EP3181874B1 - Throttle valve housing for a throttle valve arrangement for a combustion engine - Google Patents

Throttle valve housing for a throttle valve arrangement for a combustion engine Download PDF

Info

Publication number
EP3181874B1
EP3181874B1 EP16204900.1A EP16204900A EP3181874B1 EP 3181874 B1 EP3181874 B1 EP 3181874B1 EP 16204900 A EP16204900 A EP 16204900A EP 3181874 B1 EP3181874 B1 EP 3181874B1
Authority
EP
European Patent Office
Prior art keywords
throttle valve
valve housing
sealing
edge
sealing piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP16204900.1A
Other languages
German (de)
French (fr)
Other versions
EP3181874A1 (en
Inventor
Oberacker Dieter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fischer Rohrtechnik GmbH
Original Assignee
Fischer Rohrtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102015122036.9A external-priority patent/DE102015122036A1/en
Priority claimed from DE102016110998.3A external-priority patent/DE102016110998A1/en
Priority to RS20190213A priority Critical patent/RS58698B1/en
Application filed by Fischer Rohrtechnik GmbH filed Critical Fischer Rohrtechnik GmbH
Priority to PL16204900T priority patent/PL3181874T3/en
Priority to US16/310,018 priority patent/US10753288B2/en
Priority to CN201780050184.4A priority patent/CN109642504A/en
Priority to PCT/EP2017/064585 priority patent/WO2017216246A1/en
Publication of EP3181874A1 publication Critical patent/EP3181874A1/en
Publication of EP3181874B1 publication Critical patent/EP3181874B1/en
Application granted granted Critical
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1035Details of the valve housing
    • F02D9/104Shaping of the flow path in the vicinity of the flap, e.g. having inserts in the housing
    • F02D9/1045Shaping of the flow path in the vicinity of the flap, e.g. having inserts in the housing for sealing of the flow in closed flap position, e.g. the housing forming a valve seat

