8. They have an elongate shape and are arranged on either side of the radiating opening 6, parallel thereto. They are short-circuited by means of a metal cover (not shown), located under the ground plane, and are supplied by coupling with the electromagnetic energy coming out of the radiating opening 6 of the sectoral horn 2.
  • the depth of these slots 10, 12 is equal to one quarter of the wavelength ⁇ , corresponding to the operating frequency F of the antenna. This minimizes the reactive energy of these slots to maximize the radiation thereof.
  • G the distance between the center of the radiating opening 6 and the center of the short-circuited slot 10 or 12.
  • W the width of each slot 10 or 12.
  • the distance G and width W are respectively 85 mm and 28 mm.
  • the coupling of the electromagnetic energy of the opening 6 of the horn 2 towards the slots 10 and 12 is furthermore optimized thanks to the integration of grooves 14 and 16 ( Figures 3A and 3B ) as seen, these grooves 14 and 16 are between the slots 10, 12 and the opening 6 and go from the latter to slots 10 and 12.
  • the grooves 14 (respectively 16) extend from the top (respectively bottom) of the opening 6 to the top (respectively bottom) of the slots 10 and 12.
  • the depth of the grooves 14 and 16 is identical to that of the short-circuited slots 10 and 12.
  • the width W R of these grooves is of limited size with respect to the wavelength ⁇ , namely less than 0.1 ⁇ ( in the example described w R is 5 mm) in order to reduce the bulk.
  • the length of the short-circuited slots 10, 12 and the opening 6 of the sectoral horn 2 is approximately 3 times the wavelength ⁇ (corresponding to the operating frequency F).
  • each radiating gap 10 or 12 is discontinuous and consists of a set of elongated elementary slits 18 ( Figures 5A and 5B ), spaced apart from each other. And the length L of each elementary slot 18 is substantially equal to ⁇ / 2.
  • other grooves 20 are integrated in the ground plane 8 between these elementary slots 18. These other grooves 20 connect to each other the elementary slots 18 of the same slot 10 or 12.
  • the depth of these other grooves 20 is substantially equal to a quarter of the wavelength ⁇ (corresponding to the operating frequency F).
  • the width W R2 of these other grooves 20 is 3 mm in the example and the total length of each groove 20 is substantially 1.5 ⁇ . In the example, this length equal to 1.5 ⁇ is obtained by giving the grooves 20 a zigzag configuration.
  • This length ensures the necessary correction so that the phase distribution of the electromagnetic fields radiated by the elementary slits 18 is the even for each of them as illustrated by the figure 6 where the scale on the right is graduated in degrees.
  • parasitic elements are arranged above the radiating opening 6 and the radiating slots 10, 12. These elements are metal shutters 22 and 24, mechanically deployable. , continuously, and located 3 cm above the ground plane 8 ( Figures 7A, 7B and 7C ).
  • the flaps 22 and 24 can be made in the form of telescopic flaps that are fixed to the ground plane 8.
  • the variation in distance d between the flaps 22 and 24 causes the variation of the half-power aperture of the radiation pattern in the vertical plane.
  • Table 1 shows some values of the half-power aperture in the vertical plane and in the horizontal plane as a function of the distance d.
  • Table 1 d 107.5 mm 205 mm 302.5 mm 400 mm Vertical opening in the radiation pattern 70.3 ° 31.5 ° 23.6 ° 19 ° Horizontal opening in the radiation pattern 26.5 ° 32.5 ° 31.5 ° 30 °
  • the intensity I (in dB) is plotted as a function of the angle ⁇ (in degrees).
  • the latter has a standard size for operation at 2.47 GHz (height 43 mm and width 86 mm).
  • a monopole antenna 26 is introduced into this waveguide 25 to feed the antenna A.
  • the monopole antenna 26 is soldered to a connector N referenced 30, to be powered by a not shown coaxial cable.
  • the waveguide 25 is closed by a short circuit 32.
  • the lengths L1, L2, L3 and L4 are respectively 64 mm, 392 mm, 99 mm and 32 mm.
  • the various dimensions relating to the monopole antenna 26 are noted on the figure 11 .
  • Part I (respectively II) of the figure 11 corresponds to what is inside (respectively outside) of the waveguide 25.
  • the diameters denoted D1, D2 and D3 are respectively 6 mm, 14.5 mm and 11.5 mm and the lengths noted 11, 12 and 13 are respectively 6 mm, 11 mm and 11.5 mm.
  • the simulated adaptation of the antenna A is less than -14 dB for any value of the spacing d.
  • the gain obtained in simulation varies from 11 to 16.5 dBi. The highest gain is obtained when the half-power aperture in the vertical plane is the smallest.
  • the sectoral horn 2 is folded in order to "flatten" it against the ground plane 8.
  • the minimum radius of curvature noted R on the figure 12 C is 10 mm. If this ray is not respected, the phase distribution of the electromagnetic field present in the opening 6 of the horn 2 is no longer constant. In this case, the radiation pattern is less focused and the half-power aperture in the vertical plane increases. It becomes almost impossible to maintain an angle of 20 °, even with a distance d of 400 mm.

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention concerne une antenne à diagramme de rayonnement reconfigurable.The present invention relates to a reconfigurable radiation pattern antenna.

Elle trouve notamment des applications dans des installations d'essai de champs électromagnétiques.It finds particular applications in electromagnetic field test facilities.

Parmi les caractéristiques radioélectriques d'une antenne, la maîtrise du rayonnement relève d'une importance particulière. Combiner la capacité à illuminer une large surface avec la faculté de focaliser l'énergie dans une direction privilégiée requiert l'élaboration d'une antenne de type « reconfigurable en diagramme de rayonnement ». De plus, dans le cadre de certaines applications, cette antenne doit être pourvue d'une tenue en puissance élevée. La présente invention vise à répondre à ces critères.Among the radio characteristics of an antenna, radiation control is of particular importance. Combining the ability to illuminate a large area with the ability to focus energy in a preferred direction requires the development of a "reconfigurable radiation pattern" antenna. In addition, in the context of certain applications, this antenna must be provided with high power withstand. The present invention aims to meet these criteria.

