EP3182164B1 - Façonnage de distribution de bruit pour signaux, en particulier des signaux cdma, avec atténuation de signaux d'artéfact - Google Patents

Façonnage de distribution de bruit pour signaux, en particulier des signaux cdma, avec atténuation de signaux d'artéfact Download PDF

Info

Publication number
EP3182164B1
EP3182164B1 EP15003562.4A EP15003562A EP3182164B1 EP 3182164 B1 EP3182164 B1 EP 3182164B1 EP 15003562 A EP15003562 A EP 15003562A EP 3182164 B1 EP3182164 B1 EP 3182164B1
Authority
EP
European Patent Office
Prior art keywords
signal
interest
blanking
received signal
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15003562.4A
Other languages
German (de)
English (en)
Other versions
EP3182164A1 (fr
Inventor
Francis Soualle
Mathieu Cattenoz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Airbus Defence and Space GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH filed Critical Airbus Defence and Space GmbH
Priority to EP15003562.4A priority Critical patent/EP3182164B1/fr
Priority to CA2951892A priority patent/CA2951892A1/fr
Priority to US15/377,273 priority patent/US10348344B2/en
Priority to JP2016242288A priority patent/JP6943565B2/ja
Publication of EP3182164A1 publication Critical patent/EP3182164A1/fr
Application granted granted Critical
Publication of EP3182164B1 publication Critical patent/EP3182164B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/27Monitoring; Testing of receivers for locating or positioning the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related