Definitions

  • the present invention relates to a throttle body according to the subject-matter of independent claim 1.
  • Throttle valve assemblies for internal combustion engines have long been known.
  • such throttle valve arrangements are provided in order to be able to control the amount of air flowing into the engine in a targeted manner, so that it is possible to influence the output power of gasoline engines by adjusting the air-fuel ratio.
  • throttle valve arrangements in the incoming air stream have a different meaning, namely with regard to adjusting the recirculation rate of exhaust gases.
  • throttle valve arrangements are frequently used for influencing noise emissions and for influencing the back pressure in the exhaust gas system. Due to the thermal load throttle body are usually made of metal.
  • the throttle valve assemblies that is influenced by pivoting the throttle valve in the throttle body, the flow cross-section and thus the flow resistance between the inlet and the discharge opening.
  • the inflow opening is used to hold a fluid - usually of fresh air, exhaust gas or a mixture of both - in the throttle body. Accordingly, the fluid escapes via the discharge opening from the throttle body.
  • the flow path between the inflow port and the outflow port is influenced by the throttle valve. It is readily apparent that a quality feature for throttle assemblies is the degree of tightness achieved in the throttle closed position. Of course, in the production of throttle valve assemblies, this degree of tightness must be reproducible with high accuracy to achieve consistent quality.
  • Throttle valve arrangements are frequently known from the prior art in which the throttle body is completely uncontoured even in the area of movement of the throttle valve, so that the throttle valve forms a sealing gap in the closed position with the throttle body which, viewed in the direction of flow, thus flows from the inlet opening the flap housing looking to the outflow opening, can be seen.
  • the throttle is then practically perpendicular to the wall of the throttle body.
  • additional material for example, in the form of an integrally formed on the wall of the throttle body plate - to install, so that a stop for the throttle valve is formed in its closed position.
  • DE4408909A1 discloses a throttle body, wherein the sealing ridge is formed spanok in the wall of the throttle body.
  • DE4329526A1 discloses a method of manufacturing a throttle body wherein the seal bar is made in the throttle body by forming.
  • the object of the present invention is to provide a throttle body with improved sealing properties, and a corresponding method for producing such a throttle body.
  • a throttle body according to the subject of independent claim 1. Due to the chip-free design of the sealing web in the wall of the throttle body is made clear that the sealing web is made with the material of the wall and no additional elements for the realization of the sealing web are introduced into the throttle body.
  • a throttle body can be prepared by machining the chip-free forming, so for example by applying the high pressure forming or by pressing the wall material of the throttle body into a correspondingly contoured counter-mold with a rigid die (female-male forming).
  • Such a throttle body is therefore particularly advantageous because not only simple geometries of the movement space of the throttle and simple throttle body geometries can be realized, but virtually any contours can be realized.
  • the throttle body and the sealing web of the throttle body are made of a one-piece pipe part by chip-free forming is particularly advantageous.
  • Circular tubes can also be used to produce non-circular throttle bodies, especially in the area of the movement space of the throttle valve.
  • the sealing web is formed in the movement space everywhere where the throttle valve terminates only in the closed position with the throttle body.
  • the sealing web does not have to be a completely and closed circumferential sealing contour, but instead the sealing web is only formed where it can also unfold a corresponding sealing and stopping action with respect to the throttle valve.
  • the throttle valve is attached to a shaft which extends centrally through the flow cross-section of the movement space of the throttle body. When pivoting the throttle valve with such a shaft inevitably moves a part of the throttle valve against the flow direction and the other part of the throttle valve in the flow direction.
  • the throttle valve is practically not moved, at least not moved in the sense of a release and a closing of a flow cross-section. Accordingly, in the area of the shaft, the sealing web must not be executed. It can be seen from this example that the sealing web can be formed by a plurality of sealing web segments, which are formed along the sealing contour in and with the throttle body.
  • the sealing web has a triangular profile with a flow flank, with a sealing flank and with a dome, wherein the flow flank and the sealing flank originate from a respective base level of the throttle body with a foot point and converge in the dome.
  • the dome protrudes furthest into the flow cross section.
  • the sealing flank is formed on the side of the sealing web on which the throttle valve strikes in the closed position.
  • the flow flank is consequently arranged on the other side, ie opposite the sealing flank.
  • Such a geometry of the sealing bar is particularly easy to produce and also gentle to the material. Due to the non-cutting shaping of the wall of the throttle body, a material flow is practically always to effect, which can significantly burden the formed material.
  • the stress is greatest where the largest internal material displacement is effected, since the structure of the material is changed the most there.
  • the triangular profile also has fluidic advantages, since the guided through the throttle body fluid flow is performed continuously and without offset through the edges of the sealing land, so that the influence of the sealing land is fluidically relatively low. It is particularly preferably provided that in the sealing flank between its base and the dome a flat sealing area is formed. In a tubular throttle body so practically a circumferential sealing surface is realized, which - looking in or opposite to the flow direction of the sealing edge - forms a sealing ring. This is advantageous because it is particularly easy to also just form the parts of the throttle, in the closed position of the throttle valve face the flat sealing region of the sealing edge.
  • the triangular profile of the sealing web is formed asymmetrically, wherein the sealing edge is steeper than the flow edge. It has proven to be advantageous to let the sealing edge run relatively steep, so with a very large slope in the flow cross section.
  • the sealing flank is then inclined only very slightly with respect to the flow cross-section and thus with respect to the throttle valve located in the closed position, which is then usually positioned in the flow cross-section, ie perpendicular to the flow direction.
  • the throttle valve should rest not only with a narrow edge on its outer boundary on the sealing edge of the sealing strip circumferentially, but a better sealing effect is to be achieved, then the throttle should lie flat in the closed position on the sealing edge of the sealing web, so that realizes a circumferential sealing surface becomes. In this area, the throttle must thus form a correspondingly molded counterpart to the sealing edge. The steeper the sealing flank protrudes into the flow cross-section, the less must the throttle flap be bevelled in its sealing edge region, deviating from the pure shape of a flat disk.
  • a disadvantage of the steep profile of the sealing flank in the flow cross-section is that the material load by non-cutting forming, for example by hydroforming, in this area is very high, since with little material, a relatively large deformation must be realized.
  • the flow flank extends flatter than the sealing flank, so that significantly more material of the wall of the throttle body is available compared to the sealing flank to form the flow flank from its base to the crest.
  • the asymmetrical design of the triangular sealing bar profile results in a comparatively small proportion of the area of the sealing bar - namely that in the region of the flow flank - being subjected to a comparatively small amount is and that a better stiffness than in a symmetrical design is achieved.
  • the chip-free design of the sealing web in the wall of the throttle body allows a precise realization of the angle of attack of the sealing flank and also a precise realization of a flat sealing area, in which case a slightly larger material load is accepted than at the flow flank.
  • the realization of a provided on the outer periphery of the throttle aperture with a slope corresponding to the slope of the sealing edge is also advantageous because in this way also causes a stiffening of the throttle itself.
  • the inclination of the sealing flank additionally leads to the fact that the sealing surface is increased, in any case with respect to a vertically extending sealing flank, which therefore runs perpendicular to the flow direction.
  • the plane sealing area of the sealing flank is inclined more than 70 °, more preferably more than 75 ° and most preferably about 80 ° with respect to the flow axis of the throttle body.
  • the flow flank is inclined less than 50 °, more preferably less than 40 ° and most preferably about 35 ° relative to the flow axis of the throttle body.
  • the invention also relates to a method for producing a throttle body for a throttle assembly for an internal combustion engine according to the subject-matter of independent claim 10.
  • the initially derived object is achieved in this method in that a one-piece pipe part is reshaped so that the sealing web is produced in the throttle body by chip-free forming.
  • the tube part is deformed by pressure effect from the inside to the outside, so that a material flow is brought to the outside in a shaping outer tool, in particular by hydroforming or by moving a rigid inner tool into a rigid outer tool.
  • Fig. 1 to 5 are shown in varying degrees of detail and with different focuses throttle body 1. Throttle body forms together with the throttle valves installed in them throttle valve assemblies; the throttle valves are not shown here themselves, of particular interest are the throttle body 1.
  • Throttle body 1 serve to accommodate a pivotally mounted throttle and therefore form the space for movement of the throttle.
  • the throttle body 1 has on a first side an inflow port 2 for receiving a fluid, and the throttle body 1 has on a second side an exhaust port 3 for discharging the throttle body 1 by flowing fluid; characterized the flow direction D is defined.
  • the throttle body 1 and the sealing web 4 of the throttle body 1 are made of a one-piece pipe part by chip-free forming.
  • the throttle body 1 shown in the figures has been made by hydroforming using a solid but flexible forming medium. As a molding medium, a polyurethane elastomer has been used.
  • the medium is introduced into the blank of the throttle body 1, axially, thus compressed in the flow direction D, whereby the material escapes radially and presses the wall of the blank in an unillustrated outer tool, whereby the end-formed Throttle body 1 is formed, which is shown in the figures.
  • Fluide forming media can also be used.
  • the sealing web 4 is formed in the movement space where the throttle valve terminates only in the closed position with the throttle body 1; in the region of the shaft opening 5 or around the shaft opening 5, the sealing web 4 is not formed. This results in two nearly semicircular sealing bar segments, which are incoherent and together form the sealing bar 4.
  • the sealing ridge 4 has a triangular profile with a flow edge 6, with a sealing edge 7 and a dome 8, wherein the flow edge 6 and the sealing edge 7 each originate from a base level G of the throttle body 1 with a base FP and in the dome 8 converge.
  • the base level is formed by the straight course of the wall of the throttle body, starting from which the contouring of the wall by the sealing web 4 begins.
  • the dome 8 is the element which projects furthest into the flow cross section.
  • the sealing flank 7 is formed on the side of the sealing web 4, against which the throttle valve strikes in the closed position.
  • a flat sealing region 9 is formed between its base FP and the dome 8. This is particularly advantageous because a correspondingly flat counter surface can be formed without much effort on the throttle, for example in the form of an applied aperture. As a result, a significantly better sealing effect is achieved than if the sealing web 4 and the throttle valve would only seal against one another in a line-shaped contact contour.
  • the triangular profile of the sealing web 4 is formed asymmetrically, wherein the sealing edge 7 is steeper than the flow edge 6.
  • the planar sealing region 9 is inclined at about 80 ° with respect to the flow axis or the flow direction D, respectively, relative to the base level G of the throttle body 1.
  • Fig. 3 is good to see that the sealing edge 7 fuß Vietnamese medicinal substance reaches below the base level of the throttle body 1, namely the base level by the distance h below.
  • the reshaped contour runs arcuately in the base level G of the throttle body 1. This "undershooting" of the contour profile causes larger Umformradien can be realized with a smaller material load.
  • a larger, even sealing area 9 can be realized in this way since the sealing area 9 is widely spaced from the outlet area of the arcuate section at the root FP of the sealing flank 7.
  • Fig. 3 indicates that the flow edge 6 is inclined about 35 ° relative to the flow axis D of the throttle body 1 and thus with respect to the base level G of the throttle body 1.
  • Fig. 1 . 2 and 4 to 6 in each case at least one circular opening region 5 is shown as a passage point for a drive shaft 10; the shaft 10 is only in the Fig. 5 and 6 shown schematically.
  • the throttle body 1 is formed by hydroforming, the only defined opening area 5 is still closed; he will be opened afterwards, here by laser cutting.
  • the sealing web 4 eccentrically to the opening portion 5, wherein the height of the sealing ridge 4 ramps down to the level of the boundary of the defined opening portion 5.
  • the height of the sealing web 4 is thus already switched off on reaching the border of the opening area 5 to zero.
  • Fig. 4 perspective situation is shown in Fig. 5 shown again simplified, wherein the shaft 10 has entered the place of the defined opening area 5. This is necessary in order to be able to recognize the advantageousness of the construction described.
  • the height of the sealing web 4 drops in a ramp shape, that is to say along the ramp 11, to the level of the boundary of the defined opening region, it is considered in the flow direction (FIG. Fig. 5 below) realized over the full circumference almost closed sealing ring, also directly on the shaft 10th
  • FIG. 6 An alternative realization is in Fig. 6 shown. Again, the sealing ridge 4 off-center on the circular opening portion 5 as a passage point for the drive shaft 10, the in Fig. 6 has taken the place of the opening area 5. The height of the sealing web 4 remains unchanged up to the boundary of the defined opening area 5 or up to the shaft 10. In Fig. 6 above is indicated that the ramp 11 only in the region of the potential opening 5, here replaced by the shaft 10, drops. Even so, as seen in the flow direction, a closed sealing contour can be realized, but then the boundary of the opening 5 is no longer circular.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lift Valve (AREA)

Description

Die vorliegende Erfindung betrifft ein Drosselklappengehäuse gemäß dem Gegenstand des unabhängigen Anspruchs 1.The present invention relates to a throttle body according to the subject-matter of independent claim 1.