ÉTAT DE LA TECHNIQUE ANTÉRIEURESTATE OF THE PRIOR ART

La variation du diagramme de rayonnement d'une antenne peut être effectuée selon divers procédés. Il est par exemple connu d'utiliser un changement des caractéristiques propres à une source rayonnante par polarisation d'un diélectrique. Il est également connu d'introduire des circuits actifs assurant, entre autres, des fonctions de déphasage ou de commutation. Outre la nécessité de mettre en oeuvre des circuits électroniques ayant potentiellement une tenue en puissance limitée, certaines de ces techniques imposent une reconfiguration discontinue d'un diagramme de rayonnement. US 3,274,602 divulgue une antenne cornet à diagramme de rayonnement reconfigurable. L'antenne comprend des volets permettant de modifier la hauteur de l'ouverture rayonnante du cornet, ce qui permet d'ajuster la largeur du lobe dans le plan vertical.The variation of the radiation pattern of an antenna can be effected by various methods. It is known, for example, to use a change in the characteristics specific to a radiating source by polarization of a dielectric. It is also known to introduce active circuits ensuring, among others, phase shift or switching functions. In addition to the need to implement electronic circuits with potentially limited power handling, some of these techniques require a discontinuous reconfiguration of a radiation pattern. US 3,274,602 discloses a reconfigurable radiation pattern horn antenna. The antenna includes flaps for varying the height of the radiating aperture of the horn, which adjusts the width of the lobe in the vertical plane.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

La présente invention a pour but de remédier à ces inconvénients.The present invention aims to overcome these disadvantages.

De façon précise, la présente invention a pour objet une antenne à diagramme de rayonnement reconfigurable, ayant une fréquence de fonctionnement prédéfinie, correspondant à une longueur d'onde prédéfinie, cette antenne étant caractérisée en ce qu'elle comprend :

  • un plan de masse électriquement conducteur,
  • un cornet sectoriel électriquement conducteur, ayant des première et deuxième extrémités ouvertes et allant en s'évasant de la première à la deuxième extrémité ouverte, la deuxième extrémité ouverte étant intégrée au plan de masse et de forme allongée,
  • des fentes rayonnantes court-circuitées, de forme allongée, intégrées au plan de masse, disposées de part et d'autre de la deuxième extrémité ouverte, parallèlement à celle-ci, et
  • des volets électriquement conducteurs, disposés au-dessus des fentes et de la deuxième extrémité ouverte, et déployables mécaniquement de manière continue pour modifier le diagramme de rayonnement de l'antenne.
Precisely, the present invention relates to a reconfigurable radiation pattern antenna, having a predefined operating frequency, corresponding to a predefined wavelength, this antenna being characterized in that it comprises:
  • an electrically conductive ground plane,
  • an electrically conductive sectoral horn, having first and second ends open and flaring from the first to the second open end, the second open end being integrated with the ground plane and elongate shape,
  • elongate short-circuit radiating slots integrated in the ground plane, arranged on both sides of the second open end, parallel to the latter, and
  • electrically conductive shutters, disposed above the slots and the second open end, and mechanically deployable continuously to change the radiation pattern of the antenna.

De préférence, les fentes ont une profondeur sensiblement égale au quart de la longueur d'onde prédéfinie.Preferably, the slots have a depth substantially equal to one quarter of the predefined wavelength.

De préférence également, les fentes et la deuxième extrémité ouverte ont une longueur sensiblement égale au triple de la longueur d'onde prédéfinie.Also preferably, the slots and the second open end have a length substantially equal to three times the predefined wavelength.

Selon un mode de réalisation préféré de l'antenne, objet de l'invention, cette antenne comprend en outre des premières rainures dans le plan de masse, entre les fentes rayonnantes et la deuxième extrémité ouverte.According to a preferred embodiment of the antenna, object of the invention, this antenna further comprises first grooves in the ground plane, between the radiating slots and the second open end.

Dans ce cas, les fentes rayonnantes et les premières rainures ont de préférence sensiblement la même profondeur.In this case, the radiating slots and the first grooves preferably have substantially the same depth.

Selon un mode de réalisation préféré de l'invention, chaque fente rayonnante est discontinue et constituée d'un ensemble de fentes élémentaires allongées, espacées les unes des autres.According to a preferred embodiment of the invention, each radiating slot is discontinuous and consists of a set of elongated elementary slots, spaced apart from each other.

De préférence, la longueur de chaque fente élémentaire est sensiblement égale à la moitié de la longueur d'onde prédéfinie.Preferably, the length of each elementary slot is substantially equal to half the predefined wavelength.

De préférence, l'antenne, objet de l'invention, comprend en outre des deuxièmes rainures dans le plan de masse, ces deuxièmes rainures reliant les fentes élémentaires d'une même fente rayonnante les unes aux autres.Preferably, the antenna object of the invention further comprises second grooves in the ground plane, these second grooves connecting the elementary slots of the same radiating slot to each other.

De préférence, chacune des deuxièmes rainures a une longueur sensiblement égale à 1,5 fois la longueur d'onde prédéfinie.Preferably, each of the second grooves has a length substantially equal to 1.5 times the predefined wavelength.

Les deuxièmes rainures ont de préférence une profondeur sensiblement égale au quart de la longueur d'onde prédéfinie.The second grooves preferably have a depth substantially equal to one quarter of the predefined wavelength.

