EP3180591A1 - Method for determining an orthogonality error between two sensor signals - Google Patents

Method for determining an orthogonality error between two sensor signals

Info

Publication number
EP3180591A1
EP3180591A1 EP15749828.8A EP15749828A EP3180591A1 EP 3180591 A1 EP3180591 A1 EP 3180591A1 EP 15749828 A EP15749828 A EP 15749828A EP 3180591 A1 EP3180591 A1 EP 3180591A1
Authority
EP
European Patent Office
Prior art keywords
error
sensor signals
determining
sensor
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15749828.8A
Other languages
German (de)
French (fr)
Inventor
Jens GLEISSBERG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP3180591A1 publication Critical patent/EP3180591A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing

Definitions

  • the invention relates to a method for determining an error between two sensor signals in an angle sensor.
  • the document DE 10 2010 003 201 AI is known, in which a method for determining a rotation angle with an angle measuring unit is disclosed.
  • a method for determining a rotation angle with an angle measuring unit is disclosed.
  • the rotational angle with a corrective ⁇ turwert can be determined so that the influence of an error or an error angle F to the value of the rotation angle is eliminated as possible.
  • This is an error, resulting from a not quite exact orthogonality between a sine and cosine-shaped sensor signal of the sensor element resul ⁇ advantage.
  • the object of the invention is to provide a method with which the value of the error can be determined as simply as possible.
  • the invention is based on the basic idea that the error has an immediate effect on the amplitude of the second or an integral multiple of the second harmonic of the radius signal and therefore an analysis of the amplitude of the second harmonic gives a direct indication of the magnitude of the error.
  • the invention is based on the recognition that the error occurs in the second harmonic of the radius signal with a phase shift of 90 ° to the rotation angle, so that the imaginary portion of the harmonic results in an exclusion of the error.
  • the advantage of the invention lies in the fact that the error can be determined on the basis of the radius signal, which can be determined solely on the basis of the two sensor signals. Since these signals are necessary anyway for determining the angle of rotation, there is no need to change existing rotational angle sensors. There is no need reference sensor signal with which the sensor signals could be compared individually to determine the error in the individual sensor signals. The method can therefore be integrated particularly easily into existing systems, since the electronic means necessary for the evaluation of the sensor signals are present anyway.
  • the mathematical derivation follows as follows.
  • the value of 45 ° is used here.
  • the second harmonic can also be examined at other locations where it reaches a minimum or a maximum.
  • the determination of the error can be performed directly by means of an evaluation unit of the rotation angle sensor or a separate computing unit on the sensor element.
  • the invention includes Therefore, an angle sensor with a sensor element for detecting two sensor signals and a computing unit for determining the error according to the inventive method.
  • the object is further achieved according to an alternative method according to the independent claim 8.
  • Fig. 1 is a representation of the sensor signals and the radius ⁇ signal and the error in the sensor signals.
  • Figure 1 shows two diagrams, wherein in a first diagram A, the sensor signals sl (sine) and s2 (cosine) are shown for a period.
  • the radio ⁇ ussignals e_orth is shown that is derived from the sensor signals sl, s2.
  • Above the diagram A enlarged sections from the diagram A are shown. These sections show the sensor signals sl, s2 in the region of the zero crossing. It can be seen that due to the orthogonality error or the error y, the actual zero crossing does not occur at the intended rotation angle x_null but before or after it (abscissa represents the rotation angle). At the actual zero rotation angle x_null, the sensor signal ⁇ a deviation from the zero value, which represents an offset Off c
  • the radius signal which can be determined from this, has two periods and forms the second harmonic of the sensor signals s1, s2.
  • the result of the orthogonality of the two sensor signals is that exactly the second harmonic reaches a maximum at the crossing points of the two sensor signals s1, s2 (see diagram B), so that the error Y is quantified directly in absolute terms on the basis of the imaginary portion of the radius signal at the maxima ⁇ zierbar is.
  • the real portion of the radius signal represents a scaling error or. is a gain error, ie is a characteristic for the different amplifications of the amplitudes of the sensor signals sl and s2.
  • the orthogonality error between the two sensor signals usually does not change over the life of the win ⁇ kelsensors. Therefore, it may be sufficient to errors before commissioning ⁇ sioning, it is to determine in a vehicle or before completion of the production and balance.
  • an external arithmetic unit can be used to read out the sensor signals sl, s2 and to determine the error.
  • the angle sensor is operated, but it may also be advantageous to the determination and compensation of the error online, ie to perform during operation.
  • the radius signal e_orth is formed from the known sensor signals s1 and s2, and a harmonic analysis is carried out for this signal e_orth.
  • the radius signal is preferably converted into a frequency space by means of an FT analysis and the imaginary portion of the second harmonic is determined therefrom.
  • the crucial part is the imaginary part, which in this case assumes the value 0.0175.
  • nth harmonic which has to be analyzed.
  • play as you would use in a calculation of the error over five periods the 10th harmonic for determining the error.