Drosselklappenanordnungen für Verbrennungsmotoren sind seit Langem bekannt. Im Zuluftstrang eines Verbrennungsmotors werden derartige Drosselklappenanordnungen vorgesehen, um die in den Motor einströmende Luftmenge gezielt steuern zu können, sodass durch Einstellung des Kraftstoff-Luft-Verhältnisses Einfluss auf die Abgabeleistung bei Ottomotoren genommen werden kann. Bei Dieselmotoren kommt Drosselklappenanordnungen im Zuluftstrang eine andere Bedeutung zu, nämlich bezüglich der Einstellung der Rückführungsrate von Abgasen. Im Abgasstrang von Verbrennungsmotoren werden Drosselklappenanordnungen häufig angewendet zur Beeinflussung von Schallemissionen und zur Beeinflussung des Staudrucks in dem Abgasstrang. Aufgrund der thermischen Belastung sind Drosselklappengehäuse üblicherweise aus Metall hergestellt.
Gemeinsam ist den Drosselklappenanordnungen, dass durch Verschwenken der Drosselklappe in dem Drosselklappengehäuse der Strömungsquerschnitt und damit der Strömungswiderstand zwischen der Einströmöffnung und der Ausströmöffnung beeinflusst wird. Die Einströmöffnung dient der Aufnahme eines Fluids - im Regelfall also von Frischluft, Abgas oder einem Gemisch aus beidem - in das Drosselklappengehäuse. Entsprechend entweicht das Fluid über die Ausströmöffnung aus dem Drosselklappengehäuse. Der Strömungsweg zwischen der Einströmöffnung und der Ausströmöffnung wird durch die Drosselklappe beeinflusst.
Es ist ohne Weiteres ersichtlich, dass ein Qualitätsmerkmal für Drosselklappenanordnungen der Dichtheitheitsgrad ist, der in der Schließstellung der Drosselklappe erzielt wird. Bei der Produktion von Drosselklappenanordnungen muss dieser Dichtheitsgrad selbstverständlich mit hoher Genauigkeit reproduziert werden können, um eine gleichbleibende Qualität zu realisieren.
Aus dem Stand der Technik sind vielfach Drosselklappenanordnungen bekannt, bei denen das Drosselklappengehäuse auch im Bereich des Bewegungsraums der Drosselklappe vollkommen unkonturiert, also glatt ist, sodass die Drosselklappe in Schließposition mit dem Drosselklappengehäuse einen Dichtspalt bildet, der in Strömungsrichtung betrachtet, also von der Einströmöffnung durch das Klappengehäuse zur Ausströmöffnung schauend, erkennbar ist. Die Drosselklappe steht dann praktisch senkrecht auf der Wandung des Drosselklappengehäuses. Es ist ferner bekannt, im Bewegungsraum des Drosselklappengehäuses und zwar auf die Wandung des Drosselklappengehäuses zusätzliches Material - beispielsweise in Form eines an die Wandung des Drosselklappengehäuses angeformtes Blech - anzubringen, so dass ein Anschlag für die Drosselklappe in ihrer Schließposition entsteht. Dies ist beispielsweise dann einfach, wenn das Drosselklappengehäuse ein kreisförmiges Rohr ist, in das als Anschlag dann einfach ein geringfügig kleineres Rohr bzw. Halbrohre oder Rohrsegmente eingebracht werden. Dies ist verhältnismäßig aufwendig, zum Einen weil zusätzliche konstruktive Elemente in die beengten Abmessungen des Drosselklappengehäuses eingebracht und dort präzise positioniert werden müssen, zum Anderen, weil ein weiterer Verfahrensschritt zur Befestigung dieser Konstruktionselemente durchzuführen ist. Auch stellt sich bei dem Zusammenfügen von Drosselklappengehäuse und den zusätzlichen Dichtelementen wieder die Frage nach einer zuverlässig zu realisierenden Dichtheit (Problematik der Spaltenbildung).
Throttle valve assemblies for internal combustion engines have long been known. In the supply air line of an internal combustion engine, such throttle valve arrangements are provided in order to be able to control the amount of air flowing into the engine in a targeted manner, so that it is possible to influence the output power of gasoline engines by adjusting the air-fuel ratio. In the case of diesel engines, throttle valve arrangements in the incoming air stream have a different meaning, namely with regard to adjusting the recirculation rate of exhaust gases. In the exhaust system of internal combustion engines, throttle valve arrangements are frequently used for influencing noise emissions and for influencing the back pressure in the exhaust gas system. Due to the thermal load throttle body are usually made of metal.
Common to the throttle valve assemblies that is influenced by pivoting the throttle valve in the throttle body, the flow cross-section and thus the flow resistance between the inlet and the discharge opening. The inflow opening is used to hold a fluid - usually of fresh air, exhaust gas or a mixture of both - in the throttle body. Accordingly, the fluid escapes via the discharge opening from the throttle body. The flow path between the inflow port and the outflow port is influenced by the throttle valve.
It is readily apparent that a quality feature for throttle assemblies is the degree of tightness achieved in the throttle closed position. Of course, in the production of throttle valve assemblies, this degree of tightness must be reproducible with high accuracy to achieve consistent quality.
Throttle valve arrangements are frequently known from the prior art in which the throttle body is completely uncontoured even in the area of movement of the throttle valve, so that the throttle valve forms a sealing gap in the closed position with the throttle body which, viewed in the direction of flow, thus flows from the inlet opening the flap housing looking to the outflow opening, can be seen. The throttle is then practically perpendicular to the wall of the throttle body. It is also known, in the movement space of the throttle body and that on the wall of the throttle body additional material - for example, in the form of an integrally formed on the wall of the throttle body plate - to install, so that a stop for the throttle valve is formed in its closed position. This is easy, for example, if the throttle body is a circular tube into which then just a slightly smaller pipe or half pipes or pipe segments are introduced as a stop. This is relatively expensive, on the one hand because additional structural elements must be placed in the cramped dimensions of the throttle body and there must be precisely positioned, on the other hand, because a further process step for fixing these structural elements is carried out. Also arises in the assembly of the throttle body and the additional sealing elements again the question of a reliable to be realized tightness (problem of gap formation).

DE4408909A1 offenbart ein Drosselklappengehäuse, wobei der Dichtsteg spanfrei in der Wandung des Drosselklappengehäuses ausgebildet ist. DE4408909A1 discloses a throttle body, wherein the sealing ridge is formed spanfrei in the wall of the throttle body.

DE4329526A1 offenbart ein Verfahren zur Herstellung eines Drosselklappengehäuses, wobei der Dichtsteg im Drosselklappengehäuse durch Umformung hergestellt wird. DE4329526A1 discloses a method of manufacturing a throttle body wherein the seal bar is made in the throttle body by forming.

Aufgabe der vorliegenden Erfindung ist es, ein Drosselklappengehäuse mit verbesserten Dichtheitseigenschaften anzugeben, sowie ein entsprechendes Verfahren zur Herstellung eines derartigen Drosselklappengehäuses.The object of the present invention is to provide a throttle body with improved sealing properties, and a corresponding method for producing such a throttle body.

Die zuvor aufgezeigte und hergeleitete Aufgabe ist bei einem Drosselklappengehäuse gemäß dem Gegenstand des unabhängigen Anspruchs 1 gelöst. Durch die spanfreie Ausbildung des Dichtsteges in der Wandung des Drosselklappengehäuses ist klargestellt, dass der Dichtsteg mit dem Material der Wandung hergestellt ist und keine zusätzlichen Elemente zur Realisierung des Dichtsteges in das Drosselklappengehäuse eingebracht sind. Ein solches Drosselklappengehäuse lässt sich durch Verfahren der spanfreien Umformung herstellen, also beispielsweise durch Anwendung der Hochdruckumformung oder durch Pressen des Wandmaterials des Drosselklappengehäuses in eine entsprechend konturierte Gegenform mit einem starren Stempel (Matrize-Patrize-Umformung).
Ein solches Drosselklappengehäuse ist auch deshalb in besonderer Weise vorteilhaft, weil nicht nur einfache Geometrien des Bewegungsraumes der Drosselklappe und einfache Drosselklappengeometrien realisiert werden können, sondern praktisch beliebige Konturen realisierbar sind.
Besonders vorteilhaft ist es, wenn das Drosselklappengehäuse und der Dichtsteg des Drosselklappengehäuses aus einem einstückigen Rohrteil durch spanfreie Umformung hergestellt sind. Auch aus Rundrohren lassen sich unrunde Drosselklappengehäuse, speziell im Bereich des Bewegungsraums der Drosselklappe, herstellen.
Bei einer vorteilhaften Weiterbildung des Drosselklappengehäuses ist vorgesehen, dass der Dichtsteg in dem Bewegungsraum überall dort ausgebildet ist, wo die Drosselklappe nur in Schließposition mit dem Drosselklappengehäuse abschließt. Bei dem Dichtsteg muss es sich also nicht um eine vollständig und geschlossen umlaufende Dichtkontur handeln, vielmehr wird der Dichtsteg nur dort ausgebildet, wo er gegenüber der Drosselklappe auch eine entsprechende Dicht- und Anschlagwirkung entfalten kann. Es kann beispielsweise vorgesehen sein, dass die Drosselklappe an einer Welle befestigt ist, die mittig durch den Strömungsquerschnitt des Bewegungsraumes des Drosselklappengehäuses verläuft. Beim Verschwenken der Drosselklappe mit einer derartigen Welle bewegt sich zwangsläufig ein Teil der Drosselklappe entgegen der Strömungsrichtung und der andere Teil der Drosselklappe in Strömungsrichtung.
The above-indicated and derived object is achieved in a throttle body according to the subject of independent claim 1. Due to the chip-free design of the sealing web in the wall of the throttle body is made clear that the sealing web is made with the material of the wall and no additional elements for the realization of the sealing web are introduced into the throttle body. Such a throttle body can be prepared by machining the chip-free forming, so for example by applying the high pressure forming or by pressing the wall material of the throttle body into a correspondingly contoured counter-mold with a rigid die (female-male forming).
Such a throttle body is therefore particularly advantageous because not only simple geometries of the movement space of the throttle and simple throttle body geometries can be realized, but virtually any contours can be realized.
It when the throttle body and the sealing web of the throttle body are made of a one-piece pipe part by chip-free forming is particularly advantageous. Circular tubes can also be used to produce non-circular throttle bodies, especially in the area of the movement space of the throttle valve.
In an advantageous embodiment of the throttle body, it is provided that the sealing web is formed in the movement space everywhere where the throttle valve terminates only in the closed position with the throttle body. Thus, the sealing web does not have to be a completely and closed circumferential sealing contour, but instead the sealing web is only formed where it can also unfold a corresponding sealing and stopping action with respect to the throttle valve. It can be provided, for example, that the throttle valve is attached to a shaft which extends centrally through the flow cross-section of the movement space of the throttle body. When pivoting the throttle valve with such a shaft inevitably moves a part of the throttle valve against the flow direction and the other part of the throttle valve in the flow direction.