Selon un mode de réalisation avantageux de l'invention, le cornet sectoriel est replié et présente un rayon de courbure minimum, choisi pour maintenir sensiblement constante la répartition de la phase du champ électromagnétique présent dans la deuxième extrémité ouverte du cornet sectoriel.According to an advantageous embodiment of the invention, the sectoral horn is folded and has a minimum radius of curvature, chosen to maintain substantially constant the distribution of the phase of the electromagnetic field present in the second open end of the sectoral horn.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :

  • les figures 1A et 1B montrent un exemple de l'antenne, objet de l'invention, comprenant un cornet sectoriel dont l'ouverture rayonnante est intégrée dans un plan de masse,
  • les figures 2A et 2B montrent le cornet sectoriel associé à des fentes rayonnantes court-circuitées,
  • les figures 3A et 3B montrent des rainures intégrées entre les fentes rayonnantes et l'ouverture rayonnante du cornet sectoriel pour favoriser le couplage,
  • la figure 4 montre la répartition de la phase du champ électromagnétique présent dans l'ouverture rayonnante du cornet sectoriel ainsi que dans les fentes rayonnantes,
  • les figures 5A et 5B montrent les fentes rayonnantes divisées en fentes plus petites, entre lesquelles sont ajoutées des rainures,
  • la figure 6 est une illustration d'une répartition de phase identique dans chaque zone correspondant à une fente plus petite,
  • les figures 7A, 7B et 7C montrent des volets positionnés au-dessus des fentes rayonnantes et de l'ouverture rayonnante du cornet sectoriel pour trois configurations d'écartement des volets,
  • la figure 8 montre des diagrammes de rayonnement théoriques dans le plan vertical pour plusieurs valeurs de cet écartement,
  • la figure 9 montre des diagrammes de rayonnement théoriques dans le plan horizontal pour plusieurs valeurs de cet écartement,
  • les figures 10A, 10B et 10C montrent une alimentation de l'antenne par une antenne monopôle, introduite dans un guide d'onde prolongeant le cornet sectoriel,
  • la figure 11 montre l'antenne monopôle alimentant le guide d'onde, avec l'ensemble des dimensions correspondantes, et
  • les figures 12A, 12B et 12C montrent un autre exemple de l'antenne à diagramme reconfigurable, dans lequel le cornet sectoriel est replié.
The present invention will be better understood on reading the description of exemplary embodiments given below, purely by way of indication and in no way limiting, with reference to the appended drawings in which:
  • the Figures 1A and 1B show an example of the antenna, object of the invention, comprising a sectoral horn whose radiant opening is integrated in a ground plane,
  • the Figures 2A and 2B show the sectorial horn associated with short radiating slots,
  • the Figures 3A and 3B show grooves integrated between the radiating slots and the radiating opening of the sector horn to promote coupling,
  • the figure 4 shows the distribution of the phase of the electromagnetic field present in the radiating aperture of the sector horn as well as in the radiating slits,
  • the Figures 5A and 5B show the radiating slots divided into smaller slots, between which are added grooves,
  • the figure 6 is an illustration of an identical phase distribution in each zone corresponding to a smaller slot,
  • the Figures 7A, 7B and 7C show shutters positioned above the radiating slots and the radiating aperture of the sectoral horn for three flap spacing configurations,
  • the figure 8 shows theoretical radiation diagrams in the vertical plane for several values of this spacing,
  • the figure 9 shows theoretical radiation diagrams in the horizontal plane for several values of this spacing,
  • the Figures 10A, 10B and 10C show a supply of the antenna by a monopole antenna, introduced into a waveguide extending the sectoral horn,
  • the figure 11 shows the monopole antenna supplying the waveguide, with all the corresponding dimensions, and
  • the Figures 12A , 12B and 12C show another example of the reconfigurable diagram antenna, in which the sectoral horn is folded.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS

On donne ci-après un exemple de l'antenne, objet de l'invention. Dans cet exemple (donné à titre purement indicatif et nullement limitatif), l'antenne est dimensionnée pour fonctionner à une fréquence F égale à 2,47 GHz. On rappelle que la longueur d'onde λ prédéfinie, associée à cette fréquence prédéfinie F, est égale à c/F où c représente la vitesse de la lumière dans le vide.An example of the antenna, object of the invention, is given below. In this example (given purely by way of indication and in no way limiting), the antenna is sized to operate at a frequency F equal to 2.47 GHz. It is recalled that the predefined wavelength λ, associated with this predefined frequency F, is equal to c / F where c represents the speed of light in a vacuum.

En outre, le diagramme de rayonnement de l'antenne varie continûment dans le plan vertical : l'ouverture à mi-puissance du lobe principal varie continûment de 20° à 70°. Le diagramme de rayonnement dans le plan horizontal reste, quant à lui, stable ; et l'ouverture à mi-puissance correspondante du lobe principal vaut 30°.In addition, the radiation pattern of the antenna varies continuously in the vertical plane: the half-power aperture of the main lobe varies continuously from 20 ° to 70 °. The radiation pattern in the horizontal plane remains stable; and the corresponding half-power aperture of the main lobe is 30 °.

L'antenne décrite utilise un cornet sectoriel, associé à des fentes rayonnantes. Des volets se déplacent mécaniquement au-dessus du cornet et des fentes. Ce mouvement mécanique engendre la reconfiguration du diagramme de rayonnement.The described antenna uses a sectoral horn, associated with radiating slots. Shutters move mechanically over the horn and slots. This mechanical movement generates the reconfiguration of the radiation pattern.

L'ensemble de la structure de cette antenne est fait d'un matériau électriquement conducteur, de préférence un métal. On limite ainsi les pertes et l'on donne à l'antenne une tenue en puissance potentiellement élevée, lui permettant de supporter des niveaux de puissance de l'ordre de 1 kW.The entire structure of this antenna is made of an electrically conductive material, preferably a metal. This limits the losses and gives the antenna a potentially high power capacity, allowing it to withstand power levels of the order of 1 kW.