Abstract

Method for determining an error (y) between two sensor signals (s1, s2) in an angle sensor which, on the basis of an angle transmitter, outputs the sensor signals (s1, s2) which have a periodic profile and are mathematically in an orthogonal relationship with one another, wherein a deviation from the orthogonal relationship between the sensor signals can occur on account of the error (y), having the steps of: - forming a radius signal (e_orth) using the sums of squares of the sensor signals, - determining the 2*nth harmonic of the radius signal (e_orth), where n is equal to a positive integer, and - determining the error of a value of the amplitude at the second harmonic, which value has been phase-shifted through 90° with respect to the rotation angle value.

Description

Verfahren zum Ermitteln eines Orthogonalitätsfehlers zwischen zwei Sensorsignalen Method for determining an orthogonality error between two sensor signals
Die Erfindung betrifft ein Verfahren zum Ermitteln eines Fehlers zwischen zwei Sensorsignalen in einem Winkelsensor. The invention relates to a method for determining an error between two sensor signals in an angle sensor.
Aus dem Stand der Technik ist die Druckschrift DE 10 2010 003 201 AI bekannt, bei der ein Verfahren zum Bestimmen eines Drehwinkels mit einer Winkelmesseinheit offenbart ist. In dieser Druck¬ schrift wird offenbart, wie der Drehwinkel mit einem Korrek¬ turwert so bestimmt werden kann, dass der Einfluss eines Fehlers bzw. eines Fehlwinkels F auf den Wert des Drehwinkels möglichst ausgemerzt wird. Hierbei handelt es sich um einen Fehler, der sich aus einer nicht ganz exakten Orthogonalität zwischen einem sinus- und kosinus-förmigen Sensorsignal des Sensorelements resul¬ tiert . From the prior art, the document DE 10 2010 003 201 AI is known, in which a method for determining a rotation angle with an angle measuring unit is disclosed. In this ¬ writing is disclosed, as the rotational angle with a corrective ¬ turwert can be determined so that the influence of an error or an error angle F to the value of the rotation angle is eliminated as possible. This is an error, resulting from a not quite exact orthogonality between a sine and cosine-shaped sensor signal of the sensor element resul ¬ advantage.
Aufgabe der Erfindung ist es ein Verfahren aufzuzeigen, mit dem der Wert des Fehlers möglichst einfach ermittelbar ist. The object of the invention is to provide a method with which the value of the error can be determined as simply as possible.
Die Aufgabe wird gelöst gemäß einem Verfahren nach Anspruch 1. Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind Gegenstand der Unteransprüche, die durch Be¬ zugnahme ausdrücklich zum Gegenstand der Beschreibung gemacht werden . The object is achieved according to a method according to claim 1. Further advantageous embodiments of the method according to the invention are the subject of the dependent claims, which are explicitly made by Be ¬ access to the subject of the description.
Bei den Sensorsignalen handelt es sich um ein periodisches Signal, beispielsweise ein Sinus-und ein Kosinus-Signal, die um 90° zueinander Phasen verschoben sind. Aufgrund der Orthogonalen Beziehung zwischen den Sensorsignalen sollten die Sensorsignale die Bedingung gemäß dem Additionstheorem sin2 (x) + cos2 (x) = 1 einhalten, mit x als Wert des Drehwinkels. Aus den Sensorsignalen wird daher das Radiussignal, vorzugsweise nach sin2 (x) + cos2 (x) , gebildet, so dass diese Größe als Indikator für die Qualität der Sensorsignale verwendbar ist. The sensor signals are a periodic signal, for example, a sine and a cosine signal, which are shifted by 90 ° to each other phases. Due to the orthogonal relationship between the sensor signals, the sensor signals should satisfy the condition according to the addition theorem sin 2 (x) + cos 2 (x) = 1, with x as the value of the rotation angle. From the sensor signals, therefore, the radius signal, preferably to sin 2 (x) + cos 2 (x), formed so that this size is used as an indicator of the quality of the sensor signals.