Am Ort der Welle selbst wird die Drosselklappe praktisch nicht bewegt, jedenfalls nicht bewegt im Sinne einer Freigabe und eines Verschließens eines Strömungsquerschnittes. Im Bereich der Welle muss demzufolge auch der Dichtsteg nicht ausgeführt sein. Anhand dieses Beispiels wird ersichtlich, dass der Dichtsteg von mehreren Dichtsteg-Segmenten gebildet werden kann, die entlang der Dichtkontur in und mit dem Drosselklappengehäuse ausgebildet sind.At the location of the shaft itself, the throttle valve is practically not moved, at least not moved in the sense of a release and a closing of a flow cross-section. Accordingly, in the area of the shaft, the sealing web must not be executed. It can be seen from this example that the sealing web can be formed by a plurality of sealing web segments, which are formed along the sealing contour in and with the throttle body.

Gemäß der Erfindung weist der Dichtsteg ein dreieckförmiges Profil mit einer Strömungsflanke, mit einer Dichtflanke und mit einer Kuppe auf, wobei die Strömungsflanke und die Dichtflanke von jeweils einem Grundniveau des Drosselklappengehäuses mit einem Fußpunkt entspringen und in der Kuppe zusammenlaufen. Die Kuppe ragt dabei am weitesten in den Strömungsquerschnitt hinein. Die Dichtflanke ist an der Seite des Dichtstegs ausgebildet, an der die Drosselklappe in Schließposition anschlägt. Die Strömungsflanke ist folglich an der anderen Seite, also gegenüberliegend der Dichtflanke, angeordnet. Eine solche Geometrie des Dichtsteges ist besonders einfach herzustellen und auch materialschonend herzustellen. Durch das spanlose Umformen der Wandung des Drosselklappengehäuses ist praktisch immer ein Materialfluss zu bewirken, der das umgeformte Material ganz erheblich belasten kann. Die Beanspruchung ist dort am größten, wo der größte innere Materialversatz bewirkt wird, da das Gefüge des Materials dort am stärksten verändert wird. Mit einer dreieckförmigen Ausgestaltung des Dichtsteges ist es möglich, mit vergleichsweise sanft verlaufenden Konturen eine Dichtstruktur zu realisieren. Das dreieckförmige Profil hat zudem auch strömungstechnische Vorteile, da der durch das Drosselklappengehäuse geführte Fluidstrom durch die Flanken des Dichtsteges kontinuierlich und versatzfrei geführt wird, so dass der Einfluss des Dichtsteges strömungstechnisch verhältnismäßig gering ist.
Besonders bevorzugt ist vorgesehen, dass in der Dichtflanke zwischen ihrem Fußpunkt und der Kuppe ein ebener Dichtbereich ausgebildet ist. Bei einem rohrförmigen Drosselklappengehäuse wird damit praktisch eine umlaufende Dichtfläche realisiert, die - in oder entgegengesetzt der Strömungsrichtung auf die Dichtflanke schauend - einen Dichtring bildet. Dies ist deshalb vorteilhaft, weil es besonders einfach ist, die Teile der Drosselklappe ebenfalls eben auszubilden, die in der Schließposition der Drosselklappe dem ebenen Dichtbereich der Dichtflanke gegenüberstehen.
According to the invention, the sealing web has a triangular profile with a flow flank, with a sealing flank and with a dome, wherein the flow flank and the sealing flank originate from a respective base level of the throttle body with a foot point and converge in the dome. The dome protrudes furthest into the flow cross section. The sealing flank is formed on the side of the sealing web on which the throttle valve strikes in the closed position. The flow flank is consequently arranged on the other side, ie opposite the sealing flank. Such a geometry of the sealing bar is particularly easy to produce and also gentle to the material. Due to the non-cutting shaping of the wall of the throttle body, a material flow is practically always to effect, which can significantly burden the formed material. The stress is greatest where the largest internal material displacement is effected, since the structure of the material is changed the most there. With a triangular configuration of the sealing web, it is possible to realize a sealing structure with comparatively smooth contours. The triangular profile also has fluidic advantages, since the guided through the throttle body fluid flow is performed continuously and without offset through the edges of the sealing land, so that the influence of the sealing land is fluidically relatively low.
It is particularly preferably provided that in the sealing flank between its base and the dome a flat sealing area is formed. In a tubular throttle body so practically a circumferential sealing surface is realized, which - looking in or opposite to the flow direction of the sealing edge - forms a sealing ring. This is advantageous because it is particularly easy to also just form the parts of the throttle, in the closed position of the throttle valve face the flat sealing region of the sealing edge.