On va maintenant décrire de façon détaillée l'antenne à diagramme de rayonnement reconfigurable, donnée à titre d'exemple.The reconfigurable radiation pattern antenna given by way of example will now be described in detail.

On considère tout d'abord la source rayonnante que comporte l'antenne A. Elle comprend en premier lieu un cornet sectoriel métallique 2 (figures 1A et 1B) qui est dimensionné afin d'obtenir une ouverture à mi-puissance du lobe principal, égale à 20° dans le plan vertical. Ce cornet 2 va en s'évasant d'une première extrémité ouverte 4 à une deuxième extrémité ouverte 6 appelée « ouverture rayonnante ». L'intérieur du cornet est rempli d'air. L'ouverture rayonnante 6 du cornet 2 est intégrée à un plan de masse métallique 8 et a une forme allongée.We first consider the radiating source that the antenna A comprises. It firstly comprises a metal sectoral horn 2 ( Figures 1A and 1B ) which is dimensioned to obtain a half-power opening of the main lobe, equal to 20 ° in the vertical plane. This horn 2 will flare from a first open end 4 to a second open end 6 called "radiating opening". The interior of the cornet is filled with air. The radiating opening 6 of the horn 2 is integrated in a metal ground plane 8 and has an elongated shape.

L'ouverture à mi-puissance d'une telle source rayonnante est très large dans le plan horizontal : elle vaut environ 130°. Pour réduire cette ouverture, des fentes rayonnantes court-circuitées 10, 12 (figures 2A et 2B) sont associées au cornet afin de produire un effet de réseau (en anglais, grating) qui focalise le diagramme de rayonnement dans le plan horizontal et réduit l'ouverture à mi-puissance. Ces fentes sont intégrées au plan de masse 8. Elles ont une forme allongée et sont disposées de part et d'autre de l'ouverture rayonnante 6, parallèlement à celle-ci. Elles sont court-circuitées au moyen d'un capot métallique (non représenté), situé sous le plan de masse, et sont alimentées par couplage avec l'énergie électromagnétique sortant de l'ouverture rayonnante 6 du cornet sectoriel 2.The half-power opening of such a radiating source is very wide in the horizontal plane: it is about 130 °. To reduce this opening, radiating slots short-circuited 10, 12 ( Figures 2A and 2B ) Are associated to the horn to produce a network effect (English, grating) which focuses the radiation pattern in the horizontal plane and reduced opening at half power. These slots are integrated in the ground plane 8. They have an elongate shape and are arranged on either side of the radiating opening 6, parallel thereto. They are short-circuited by means of a metal cover (not shown), located under the ground plane, and are supplied by coupling with the electromagnetic energy coming out of the radiating opening 6 of the sectoral horn 2.

La profondeur de ces fentes 10, 12 est égale au quart de la longueur d'onde λ, correspondant à la fréquence de fonctionnement F de l'antenne. Cela permet de minimiser l'énergie réactive de ces fentes en vue de maximiser le rayonnement de celles-ci.The depth of these slots 10, 12 is equal to one quarter of the wavelength λ, corresponding to the operating frequency F of the antenna. This minimizes the reactive energy of these slots to maximize the radiation thereof.

On note G la distance entre le centre de l'ouverture rayonnante 6 et le centre de la fente court-circuitée 10 ou 12. Et l'on note W la largeur de chaque fente 10 ou 12. Dans l'exemple donné, la distance G et la largeur W valent respectivement 85 mm et 28 mm. Ces valeurs sont optimisées afin de limiter le déphasage entre les champs électromagnétiques rayonnés par l'ouverture 6 du cornet 2 et par les fentes 10 et 12.We denote G the distance between the center of the radiating opening 6 and the center of the short-circuited slot 10 or 12. And we denote by W the width of each slot 10 or 12. In the example given, the distance G and width W are respectively 85 mm and 28 mm. These values are optimized in order to limit the phase difference between the electromagnetic fields radiated by the opening 6 of the horn 2 and the slots 10 and 12.

Le couplage de l'énergie électromagnétique de l'ouverture 6 du cornet 2 vers les fentes 10 et 12 est en outre optimisé grâce à l'intégration de rainures 14 et 16 (figures 3A et 3B) dans le plan de masse 8. Comme on le voit, ces rainures 14 et 16 sont comprises entre les fentes 10, 12 et l'ouverture 6 et vont de cette dernière jusqu'aux fentes 10 et 12. Les rainures 14 (respectivement 16) s'étendent du haut (respectivement du bas) de l'ouverture 6 au haut (respectivement au bas) des fentes 10 et 12.The coupling of the electromagnetic energy of the opening 6 of the horn 2 towards the slots 10 and 12 is furthermore optimized thanks to the integration of grooves 14 and 16 ( Figures 3A and 3B ) as seen, these grooves 14 and 16 are between the slots 10, 12 and the opening 6 and go from the latter to slots 10 and 12. The grooves 14 (respectively 16) extend from the top (respectively bottom) of the opening 6 to the top (respectively bottom) of the slots 10 and 12.

La profondeur des rainures 14 et 16 est identique à celle des fentes court-circuitées 10 et 12. La largeur WR de ces rainures est de taille limitée par rapport à la longueur d'onde λ, à savoir inférieur à 0,1 λ (dans l'exemple décrit wR vaut 5 mm) afin de réduire l'encombrement. La longueur des fentes court-circuitées 10, 12 et de l'ouverture 6 du cornet sectoriel 2 vaut environ 3 fois la longueur d'onde λ (correspondant à la fréquence de fonctionnement F).The depth of the grooves 14 and 16 is identical to that of the short-circuited slots 10 and 12. The width W R of these grooves is of limited size with respect to the wavelength λ, namely less than 0.1 λ ( in the example described w R is 5 mm) in order to reduce the bulk. The length of the short-circuited slots 10, 12 and the opening 6 of the sectoral horn 2 is approximately 3 times the wavelength λ (corresponding to the operating frequency F).

