EP3179108B1 - Pump with adjustable transport volume - Google Patents

Pump with adjustable transport volume Download PDF

Info

Publication number
EP3179108B1
EP3179108B1 EP16203242.9A EP16203242A EP3179108B1 EP 3179108 B1 EP3179108 B1 EP 3179108B1 EP 16203242 A EP16203242 A EP 16203242A EP 3179108 B1 EP3179108 B1 EP 3179108B1
Authority
EP
European Patent Office
Prior art keywords
pump
fluid
control
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16203242.9A
Other languages
German (de)
French (fr)
Other versions
EP3179108A3 (en
EP3179108A2 (en
Inventor
Sven Peters
Stefan Küchle
Thomas Wahl
Fabian Eisele
Thomas Finsterle
Volker Stöhr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwaebische Huettenwerke Automotive GmbH
Original Assignee
Schwaebische Huettenwerke Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwaebische Huettenwerke Automotive GmbH filed Critical Schwaebische Huettenwerke Automotive GmbH
Publication of EP3179108A2 publication Critical patent/EP3179108A2/en
Publication of EP3179108A3 publication Critical patent/EP3179108A3/en
Application granted granted Critical
Publication of EP3179108B1 publication Critical patent/EP3179108B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • F04C14/223Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • F04C14/223Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
    • F04C14/226Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam by pivoting the cam around an eccentric axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3441Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C2/3442Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution

Definitions

  • the invention relates to a pump with adjustable delivery volume, which includes an adjustment and associated valves for adjusting the delivery volume.
  • the invention relates to a pump comprising an adjusting device for adjusting the specific delivery volume of the pump.
  • the valves are fluidically connected to the adjusting device in order to be able to adjust the delivery volume of the pump by acting on the adjusting device with pressurized actuating fluid.
  • the pump can serve to supply an assembly, in particular an aggregate of a vehicle, such as a motor vehicle, with lubricating oil, working fluid or cooling fluid.
  • the pump is expediently a positive displacement pump.
  • the pump serves as a lubricating oil pump for supplying a combustion engine of a vehicle with lubricating oil, so is an engine lubricating oil pump.
  • an adjusting element serving to influence the delivery volume such as a pivotable adjusting ring
  • the oil delivered by the pump ie the oil from the high pressure side of the oil circuit supplied by the pump.
  • the delivery volume flow is limited when reaching a certain pressure threshold.
  • an adjustment of the delivery volume preferably the specific delivery volume, in the form of two or possibly more pressure stages is used.
  • a control of the pump in dependence on an engine map ie a map control, be realized.
  • the pressurization of the adjusting can be done in simple cases directly via a controlled by the engine control multi-way valve.
  • a hydraulic valve can be provided , which controls the pressurization or depressurization of the usually movable against the force of a spring adjusting.
  • a pressure which acts on a partial surface of a pilot piston, which is typically designed as a stepped piston, of the hydraulic valve is modulated by way of the electromagnetically controllable multiway valve.
  • a pump which has a variable adjustment of the delivery volume adjustable forth and forth, which is acted upon in two adjusting chambers, each with a setting pressure in a direction of adjustment.
  • a spring device counteracts the setting pressures in a return direction to the adjusting member.
  • the adjusting member In the first control chamber, the adjusting member is acted upon directly by a branched off from the high pressure side of the pump actuating fluid.
  • the pressure prevailing in the second control chamber actuating pressure is adjustable by means of a solenoid valve.
  • the first adjusting chamber it is also mentioned that in modified embodiments, alternatively, its setting pressure can also be adjusted by means of a solenoid valve.
  • WO 2008/037070 A1 is a pump with a variable adjustment of the delivery volume adjustment known, which is acted upon in a first actuating chamber with a first control pressure and in a second control chamber with a second control pressure in each case in a direction of adjustment.
  • the set pressures counteract a spring device in the return direction.