Dabei basiert die Erfindung auf den Grundgedanken, dass der Fehler sich auf die Amplitude der zweiten oder einer ganzzahligen vielfachen der zweiten Oberwelle des Radiussignals unmittelbar auswirkt und daher eine Analyse der Amplitude der zweiten Oberwelle einen direkten Aufschluss über die Größe des Fehlers gibt. Insbesondere basiert die Erfindung auf der Erkenntnis, dass der Fehler in der zweiten Oberwelle des Radiussignals mit einer Phasenverschiebung von 90° zum Drehwinkel auftritt, so dass der imaginäre Anteil der Oberwelle einen Ausschluss über den Fehler ergibt . Der Vorteil der Erfindung liegt dabei darin, dass der Fehler anhand des Radiussignals ermittelbar ist, der allein auf Basis der beiden Sensorsignale bestimmbar ist. Da diese Signale ohnehin zur Bestimmung des Drehwinkels notwendig sind bedarf es keiner Änderung bestehender Drehwinkelsensoren. Es ist kein Refe- renzsensorsignal notwendig, mit dem die Sensorsignale einzeln verglichen werden könnten, um den Fehler in den einzelnen Sensorsignalen zu ermitteln. Das Verfahren kann daher besonders einfach in bestehende Systeme integriert werden, da die zur Auswertung der Sensorsignale notwendigen elektronischen Mitteln ohnehin vorhanden sind. The invention is based on the basic idea that the error has an immediate effect on the amplitude of the second or an integral multiple of the second harmonic of the radius signal and therefore an analysis of the amplitude of the second harmonic gives a direct indication of the magnitude of the error. In particular, the invention is based on the recognition that the error occurs in the second harmonic of the radius signal with a phase shift of 90 ° to the rotation angle, so that the imaginary portion of the harmonic results in an exclusion of the error. The advantage of the invention lies in the fact that the error can be determined on the basis of the radius signal, which can be determined solely on the basis of the two sensor signals. Since these signals are necessary anyway for determining the angle of rotation, there is no need to change existing rotational angle sensors. There is no need reference sensor signal with which the sensor signals could be compared individually to determine the error in the individual sensor signals. The method can therefore be integrated particularly easily into existing systems, since the electronic means necessary for the evaluation of the sensor signals are present anyway.
Die mathematische Herleitung ergibt sich wie folgt. Die Amplitude des Radiussignals ist mittels der Gleichung e_orth (x) = sin2 (x)+cos2 (x+y) abbildbar, wobei x für den Wert des Drehwinkel und y für den Wert des Fehlers steht. Sofern der Fehler y = 0 ist, wird die vorgenannte Bedingung des Additionstheorems erfüllt. Die Amplitude des Radiussignals hat unter anderem bei einem Winkel von 45° ein Maximum, so dass das Radiussignal bei x=45° folgenden Wert annimmt: e_orth(45°) = 1-sin (y) The mathematical derivation follows as follows. The amplitude of the radius signal can be mapped by the equation e_orth (x) = sin 2 (x) + cos 2 (x + y), where x is the value of the angle of rotation and y is the value of the error. If the error is y = 0, the aforementioned condition of the addition theorem is satisfied. Among other things, the amplitude of the radius signal has a maximum at an angle of 45 °, so that the radius signal assumes the following value at x = 45 °: e_orth (45 °) = 1-sin (y)
Es wird hier beispielhaft auf den Wert von 45° abgestellt. Die zweite Oberwelle kann auch an anderen Stellen untersucht werden, in der es einen Minimum oder ein Maximum erreicht. By way of example, the value of 45 ° is used here. The second harmonic can also be examined at other locations where it reaches a minimum or a maximum.
Der Fehler wirkt sich dabei auf den imaginären Teil der zweiten Oberwelle aus, so dass der Wert des Fehlers sich anhand der Gleichung y = aresin I e_orth, 2 *n . , im I ermitteln lässt. Besonders vorteilhaft ist es die Analyse der Oberwelle mittels einer Fourier Transformation durchzuführen, da man auf diese Weise die Werte der zweiten Oberwelle an den Maximas oder Minimas unmittelbar erhält und auf diese Weise die Analyse der zweiten Oberwelle einfach durchführbar ist. Je nach Anwendungsfall ist es möglich die Ermittlung des Fehlers vor Inbetriebnahme eines Winkelsensors oder im laufenden Betrieb des Winkelsensors durchzuführen. In Abhängigkeit davon ist es sinnvoll die je¬ weilige Form der Fourier Transformation (FT) auszuwählen. Vorteilhaft sind u. a. die diskrete FT, schnelle FT oder eine Kombination aus beiden FT. The error has an effect on the imaginary part of the second harmonic, so that the value of the error is based on the equation y = aresin I e_orth, 2 * n. , I can detect. It is particularly advantageous to carry out the analysis of the harmonic wave by means of a Fourier transformation, since in this way the values of the second harmonic at the maximas or minimas are directly obtained, and in this way the analysis of the second harmonic can be carried out easily. Depending on the application, it is possible to determine the error before commissioning an angle sensor or during operation of the angle sensor. Depending it is useful depending ¬ stays awhile form of the Fourier transform (FT) input. Advantageous features include the discrete FT, fast FT or a combination of both FT.