Gemäß der Erfindung ist das dreieckförmige Profil des Dichtstegs asymmetrisch ausgebildet, wobei die Dichtflanke steiler als die Strömungsflanke verläuft. Es hat sich als vorteilhaft herausgestellt, die Dichtflanke verhältnismäßig steil verlaufen zu lassen, also mit einer sehr großen Steigung in den Strömungsquerschnitt hinein. Ein Grund dafür ist, dass die Dichtflanke dann nur sehr wenig geneigt ist gegenüber dem Strömungsquerschnitt und damit gegenüber der in Schließposition befindlichen Drosselklappe, die dann üblicherweise im Strömungsquerschnitt positioniert ist, also senkrecht zur Strömungsrichtung. Wenn die Drosselklappe nicht nur mit einer schmalen Kante an ihrer äußeren Berandung an der Dichtflanke des Dichtsteges umlaufend anliegen soll, sondern eine bessere Dichtwirkung erzielt werden soll, dann sollte die Drosselklappe in Schließposition flächig an der Dichtflanke des Dichtsteges anliegen, so dass eine umlaufende Dichtfläche realisiert wird. In diesem Bereich muss die Drosselklappe also ein entsprechend angeformtes Gegenstück zu der Dichtflanke bilden. Je steiler die Dichtflanke in den Strömungsquerschnitt hineinragt, um so weniger muss die Drosselklappe in ihrem dichtenden Randbereich - abweichend von der reinen Form einer ebenen Scheibe - angeschrägt werden. Nachteilig an dem steilen Verlauf der Dichtflanke in den Strömungsquerschnitt ist, dass die Materialbelastung durch spanloses Umformen, beispielsweise durch Innenhochdruckumformen, in diesem Bereich sehr hoch ist, da mit wenig Material eine verhältnismäßig große Verformung realisiert werden muss.
Aufgrund der angesprochenen asymmetrischen Ausbildung des Dichtsteges verläuft die Strömungsflanke flacher als die Dichtflanke, sodass also im Vergleich zu der Dichtflanke deutlich mehr Material der Wandung des Drosselklappengehäuses zur Verfügung steht, um die Strömungsflanke von ihrem Fußpunkt bis zur Kuppe hin auszubilden.
Die asymmetrische Ausgestaltung des dreieckförmigen Dichtstegprofils führt insgesamt dazu, dass ein verhältnismäßig großer Flächenanteil des Dichtsteges - nämlich der im Bereich der Strömungsflanke - verhältnismäßig gering belastet ist und dass eine bessere Steifigkeit als bei einer symmetrischen Ausführung erreicht wird. Die spanfreie Ausbildung des Dichtsteges in der Wandung des Drosselklappengehäuses lässt eine präzise Realisierung des Anstellwinkels der Dichtflanke zu und auch eine präzise Realisierung eines ebenen Dichtbereiches, wobei hier eine etwas größere Materialbelastung in Kauf genommen wird als bei der Strömungsflanke.
Die Realisierung einer am äußeren Umfang der Drosselklappe vorgesehenen Blende mit einer der Neigung der Dichtflanke entsprechenden Neigung ist ebenfalls vorteilhaft, da auf diesem Wege ebenfalls eine Versteifung der Drosselklappe an sich bewirkt wird. Die Neigung der Dichtflanke führt zusätzlich dazu, dass die Dichtfläche vergrößert wird, jedenfalls gegenüber einer senkrecht verlaufenden Dichtflanke, die also senkrecht zur Strömungsrichtung verläuft.
According to the invention, the triangular profile of the sealing web is formed asymmetrically, wherein the sealing edge is steeper than the flow edge. It has proven to be advantageous to let the sealing edge run relatively steep, so with a very large slope in the flow cross section. One reason for this is that the sealing flank is then inclined only very slightly with respect to the flow cross-section and thus with respect to the throttle valve located in the closed position, which is then usually positioned in the flow cross-section, ie perpendicular to the flow direction. If the throttle valve should rest not only with a narrow edge on its outer boundary on the sealing edge of the sealing strip circumferentially, but a better sealing effect is to be achieved, then the throttle should lie flat in the closed position on the sealing edge of the sealing web, so that realizes a circumferential sealing surface becomes. In this area, the throttle must thus form a correspondingly molded counterpart to the sealing edge. The steeper the sealing flank protrudes into the flow cross-section, the less must the throttle flap be bevelled in its sealing edge region, deviating from the pure shape of a flat disk. A disadvantage of the steep profile of the sealing flank in the flow cross-section is that the material load by non-cutting forming, for example by hydroforming, in this area is very high, since with little material, a relatively large deformation must be realized.
Due to the mentioned asymmetrical design of the sealing web, the flow flank extends flatter than the sealing flank, so that significantly more material of the wall of the throttle body is available compared to the sealing flank to form the flow flank from its base to the crest.
Overall, the asymmetrical design of the triangular sealing bar profile results in a comparatively small proportion of the area of the sealing bar - namely that in the region of the flow flank - being subjected to a comparatively small amount is and that a better stiffness than in a symmetrical design is achieved. The chip-free design of the sealing web in the wall of the throttle body allows a precise realization of the angle of attack of the sealing flank and also a precise realization of a flat sealing area, in which case a slightly larger material load is accepted than at the flow flank.
The realization of a provided on the outer periphery of the throttle aperture with a slope corresponding to the slope of the sealing edge is also advantageous because in this way also causes a stiffening of the throttle itself. The inclination of the sealing flank additionally leads to the fact that the sealing surface is increased, in any case with respect to a vertically extending sealing flank, which therefore runs perpendicular to the flow direction.

Es ist vorzugsweise vorgesehen, dass der der ebene Dichtbereich der Dichtflanke mehr als 70°, besonders bevorzugt mehr als 75° und ganz besonders bevorzugt etwa 80° gegenüber der Strömungsachse des Drosselklappengehäuses geneigt ist.It is preferably provided that the plane sealing area of the sealing flank is inclined more than 70 °, more preferably more than 75 ° and most preferably about 80 ° with respect to the flow axis of the throttle body.

Entsprechend ist bei der asymmetrischen Ausgestaltung des Dichtsteges vorgesehen, dass die Strömungsflanke weniger als 50°, besonders bevorzugt weniger als 40° und ganz besonders bevorzugt etwa 35° gegenüber der Strömungsachse des Drosselklappengehäuses geneigt ist.Accordingly, it is provided in the asymmetrical design of the sealing web that the flow flank is inclined less than 50 °, more preferably less than 40 ° and most preferably about 35 ° relative to the flow axis of the throttle body.

Die Erfindung betrifft ebenfalls ein Verfahren zur Herstellung eines Drosselklappengehäuses für eine Drosselklappenanordnung für einen Verbrennungsmotor gemäß dem Gegenstand des unabhängigen Anspruchs 10. Die eingangs hergeleitete Aufgabe wird bei diesem Verfahren dadurch gelöst, dass ein einstückiges Rohrteil so umgeformt wird, dass der Dichtsteg im Drosselklappengehäuse durch spanfreie Umformung hergestellt wird.The invention also relates to a method for producing a throttle body for a throttle assembly for an internal combustion engine according to the subject-matter of independent claim 10. The initially derived object is achieved in this method in that a one-piece pipe part is reshaped so that the sealing web is produced in the throttle body by chip-free forming.

Erfindungsgemäß wird das Rohrteil durch Druckwirkung von Innen nach außen umgeformt, sodass ein Materialfluss nach außen in ein formgebendes Außenwerkzeug bewirkt wird, insbesondere durch Innenhochdruckumformen oder durch bewegen eines starren Innenwerkzeugs in ein starres Außenwerkzeug.According to the invention, the tube part is deformed by pressure effect from the inside to the outside, so that a material flow is brought to the outside in a shaping outer tool, in particular by hydroforming or by moving a rigid inner tool into a rigid outer tool.

Insbesondere wird das Verfahren so ausgeführt, dass die zuvor beschriebenen gegenständlichen Merkmale des Drosselklappengehäuses realisiert werden.
Im Einzelnen gibt es nun eine Vielzahl von Möglichkeiten, die Drosselklappenanordnung und das Verfahren zur Herstellung einer solchen Drosselklappenanordnung auszugestalten und weiterzubilden. Dazu wird verwiesen sowohl auf die den unabhängigen Patentansprüchen nachgeordneten Patentansprüche als auch auf die nachfolgende Beschreibung von bevorzugten Ausführungsbeispielen in Verbindung mit der Zeichnung. In der Zeichnung zeigen

Fig. 1
ein erfindungsgemäßes Drosselklappengehäuse in perspektivischer Ansicht,
Fig. 2
ein erfindungsgemäßes Drosselklappengehäuse in Draufsicht mit Dichtstegprofil und Ausnehmung für eine Antriebswelle,
Fig. 3
schematisch das Dichtstegprofil gemäß Fig. 2,
Fig. 4
eine Detailansicht des Dichtsteges im Bereich der Ausnehmung für eine Antriebswelle,
Fig. 5
eine schematische Draufsicht für eine erste Realisierung des Dichtstegs im Bereich der Ausnehmung für eine Antriebswelle und
Fig. 6
eine schematische Draufsicht für eine zweite, alternative Realisierung des Dichtstegs im Bereich der Ausnehmung für eine Antriebswelle.
In particular, the method is carried out so that the above-described subject features of the throttle body are realized.
In particular, there are now a variety of ways to design and further develop the throttle assembly and the method for producing such a throttle assembly. Reference is made to both the claims subordinate to the independent claims and to the following description of preferred embodiments in conjunction with the drawings. In the drawing show
Fig. 1
an inventive throttle body in perspective view,
Fig. 2
an inventive throttle body in plan view with sealing bar profile and recess for a drive shaft,
Fig. 3
schematically the sealing bar profile according to Fig. 2 .
Fig. 4
a detailed view of the sealing web in the region of the recess for a drive shaft,
Fig. 5
a schematic plan view of a first realization of the sealing ridge in the region of the recess for a drive shaft and
Fig. 6
a schematic plan view of a second alternative realization of the sealing ridge in the region of the recess for a drive shaft.

In den Fig. 1 bis 5 sind in unterschiedlichem Detaillierungsgrad und mit unterschiedlichen Schwerpunkten Drosselklappengehäuse 1 dargestellt. Drosselklappengehäuse bilden zusammen mit den in Ihnen verbauten Drosselklappen Drosselklappenanordnungen; die Drosselklappen sind hier selbst nicht dargestellt, von Interesse sind vornehmlich die Drosselklappengehäuse 1.In the Fig. 1 to 5 are shown in varying degrees of detail and with different focuses throttle body 1. Throttle body forms together with the throttle valves installed in them throttle valve assemblies; the throttle valves are not shown here themselves, of particular interest are the throttle body 1.