  • Both actuating chambers are each preceded by a fluidically actuable valve in order to be able to change the control pressure of the respective control chamber.
  • the fluidically actuated valves are each supplied from the high pressure side of the pump branched actuating fluid.
  • the actuating fluid can be supplied via the valves of the respective associated adjusting chamber or discharged into a reservoir.
  • One of the two valves is actuated directly with a control fluid diverted from the high pressure side of the pump.
  • the other of the two valves is fluidly actuated by means of a solenoid valve.
  • the US 2015/252803 A1 relates to a further adjustable feed pump with an adjusting ring, which is biased by means of a spring device in a first end position.
  • three pressure chambers are formed, one of which is permanently acted upon by the fluid of the pressure side of the pump and acts against the force of the spring means.
  • the second and the third pressure chamber can be acted upon by a fluid respectively solenoid valve with pressurized fluid and act in the direction of the spring means.
  • the US 2013/195 705 A1 relates to an adjustable vane pump, which in one embodiment comprises two adjusting chambers, both acting against the force of a return element.
  • One of the control chambers is connected directly to a high pressure side of the pump or an oil gallery, the second control chamber is supplied via a solenoid valve with actuating fluid.
  • the invention is based on a pump with adjustable delivery volume, comprising a pump housing with a delivery chamber, a rotatable in the delivery chamber conveyor rotor, an adjustment for adjusting the delivery volume of the pump, a pump housing arranged in the return device for generating a return in the direction of the adjustment acting restoring force, a fluidically actuated valve for controlled actuation of the adjusting device with a control fluid and a solenoid valve also includes for acting on the adjusting device with a control fluid.
  • the delivery chamber has a delivery chamber inlet on a low-pressure side and a delivery chamber outlet on a high-pressure side for fluid to be delivered by means of the delivery rotor.
  • the low pressure side of the pump extends from a reservoir from which the pump sucks the fluid, through an inlet of the pump housing to at least the delivery chamber inlet. If the transition from low pressure to high pressure takes place in the delivery chamber, the low-pressure side of the pump also includes the low-pressure side of the delivery chamber, thus extending on the low-pressure side into the delivery chamber.
  • the high pressure side of the pump includes the high pressure area extended within the pump housing and further extends beyond an outlet of the pump housing to at least the unit to be supplied with the fluid or, if the pump supplies multiple units with the fluid, to each of these units.
  • the term “suction region” is intended to designate a flow region extending on the low-pressure side of the pump only within the pump housing.
  • the term “suction area” is not to be interpreted so that the pump according to the invention must suck the fluid from the reservoir against gravity.
  • the pump can also be arranged in its delivery circuit at a location which is lower than the reservoir, so that the pump sucks the fluid with the aid of gravity.
  • the pump can also be pre-charged, d. H.
  • the pump may be preceded by a pre-charge pump.
  • the adjusting device comprises an adjusting member, which is movable for adjusting the delivery volume of the pump in the pump housing in a setting direction and a return direction and further comprises a first actuating chamber for generating a first control pressure for adjusting the adjusting and a further, second actuating chamber for generating a second actuating pressure for adjusting the adjusting member.
  • the first actuating pressure is generated by a first actuating fluid located in the first actuating chamber and the second actuating pressure is generated by a second actuating fluid located in the second actuating chamber, wherein the first actuating pressure and the second actuating pressure act in the direction of adjustment to the adjusting member or each act.
  • the first actuating fluid and the second actuating fluid are diverted from the high pressure side of the pump.
  • first control pressure in the first control chamber and the second control pressure in the second control chamber each act directly on the adjusting member, which accordingly limits both the first control chamber and the second control chamber.
  • the fluid-operated valve serves to adjust the control pressure of the first control chamber, and the solenoid valve is used to adjust the control pressure of the second control chamber.
  • the fluidically operable valve has a control piston which is adjustable by means of a pressurized control fluid. In preferred embodiments, this valve is only fluidic actuated. The pressure of the control fluid counteracts the clamping force of a clamping device of the valve.