Das Ermitteln des Fehlers kann mittels einer Auswerteeinheit des Drehwinkelsensors oder einer gesonderten Recheneinheit am Sensorelement direkt durchgeführt werden. Die Erfindung umfasst daher auch einen Winkelsensor mit einem Sensorelement zum erfassen zweier Sensorsignale sowie eine Recheneinheit zum Ermitteln des Fehlers gemäß dem erfindungsgemäßen Verfahren. Die Aufgabe wird ferner gelöst gemäß einem alternativen Verfahren gemäß dem nebengeordneten Hauptanspruch 8. The determination of the error can be performed directly by means of an evaluation unit of the rotation angle sensor or a separate computing unit on the sensor element. The invention includes Therefore, an angle sensor with a sensor element for detecting two sensor signals and a computing unit for determining the error according to the inventive method. The object is further achieved according to an alternative method according to the independent claim 8.
Es ist denkbar die Fourier Transformation auch auf Basis des aus den Sensorsignalen errechneten Drehwinkels durchzuführen. Der aus den Sensorsignalen ermittelte Drehwinkel verursacht auf Grund des vorhandenen Orthogonalitätsfehlers einen Fehler im Ergebnis der Fourier Transformation, so dass aus diesem Ergebnis ein Rückschluss auf den Orthogonalitätsfehler möglich ist. Die Erfindung wird anhand von Figuren näher erläutert. Es zeigen: It is conceivable to carry out the Fourier transformation also on the basis of the rotation angle calculated from the sensor signals. Due to the existing orthogonality error, the rotation angle determined from the sensor signals causes an error in the result of the Fourier transformation, so that a conclusion on the orthogonality error is possible from this result. The invention will be explained in more detail with reference to figures. Show it:
Fig. 1 eine Darstellung der Sensorsignale und des Radius¬ signals sowie der Fehler in den Sensorsignalen. Figur 1 zeigt zwei Diagramme, wobei in einem ersten Diagramm A die Sensorsignale sl (Sinus) und s2 (Kosinus) für eine Periode dargestellt sind. In einem zweiten Diagramm B ist das Radi¬ ussignals e_orth dargestellt, dass sich aus den Sensorsignalen sl, s2 ableitet. Oberhalb des Diagramms A sind jeweils ver- größerte Ausschnitte aus dem Diagramm A dargestellt. Diese Ausschnitte zeigen die Sensorsignale sl, s2 im Bereich des Nulldurchgangs. Darin ist zu sehen, dass aufgrund des Orthogonatitätsfehlers bzw. des Fehlers y der tatsächliche Nulldurchgang nicht beim vorgesehenen Drehwinkel x_null erfolgt sondern davor oder danach (Abszisse stellt den Drehwinkel dar) . An dem eigentlichen Null-Drehwinkel x_null weist das Sensor¬ signal ein Abweichung vom Nullwert auf, der einen Offset Off darstellt c Fig. 1 is a representation of the sensor signals and the radius ¬ signal and the error in the sensor signals. Figure 1 shows two diagrams, wherein in a first diagram A, the sensor signals sl (sine) and s2 (cosine) are shown for a period. In a second diagram B, the radio ¬ ussignals e_orth is shown that is derived from the sensor signals sl, s2. Above the diagram A, enlarged sections from the diagram A are shown. These sections show the sensor signals sl, s2 in the region of the zero crossing. It can be seen that due to the orthogonality error or the error y, the actual zero crossing does not occur at the intended rotation angle x_null but before or after it (abscissa represents the rotation angle). At the actual zero rotation angle x_null, the sensor signal ¬ a deviation from the zero value, which represents an offset Off c
5  5