Cette configuration donne lieu à une répartition variable de la phase dans les fentes 10 et 12. Ces variations sont visibles sur la figure 4 qui montre la répartition de la phase du champ électromagnétique présent dans l'ouverture 6 et dans les fentes 10 et 12. A droite de la figure 4, l'échelle est graduée en degrés.This configuration gives rise to a variable distribution of the phase in the slots 10 and 12. These variations are visible on the figure 4 which shows the distribution of the phase of the electromagnetic field present in the opening 6 and in the slots 10 and 12. To the right of the figure 4 , the scale is graduated in degrees.

Afin d'assurer une répartition constante de la phase du champ électromagnétique dans les fentes rayonnantes 10, 12 qui sont adjacentes à l'ouverture 6 du cornet 2, ces fentes 10 et 12 sont discrétisées par portions dont la longueur vaut une demi-onde. Plus précisément, chaque fente rayonnante 10 ou 12 est discontinue et constituée d'un ensemble de fentes élémentaires allongées 18 (figures 5A et 5B), espacées les unes des autres. Et la longueur L de chaque fente élémentaire 18 est sensiblement égale à λ/2.In order to ensure a constant distribution of the phase of the electromagnetic field in the radiating slots 10, 12 which are adjacent to the opening 6 of the horn 2, these slots 10 and 12 are discretized in portions whose length is half a wave. More precisely, each radiating gap 10 or 12 is discontinuous and consists of a set of elongated elementary slits 18 ( Figures 5A and 5B ), spaced apart from each other. And the length L of each elementary slot 18 is substantially equal to λ / 2.

De plus, d'autres rainures 20 (figures 5A et 5B) sont intégrées dans le plan de masse 8, entre ces fentes élémentaires 18. Ces autres rainures 20 relient les unes aux autres les fentes élémentaires 18 d'une même fente 10 ou 12. La profondeur de ces autres rainures 20 vaut sensiblement le quart de la longueur d'onde λ (correspondant à la fréquence de fonctionnement F). La largeur WR2 de ces autres rainures 20 vaut 3 mm dans l'exemple et la longueur totale de chaque rainure 20 vaut sensiblement 1,5 λ. Dans l'exemple, cette longueur égale à 1,5 λ est obtenue en donnant aux rainures 20 une configuration en zigzag.In addition, other grooves 20 ( Figures 5A and 5B ) are integrated in the ground plane 8 between these elementary slots 18. These other grooves 20 connect to each other the elementary slots 18 of the same slot 10 or 12. The depth of these other grooves 20 is substantially equal to a quarter of the wavelength λ (corresponding to the operating frequency F). The width W R2 of these other grooves 20 is 3 mm in the example and the total length of each groove 20 is substantially 1.5 λ. In the example, this length equal to 1.5 λ is obtained by giving the grooves 20 a zigzag configuration.

Cette longueur assure la correction nécessaire pour que la répartition de phase des champs électromagnétiques rayonnés par les fentes élémentaires 18 soit la même pour chacune d'elles comme l'illustre la figure 6 où l'échelle située à droite est graduée en degrés.This length ensures the necessary correction so that the phase distribution of the electromagnetic fields radiated by the elementary slits 18 is the even for each of them as illustrated by the figure 6 where the scale on the right is graduated in degrees.

L'association et l'agencement, à l'aide des rainures 14, 16 et 20, de fentes court-circuitées avec le cornet sectoriel permet de réduire à une valeur de 30° l'ouverture à mi-puissance du diagramme de rayonnement dans le plan horizontal.The association and the arrangement, by means of the grooves 14, 16 and 20, of short-circuited slots with the sectoral horn makes it possible to reduce to a value of 30 ° the half-power opening of the radiation pattern in the horizontal plane.

On considère à présent le système de reconfiguration du diagramme de rayonnement dont est pourvue l'antenne.We now consider the system of reconfiguration of the radiation pattern which is provided with the antenna.

Afin d'obtenir la variation de ce diagramme de rayonnement dans le plan vertical, des éléments parasites sont disposés au-dessus de l'ouverture rayonnante 6 et des fentes rayonnantes 10, 12. Ces éléments sont des volets métalliques 22 et 24, déployables mécaniquement, de manière continue, et situés à 3 cm au-dessus du plan de masse 8 (figures 7A, 7B et 7C).In order to obtain the variation of this radiation pattern in the vertical plane, parasitic elements are arranged above the radiating opening 6 and the radiating slots 10, 12. These elements are metal shutters 22 and 24, mechanically deployable. , continuously, and located 3 cm above the ground plane 8 ( Figures 7A, 7B and 7C ).

Les volets 22 et 24 peuvent être réalisés sous la forme de volets télescopiques que l'on fixe au plan de masse 8.The flaps 22 and 24 can be made in the form of telescopic flaps that are fixed to the ground plane 8.

La variation de distance d entre les volets 22 et 24 provoque la variation de l'ouverture à mi-puissance du diagramme de rayonnement dans le plan vertical. Les figures 7A, 7B et 7C correspondent respectivement à trois configurations d'écartement des volets 22 et 24 : d = 0,8 λ, d = 1,6 λ et d = 3,3 λ.The variation in distance d between the flaps 22 and 24 causes the variation of the half-power aperture of the radiation pattern in the vertical plane. The Figures 7A, 7B and 7C correspond respectively to three flap spacing configurations 22 and 24: d = 0.8λ, d = 1.6λ and d = 3.3λ.