  • the fluidically operable valve is referred to below as "fluidic valve”. It may in particular be a hydraulic valve.
  • the electromagnetic valve has a pressure port for a control fluid branched from the high-pressure side fluid of the pump, a working port for the actuating fluid, and a discharge port for the actuating fluid.
  • the solenoid valve is electromagnetically actuated, preferably it is only electromagnetically actuated. The electromagnetic force counteracts the clamping force of a clamping device of the solenoid valve.
  • the working port of the solenoid valve for adjusting the control pressure of the second actuating chamber is connected to the second actuating chamber. Due to the inventive combination of a fluidic valve for adjusting the first control pressure and a solenoid valve, which is fluidly connected via its working port to the second actuating chamber, a pump is obtained, which is simplified with respect to the adjustment by means of the valves over the prior art, the Delivery volume but still the need of a supplied unit or system of multiple units can be flexibly adjusted. By the hydraulic valve, a maximum pressure level is set, when it reaches the delivery volume of the pump is stopped.
  • fluidic valves are particularly robust and reliable, and also independent of electrical energy and / or control signals, a simple, inexpensive and reliable shutdown is guaranteed when the maximum pressure level is reached.
  • the solenoid valve By means of the solenoid valve, the maximum pressure level at which the delivery volume of the pump is stopped, depending on the type of Solenoid valve in one or more stages or continuously, basically arbitrarily, be adjusted to the maximum predetermined by the fluidic valve.
  • the fluidic valve comprises the already mentioned control piston, which is movable in a valve chamber of the fluidic valve between a first piston position and a second piston position and a clamping device for generating a force acting on the control piston in the direction of one of the piston positions clamping force.
  • the clamping device may have one or more springs for generating the clamping force.
  • the tensioning device can be formed, in particular, by a helical spring, which is arranged in the valve space and subjected to pressure.
  • the fluidic valve comprises a pressure connection for a control fluid branched off from the high-pressure side fluid, a working connection for the actuating fluid connected to the first control chamber and a discharge connection for the actuating fluid.
  • the clamping device of the fluid-actuated valve is preferably provided for setting a piston position, in which the first actuating chamber is connected to the discharge port of the fluid-actuated valve.
  • the control force counteracting the tensioning device is preferably provided for setting a piston position, in which the pressure connection of the fluidically actuatable valve is connected to the first setting chamber.
  • the fluidically actuatable valve has an inlet for control fluid branched off at the high-pressure side of the pump.
  • the inlet of the fluidically operable valve is permanently connected to the high-pressure side of the pump, whereby permanently acting through the control fluid control force acts against the clamping device of the fluidic valve.
  • the pressure connection of the fluidic valve is connected to the working port of the fluidic valve and thus to the first actuating chamber, when the control force reaches a value by which the control piston of the fluidic valve is moved against the clamping device in the piston position, in which Pressure port of the fluidic valve is connected to the working port of the fluidic valve operable.
  • the clamping device of the fluid-actuated valve exerts a clamping force on the control piston of the fluid-actuated valve, which is greater than a occurring at proper and / or active function of the solenoid valve or resulting, acting against the clamping device of the fluid-operated valve control force.
  • the clamping force counteracts the fluidic adjustment of the piston position, in which the pressure connection of the fluid-actuated valve is connected to the working port of the fluid-actuated valve.
  • the clamping force of the clamping device of the fluidic actuated valve is designed so that the piston position, in which the pressure port of the fluidic valve is connected to the working port of the fluidic valve, is set only when a predetermined pressure level is reached, which is higher than a maximum pressure level to which the active and / or properly functioning solenoid valve regulates.
  • the pump When the solenoid valve is functioning correctly and / or the solenoid valve is active, the pump is stopped by the solenoid valve to a maximum pump outlet pressure.