Im Diagramm A ist jeweils eine Periode der Sensorsignale sl und s2 zu sehen. Das sich daraus ermittelbare Radiussignal weist zwei Perioden auf und bildet die zweite Oberwelle der Sensorsignale sl, s2 ab. Die Orthogonalität der beiden Sensorsignale hat zur Folge, dass genau die zweite Oberwelle an den Kreuzungspunkten der zwei Sensorsignale sl, s2 ein Maximum erreicht (s. Diagramm B) , so dass anhand des imaginären Anteils des Radiussignals an den Maximas der Fehler Y unmittelbar betragsmäßig quantifi¬ zierbar ist. Der reale Anteil des Radiussignals stellt hingegen einen Skalierungsfehler bzw . einen Verstärkungsfehler dar, d. h. ist eine Kenngröße für die unterschiedlichen Verstärkungen der Amplituden der Sensorsignale sl und s2. In the diagram A, a period of the sensor signals sl and s2 can be seen in each case. The radius signal, which can be determined from this, has two periods and forms the second harmonic of the sensor signals s1, s2. The result of the orthogonality of the two sensor signals is that exactly the second harmonic reaches a maximum at the crossing points of the two sensor signals s1, s2 (see diagram B), so that the error Y is quantified directly in absolute terms on the basis of the imaginary portion of the radius signal at the maxima ¬ zierbar is. The real portion of the radius signal, however, represents a scaling error or. is a gain error, ie is a characteristic for the different amplifications of the amplitudes of the sensor signals sl and s2.
Der Orthogonalitätsfehler zwischen den beiden Sensorsignalen ändert sich in der Regel nicht über die Lebensdauer des Win¬ kelsensors. Daher kann es ausreichen den Fehler vor Inbe¬ triebnahme, sei es in einem Fahrzeug oder vor Abschluss der Produktion zu ermitteln und auszugleichen. Hierzu kann auch eine externe Recheneinheit verwendet werden, um die Sensorsignale sl, s2 auszulesen und den Fehler zu ermitteln. Je nach vorhandener Rechenleistung der Auswerteelektronik, mit der der Winkelsensor betrieben wird, kann es aber auch vorteilhaft sein die Ermittlung und den Ausgleich des Fehlers online, d. h. im laufenden Betrieb durchzuführen . The orthogonality error between the two sensor signals usually does not change over the life of the win ¬ kelsensors. Therefore, it may be sufficient to errors before commissioning ¬ sioning, it is to determine in a vehicle or before completion of the production and balance. For this purpose, an external arithmetic unit can be used to read out the sensor signals sl, s2 and to determine the error. Depending on the existing computing power of the evaluation, with which the angle sensor is operated, but it may also be advantageous to the determination and compensation of the error online, ie to perform during operation.
Um diesen Fehler zu bestimmen wird aus den an sich bekannten Sensorsignalen sl und s2 das Radiussignal e_orth gebildet und für dieses Signal e_orth eine Oberwellenanalyse durchgeführt. Hierzu wird vorzugsweise das Radiussignal mittels einer FT-Analyse in einen Frequenzraum umgewandelt und aus diesem der imaginäre Anteil der zweiten Oberwelle ermittelt. Anschließend wird hierfür der Aresin für diesen Wert berechnet, woraus man den Fehler bzw. den Winkelversatz erhält. Für eine Periode ergibt sich für das dargestellte Radiussignals beispielhaft folgende Rechnung e_orth,2 = 0,02 + 0,0175i In order to determine this error, the radius signal e_orth is formed from the known sensor signals s1 and s2, and a harmonic analysis is carried out for this signal e_orth. For this purpose, the radius signal is preferably converted into a frequency space by means of an FT analysis and the imaginary portion of the second harmonic is determined therefrom. Subsequently, the Aresin is calculated for this value, from which one receives the error or the angular offset. For a period, the following calculation e_orth, 2 = 0.02 + 0.0175i, results for the illustrated radius signal by way of example
Für den Orthogonatitätsfehler ist der entscheidende Anteil der Imaginäranteil, der in diesem Fall den Wert 0,0175 annimmt. Der Orthogonatitätsfehler ergibt sich daher aus der Gleichung: y = aresin (0, 0175) = 1° For the orthogonality error, the crucial part is the imaginary part, which in this case assumes the value 0.0175. The orthogonality error therefore results from the equation: y = aresin (0, 0175) = 1 °
Je nach Anzahl der betrachteten Perioden kann es sich auch um ein 2*n-te Oberwelle handeln, die es zu analysieren gilt. Bei¬ spielsweise würde man bei einer Berechnung des Fehlers über fünf Perioden die 10. Oberwelle zum Ermitteln des Fehlers heranziehen. Depending on the number of periods considered, it may also be a 2 * nth harmonic which has to be analyzed. In ¬ play as you would use in a calculation of the error over five periods the 10th harmonic for determining the error.