Definitions

  • the invention relates to noise distribution shaping for signals, particularly for the application in receivers for CDMA signals.
  • Interferences on radio signals such as CDMA (Code Division Multiple Access) signals emitted by satellites of a GNSS (Global Navigation Satellite System) particularly occur in impulse noise environments such as in the neighbourhood of vehicle ignition systems, power lines, heavy current switches or microwave ovens.
  • the interferences occurring in these environments are usually emitted in bursts and, thus, cannot be modelled as Gaussian.
  • a (noise) blanker can be applied in a signal receiver.
  • the blanker sets received signal samples to zero when they contain high power pulsed interferences.
  • the typical blanker uses two fixed thresholds BTH+ and BTH-, which are symmetrical to zero (
  • Typical receivers for CDMA signals are equipped with such a blanker.
  • the blanker In the absence of interference, which may be for some signal receivers a frequent situation, the blanker still operates and sets the portions of a received signal to zero, which are affected by large thermal noise samples (usually modelled as Gaussian). However, this may lead to an undesired reduction of the Signal-to-Noise and Interference Ratio (SNIR).
  • SNIR Signal-to-Noise and Interference Ratio
  • European patent application no. 14290171.9 which considered as comprised in the state of the art according to Article 54(3) of the European Patent Convention, describes to offset either blanking thresholds or a received signal by an offset value.
  • the main advantage of this blanking approach is seen in the suppression of the degradation of the SNIR of a received CDMA signal when there are no pulsed interferences and even an improvement of the SNIR.
  • This blanking concept is also described in the publication " GNSS Receiver Performance Augmentation With a Smart Adaptive Noise Blanker in Pulse-Free Environment", Mathieu Cattenoz, Francis Soualle, "7th ESA Workshop on Satellite Navigation Technologies (NAVITEC). 3-5 December 2014 at the European Space Research and Technology Centre (ESTEC) in Noordwijk, The Netherlands.
  • the adaptive blanker continues to apply the offset, as though the signal would be present while it is not.
  • the "received" signal is only constituted of noise samples
  • applying the offset thresholds of the blanking creates a sort of "artefact" or "ghost" signal which will be tracked by the receiver.
  • the present invention proposes to alert the adaptive threshold of the absence of a signal of interest (i.e. the signal to be tracked), and then to ignore the outputs of a receiver for further processing, or alternatively to deactivate the adaptive blanker.
  • the present invention discloses method(s) used to detect the absence of signal and the "alerting" scheme.
  • the solution of the problem of the disappearing of a tracked signal according to the present invention consists in detecting if a tracked signal or signal of interest is present, and if the signal of interest is not present to ignore the outputs of the receiver (for example code and carrier phase estimates) for further processing, or alternatively to deactivate the adaptation of the blanking threshold which will result in applying a conventional blanking.
  • the present invention is based on the blanking approach described in the European patent application no. 14290171.9 , which consists in offsetting either blanking thresholds or a received signal by an offset value.
  • this offset value can depend on the amplitude of the received signal.
  • the amplitude of the received signal can be calculated based on the estimated power, P est , of the received signal and its sign.
  • P est estimated power
  • the amplitude of the signal can have a positive or a negative value.
  • the offset value can be for example calculated by multiplying the square root of the estimated power with a predefined scaling factor ⁇ which can be positive or negative: ⁇ sqrt(P est ). It has been found by the inventors that in case of CDMA signals, a scaling factor +1 or -1 - so that the offset value is ⁇ sqrt(P est ) - depending on the chip value, has advantageous effects.
  • an offsetting can be performed with the signal amplitude.
  • the most important aspect is that the noise is dominant, i.e. has much larger power than the received signal power P, and therefore to its estimate P est .
  • at least one blanking threshold may be adapted depending on the estimated received power and the binary chip value of the received CDMA signals.
  • the binary chip value of a CDMA signal is known by a CDMA signal receiver a priori since the spreading sequence used to code the CDMA signal is constituted of a sequence of chips, which has to be known by a receiver for decoding and despreading the CDMA signal.
  • the estimated chip amplitude is ⁇ sqrt(P est ) while the binary chip value is ⁇ 1.
  • the adaption of the at least one blanking threshold depending on the binary chip values of received CDMA signals modifies the noise distribution of the output of a blanker of a CDMA signal receiver.
  • the samples of the CDMA signals may be adapted, for example offset; then, the adapted CDMA samples may be compared with fixed blanking thresholds, and the noise distribution of the sampled CDMA signals may be modified by applying blanking.
  • An offsetting of the samples of CDMA signals may be performed by a value depending on the estimated chip amplitude of the CDMA signals. For example, the binary chip value scaled by the estimated amplitude of a received CDMA signal may be added or subtracted from samples of the received CDMA signal, according to the chip polarity. Those samples are then fed to the blanker with non-offset thresholds. After the blanking operation the offsetting of the samples of the CDMA signal can be removed.
  • the invention extends from the concept of two blanking thresholds BTH+, BTH- with opposite values, as described above, to a set of N blanking thresholds BTH ⁇ i,k,n ⁇ which "cuts" regions of the distribution of samples of a received signal, and particularly a CDMA signal, at the input of a blanker to improve again the SNIR.
  • i is the index of the channel processing the i th signal source among I sources
  • k is a time index
  • n is a threshold index, among N thresholds.
  • a different chip sequence also called replica is used and therefore a different threshold should be applied to each time instant.
  • the signal amplitude is offset by an offset value, while the blanking thresholds are kept fixed.
  • the offset signal is fed to the blanker with non-offset thresholds. After blanking operation, the offset applied to the blanked signal can be removed.
  • the main advantage of the invention is the reduction of the degradation of the SNIR of a received CDMA signal when there are no pulsed interferences, and even an improvement of the robustness in case of synchronisation errors caused for example by noise, dynamic or multipath.
  • the present invention can be applied to any kind of signals, particularly spread spectrum coded signal such as CDMA signals, particularly to BPSK (Binary Phase Shift Keying)- and BOC (Binary Offset Carrier)-modulated CDMA signals used by GNSS such as (NAVSTAR-)GPS (Global Positioning System) or the European GNSS Galileo.
  • CDMA signals particularly to CDMA signals
  • BPSK Binary Phase Shift Keying