  • the maximum pump output pressure results against the clamping device of the fluidic valve acting control force which is smaller than the clamping force of the clamping device of the fluidic valve and thus preferably smaller than a necessary control force which is at least necessary to adjust the piston position, in which the pressure port of the fluidic valve is connected to the working port of the fluidic valve and thus to the first actuating chamber.
  • the solenoid valve fails due to a defect or if the activation of the solenoid valve is deactivated in selected operating states, the pump will not be regulated by the solenoid valve, whereby the pump output pressure may rise above the maximum pump output pressure.
  • the fluidic valve limits this increase to a fail-safe pump outlet pressure.
  • the fail-safe pump outlet pressure is greater than the maximum pump outlet pressure but less than a critical pump outlet pressure which could result in component damage.
  • the control piston preferably has at least a first ring portion and a second ring portion, which are axially spaced from each other.
  • the first ring section separates the pressure port and the working port from each other in one of the piston positions, thereby connecting the working port to the discharge port. In the other piston position, the first ring section separates the working port and the discharge port from each other, thereby connecting the pressure port to the working port.
  • the second ring portion is disposed axially between the pressure port and the first ring portion. It is arranged axially between the pressure connection and the working connection.
  • the second ring section has at least one axial passage opening, which fluidly connects the pressure connection and the first ring section to one another.
  • the control piston In order to move the control piston fluidically against the tensioning device, the control piston has at least one control surface on which the control fluid acts, thereby resulting in the control force.
  • the control surface is preferably formed by the first ring portion.
  • the at least one passage opening of the second annular section fluidly connects the control surface and the inlet for the control fluid of the fluidic valve.
  • the at least one through-opening In the piston position, in which the pressure connection and the working connection are connected to one another, the at least one through-opening fluidly connects the pressure connection and the working connection with one another.
  • axial is particularly related to a longitudinal axis and / or displacement axis of the control piston of the fluidic valve, so that the term “axially” denotes a direction which extends on the longitudinal axis or displacement axis or parallel thereto.
  • the control piston has at a first axial end a first axial projection for arranging the clamping device and at a second axial end a second axial projection for forming a stop.
  • the tensioning device in particular the helical spring, is preferably arranged or plugged on the first axial projection.
  • the first axial projection preferably forms a spring seat.
  • the tensioning device surrounds the first axial projection.
  • the second axial projection forms a stop in the piston position in which the pressure port and the working port are separated from each other.
  • the second axial projection is in the piston position, in which the pressure port and the working port are separated from each other are at a counter-attack.
  • the axial projections have a diameter which is smaller than the diameter of the ring sections.
  • the first ring portion is formed as a solid body and thus not executed hollow.
  • the entire control piston is formed as a solid body.
  • the ring sections differ in their diameter from each other.
  • the first ring portion has a diameter which is smaller than the diameter of the second ring portion.
  • the fluidic valve has a housing which comprises at least two regions which are different from one another in their inner diameter.
  • the housing of the fluidic valve has a stepped inner diameter.
  • the ring sections are in each case with their diameter on the inner diameter of the housing and are preferably guided on the inner diameter.
  • the housing of the fluidic valve is advantageously formed by the pump housing. In this case, the housing of the fluidic valve or a receptacle of the control piston of the fluidic valve is formed by a stepped bore.
  • the fluidic valve and / or the solenoid valve may or may each have one or more further valve connections, for example a further pressure connection and / or a further working connection and / or a further discharge connection.
  • the fluidic valve and / or the solenoid valve only the three valve connections mentioned.
  • the spool and the valve ports of the fluidic valve and / or the solenoid valve may be arranged so that the working port is connected to the pressure port when the respective spool occupies the first piston position and the working port is disconnected from the pressure port and connected to the unload port when the spool valve respective control piston occupies the second piston position.
  • the fluidic valve and / or the solenoid valve may further be arranged so that the control piston can assume a third piston position and the working port is separated from both the pressure port and the discharge port when the spool occupies the third piston position.