Le tableau 1 ci-dessous regroupe quelques valeurs de l'ouverture à mi-puissance dans le plan vertical et dans le plan horizontal en fonction de la distance d. Tableau 1 d 107,5 mm 205 mm 302,5 mm 400 mm Ouverture verticale dans le diagramme de rayonnement 70,3° 31,5° 23,6° 19° Ouverture horizontale dans le diagramme de rayonnement 26,5° 32,5° 31,5° 30° Table 1 below shows some values of the half-power aperture in the vertical plane and in the horizontal plane as a function of the distance d. Table 1 d 107.5 mm 205 mm 302.5 mm 400 mm Vertical opening in the radiation pattern 70.3 ° 31.5 ° 23.6 ° 19 ° Horizontal opening in the radiation pattern 26.5 ° 32.5 ° 31.5 ° 30 °

La figure 8 (respectivement la figure 9) montre des diagrammes de rayonnement théoriques dans le plan vertical (respectivement horizontal) sous plusieurs valeurs de d : d = 107,5 mm (courbe I), d = 205 mm (courbe II), d = 302,5 mm (courbe III) et d = 400mm (courbe IV). L'intensité I (en dB) est tracée en fonction de l'angle θ (en degrés).The figure 8 (respectively figure 9 ) shows theoretical radiation patterns in the vertical (respectively horizontal) plane under several values of d: d = 107.5 mm (curve I), d = 205 mm (curve II), d = 302.5 mm (curve III) ) and d = 400mm (curve IV). The intensity I (in dB) is plotted as a function of the angle θ (in degrees).

On considère à présent l'alimentation de l'antenne A.We now consider the supply of antenna A.

L'extrémité du cornet sectoriel 2, qui est opposée à l'ouverture rayonnante 6 dans le plan de masse 8, se prolonge en un guide d'onde rectangulaire court-circuité 25 (figures 10A, 10B et 10C). Ce dernier a une taille standard pour un fonctionnement à 2,47 GHz (hauteur de 43 mm et largeur de 86 mm). Une antenne monopôle 26 est introduite dans ce guide d'onde 25 afin d'alimenter l'antenne A. L'antenne monopôle 26 est soudée sur un connecteur N référencé 30, pour être alimentée par un câble coaxial non représenté. Et le guide d'onde 25 est fermé par un court-circuit 32.The end of the sectorial horn 2, which is opposed to the radiating opening 6 in the ground plane 8, extends into a shortened rectangular waveguide 25 ( Figures 10A, 10B and 10C ). The latter has a standard size for operation at 2.47 GHz (height 43 mm and width 86 mm). A monopole antenna 26 is introduced into this waveguide 25 to feed the antenna A. The monopole antenna 26 is soldered to a connector N referenced 30, to be powered by a not shown coaxial cable. And the waveguide 25 is closed by a short circuit 32.

Sur la figure 10C, les longueurs L1, L2, L3 et L4 valent respectivement 64 mm, 392 mm, 99 mm et 32 mm.On the Figure 10C the lengths L1, L2, L3 and L4 are respectively 64 mm, 392 mm, 99 mm and 32 mm.

Les diverses dimensions relatives à l'antenne monopôle 26 sont notées sur la figure 11. La partie I (respectivement II) de la figure 11 correspond à ce qui se trouve à l'intérieur (respectivement à l'extérieur) du guide d'onde 25. Sur la figure 11, les diamètres notés D1, D2 et D3 valent respectivement 6 mm, 14,5 mm et 11,5 mm et les longueurs notées l1, l2 et l3 valent respectivement 6 mm, 11 mm et 11,5 mm.The various dimensions relating to the monopole antenna 26 are noted on the figure 11 . Part I (respectively II) of the figure 11 corresponds to what is inside (respectively outside) of the waveguide 25. On the figure 11 the diameters denoted D1, D2 and D3 are respectively 6 mm, 14.5 mm and 11.5 mm and the lengths noted 11, 12 and 13 are respectively 6 mm, 11 mm and 11.5 mm.

L'adaptation simulée de l'antenne A est inférieure à -14 dB pour toute valeur de l'écartement d. Le gain obtenu en simulation varie de 11 à 16,5 dBi. Le gain le plus élevé est obtenu lorsque l'ouverture à mi-puissance dans le plan vertical est la plus réduite.The simulated adaptation of the antenna A is less than -14 dB for any value of the spacing d. The gain obtained in simulation varies from 11 to 16.5 dBi. The highest gain is obtained when the half-power aperture in the vertical plane is the smallest.

On décrit ci-après (figures 12A, 12B et 12C) un mode de réalisation particulier de l'antenne A, permettant d'en réduire l'encombrement.We describe below ( Figures 12A , 12B and 12C ) a particular embodiment of the antenna A, to reduce its size.

Afin de conserver un encombrement convenable pour cette antenne A, le cornet sectoriel 2 est replié afin de le « plaquer » contre le plan de masse 8. Le rayon de courbure minimum noté R sur la figure 12 C vaut 10 mm. Si ce rayon n'est pas respecté, la répartition de phase du champ électromagnétique présent dans l'ouverture 6 du cornet 2 n'est plus constante. Dans ce cas, le diagramme de rayonnement est moins focalisé et l'ouverture à mi-puissance dans le plan vertical augmente. Il devient alors quasiment impossible de conserver un angle de 20°, même avec une distance d de 400 mm.In order to maintain a suitable space for this antenna A, the sectoral horn 2 is folded in order to "flatten" it against the ground plane 8. The minimum radius of curvature noted R on the figure 12 C is 10 mm. If this ray is not respected, the phase distribution of the electromagnetic field present in the opening 6 of the horn 2 is no longer constant. In this case, the radiation pattern is less focused and the half-power aperture in the vertical plane increases. It becomes almost impossible to maintain an angle of 20 °, even with a distance d of 400 mm.