  • BOC Binary Offset Carrier-modulated CDMA signals used by GNSS
  • GNSS such as (NAVSTAR-)GPS (Global Positioning System) or the European GNSS Galileo.
  • GNSS Global Positioning System
  • BOC signals each chip with a single “plateau” (in case of for example a BPSK-modulated signal) is replaced by several smaller plateaus [+1,-1].
  • the present invention which is presented for the transition of a for example BPSK-modulated signal single plateau, would apply to the transitions of the sub-plateaus of a BOC-modulated signal, or any other signal comprising transitions, like for example chirp radar signals, or continuous wave signals.
  • the signal transitions are transitions between consecutive chips of a sequence of chips used for coding the signal.
  • a signal transition is generally understood as a transition between signal states in a time frame, like the transitions between bits, chips or symbols of a sequence of bits, chips or symbols respectively.
  • signal transition can also occur between two consecutive signal states, particularly bits, chips or symbols, although of the same polarity, not even of different polarity.
  • An embodiment of the present invention relates to a method for noise distribution shaping for signals comprising the acts of receiving a signal of interest from a signal transmitter, detecting whether the received signal of interest is present, and if the received signal of interest is present iteratively performing the following steps of adapting the at least one blanking threshold or the received signal of interest according to an offset value depending on the amplitude of the received signal of interest, generating a blanking control signal by comparing the received signal of interest with the at least one blanking threshold, and modifying the noise distribution of the received signal of interest by applying blanking of the received signal of interest under control of the blanking control signal.
  • the one or more further channels for processing received signals suitable for assessing the presence of the signal of interest may be formed by one or more of the following: an additional receiver channel for processing without an adaptive blanking another signal transmitted by the same transmitter as for the signal of interest for which the adaptive blanking is applied ; an additional receiver channel for processing without adaptive blanking another component than the component for which adaptive blanking is applied of the signal of interest, when the signal of interest comprises multiplexed components; another receiver channel for processing without adaptive blanking the same signal of interest for which adaptive blanking is applied; a single receiver channel for processing the signal of interest with a specific control law for the activation and deactivation of adaptive blanking to detect the presence of the signal of interest.
  • the processing of information from the one or more further channels may comprise one or more of the following: performing a power estimation of a received signal; performing a Carrier-to-Noise ratio estimation of a received signal; estimating the jitter of the delay and/or phase tracking loops processing a received signal.
  • the processing of information from the one or more further channels may comprise detecting the presence of the signal of interest based on the power estimation of one or more received signals, the Carrier-to-Noise ratio estimation of one or more received signals, and/or the jitter estimation of the delay and/or phase tracking loops of one or more received signals.
  • the processing of the presence of the received signal of interest from information on obstructions between the transmitter of the received signal of interest and the receiver may comprise one or more of the following: determining the location of the receiver and determining from the location an obstruction for signal reception, particularly a bridge or tunnel on the determined receiver location, which can obscure reception of the signal of interest from a GNSS satellite; determining the position of a potential obstacle for signal reception and determining from the position a potential obstruction for signal reception, particularly the position of a solar panel of a GNSS satellite containing the receiver, which can obscure reception of the signal of interest by the GNSS satellite.
  • the act of detecting whether the received signal of interest is present may comprise the following acts of determining the power estimation and/or the Carrier-to-Noise ratio estimation and/or the jitter estimation of the delay and/or phase tracking loops of the received signal of interest over a predefined time period, either comparing at least one absolute value of the determined power estimation and/or Carrier-to-Noise ratio estimation and/or the jitter estimation of the delay and/or phase tracking loops with at least one profile of an expected power estimation and/or expected Carrier-to-Noise ratio estimation and/or expected jitter estimation of the delay and/or phase tracking loops of the signal of interest being received under nominal conditions, particularly known receiving conditions such as a stationary receiver, or comparing at least one variation value of the determined power estimation and/or Carrier-to-Noise ratio estimation and/or the jitter estimation of the delay and/or phase tracking loops of the signal of interest being received under varying conditions, particularly a receiver moving in an environment with unknown receiving conditions, with at least one threshold, and
  • the at least one profile of the expected power estimation and/or expected Carrier-to-Noise ratio estimation and/or expected jitter estimation of the delay and/or phase tracking loops may be determined based on the received signal of interest with a modified noise distribution by applying blanking of the received signal of interest under an adaptable control of the blanking control signal such that successive activations and deactivations of the adaptive blanking follow a known time-profile.
  • the at least one threshold may be determined based on the amplitude variations of the estimated Carrier-to-Noise ratio and/or estimated power and/or the estimated jitter of the delay and/or phase tracking loops, wherein the amplitude is obtained during a cycle of activation and deactivation of adaptive blanking.
  • a yet further embodiment of the invention relates to a device for noise distribution shaping for signals comprising means for receiving a signal of interest from a signal transmitter, means for detecting whether the received signal of interest is present and generating a presence detection signal, means for generating a blanking control signal depending on the presence detection signal by comparing the received signal of interest with at least one blanking threshold, means for adapting the at least one blanking threshold or the received signal of interest according to an offset value depending on the amplitude of the received signal of interest, and means for modifying the noise distribution of the received signal of interest by applying blanking of the received signal of interest under control of the blanking control signal and depending on the presence detection signal.