Claims

Patentansprüche claims
1. Verfahren zum Ermitteln eines Fehlers (y) zwischen zwei Sensorsignalen (sl, s2) in einem Winkelsensor, der in Abhängigkeit eines Winkelgebers die Sensorsignale (sl, s2) ausgibt, die einen periodischen Verlauf aufweisen und mathematisch in einem orthogonalen Verhältnis zueinander stehen, wobei aufgrund des Fehlers (y) eine Abweichung vom orthogonalen Verhältnis zwischen den Sensorsignalen auftreten kann, aufweisend die Schritte: 1. A method for determining an error (y) between two sensor signals (sl, s2) in an angle sensor which outputs the sensor signals (sl, s2) in dependence on an angle sensor, which have a periodic course and are mathematically in an orthogonal relationship to one another, wherein, due to the error (y), a deviation from the orthogonal relationship between the sensor signals may occur, comprising the steps of:
- Bilden eines Radiussignals (e_orth) mittels der Quadratsummen der Sensorsignale,  Forming a radius signal (e_orth) by means of the sums of squares of the sensor signals,
- Ermitteln der 2*n-ten Oberwelle des Radiussignals (e_orth) , mit n gleich einer ganzen positiven Zahl , und - Ermitteln des Fehlers eines um 90° zum Drehwinkelwert phasenverschobenen Wert der Amplitude an der zweiten Oberwelle .  - Determining the 2 * nth harmonic of the radius signal (e_orth), with n equal to a whole positive number, and - Determining the error of a phase-shifted by 90 ° to the rotational angle value of the amplitude at the second harmonic.
2. Verfahren nach Anspruch 1, gekennzeichnet durch 2. The method according to claim 1, characterized by
- Ermitteln eines Frequenzanteils oder -anteile der - Determining a frequency component or shares of
Radiussignals mittels einer Fourier Transformation, undRadius signal by means of a Fourier transform, and
- Ermitteln des Fehlers anhand des imaginären Anteils des Frequenzanteils oder der Frequenzanteile der zweiten Oberwelle . - Determine the error based on the imaginary part of the frequency component or the frequency components of the second harmonic.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Fourier Transformation mittels einer schnellen und / oder diskreten Fourier Transformation durchgeführt wird. 4. Verfahren nach Anspruch 2 oder 3, gekennzeichnet durch,3. The method according to claim 2, characterized in that the Fourier transformation is performed by means of a fast and / or discrete Fourier transformation. 4. The method according to claim 2 or 3, characterized by,
Berechnen des Fehlers y mittels der Gleichung y = aresin I e_orth, 2 *n . , im I ermittelt wird, wobei e_orth,2.,im den imaginären Anteil der Amplitude der 2*n-ten Oberwelle des Radiussignals abbildet . Compute the error y using the equation y = aresin I e_orth, 2 * n. , im i is determined, where e_orth, 2nd, in the imaginary part of the amplitude of the 2 * n-th harmonic of the radius signal maps.
Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der reale Anteil der 2*n-ten Oberwelle als Maßstab für einen Skalierungsfehler ver¬ wendet wird. Method according to one of the preceding claims, characterized in that the real part of the 2 * n-th harmonic as a measure of a scaling error ¬ turns is ver.
Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren im laufenden Betrieb verwendet wird. Method according to one of the preceding claims, characterized in that the method is used during operation.
Verfahren nach einem der Ansprüche 1-5, dadurch ge¬ kennzeichnet, dass das Verfahren vor Inbetriebnahme eines Winkelsensors durchgeführt wird, insbesondere mittels einer externen Recheneinheit. Method according to one of claims 1-5, characterized ge ¬ indicates that the method is carried out before commissioning of an angle sensor, in particular by means of an external processing unit.
Verfahren zum Ermitteln eines Fehlers (y) zwischen zwei Sensorsignalen (sl, s2) in einem Winkelsensor, der in Abhängigkeit eines Winkelgebers die Sensorsignale (sl, s2) ausgibt, die einen periodischen Verlauf aufweisen und mathematisch in einem orthogonalen Verhältnis zueinander stehen, wobei aufgrund des Fehlers (y) eine Abweichung vom orthogonalen Verhältnis zwischen den Sensorsignalen auftreten kann, aufweisend die Schritte: Method for determining an error (y) between two sensor signals (sl, s2) in an angle sensor which outputs the sensor signals (sl, s2), which have a periodic course and are mathematically in an orthogonal relationship as a function of an angle sensor, due to the error (y) may cause a deviation from the orthogonal relationship between the sensor signals, comprising the steps of:
- Ermitteln eines Drehwinkels (x) aus den Sensorsignalen (sl, s2),  Determining a rotation angle (x) from the sensor signals (sl, s2),
- Ermitteln eines Umwandlungswertes durch Ausführen einer Fourier Transformation für den ermittelten Drehwinkel, Determining a conversion value by performing a Fourier transformation for the determined rotation angle,
- Ermitteln des Fehlers anhand des Umwandlungswertes. - Determine the error based on the conversion value.
9. Winkelsensor zum Erfassen eines Drehwinkels, umfassend9. An angle sensor for detecting a rotation angle, comprising
- ein Sensorelement, das in Abhängigkeit eines Winkel¬ gebers die Sensorsignale ausgibt, die einen periodi¬ schen Verlauf aufweisen und mathematisch in einem orthogonalen Verhältnis zueinander stehen, und - a sensor element that outputs the sensor signals in dependence on an angle encoder ¬ having a periodi ¬'s course and to each other mathematically in an orthogonal relationship, and
- eine Recheneinheit zum durchführen des Verfahrens nach einem der vorstehenden Ansprüche.  - A computing unit for carrying out the method according to any one of the preceding claims.
EP15749828.8A 2014-08-14 2015-08-13 Method for determining an orthogonality error between two sensor signals Withdrawn EP3180591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014216224 2014-08-14
PCT/EP2015/068710 WO2016024000A1 (en) 2014-08-14 2015-08-13 Method for determining an orthogonality error between two sensor signals

Publications (1)

Publication Number Publication Date
EP3180591A1 true EP3180591A1 (en) 2017-06-21

Family

ID=53835459

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15749828.8A Withdrawn EP3180591A1 (en) 2014-08-14 2015-08-13 Method for determining an orthogonality error between two sensor signals

Country Status (6)