On donne ci-après les étapes d'un exemple de procédé de fabrication de l'antenne A.

  1. 1. Usinage du plan de masse 8 :
    L'ouverture 6 du cornet 2, les fentes rayonnantes 10 et 12 ainsi que l'ensemble des rainures 14 et 16 sont dessinées au jet d'eau dans le métal massif.
  2. 2. Usinage du cornet sectoriel 2 et du guide d'onde court-circuité 25.
    On réalise deux parties symétriques de l'ensemble constitué par ce cornet 2 et ce guide d'onde 25 et ces deux parties sont assemblées par la suite.
  3. 3. Ajout d'un capot métallique sous le plan de masse 8, ce capot permettant de court-circuiter les fentes 10 et 12.
    L'empreinte de l'ouverture 6 du cornet 2 est usinée dans le capot.
  4. 4. Fixation du cornet sectoriel 2 et du guide d'onde 25 sur l'ensemble constitué par ce capot et le plan de masse 8.
  5. 5. Réalisation de l'antenne monopôle 26 soudée sur le connecteur N 30.
  6. 6. Fixation (par vissage) du connecteur N 30 et de l'antenne monopôle 26 sur l'ensemble formé par le cornet 2 et le guide d'onde 25.
  7. 7. Réalisation des volets 22 et 24 sous la forme de volets télescopiques et fixation de ceux-ci sur le plan de masse 8.
The following are the steps of an exemplary method of manufacturing the antenna A.
  1. 1. Machining of the ground plane 8:
    The opening 6 of the horn 2, the radiating slots 10 and 12 and all the grooves 14 and 16 are drawn with water jet in the solid metal.
  2. 2. Machining sectoral horn 2 and shorted waveguide 25.
    Two symmetrical parts of the assembly constituted by this horn 2 and this waveguide 25 are produced and these two parts are assembled later.
  3. 3. Addition of a metal cover under the ground plane 8, this cover making it possible to short-circuit the slots 10 and 12.
    The impression of the opening 6 of the horn 2 is machined in the hood.
  4. 4. Attaching the sectoral horn 2 and the waveguide 25 to the assembly constituted by this hood and the ground plane 8.
  5. 5. Realization of the monopole antenna 26 welded on the connector N 30.
  6. 6. Fixing (by screwing) the N 30 connector and the monopole antenna 26 on the assembly formed by the horn 2 and the waveguide 25.
  7. 7. Realization of the flaps 22 and 24 in the form of telescopic flaps and attachment thereof to the ground plane 8.

Claims (11)

  1. An antenna with a reconfigurable radiation pattern, having a predetermined operating frequency, corresponding to a predetermined wavelength, this antenna (A)comprising:
    - an electrically conductive floorplan (8),
    - an electrically conductive sectoral horn (2), having first and second open ends (4, 6) and flaring out from the first (4) to the second open end (6), the second open end (6) being built into the floorplan (8) and having an elongated shape,
    - short-circuited radiating slots (10, 12), having an elongated shape, built into the floorplan (8), disposed on either side of the second open end (6), parallel thereto, and
    - electrically conductive louvres (22, 24), disposed above the slots (10, 12) and the second open end (6), and capable of being mechanically deployed in a continuous manner in order to modify the radiation pattern of the antenna (A).
  2. The antenna according to claim 1, wherein the slots (10, 12) have a depth substantially equal to a quarter of the predetermined wavelength.
  3. The antenna according to any of claims 1 and 2, wherein the slots (10, 12) and the second open end (6) have a length substantially equal to three times the predetermined wavelength.
  4. The antenna according to any of claims 1 to 3, further comprising first grooves (14, 16, 18) in the floorplan (8), between the radiating slots (10, 12) and the second open end (6).
  5. The antenna according to claim 4, wherein the radiating slots (10, 12) and the first grooves (14, 16) substantially have the same depth.
  6. The antenna according to any of claims 1 to 5, wherein each radiating slot (10, 12) is discontinuous and made up of a set of elongated elementary slots (18), spaced from each other.
  7. The antenna according to claim 6, wherein the length of each elementary slot (18) is substantially equal to half the predetermined wavelength.
  8. The antenna according to any of claims 6 and 7, further comprising second grooves (20) in the floorplan (8), these second grooves (20) connecting the elementary slots (18) of a same radiating slot (10, 12) to each other.
  9. The antenna according to claim 8, wherein each of the second grooves (20) has a length substantially equal to 1.5 times the predetermined wavelength.
  10. The antenna according to any of claims 8 and 9, wherein the second grooves (20) have a depth substantially equal to a quarter of the predetermined wavelength.
  11. The antenna according to any of claims 1 to 10, wherein the sectoral horn (2) is folded and has a minimum radius of curvature, selected in order to maintain substantially constant the distribution of the phase of the electromagnetic field present in the second open end (6) of the sectoral horn (2).
EP15757496.3A 2014-09-04 2015-09-03 Antenna with mechanically reconfigurable radiation pattern Active EP3189557B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1458299A FR3025658B1 (en) 2014-09-04 2014-09-04 MECHANICALLY RECONFIGURABLE RADIATION DIAGRAM ANTENNA
PCT/EP2015/070104 WO2016034656A1 (en) 2014-09-04 2015-09-03 Antenna with mechanically reconfigurable radiation pattern

Publications (2)

Publication Number Publication Date
EP3189557A1 EP3189557A1 (en) 2017-07-12
EP3189557B1 true EP3189557B1 (en) 2019-08-07

Family

ID=52016754

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15757496.3A Active EP3189557B1 (en) 2014-09-04 2015-09-03 Antenna with mechanically reconfigurable radiation pattern