  • a yet further embodiment of the invention relates to a GNSS receiver circuitry comprising an analog to digital converter for generating samples of received CDMA signals, a plurality of noise distribution shapers for modifying the noise distribution of the sampled CDMA signals according to the invention and as described herein, and a GNSS signal processor for processing the sampled CDMA signals output by the noise distribution shapers and for outputting chip values of the processed CDMA signals.
  • is a scaling factor for example
  • P est is the estimated power
  • B0 the blanking threshold without offset (as for a conventional receiver).
  • B0 can be set for example to 0.5 ⁇ noise where ⁇ noise represents the standard deviation for the thermal noise.
  • both blanking thresholds BTH + and BTH - could still be adapted, as though the signal of interest would be present, over a further period of time following the fading of the signal, whose duration depends on the update rate of the power estimation used to evaluate P est or the actualisation rate of the power estimation P est if this one is brought by another channel, or another mean for providing the power estimation.
  • the magnitude, which is used to derive these thresholds could be based on the last estimation of the signal amplitude, just before the signal of interest disappeared.
  • P est can also be estimated with a simple algorithm accounting only for the geometry, for example the combination of an orbit propagator in case the transmitting source is a satellite, and a down link budget calculator, but ignoring any obstructions.
  • P est can also be estimated with a simple algorithm accounting only for the geometry, for example the combination of an orbit propagator in case the transmitting source is a satellite, and a down link budget calculator, but ignoring any obstructions.
  • Fig. 1 shows the flowchart of a general embodiment of a method for noise distribution shaping for GNSS signals according to the invention applying a blanking depending on a signal of interest detection, which can be implemented as a computer program to be executed by a processor.
  • the term "steps” used in the following description does not mean that the steps are performed in a certain sequence, since the single steps can also be performed in parallel. Thus, “steps” must be understood as “acts performed by the method”.
  • step S10 the method receives a GNSS signal of interest.
  • the method detects if the received GNSS signal of interest is present, particularly with methods as described later in detail.
  • step S13 the method checks whether the received GNSS signal of interest is present.
  • step S14 If so, the method continues with step S14. If step S13 determines that the received GNSS signal of interest is no longer present, the method returns to step S10. Alternatively to returning to step S10, it is also possible to deactivate the adaptive blanking, particularly by setting the thresholds back to conventional symmetrical values resulting in a conventional use of the blanker.
  • Step S14 and the following steps S16, S18, and S20 perform a blanking of the received GNSS signal of interest: step S14 adapts one or more blanking thresholds of the received GNSS signal of interest, step S16 generates a blanking control signal, step S18 performs the blanking of the received of interest, and step S20 outputs the blanked received GNSS signal of interest.
  • Steps S14 to S20 are iteratively performed. It should be noted that the steps of the method shown by the flowchart of Fig. 1 are performed in parallel, i.e. the method continuously receives a GNSS signal of interest and checks its presence in the steps S10 to S13 in parallel to the blanking steps S14 to S20. Thus, the steps S10 to S13 can be performed in parallel to the steps S14 to S20. The steps S14 to S20 are however only performed if step S13 determines that the received GNSS signal of interest is still present.
  • the invention proposes the following variants of other methods for signal of interest presence detection: For transmission sources which transmit several signals simultaneously, in different frequency bands, like the Galileo E1 signals transmitted at carrier 1575.42 MHz, or the Galileo E5 signals at carrier 1191.795MHz multiplexing the following four components E5a-I Data component, E5a-Q Pilot component, E5b-I Data component and E5b-Q Pilot component, or for multiplexed signals, like the Galileo E1-Open Service signals which combine a Pilot E1-C and a Data E1-B component, it is proposed to use the power estimation and/or the Carrier-to-Noise ratio estimation and/or the jitter estimation of the delay and/or phase tracking loops of the channel for one or several of the Galileo E5 components, for example the E5a-I Data component, or the E1-B Data component, which would not apply the adaptive threshold, to inform the receiver channel processing the E1-C Pilot component, which would apply the adaptive threshold, of the presence or absence
  • An alternative less consuming in term of hardware resources, for signals having a single component, consists in deactivating the adaptive blanking threshold from time to time, and monitoring the corresponding correlator output to observe a possible collapse which would be symptomatic of the absence of the signal.
  • a periodical activation/deactivation profile of the adaptive blanker could be proposed.
  • the corresponding deactivation period should not be too large w.r.t. the activating period in order to still maintain the performance improvement brought by the adaptive blanking threshold.
  • the first category of methods is based on a strong knowledge of the presence or not of the signal of interest.
  • This additional channel serves as "witness" for the presence of the signal of interest, by using a rapid collapse of the estimated (C/NO) or the estimated power or alternatively an increase of the tracking jitter. This information could then be used to deactivate the adaptive blanker.
  • Fig. 3 represents the main functional blocks of an embodiment of a GNSS receiver circuitry 10 with a noise distribution shaper and a detection of the presence or absence of a GNSS signal according to the invention from the antenna output to the correlator whose output is used for both signal tracking and demodulation.
  • the output signal of the antenna is in block 12 firstly filtered at RF to reduce the effects of potential out-of-band interferers, and to preserve thus the Low-Noise Amplifier (LNA) or other components of the receiver front-end. Then the signal is amplified in block 12 in an LNA with a minimal degradation of the receiver noise figure and low pass filtered in block14.
  • LNA Low-Noise Amplifier
  • ADC Automatic Gain Control
  • the digitized output signal of the ADC 18 is supplied to several “processing channels” 20 and 28 in parallel.
  • a first "processing channel” 20 shows the channel for the signal 1, with the application of an adaptive blanker 22.
  • the other additional “processing channels” 28 do not apply any adaptive blanker and are used for the detection of the presence or absence of the signal 1 of interest.
  • parameters like the (C/NO) estimator, power estimator, or the jitter of the Delay and Phase tracking loops can be used for the detection.
  • Not applying the adaptive blanker means that no offset is applied and that the detection thresholds are set at a very high value in such a way that samples are zero only in case of strong interferences (conventional application of blanker as mitigation against powerful and pulsed interferences).