Drosselklappengehäuse 1 dienen zur Aufnahme einer schwenkbar gelagerten Drosselklappe und bilden daher den Bewegungsraum für die Drosselklappe. Das Drosselklappengehäuse 1 weist an einer ersten Seite eine Einströmöffnung 2 zur Aufnahme eines Fluids auf, und das Drosselklappengehäuse 1 weist an einer zweiten Seite eine Ausströmöffnung 3 zur Abgabe des das Drosselklappengehäuse 1 durchströmenden Fluids auf; dadurch wird die Durchströmungsrichtung D definiert.Throttle body 1 serve to accommodate a pivotally mounted throttle and therefore form the space for movement of the throttle. The throttle body 1 has on a first side an inflow port 2 for receiving a fluid, and the throttle body 1 has on a second side an exhaust port 3 for discharging the throttle body 1 by flowing fluid; characterized the flow direction D is defined.

Im Bewegungsraum des Drosselklappengehäuses 1 ist ein in den Strömungsquerschnitt hineinragender Dichtsteg 4 angeordnet, der der Drosselklappe in Schließposition als Anschlag dient. Von Bedeutung ist hier, dass der Dichtsteg 4 spanfrei in der Wandung des Drosselklappengehäuses 1 ausgebildet ist. Bei den hier dargestellten Ausführungsbeispielen sind das Drosselklappengehäuse 1 und der Dichtsteg 4 des Drosselklappengehäuses 1 aus einem einstückigen Rohrteil durch spanfreie Umformung hergestellt sind. Die in den Figuren dargestellten Drosselklappengehäuse 1 sind durch Innenhochdruckumformung hergestellt worden, und zwar unter Verwendung eines soliden aber flexiblen Umformmediums. Als Umformmedium ist ein Polyurethan-Elastomer verwendet worden. Das Medium wird in den Rohling des Drosselklappengehäuses 1 eingeführt, axial, also in Durchströmungsrichtung D zusammengestaucht, wodurch das Material radial entweicht und die Wandung des Rohlings in ein nicht dargestelltes Außenwerkzeug drückt, wodurch das endgeformte Drosselklappengehäuse 1 entsteht, das in den Figuren gezeigt ist. Fluide Umformmedien sind ebenfalls einsetzbar.In the movement space of the throttle body 1, a projecting into the flow cross-section sealing ridge 4 is arranged, which serves as a stop of the throttle valve in the closed position. It is important here that the sealing web 4 is formed without chips in the wall of the throttle body 1. In the embodiments shown here, the throttle body 1 and the sealing web 4 of the throttle body 1 are made of a one-piece pipe part by chip-free forming. The throttle body 1 shown in the figures has been made by hydroforming using a solid but flexible forming medium. As a molding medium, a polyurethane elastomer has been used. The medium is introduced into the blank of the throttle body 1, axially, thus compressed in the flow direction D, whereby the material escapes radially and presses the wall of the blank in an unillustrated outer tool, whereby the end-formed Throttle body 1 is formed, which is shown in the figures. Fluide forming media can also be used.

In den Fig. 1, 2 und 4 bis 6 ist zu erkennen, dass der Dichtsteg 4 in dem Bewegungsraum dort ausgebildet ist, wo die Drosselklappe nur in Schließposition mit dem Drosselklappengehäuse 1 abschließt; in dem Bereich der Wellenöffnung 5 oder um die Wellenöffnung 5 ist der Dichtsteg 4 nicht ausgebildet. So entstehen zwei nahezu halbkreisförmige Dichtstegsegmente, die unzusammenhängend sind und die gemeinsam den Dichtsteg 4 bilden.In the Fig. 1 . 2 and 4 to 6 it can be seen that the sealing web 4 is formed in the movement space where the throttle valve terminates only in the closed position with the throttle body 1; in the region of the shaft opening 5 or around the shaft opening 5, the sealing web 4 is not formed. This results in two nearly semicircular sealing bar segments, which are incoherent and together form the sealing bar 4.

In den Figuren 2 bis 4, insbesondere im Detail der Fig. 3 ist gut erkennbar, dass der Dichtsteg 4 ein dreieckförmiges Profil aufweist mit einer Strömungsflanke 6, mit einer Dichtflanke 7 und mit einer Kuppe 8, wobei die Strömungsflanke 6 und die Dichtflanke 7 von jeweils einem Grundniveau G des Drosselklappengehäuses 1 mit einem Fußpunkt FP entspringen und in der Kuppe 8 zusammenlaufen. Das Grundniveau wird durch den geraden Verlauf der Wandung des Drosselklappengehäuses gebildet, von dem ausgehend die Konturierung des Wandung durch den Dichtsteg 4 beginnt. Die Kuppe 8 ist das Element, das am weitesten in den Strömungsquerschnitt hineinragt. Die Dichtflanke 7 ist an der Seite des Dichtstegs 4 ausgebildet, an der die Drosselklappe in Schließposition anschlägt.In the FIGS. 2 to 4 , especially in the detail of Fig. 3 is clearly visible that the sealing ridge 4 has a triangular profile with a flow edge 6, with a sealing edge 7 and a dome 8, wherein the flow edge 6 and the sealing edge 7 each originate from a base level G of the throttle body 1 with a base FP and in the dome 8 converge. The base level is formed by the straight course of the wall of the throttle body, starting from which the contouring of the wall by the sealing web 4 begins. The dome 8 is the element which projects furthest into the flow cross section. The sealing flank 7 is formed on the side of the sealing web 4, against which the throttle valve strikes in the closed position.

In der Dichtflanke 7 ist zwischen ihrem Fußpunkt FP und der Kuppe 8 ein ebener Dichtbereich 9 ausgebildet. Das ist besonders vorteilhaft, da ohne großen Aufwand an der Drosselklappe eine entsprechend ebene Gegenfläche ausgebildet werden kann, beispielsweise in Form einer aufgebrachten Blende. Dadurch wird eine deutlich bessere Dichtwirkung erzielt, als wenn der Dichtsteg 4 und die Drosselklappe nur in einer linienförmigen Berührkontur gegeneinander abdichten würden.In the sealing edge 7, a flat sealing region 9 is formed between its base FP and the dome 8. This is particularly advantageous because a correspondingly flat counter surface can be formed without much effort on the throttle, for example in the form of an applied aperture. As a result, a significantly better sealing effect is achieved than if the sealing web 4 and the throttle valve would only seal against one another in a line-shaped contact contour.

Das dreieckförmige Profil des Dichtstegs 4 ist asymmetrisch ausgebildet, wobei die Dichtflanke 7 steiler als die Strömungsflanke 6 verläuft. Der ebene Dichtbereich 9 ist etwa 80° gegenüber der Strömungsachse bzw. der Durchflussrichtung D respektive gegenüber dem Grundniveau G des Drosselklappengehäuses 1 geneigt.The triangular profile of the sealing web 4 is formed asymmetrically, wherein the sealing edge 7 is steeper than the flow edge 6. The planar sealing region 9 is inclined at about 80 ° with respect to the flow axis or the flow direction D, respectively, relative to the base level G of the throttle body 1.

In Fig. 3 ist gut zu erkennen, dass die Dichtflanke 7 fußpunktseitig unter das Grundniveau des Drosselklappengehäuses 1 reicht, nämlich das Grundniveau um die Distanz h unterschreitet. Die umgeformte Kontur läuft bogenförmig in das Grundniveau G des Drosselklappengehäuses 1 aus. Dieses "Unterschwingen" des Konturverlaufs bewirkt, dass größere Umformradien realisiert werden können bei kleinerer Materialbelastung. Darüber hinaus lässt sich so auch eine größerer ebener Dichtbereich 9 realisieren, da der Dichtbereich 9 weit beabstandet ist von dem Auslaufbereich des bogenförmigen Abschnitts am Fußpunkt FP der Dichtflanke 7.In Fig. 3 is good to see that the sealing edge 7 fußpunktseitig reaches below the base level of the throttle body 1, namely the base level by the distance h below. The reshaped contour runs arcuately in the base level G of the throttle body 1. This "undershooting" of the contour profile causes larger Umformradien can be realized with a smaller material load. In addition, a larger, even sealing area 9 can be realized in this way since the sealing area 9 is widely spaced from the outlet area of the arcuate section at the root FP of the sealing flank 7.