Country Link
US (1) US20170146370A1 (en)
EP (1) EP3180591A1 (en)
KR (1) KR20170029607A (en)
CN (1) CN106574857A (en)
DE (1) DE102015215511A1 (en)
WO (1) WO2016024000A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020124419B4 (en) * 2020-09-18 2022-03-31 Schaeffler Technologies AG & Co. KG Angular position detection method and detection system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463393A (en) * 1991-12-05 1995-10-31 Acutronic Ag Method and apparatus for correcting errors in an amplitude encoded signal
DE10163504B4 (en) * 2001-12-21 2005-07-07 Siemens Ag Method for iterative error compensation of sin / cos position measuring systems for offset, amplitude and phase errors
US7401001B2 (en) * 2003-11-18 2008-07-15 Koninklijke Philips Electronics N.V. Position determining
DE102004038621B3 (en) * 2004-08-09 2006-02-16 Siemens Ag Determination procedure for a position signal
JP4713123B2 (en) * 2004-10-13 2011-06-29 株式会社ミツトヨ Encoder output signal correction device
JP4568298B2 (en) * 2007-03-16 2010-10-27 オークマ株式会社 Position detection device
US8564283B2 (en) * 2008-02-07 2013-10-22 Hitachi Metals, Ltd. Rotation-angle-detecting apparatus, rotating machine and rotation-angle-detecting method
JP2010156554A (en) * 2008-12-26 2010-07-15 Okuma Corp Position detecting apparatus
DE102010003201A1 (en) 2009-05-08 2010-12-23 Continental Teves Ag & Co. Ohg Angle-measuring method for determining an angle of tilt/swiveling angle uses an angle-measuring unit and first and second measuring signals
JP5610541B2 (en) * 2010-08-30 2014-10-22 株式会社リガク Quantitative moving device and X-ray measuring device
JP5798824B2 (en) * 2011-07-22 2015-10-21 株式会社ミツトヨ Scale error calculation device, scale error calibration device, and scale error calculation method
JP5836026B2 (en) * 2011-09-08 2015-12-24 三菱重工業株式会社 Error frequency component acquisition device, rotation angle acquisition device, and motor control device

Also Published As

Publication number Publication date
US20170146370A1 (en) 2017-05-25
WO2016024000A1 (en) 2016-02-18
DE102015215511A1 (en) 2016-02-18
CN106574857A (en) 2017-04-19
KR20170029607A (en) 2017-03-15

Similar Documents

Publication Publication Date Title
DE102015202436B4 (en) Apparatus, method and non-transitory computer-readable medium for compensating a position information error of a resolver
DE102014210379B4 (en) A torque sensor and method for detecting torques occurring at or in a joint of an articulated arm robot
EP3204728B1 (en) Sensor arrangement for the contactless sensing of angles of rotation on a rotating part
DE19780321B4 (en) Self-tuning and compensating detector for winding faults
EP0997701B1 (en) Offset compensated angle measuring system
DE102016014562A1 (en) STEERING CONTROL DEVICE AND STEERING CONTROL METHOD
DE102014207523A1 (en) METHOD FOR CALIBRATING A RADAR SENSOR AND RADAR SYSTEM
EP2191282B1 (en) Method and device for the stable, efficient determination of the rotational direction and/or rotational speed of a wheel or a shaft
AT510443A4 (en) MEASURING KIT FOR RAIL VEHICLES
EP2954282A1 (en) Folding rule and method for measuring angles
DE102011106302B3 (en) Method for determining measurement error of force moment sensor utilized in robotics, involves comparing determined sensor values with pseudo sensor values received by inverse transformation for determining measurement error of sensor
DE102015215510A1 (en) Method for determining an orthogonality error between two sensor signals
DE10303877A1 (en) Method for determining structure-borne noise events in a rolling bearing
DE102012016686A1 (en) Method for measuring dielectric loss factor of electrical insulation of high-voltage devices, involves detecting electric field strength at measuring point on high voltage side of high-voltage device
DE102014210009A1 (en) Signal processing method using variable coefficients
DE102014214178A1 (en) Method and device for determining the rotational speed of a rolling element
EP3180591A1 (en) Method for determining an orthogonality error between two sensor signals
DE102004029815A1 (en) Method and arrangement for correcting an angle and / or distance measuring sensor system
EP3590811A3 (en) Power measurement assembly
DE102013226887A1 (en) Inductive sensor arrangement and method for detecting the position of at least one target
DE102011012477A1 (en) Method for determination of size and location of unbalanced mass of rotating body, involves moving body having unbalanced mass in rotational movement and measuring rotational frequency of body during rotational movement of body
DE10025160C2 (en) Method for evaluating position or rotation angle sensors and device for carrying out the method
DE102018001851A1 (en) Method for determining the position, in particular angular position, of a material measure arranged relatively movably relative to sensors, and arrangement for carrying out such a method
DE102015120263B4 (en) Method for determining wear, measuring device, control device therefor, and drive device comprising the control device
EP3304102B1 (en) Method for detecting high-frequency signals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171005