  • Each one of the “processing channels” comprises a correlator 24 and tracking loops 26 as conventional GNSS receivers.
  • Each one of the additional “processing channels” 28 comprises a power estimator 30 for estimating the power of the output signal of the respective correlator 24. Instead of a power estimator, a (C/NO) estimator or jitter of the Delay and Phase tracking loops can be applied.
  • the outputs of the power estimators 30 are supplied to a presence detector with voting logic 32, which generates a blanking activation/deactivation signal fed to the blanker 22.
  • the presence detector with voting logic 32 detects the presence (or absence) of the signal 1 based on the power estimations of signal 1*, 2* to N* (or (C/NO) estimations or jitter of Delay and Phase tracking loops) and generates the blanking activation/deactivation signal depending on the signal 1 presence/absence detection.
  • a combined monitoring of the (C/NO) for both signal 1 with monitoring and signal 1* without monitoring can also provide information on the presence of interference or obstruction: for an interference both (C/NO) would be reduced with the same value, while for an obstruction the (C/NO) for the signal 1* would collapse and the (C/NO) for the signal 1 would reduce by several (possibly tenth of) dB.
  • An alternative method proposed to detect the presence or not of the signal consists in using the same channel and deactivating the adaptive blanker at given times. Here only one channel would be necessary when compared to the former method.
  • C/NO variations of the
  • Estimates of the Delay and Phase tracking loops during the deactivations and activations of the adaptive blanker, it is possible to detect if the signal of interest is present.
  • a periodical activation and deactivation cycle of the adaptive blanker it is also possible to consider a non-periodical activation and deactivation cycle of the adaptive blanker but rather pseudo-random pattern which is known only from receiver.
  • the absolute value of the monitored (C/NO) or power or jitter of the Delay and Phase tracking loops varies according to an expected profile under nominal conditions, particularly known receiving conditions such as a stationary receiver during the deactivation and activation cycle, it means that the signal is present.
  • a profile for the expected value of the (C/NO) or power or jitter of the Delay and Phase tracking loops can namely be pre-calibrated under such nominal conditions. If the monitored (C/NO) or power or jitter of the Delay and Phase tracking loops does not belong to this profile during the deactivation and activation cycle it means that the signal is not present ("ghost signal" scenario). In that case the corresponding GNSS observables (code, phase estimates from the loops) would not be used for further processing (Positioning in case of GPS applications).
  • the monitored (C/NO) or power or jitter of the Delay and Phase tracking loops varies according to the expected improvement brought by the adaptive blanker during the deactivation and activation cycle, it means that the signal is present.
  • the amplitude of variations for the (C/NO) estimation or power estimations or jitter estimation of the Delay and Phase tracking loops corresponds to the possible benefit that can be obtained by the application of the inventive adaptive blanking.
  • the receiver performances alternate between improved with adaptive blanker and not improved as for a conventional receiver.
  • a threshold which could be derived from a pre-calibration performed by the receiver manufacturer and based on this expected amplitude variations would enable to detect the presence of the signal of interest.
  • the proposed method based on the comparison between the actual (C/NO) with adaptive blanker and a calibrated profile, works as long as no interference occurs, except if the use of other channels tracking other signals that the signal of interest for which (C/NO) would also decrease in case of interference and would help inferring on the presence of the signal of interest for the channel applying the adaptive blanker.
  • Fig. 3 shows a flowchart of a method for noise distribution shaping for any of I CDMA signals according to the invention, which can be implemented as a computer program to be executed by a processor.
  • the term "steps” used in the following description does not mean that the steps are performed in a certain sequence, since the single steps can also be performed in parallel. Thus, “steps” must be understood as “acts performed by the method”.
  • the method receives in step S0 digitized CDMA signal samples of the i th CDMA signal from the ADC 16.
  • step S12 the chip values of the i th CDMA signal are provided, which are known a priori and stored in a memory.
  • step S13 the i th CDMA signal from the ADC 16 is provided in order to estimate the power of the i th received signal.
  • the scaled estimated chip amplitudes are then used in step S14 to offset predefined blanking thresholds BTH pre (i) to generate a set of blanking thresholds BTH+(i) and BTH-(i) for each CDMA signal.
  • the method With the set of blanking thresholds BTH(i) and the received digitized CDMA signal samples, the method generates in step S10 a blanking control signal for each CDMA signal i.
  • the blanking control signal generation in step S10 is controlled by one or more blanker activation/deactivation signals generated by method 3 for signal presence detection as described above.
  • the noise distribution of the received samples of the i th CDMA signal is shaped by a blanking process controlled by the i th blanking control signal generated in step S10.
  • the CDMA signal samples with shaped noise distribution are finally output to a GNSS signal processor for further processing.
  • the CDMA signal samples can be input to method 2 and/or method 3 and/or method 4 for signal presence detection as described above.
  • the present invention allows reducing the degradation of the SNIR of a received signal when this one is present, particularly a CMDA signal, when there are no pulsed interferences by offsetting the blanking thresholds or the signal depending on the amplitude of the signal, for example with the scaled amplitude (the amplitude can be positive or negative according to the chip value) of a received CDMA signal, and by comparing the amplitude (algebraic value) of samples of the received signal to the blanking thresholds.
  • the present invention avoids further processing the correlator outputs of the channel applying the adaptive blanker when the signal of interest is absent and avoid in that way the creating of an "artefact" signal of interest.
  • the present invention can be used for receivers for navigation and communication applications. In general the invention is for interest for all terrestrial or space based applications in telecommunication for all kinds of signal transmissions buried in high level noise.
  • At least some of the functionality of the invention may be performed by hard- or software.
  • a single or multiple standard microprocessors or microcontrollers or signal processors may be used to process a single or multiple algorithms implementing the invention.
  • a single or multiple standard microprocessors or microcontrollers or signal processors may be used to process a single or multiple algorithms implementing the invention.
  • an ASIC Application Specific Integrated Circuit
  • F Field Programmable Gate Array