Country Status (4)

Country Link
US (1) US10403975B2 (en)
EP (1) EP3189557B1 (en)
FR (1) FR3025658B1 (en)
WO (1) WO2016034656A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763916B2 (en) * 2017-10-19 2020-09-01 At&T Intellectual Property I, L.P. Dual mode antenna systems and methods for use therewith
CN108417974A (en) * 2018-01-30 2018-08-17 电子科技大学 A kind of restructural double frequency band aerial
EP3850706A4 (en) * 2018-09-10 2022-06-01 HRL Laboratories, LLC Electronically steerable holographic antenna with reconfigurable radiators for wideband frequency tuning
US11349220B2 (en) * 2020-02-12 2022-05-31 Veoneer Us, Inc. Oscillating waveguides and related sensor assemblies
CN111370870B (en) * 2020-03-19 2021-11-12 Oppo广东移动通信有限公司 Antenna device and electronic apparatus
US11668788B2 (en) 2021-07-08 2023-06-06 Veoneer Us, Llc Phase-compensated waveguides and related sensor assemblies
US20230144495A1 (en) * 2021-11-05 2023-05-11 Veoneer Us, Inc. Waveguides and waveguide sensors with signal-improving grooves and/or slots
CN116417779A (en) * 2021-12-29 2023-07-11 华为技术有限公司 Antenna, array antenna and electronic equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189850A (en) * 1962-11-23 1965-06-15 Microwave Ass Rectangular waveguide bend
US3261018A (en) * 1963-08-30 1966-07-12 Itt Miniature horn antenna
US3274602A (en) * 1963-09-16 1966-09-20 North American Aviation Inc Antenna having variable beamwidth achieved by variation of source width
US5754144A (en) * 1996-07-19 1998-05-19 The Regents Of The University Of California Ultra-wideband horn antenna with abrupt radiator
US6031504A (en) * 1998-06-10 2000-02-29 Mcewan; Thomas E. Broadband antenna pair with low mutual coupling
FR2912558B1 (en) * 2007-02-14 2009-05-15 Airbus France Sa ADAPTABLE ANTENNA FOR ELECTROMAGNETIC COMPATIBILITY TESTS.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3025658B1 (en) 2016-12-23
WO2016034656A1 (en) 2016-03-10
FR3025658A1 (en) 2016-03-11
US20170279193A1 (en) 2017-09-28
US10403975B2 (en) 2019-09-03
EP3189557A1 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
EP3189557B1 (en) Antenna with mechanically reconfigurable radiation pattern
WO2016007225A1 (en) Horn lens antenna
FR2959611A1 (en) COMPRISING RADIANT ELEMENT WITH RESONANT CAVITIES.
FR2652453A1 (en) COAXIAL ANTENNA HAVING A PROGRESSIVE WAVE POWER TYPE.
CA2685708A1 (en) Shared antenna feed and process for making a shared antenna feed for the development of multiple beams
FR2655204A1 (en) WAVEGUIDE SUPPLY NETWORK ANTENNA.
EP1979987B1 (en) Circularly or linearly polarized antenna
EP2869400A1 (en) Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor
EP2416449A1 (en) Parabolic-reflector antenna
EP3113286B1 (en) Quasi-optical lens beam former and planar antenna comprising such a beam former
WO2016207787A1 (en) Dual-reflector microwave antenna
EP3086409B1 (en) Structural antenna module including elementary radiating sources with individual orientation, radiating panel, radiating network and multibeam antenna comprising at least one such module
EP3235058B1 (en) Wire-plate antenna having a capacitive roof incorporating a slot between the feed probe and the short-circuit wire
EP3843202A1 (en) Horn for ka dual-band satellite antenna with circular polarisation
CA2814281C (en) Horn with corrugated grille for antennae
EP1516393B1 (en) Double polarization dual-band radiating device
EP2817850B1 (en) Electromagnetic band gap device, use thereof in an antenna device, and method for determining the parameters of the antenna device
EP0149400B1 (en) Aerial with a circular-mode promotion system
FR2613140A1 (en) PARALLELEPIPEDIC CORNET ANTENNA WITH DISTRIBUTION OF THE LINEARIZED OPENING FIELD IN TWO POLARIZATIONS
EP3692598B1 (en) Antenna with partially saturated dispersive ferromagnetic substrate
FR3105612A1 (en) Compact resonant cavity antenna
FR2470457A1 (en) SLOT NETWORK ANTENNA WITH AMPLITUDE DISTRIBUTION IN A SMALL CIRCULAR OPENING
FR2947391A1 (en) AN OMNIDIRECTIONAL AND BROADBAND COMPACT OMNIDIRECTIONAL SYSTEM COMPRISING TWO SEPARATELY DISPENSED TRANSMISSION AND RECEPTION ACCES
EP2946435B1 (en) Antenna having a miniaturised waveguide
WO2015189136A1 (en) Flat antenna for satellite communication

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: CHAULOUX, ANTOINE

Inventor name: COLOMBEL, FRANCK

Inventor name: HIMDI, MOHAMED

Inventor name: JOUADE, ANTOINE

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 1/22 20060101ALI20190205BHEP

Ipc: H01Q 9/28 20060101ALI20190205BHEP

Ipc: H01Q 13/02 20060101ALI20190205BHEP

Ipc: H01Q 3/01 20060101AFI20190205BHEP

Ipc: H01Q 3/12 20060101ALI20190205BHEP

Ipc: H01Q 1/36 20060101ALI20190205BHEP

INTG Intention to grant announced

Effective date: 20190304

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1165249

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015035319

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190807

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191209

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1165249

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015035319

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230922

Year of fee payment: 9

Ref country code: DE

Payment date: 20230919

Year of fee payment: 9