  • the third piston position may be an intermediate position which the control piston can assume in the direction of movement between the first and the second piston positions.
  • the first piston position or instead the second piston position of the optionally be three different piston positions the intermediate position.
  • the fluidic valve and / or the electromagnetic valve completely disconnects the working connection in each piston position from both the pressure connection and the discharge connection, but separates the working connection only from the pressure connection, but permits a comparatively low flow between the working connection and the discharge connection. or separates the working port from the discharge port while allowing a comparatively low flow between the working port and the pressure port.
  • the fluidic valve and / or the solenoid valve is preferably a switching valve and switchable between said states.
  • the respective valve can be designed in particular with only two switching states or exactly three switching states.
  • the switching states are defined by the piston positions.
  • the fluidic valve is preferably arranged in or on the pump housing. If it is arranged outside the suction region of the pump housing, the fluid can flow through the suction region with little resistance, since the flow in the suction region is not hindered by the fluidic valve. In preferred embodiments, the fluidic valve is arranged not only outside the suction area but outside the main flow through the pump housing. Therefore, in the preferred embodiments, the fluidic valve does not interfere with the outflow of fluid on the high pressure side of the pump housing.
  • the fluidic valve is arranged in preferred embodiments outside of the main flow of the delivery circuit in a bypass branch.
  • the fluidic valve can thus be designed free of the requirement for a low-resistance main flow.
  • the fluidic valve can be dimensioned correspondingly small and targeted to the fulfillment of its function, the control of the actuating fluid for the first control chamber, optimized.
  • the main flow of the delivery circuit extends from the reservoir to the pump housing on the low-pressure side of the pump and includes the suction area of the pump housing.
  • the main flow includes the high pressure area of the pump housing through which the fluid passes from the delivery chamber to an outlet of the pump housing and the subsequent high pressure area outside the pump housing to at least one unit to be supplied by the pump with the fluid.
  • the flow becomes the aggregate as the main flow understood that has the highest volume requirement, measured as flow rate, or has to be supplied with the highest pressure.
  • the discharge port of the fluidic valve and / or the solenoid valve may be connected to the suction region of the pump, bypassing the reservoir. Control fluid flowing from the valve through the relief port may be returned to the pump's fluid delivery circuit in a relief passage downstream of the reservoir. The actuating fluid flowing out of the valve through the discharge port can be returned to the main flow at a connection point between the reservoir and the pump housing, such a connection point preferably being closer to the pump housing than to the reservoir.
  • the discharge channel extends from the discharge port to the junction with the main stream.
  • the fluidic valve and / or the solenoid valve is advantageously not in fluid communication with the reservoir via the discharge port. No fluid flows from the reservoir into the valve space of the fluidic valve and / or the electromagnetic valve via the discharge connection, and in particular no fluid flows from the fluidic valve and / or from the solenoid valve via the discharge connection to the reservoir.
  • the actuating fluid is returned directly into the suction region of the pump housing.
  • the discharge channel opens in such embodiments in the suction area, so it is connected directly to the suction area.
  • the mouth in the suction area forms said connection point.
  • the pump can be mounted together with fluidic valve as a mounting unit easier and the risk of assembly errors can be reduced because the discharge connection not with must be connected to the support circle.
  • the controlled adjusting fluid is fed back directly into the reservoir.
  • the fluidic valve can be designed separately from the pump housing and, when the pump is arranged in a fluid conveying circuit, can be arranged away from the pump housing or on the pump housing.
  • the fluidic valve is preferably an integral part of the pump in that the pump housing also forms the housing for the fluidic valve.
  • the pump housing can in particular form the valve space for the control piston.
  • the pump housing With the fluidic valve integrated or mounted on the pump housing, the pump housing can form the pressure connection, the working connection and the discharge connection of the fluidic valve.