Claims (15)

  1. Procédé pour une mise en forme de distribution de bruit pour des signaux comprenant les actions consistant à
    - recevoir un signal d'intérêt en provenance d'un émetteur de signal (S10),
    - détecter si le signal d'intérêt reçu est ou non présent (S12), et
    - si le signal d'intérêt reçu est présent, réaliser de manière itérative les étapes suivantes consistant à
    - régler au moins un seuil de suppression ou le signal d'intérêt reçu selon une valeur de décalage en fonction de l'amplitude du signal d'intérêt reçu (S14), et
    - générer un signal de commande de suppression par comparaison du signal d'intérêt reçu avec l'au moins un seuil de suppression (S16),
    - modifier la distribution de bruit du signal d'intérêt reçu par application d'une suppression du signal d'intérêt reçu sous la commande du signal de commande de suppression (S18).
  2. Procédé selon la revendication 1, dans lequel l'action consistant à détecter si le signal d'intérêt reçu est ou non présent (S12) comprend une ou plusieurs des actions suivantes :
    - traiter des informations en provenance d'une détection de signal de ligne de visée et/ou d'une prédiction de présence de signal de ligne de visée, qui délivrent des informations sur la présence du signal d'intérêt reçu ;
    - traiter des informations en provenance d'un ou plusieurs canaux supplémentaires pour traiter des signaux reçus appropriés pour évaluer la présence du signal d'intérêt.
  3. Procédé selon la revendication 2, dans lequel le ou les canaux supplémentaires pour traiter des signaux reçus pour évaluer la présence du signal d'intérêt sont formés par un ou plusieurs des éléments suivants :
    - un canal de récepteur supplémentaire pour traiter sans suppression adaptative un autre signal émis par le même émetteur quant au signal d'intérêt pour lequel la suppression adaptative est appliquée ;
    - un canal de récepteur supplémentaire pour traiter sans suppression adaptative une composante autre que la composante pour laquelle une suppression adaptative du signal d'intérêt est appliquée, lorsque le signal d'intérêt comprend des composantes multiplexées de différents canaux ;
    - un autre canal de récepteur pour traiter sans suppression adaptative le même signal d'intérêt pour lequel une suppression adaptative est appliquée ;
    - un canal de récepteur unique pour traiter le signal d'intérêt avec une loi de commande spécifique pour l'activation et la désactivation de suppression adaptative pour détecter la présence du signal d'intérêt.
  4. Procédé selon la revendication 2 ou 3, dans lequel le traitement d'informations en provenance du ou des canaux supplémentaires comprend une ou plusieurs des étapes suivantes :
    - réaliser une estimation de puissance d'un signal reçu ;
    - réaliser une estimation de rapport porteuse sur bruit d'un signal reçu ;
    - estimer la gigue des boucles de suivi de retard et/ou de phase traitant un signal reçu.
  5. Procédé selon la revendication 4, dans lequel le traitement d'informations en provenance du ou des canaux supplémentaires comprend la détection de la présence du signal d'intérêt sur la base de l'estimation de puissance d'un ou plusieurs signaux reçus, de l'estimation de rapport porteuse sur bruit d'un ou plusieurs signaux reçus, et/ou de l'estimation de gigue des boucles de suivi de retard et/ou de phase d'un ou plusieurs signaux reçus.
  6. Procédé selon la revendication 2, 3, 4 ou 5, dans lequel la prédiction de présence de signal de ligne de visée prédit la présence du signal d'intérêt reçu à partir d'informations sur un ou plusieurs des éléments suivants :
    - l'emplacement d'un émetteur du signal d'intérêt reçu, en particulier l'orbite d'un satellite GNSS ;
    - des obstructions entre un émetteur du signal d'intérêt reçu et un récepteur ;
    - une carte d'obstacles contenant des informations sur des obstacles entre un émetteur du signal d'intérêt reçu et un récepteur.
  7. Procédé selon la revendication 6, dans lequel le traitement de la présence du signal d'intérêt reçu à partir d'informations sur des obstructions entre l'émetteur du signal d'intérêt reçu et le récepteur comprend une ou plusieurs des étapes suivantes :
    - déterminer l'emplacement du récepteur et déterminer, à partir de l'emplacement, une obstruction pour une réception de signal, en particulier un pont ou un tunnel sur remplacement de récepteur déterminé, qui peut masquer une réception du signal d'intérêt en provenance d'un satellite GNSS ;
    - déterminer la position d'un obstacle potentiel pour une réception de signal et déterminer, à partir de la position, une obstruction potentielle pour une réception de signal, en particulier la position d'un panneau solaire d'un satellite GNSS contenant le récepteur, qui peut masquer une réception du signal d'intérêt par le satellite GNSS.
  8. Procédé selon l'une quelconque des revendications précédentes, en particulier selon les revendications 4 et/ou 5, 6 ou 7, dans lequel l'action consistant à détecter si le signal d'intérêt reçu est ou non présent comprend les actions suivantes
    - déterminer l'estimation de puissance et/ou le rapport porteuse sur bruit et/ou les variations de gigue du signal d'intérêt reçu sur une période de temps prédéfinie,
    - comparer au moins une valeur absolue de l'estimation de puissance déterminée et/ou du rapport porteuse sur bruit déterminé et/ou de l'estimation de gigue déterminée des boucles de suivi de retard et/ou de phase avec au moins un profil d'une estimation de puissance attendue et/ou d'un rapport porteuse sur bruit attendu et/ou d'une estimation de gigue attendue des boucles de suivi de retard et/ou de phase du signal d'intérêt qui est reçu dans des conditions nominales, ou comparer au moins une valeur de variation de l'estimation de puissance déterminée et/ou du rapport porteuse sur bruit déterminé et/ou de l'estimation de gigue déterminée des boucles de suivi de retard et/ou de phase du signal d'intérêt qui est reçu dans des conditions variables avec au moins un seuil, et
    - détecter que le signal d'intérêt reçu est présent si les résultats de comparaison sont soit que l'au moins une valeur absolue est comprise par un ou plusieurs de l'au moins un profil, soit que l'au moins une valeur de variation relative est inférieure à un ou plusieurs de l'au moins un seuil.
  9. Procédé selon la revendication 8, dans lequel l'au moins un profil de l'estimation de puissance attendue et/ou du rapport porteuse sur bruit attendu et/ou de l'estimation de gigue attendue des boucles de suivi de retard et/ou de phase est déterminé sur la base du signal d'intérêt reçu avec une distribution de bruit modifiée par application d'une suppression du signal d'intérêt reçu sous une commande adaptable du signal de commande de suppression de telle sorte que des activations et des désactivations successives de la suppression adaptative suivent un profil temporel connu.
  10. Procédé selon la revendication 8, dans lequel l'au moins un seuil est déterminé sur la base des variations d'amplitude du rapport porteuse sur bruit estimé et/ou de la puissance estimée et/ou de la gigue estimée des boucles de suivi de retard et/ou de phase, l'amplitude étant obtenue pendant un cycle d'activation et de désactivation de suppression adaptative.
  11. Programme d'ordinateur mettant en oeuvre un procédé selon l'une quelconque des revendications précédentes.
  12. Support d'enregistrement stockant un programme d'ordinateur selon la revendication 11.
  13. Dispositif (18) pour une mise en forme de distribution de bruit pour des signaux comprenant
    - des moyens pour recevoir un signal d'intérêt en provenance d'un émetteur de signal,
    - des moyens pour détecter si le signal d'intérêt reçu est ou non présent et générer un signal de détection de présence,
    - des moyens (22) pour générer un signal de commande de suppression en fonction du signal de détection de présence par comparaison du signal d'intérêt reçu avec au moins un seuil de suppression,
    - des moyens (24) pour régler l'au moins un seuil de suppression ou le signal d'intérêt reçu selon une valeur de décalage en fonction de l'amplitude du signal d'intérêt reçu, et
    - des moyens (20) pour modifier la distribution de bruit du signal d'intérêt reçu par application d'une suppression du signal d'intérêt reçu sous la commande du signal de commande de suppression et en fonction du signal de détection de présence.
  14. Dispositif selon la revendication 13, dans lequel les moyens pour détecter si le signal d'intérêt reçu est ou non présent et générer un signal de détection de présence sont configurés pour réaliser les actions du procédé selon l'une quelconque des revendications 2 à 10.
  15. Circuiterie de récepteur GNSS (10) comprenant
    - un convertisseur analogique-numérique (16) pour générer des échantillons de signaux CDMA reçus,
    - une pluralité de dispositifs de mise en forme de distribution de bruit (18) pour modifier la distribution de bruit des signaux CDMA échantillonnés selon la revendication 13 ou 14, et
    - un processeur de signal GNSS (26) pour traiter les signaux CDMA échantillonnés délivrés par les dispositifs de mise en forme de distribution de bruit et pour délivrer des valeurs de puce des signaux CDMA traités.
EP15003562.4A 2015-12-15 2015-12-15 Façonnage de distribution de bruit pour signaux, en particulier des signaux cdma, avec atténuation de signaux d'artéfact Active EP3182164B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15003562.4A EP3182164B1 (fr) 2015-12-15 2015-12-15 Façonnage de distribution de bruit pour signaux, en particulier des signaux cdma, avec atténuation de signaux d'artéfact
CA2951892A CA2951892A1 (fr) 2015-12-15 2016-12-13 Faconnage de distribution de bruit de signaux, particulierement les signaux cdma, au moyen d'attenuation des signaux d'artefact
US15/377,273 US10348344B2 (en) 2015-12-15 2016-12-13 Noise distribution shaping for signals, particularly CDMA signals, with mitigation of artifact signals
JP2016242288A JP6943565B2 (ja) 2015-12-15 2016-12-14 アーチファクト信号を低減する、信号の、特に、cdma信号のノイズ分布の整形