Fig. 3 lässt erkennen, dass die Strömungsflanke 6 etwa 35° gegenüber der Strömungsachse D des Drosselklappengehäuses 1 und damit gegenüber dem Grundniveau G des Drosselklappengehäuses 1 geneigt ist. Fig. 3 indicates that the flow edge 6 is inclined about 35 ° relative to the flow axis D of the throttle body 1 and thus with respect to the base level G of the throttle body 1.

In den Fig. 1, 2 und 4 bis 6 ist jeweils mindestens ein kreisrunder Öffnungsbereich 5 als Durchtrittsstelle für eine Antriebswelle 10 dargestellt; die Welle 10 ist nur in den Fig. 5 und 6 schematisch dargestellt. Wenn das Drosselklappengehäuse 1 durch Innenhochdruckumformen ausgebildet wird, ist der lediglich definierte Öffnungsbereich 5 noch geschlossen; er wird erst im Nachhinein eröffnet, hier durch Lasertrennen.In the Fig. 1 . 2 and 4 to 6 in each case at least one circular opening region 5 is shown as a passage point for a drive shaft 10; the shaft 10 is only in the Fig. 5 and 6 shown schematically. When the throttle body 1 is formed by hydroforming, the only defined opening area 5 is still closed; he will be opened afterwards, here by laser cutting.

In dem in den Figuren dargestellten Ausführungsbeispiel läuft der Dichtsteg 4 außermittig auf den Öffnungsbereich 5 zu, wobei die Höhe des Dichtstegs 4 rampenförmig auf das Niveau der Berandung des definierten Öffnungsbereichs 5 abfällt. Die Höhe des Dichtstegs 4 ist also bereits bei Erreichen der Umrandung des Öffnungsbereiches 5 auf Null abgesungen. Die in Fig. 4 perspektivisch dargestellte Situation ist in Fig. 5 noch mal vereinfacht dargestellt, wobei an die Stelle des definierten Öffnungsbereiches 5 die Welle 10 getreten ist. Dies ist erforderlich, um die Vorteilhaftigkeit der beschriebenen Konstruktion erkennen zu können. Obwohl die Höhe des Dichtstegs 4 rampenförmig, also entlang der Rampe 11, auf das Niveau der Berandung des definierten Öffnungsbereichs abfällt, ist in Strömungsrichtung betrachtet (Fig. 5 unten) ein über den vollen Umfang nahezu geschlossener Dichtring realisiert, auch direkt an der Welle 10.In the embodiment shown in the figures, the sealing web 4 eccentrically to the opening portion 5, wherein the height of the sealing ridge 4 ramps down to the level of the boundary of the defined opening portion 5. The height of the sealing web 4 is thus already switched off on reaching the border of the opening area 5 to zero. In the Fig. 4 perspective situation is shown in Fig. 5 shown again simplified, wherein the shaft 10 has entered the place of the defined opening area 5. This is necessary in order to be able to recognize the advantageousness of the construction described. Although the height of the sealing web 4 drops in a ramp shape, that is to say along the ramp 11, to the level of the boundary of the defined opening region, it is considered in the flow direction (FIG. Fig. 5 below) realized over the full circumference almost closed sealing ring, also directly on the shaft 10th

Eine alternative Realisierung dazu ist in Fig. 6 dargestellt. Auch hier läuft der Dichtsteg 4 außermittig auf den kreisrunden Öffnungsbereich 5 als Durchtrittsstelle für die Antriebswelle 10, die in Fig. 6 an die Stelle des Öffnungsbereiches 5 getreten ist. Die Höhe des Dichtstegs 4 bleibt hier bis zur Berandung des definierten Öffnungsbereichs 5 bzw. bis zur Welle 10 unverändert. In Fig. 6 oben ist angedeutet, dass die Rampe 11 erst im Bereich der potenziellen Öffnung 5, hier ersetzt durch die Welle 10, abfällt. Auch so kann in Strömungsrichtung gesehen eine geschlossene Dichtkontur realisiert werden, jedoch ist dann die Berandung der Öffnung 5 nicht mehr kreisrund.An alternative realization is in Fig. 6 shown. Again, the sealing ridge 4 off-center on the circular opening portion 5 as a passage point for the drive shaft 10, the in Fig. 6 has taken the place of the opening area 5. The height of the sealing web 4 remains unchanged up to the boundary of the defined opening area 5 or up to the shaft 10. In Fig. 6 above is indicated that the ramp 11 only in the region of the potential opening 5, here replaced by the shaft 10, drops. Even so, as seen in the flow direction, a closed sealing contour can be realized, but then the boundary of the opening 5 is no longer circular.

Bezugszeichenreference numeral

11
Drosselklappengehäusethrottle body
22
Einströmöffnunginflow
33
Ausströmöffnungoutflow
44
Dichtstegsealing land
55
Öffnungsbereich für WelleOpening area for shaft
66
Strömungsflankeflow edge
77
Dichtflankesealing edge
88th
Kuppeknoll
99
ebener Dichtbereichlevel sealing area
1010
Wellewave
1111
Ramperamp

Claims (11)

  1. Throttle valve housing (1) for a throttle valve arrangement for an internal combustion engine, wherein the throttle valve housing (1) is used to accommodate a pivotally mounted throttle valve and provides movement space for the throttle valve, wherein the the throttle valve housing (1) has an inflow opening (2) on a first side for receiving a fluid and the throttle valve housing (1) has an outflow opening (3) on a second side for dispensing a fluid and wherein at least one sealing piece (4) projecting into the flow cross-section is arranged in the movement space of the throttle valve housing (1) and is used as a stop for the throttle valve housing in the closed position, wherein the sealing piece (4) is formed in the wall of the throttle valve housing (1) in a non-cutting manner, wherein the sealing piece (4) has a triangular profile with a flow edge (6), with a sealing edge (7) and with a tip (8), wherein the flow edge (6) and the sealing edge (7) each originate from a base level G of the throttle valve housing (1) with a base point FP and converge at the tip (8), wherein the tip (8) projects furthest into the flow cross-section and wherein the sealing edge (7) is formed on the side of the sealing piece (4) that the throttle valve strikes in the closed position,
    wherein the triangular profile of the sealing piece (4) is designed asymmetrically
    characterized in
    that the sealing edge (7) reaches below the base level (G) of the throttle valve body (1) at the base point.
  2. Throttle valve housing (1) according to claim 1, characterized in that the throttle valve housing (1) and the sealing piece (4) of the throttle valve housing (1) are manufactured from a one-piece tubular part by non-cutting transformation.
  3. Throttle valve housing (1) according to claim 1 or 2, characterized in that the sealing piece (4) is formed in the movement space everywhere, where the throttle valve closes with the throttle valve housing (1) in the closed position.
  4. Throttle valve housing (1) according to any one of claims 1 to 3, characterized in that a smooth sealing region (9) is formed in the sealing edge (7) between its base point FP and the tip (8).
  5. Throttle valve housing (1) according to any one of claims 1 to 4, characterized in that the sealing edge (7) is steeper than the flow edge (6), wherein the smooth sealing region (9) is preferably inclined more than 70°, especially preferably more than 75°, very preferably about 80° relative to the flow axis D or the base level line G of the throttle valve housing (1).
  6. Throttle valve housing (1) according to any one of claims 1 to 5, characterized in that the sealing edge (7) forms an arc running into the base level line G of the throttle valve housing (1).
  7. Throttle valve housing (1) according to any one of claims 1 to 6, characterized in that the flow edge (6) is preferably inclined less than 50°, especially preferably less than 40°, very preferably about 35° relative to the flow axis D or the base level line G of the throttle valve housing (1).
  8. Throttle valve housing (1) according to any one of claims 1 to 7, characterized in that at least one circular opening region (5) is specified as a passage point for an actuator shaft (10) of the throttle valve, wherein the sealing piece (4) runs off-center towards the opening region (5), wherein the height of the sealing piece (4) slopes downward in a ramp-like manner to the level of the edge of the specified opening region (5).
  9. Throttle valve housing (1) according to any one of claims 1 to 7, characterized in that at least one circular opening region is specified as a passage point for an actuator shaft (10) of the throttle valve, wherein the sealing piece (4) runs off-center towards the opening region (5), wherein the height of the sealing piece (4) remains unchanged up to the edge of the specified opening region (5) and the height of the sealing piece (4) then slopes downward in a ramp-like manner.
  10. Method for producing a throttle valve housing (1) for a throttle valve arrangement for an internal combustion engine, wherein the throttle valve housing (1) is used to accommodate a pivotally mounted throttle valve and provides movement space for the throttle valve, wherein the the throttle valve housing (1) has an inflow opening (2) on a first side for receiving a fluid and the throttle valve housing (1) has an outflow opening (3) on a second side for dispensing a fluid and wherein at least one sealing piece (4) projecting into the flow cross-section is arranged in the movement space of the throttle valve housing (1) and is used as a stop for the throttle valve housing in the closed position,
    characterized in
    that the sealing piece (4) is formed in the wall of the throttle valve housing (1) in a non-cutting manner, wherein the sealing piece (4) has a triangular profile with a flow edge (6), with a sealing edge (7) and with a tip (8), wherein the flow edge (6) and the sealing edge (7) each originate from a base level G of the throttle valve housing (1) with a base point FP and converge at the tip (8), wherein the tip (8) projects furthest into the flow cross-section, wherein the sealing edge (7) is formed on the side of the sealing piece (4) that the throttle valve strikes in the closed position, wherein the triangular profile of the sealing piece (4) is designed asymmetrically, wherein the sealing edge (7) reaches below the base level (G) of the throttle valve body (1) at the base point,
    wherein the throttle valve housing (1) and the sealing piece (4) of the throttle valve housing (1) are manufactured from a one-piece tubular part by non-cutting transformation, namely by transforming the tubular part from the inside to the outside using internal high pressure forming, so that an outward material flow into an external forming tool is caused.
  11. Method according to claim 10, characterized in that the tubular part is transformed into a throttle valve housing (1) with a sealing piece (4) according to the characterizing part of any one of claims 3 to 9.
EP16204900.1A 2015-12-16 2016-12-16 Throttle valve housing for a throttle valve arrangement for a combustion engine Not-in-force EP3181874B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL16204900T PL3181874T3 (en) 2015-12-16 2016-12-16 Throttle valve housing for a throttle valve arrangement for a combustion engine
RS20190213A RS58698B1 (en) 2015-12-16 2016-12-16 Throttle valve housing for a throttle valve arrangement for a combustion engine
US16/310,018 US10753288B2 (en) 2016-06-15 2017-06-14 Throttle valve housing for a throttle valve arrangement for an internal combustion engine
CN201780050184.4A CN109642504A (en) 2016-06-15 2017-06-14 The throttling valve chest of throttle valve gear for combustion motors
PCT/EP2017/064585 WO2017216246A1 (en) 2016-06-15 2017-06-14 Throttle valve housing for a throttle valve assembly for an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015122036.9A DE102015122036A1 (en) 2015-12-16 2015-12-16 Throttle valve arrangement for an exhaust line or a supply air line of an internal combustion engine
DE102016110998.3A DE102016110998A1 (en) 2016-06-15 2016-06-15 Throttle valve assembly and method of making a throttle assembly