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15003562.4A EP3182164B1 (fr) 2015-12-15 2015-12-15 Façonnage de distribution de bruit pour signaux, en particulier des signaux cdma, avec atténuation de signaux d'artéfact

Publications (2)

Publication Number Publication Date
EP3182164A1 EP3182164A1 (fr) 2017-06-21
EP3182164B1 true EP3182164B1 (fr) 2018-07-04

Family

ID=54936749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15003562.4A Active EP3182164B1 (fr) 2015-12-15 2015-12-15 Façonnage de distribution de bruit pour signaux, en particulier des signaux cdma, avec atténuation de signaux d'artéfact

Country Status (4)

Country Link
US (1) US10348344B2 (fr)
EP (1) EP3182164B1 (fr)
JP (1) JP6943565B2 (fr)
CA (1) CA2951892A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3118653B1 (fr) * 2015-07-17 2018-06-27 Airbus Defence and Space GmbH Façonnage de distribution de bruit pour signaux, en particulier des signaux à spectre étalé similaire à des signaux amrc, avec une robustesse accrue
US11159258B2 (en) 2018-07-09 2021-10-26 University Of Iowa Research Foundation Pattern and delay recovery with higher-order spectra
CN110796641B (zh) * 2019-10-08 2022-02-01 武汉大学 基于连续快照模型的高分辨率卫星影像震颤检测方法
US11391847B2 (en) 2020-02-24 2022-07-19 Novatel Inc. GNSS correlation distortion detection and mitigation
US11506794B2 (en) * 2020-04-21 2022-11-22 Novatel Inc. Systems and methods for GNSS carrier phase multipath mitigation using a blanked correlator in conjunction with a full correlator
EP3905536A1 (fr) * 2020-04-28 2021-11-03 Airbus Defence and Space GmbH Façonnage de distribution de bruit pour signaux cdma
EP3905535B1 (fr) * 2020-04-28 2022-04-27 Airbus Defence and Space GmbH Façonnage de distribution de bruit d'un signal à accès multiple par répartition en code à modulation de données

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978412A (en) * 1975-05-02 1976-08-31 Rockwell International Corporation Radio receiver noise suppression
CA1176336A (fr) * 1979-04-23 1984-10-16 Motorola, Inc. Eliminateur de bruit qui suit le niveau moyen du bruit
EP0018702A1 (fr) * 1979-04-30 1980-11-12 Motorola, Inc. Circuit pour éliminer le bruit dans un récepteur radio
US4792806A (en) * 1982-01-15 1988-12-20 Atlantic Scientific Corporation Lightning position and tracking method
US4510624A (en) * 1983-09-22 1985-04-09 Motorola, Inc. Noise blanking arrangement to minimize blanker splatter
DE3446529A1 (de) * 1984-12-20 1986-07-03 Blaupunkt-Werke Gmbh, 3200 Hildesheim Verfahren zur stoerverminderung in einer rundfunk-empfangsanlage
US5212827A (en) * 1991-02-04 1993-05-18 Motorola, Inc. Zero intermediate frequency noise blanker
US6347146B1 (en) * 1991-08-13 2002-02-12 Bose Corporation Noise reducing
US5537675A (en) * 1994-06-13 1996-07-16 Bond; Kevin J. Splatter controlling noise blanker
US5794136A (en) * 1996-09-24 1998-08-11 Motorola, Inc. Noise blanker and a radio receiver and method employing same
US5890059A (en) * 1996-10-21 1999-03-30 Delco Electronics Corporation Impulse noise blanking apparatus
US5889821A (en) * 1997-02-28 1999-03-30 Comsat Corporation Low noise front-end blanking and interleaving for satellite reception in pulsed interference environments
DE69835529T2 (de) * 1997-11-03 2007-01-18 Harris Corp., Melbourne Rekonfigurierbarer funksystemaufbau
US6091013A (en) * 1998-12-21 2000-07-18 Waller, Jr.; James K. Attack transient detection for a musical instrument signal
US6397050B1 (en) * 1999-04-12 2002-05-28 Rockwell Collins, Inc. Multiband squelch method and apparatus
US6810266B1 (en) * 1999-11-16 2004-10-26 Freescale Semiconductor, Inc. Digitally controlled radio back-end
US6795423B1 (en) * 2000-02-04 2004-09-21 Interdigital Technology Corporation System for continuous wave rejection
DE10116358A1 (de) * 2001-04-02 2002-11-07 Micronas Gmbh Vorrichtung und Verfahren zur Erfassung und Unterdrückung von Störungen
US6920194B2 (en) * 2001-05-29 2005-07-19 Tioga Technologies, Ltd. Method and system for detecting, timing, and correcting impulse noise
US7570576B2 (en) * 2001-06-08 2009-08-04 Broadcom Corporation Detection and mitigation of temporary (bursts) impairments in channels using SCDMA
US7366258B2 (en) * 2001-06-08 2008-04-29 Broadcom Corporation Chip blanking and processing in SCDMA to mitigate impulse and burst noise and/or distortion
US7260163B2 (en) 2002-08-09 2007-08-21 Freescale Semiconductor, Inc. Noise blanker using an adaptive all-pole predictor and method therefor
GB2395095A (en) * 2002-10-30 2004-05-12 Nokia Corp Reducing noise in a multi-carrier signal
US8253624B2 (en) * 2003-06-02 2012-08-28 Motorola Mobility Llc Detection and reduction of periodic jamming signals in GPS receivers and methods therefor
US7440737B2 (en) * 2005-08-30 2008-10-21 Freescale Semiconductor, Inc. Noise blanker control
US7652962B2 (en) * 2005-12-16 2010-01-26 Lsi Corporation Using PRML read channel ADC for blank/defect and ripple detection
FR2899052B1 (fr) * 2006-03-22 2009-04-24 Imra Europ Sas Soc Par Actions Filtre adaptatif pour un recepteur de signal de communication
EP1843467B1 (fr) * 2006-04-07 2010-05-26 Rohde & Schwarz GmbH & Co. KG Procédé et appareil de déclenchement de silencieux d'un signal de réception
US7684291B2 (en) * 2006-06-05 2010-03-23 Mediatek Inc. Method and apparatus for blank detection of an optical disc
US7805120B2 (en) * 2007-04-17 2010-09-28 Delphi Technologies, Inc. Noise blanker circuit and method for removing noise and correcting a signal
US7676204B2 (en) * 2007-05-10 2010-03-09 Freescale Semiconductor, Inc. Radio receiver having ignition noise detector and method therefor
US7796688B2 (en) * 2007-05-22 2010-09-14 Freescale Semiconductor, Inc. Radio receiver having a channel equalizer and method therefor
US20080309816A1 (en) * 2007-06-15 2008-12-18 Macrovision Corporation Television content control system and method with cross-platform capability
WO2009017393A1 (fr) * 2007-07-31 2009-02-05 Tele Atlas B.V. Procédé et dispositif pour déterminer une position
US8212379B2 (en) * 2009-03-06 2012-07-03 Amperion, Inc. Station communications over electrical transmission lines
ATE527759T1 (de) * 2009-05-11 2011-10-15 Harman Becker Automotive Sys Signalanalyse zur verbesserten erkennung von geräuschen aus einem benachbarten kanal
US8327206B2 (en) * 2009-12-19 2012-12-04 Tektronix, Inc. Blanking primitives masking circuit
US8451956B2 (en) * 2009-12-30 2013-05-28 Mitsubishi Electric Research Laboratories, Inc. SNR-based blanking scheme for impulsive noise mitigation in wireless networks
US8884818B1 (en) * 2010-01-25 2014-11-11 Qualcomm Incorporated Calibration and blanking in system simultaneously receiving GPS and GLONASS signals
JP2011188467A (ja) * 2010-02-15 2011-09-22 Fujitsu Ten Ltd 放送受信装置及び、放送受信装置の雑音有無判断方法
JP2011199825A (ja) * 2010-02-23 2011-10-06 Fujitsu Ten Ltd 放送受信装置及び、放送受信装置の雑音成分検出方法
US8305498B2 (en) * 2010-04-13 2012-11-06 Newport Media, Inc. Apparatus and method for equalizing analog TV signals
US8290457B2 (en) * 2010-04-27 2012-10-16 Silicon Laboratories Inc. Performing impulse blanking based on blocker information
US8427366B2 (en) * 2010-07-27 2013-04-23 Texas Instruments Incorporated Dual frequency receiver with single I/Q IF pair and mixer
US9857921B2 (en) * 2011-05-13 2018-01-02 Synaptics Incorporated Input signal correction architecture
US9429658B2 (en) * 2011-10-28 2016-08-30 Maxlinear, Inc. Method and system for a dual mode global navigation satellite system
US20130114571A1 (en) * 2011-11-07 2013-05-09 Qualcomm Incorporated Coordinated forward link blanking and power boosting for flexible bandwidth systems
WO2013090434A1 (fr) * 2011-12-13 2013-06-20 Northrop Grumman Guidance And Electronics Company, Inc Systèmes et procédés de quantification adaptative d'échantillons
EP2750130B1 (fr) * 2012-12-31 2015-11-25 Nxp B.V. Traitement de signaux pour un récepteur à modulation de fréquence
JP6221780B2 (ja) * 2014-01-29 2017-11-01 アイコム株式会社 無線受信機およびその周波数補正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10348344B2 (en) 2019-07-09
EP3182164A1 (fr) 2017-06-21
JP6943565B2 (ja) 2021-10-06
US20170170854A1 (en) 2017-06-15
CA2951892A1 (fr) 2017-06-15
JP2017111143A (ja) 2017-06-22

Similar Documents

Publication Publication Date Title
EP3182164B1 (fr) Façonnage de distribution de bruit pour signaux, en particulier des signaux cdma, avec atténuation de signaux d'artéfact
US8515335B2 (en) Cognitive anti-jam receiver systems and associated methods
EP2911307B1 (fr) Récepteur pour l'acquisition et le suivi des signaux de navigation à étalement de spectre avec changement de sous-porteuses
US20050059431A1 (en) Diversity receiver
US8213545B2 (en) Radio receiving apparatus and radio receiving method
CA2740156C (fr) Procede de demodulation de signaux d'un systeme multi-acces pouvant entrer en collision et equipement de mise en oeuvre
US9197285B2 (en) Methods and apparatus for ameliorating signal reception
JP2007324754A (ja) 信号受信区間検出器
KR100949637B1 (ko) 통신 신호를 위한 시간 구간 추적 방법
Merwe et al. Exotic FMCW waveform mitigation with an advanced multi-parameter adaptive notch filter (MPANF)
US20230101372A1 (en) Interference and jammer cancellation for radios
US10250291B2 (en) Noise distribution shaping for signals, particularly CDMA signals
US10432253B2 (en) Noise distribution shaping for signals, particularly spread spectrum signals like CDMA signals, with improved robustness
US20080200127A1 (en) Impulse Noise Correction
US9191048B2 (en) Quadrature impulse noise remover
Quintana–Diaz et al. In-orbit Interference Measurements and Analysis in the VDES-band with the NorSat-2 Satellite
EP3596892B1 (fr) Récepteur avec filtre apparié cohérent
EP3905535B1 (fr) Façonnage de distribution de bruit d'un signal à accès multiple par répartition en code à modulation de données
KR100199015B1 (ko) 확장형 칼만 필터를 사용한 fm 복조장치
Siebert et al. Low-Complexity Multipath Mitigation Technique Based on Multi-Correlator Structures
US20230266477A1 (en) Detecting gnss signal lock
Schubert et al. Evaluating tracking performance and a new carrier-to-noise estimation method using SNACS
JP2008312054A (ja) 信号検出装置、受信機およびしきい値算出方法
Vallés et al. Phase tracking with a cognitive Antijam Receiver System (CARS)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170810

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 1/7097 20110101ALI20171211BHEP

Ipc: G01S 19/38 20100101AFI20171211BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DEFENCE AND SPACE GMBH

INTG Intention to grant announced

Effective date: 20180131

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CATTENOZ, MATHIEU

Inventor name: SOUALLE, FRANCIS

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1015092

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015012864

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180704

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1015092

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181004

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181005

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181004

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015012864

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

26N No opposition filed

Effective date: 20190405

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181215

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151215

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 9

Ref country code: DE

Payment date: 20231214

Year of fee payment: 9