Publications (2)

Publication Number Publication Date
EP3181874A1 EP3181874A1 (en) 2017-06-21
EP3181874B1 true EP3181874B1 (en) 2018-11-14

Family

ID=57754982

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16204900.1A Not-in-force EP3181874B1 (en) 2015-12-16 2016-12-16 Throttle valve housing for a throttle valve arrangement for a combustion engine

Country Status (6)

Country Link
EP (1) EP3181874B1 (en)
ES (1) ES2711752T3 (en)
HU (1) HUE042579T2 (en)
PL (1) PL3181874T3 (en)
PT (1) PT3181874T (en)
RS (1) RS58698B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2487034B1 (en) * 1980-07-18 1985-09-27 Pont A Mousson BUTTERFLY VALVE
DE8120908U1 (en) * 1981-07-16 1981-10-08 Bowa GmbH, Apparate- und Behälterbau, 8261 Aschau PIPE CONNECTOR WITH A PIVOTING EXHAUST VALVE
DE4329526A1 (en) * 1993-09-02 1995-03-09 Mann & Hummel Filter Throttle device
DE4408909A1 (en) * 1994-03-16 1995-09-21 Bosch Gmbh Robert Motor throttle prodn.
DE102005028397A1 (en) * 2005-06-20 2006-12-28 Arvinmeritor Emissions Technologies Gmbh Valve e.g. for motor vehicle exhaust system has housing in which a flow cross section is formed and flap that is pivoted in housing to close flow cross section

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RS58698B1 (en) 2019-06-28
EP3181874A1 (en) 2017-06-21
ES2711752T3 (en) 2019-05-07
PL3181874T3 (en) 2019-05-31
PT3181874T (en) 2019-02-25
HUE042579T2 (en) 2019-07-29

Similar Documents

Publication Publication Date Title
DE19854461C1 (en) Automobile internal combustion engine has pivoted valve plate for adjusting exhaust gas feedback between exhaust gas line and air intake line
DE2836916A1 (en) TIME DELAY VALVE
DE1475972A1 (en) Lined throttle valve
WO2018029027A1 (en) Bypass vavle having a flap skirt for an exhaust-gas turbocharger, and exhaust-gas turbochager having such a bypass valve
EP1952011B1 (en) Fuel injection apparatus for an internal combustion engine having direct fuel injection
DE102009029542A1 (en) Fuel injection valve
WO2017216246A1 (en) Throttle valve housing for a throttle valve assembly for an internal combustion engine
DE102012209562A1 (en) Turbine housing for an exhaust gas turbocharger
EP3224479A1 (en) Compressor with a sealing duct
EP2636905A1 (en) Sealing assembly and pump with a sealing assembly
EP3181874B1 (en) Throttle valve housing for a throttle valve arrangement for a combustion engine
DE2442010A1 (en) HYDRAULIC HEAD FOR AN INJECTION PUMP AND INJECTION PUMP EQUIPPED WITH THIS HYDRAULIC HEAD
DE2852852B1 (en) Piston pump, in particular radial piston pump
DE10059954B4 (en) check valve
EP3224480B1 (en) Compressor having a sealing channel
EP1419001B1 (en) Housing
DE202021101256U1 (en) Valve stem seal and arrangement
DE212017000110U1 (en) pump device
DE102007054830A1 (en) Hydraulic connector for e.g. pump, of internal-combustion engine of motor vehicle, has sealing element cooperating with end wall of pipe such that end piece of another pipe and sealing element are deformed against each other to form seal
EP1657424B1 (en) Exhaust gas recirculation system for an internal combustion engine
DE112017007999T5 (en) Valve with rattle protection, exhaust pipe with such a valve and method for producing such a valve
DE10232693A1 (en) Fuel injection valve, for an IC motor, has structured outer surfaces for the valve housing and the closed valve plate to give a smooth surface over the dividing line which is free of steps/edges to prevent the entry of burned fuel residue
DE102010018199A1 (en) Control valve i.e. proportional valve, for controlling hydraulic actuatable adjustor in combustion engine, has recesses whose passage area is formed such that recesses connect valve to fluid ports and simultaneously ensure filter function
DE19533825C1 (en) Cylinder head for internal combustion engine
EP3181489B1 (en) Device for processing of bulk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171208

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20180622

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1065108

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016002511

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3181874

Country of ref document: PT

Date of ref document: 20190225

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20190214

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181114

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190214

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190314

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2711752

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190215

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E042579

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016002511

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181216

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

26N No opposition filed

Effective date: 20190815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 32045

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20191216

Year of fee payment: 4

Ref country code: HU

Payment date: 20191220

Year of fee payment: 4

Ref country code: CZ

Payment date: 20191213

Year of fee payment: 4

Ref country code: RO

Payment date: 20191126

Year of fee payment: 4

Ref country code: SK

Payment date: 20191127

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RS

Payment date: 20191129

Year of fee payment: 4

Ref country code: PL

Payment date: 20191126

Year of fee payment: 4

Ref country code: IT

Payment date: 20191231

Year of fee payment: 4

Ref country code: FR

Payment date: 20191220

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200225

Year of fee payment: 4

Ref country code: ES

Payment date: 20200121

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016002511

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201216

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210617

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201216

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201216

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 32045

Country of ref document: SK

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201216

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201216

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201216

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211217

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1065108

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217