  • the preferred discharge channel may extend to the pump housing and / or in the pump housing, so that no additional connection for the pressure relief must be made with integrated or attached to the pump housing fluidic valve.
  • the pump including the fluidic valve form a mounting unit, so that automatically with the assembly of the pump housing in the fluid conveying circuit and the fluidic valve is at least mechanically mounted.
  • the connections for the three mentioned connections of the fluidic valve are formed in and / or on the pump housing and it requires no connection line and no connection for the actuating fluid detached from the pump housing.
  • the actuating fluid for the pressure connection can be branched off from the main flow in the pump housing at its high pressure side.
  • the branch is located downstream of a filter for cleaning the fluid to supply purified actuating fluid to the fluidic valve.
  • the control fluid for the fluidic valve may also be diverted from the high pressure side of the pump.
  • the control fluid may be diverted downstream of a filter for purifying the fluid delivered by the pump to supply purified fluid to a control chamber formed on the control piston.
  • the branch downstream of the filter can be used to precisely control the pressure used in an internal combustion engine for the fluid supply. Varying pressure losses, for example via a cooler and / or a filter, are irrelevant. In principle, however, the control fluid can be diverted on the high pressure side still within the pump housing.
  • the actuating fluid controlled by the fluidic valve can in particular also form the control fluid for actuating the fluidic valve, in that the actuating fluid guided via the pressure port into the valve chamber of the fluidic valve at the same time also generates a control pressure acting on the control piston.
  • the pressure connection can accordingly also form a control connection of the fluidic valve.
  • the solenoid valve has a signal port for connection to an external controller, such as a motor controller.
  • the signal connection of the solenoid valve or a magnetic force counteracting the tensioning device of the solenoid valve is preferably provided for setting a piston position, in which the working port of the solenoid valve and thus the second actuating chamber is connected to the pressure port of the solenoid valve.
  • the clamping force of the clamping device of the solenoid valve is preferably provided for setting a piston position in which the working port of the solenoid valve and thus the second actuating chamber is connected to the discharge port of the solenoid valve.
  • the solenoid valve may also be arranged in or on the pump housing, that is integrated.
  • the solenoid valve may readily be located a distance away from the pump housing, which may be particularly advantageous if an electrical connection line would have to be guided by oil in the arrangement in or on the pump housing.
  • provided is intended to be understood in particular specially programmed, designed, designed, configured, equipped and / or arranged.
  • the pump is in preferred embodiments to a positive displacement pump.
  • the delivery volume increases proportionally to the conveying speed of the delivery rotor, if no measures adjusting the delivery volume are taken.
  • the pump is preferably a rotary pump, the delivery volume increases with the rotational speed of the delivery rotor which is rotatable about a rotation axis in the delivery chamber in the case of a rotary pump.
  • the invention also relates to Linearhubpumpen.
  • the delivery volume is therefore, in general terms, proportional to the stroke frequency, the Drehhub- or Linearhubfrequenz, the pump. With positive displacement pumps, this is also referred to as the specific delivery volume, the delivery volume per rotary stroke or linear stroke.
  • Proportionality is troublesome in many applications, especially when the speed at which the pump is driven can not be adjusted to the needs of the unit to be supplied.
  • pumps used in vehicles such as lubricating oil pumps, power-assisted pumps such as transmission pumps, and coolant pumps, are in many cases driven mechanically by the vehicle's propulsion engine.
  • the drive speed of the pump in these applications depends on the speed of the drive motor and is usually in a fixed speed relationship to the speed of the drive motor.
  • the invention is particularly directed to such applications.
  • the adjusting device is set up in preferred embodiments for adjusting the specific delivery volume of a positive displacement pump.
  • positive displacement pumps and adjusting devices such as the invention in particular, are disclosed.
  • the invention also relates to adjustable internal gear pumps and pendulum slide pumps in the delivery volume and, in principle, also other pump types which can be adjusted in the delivery volume.
  • the adjusting device may in particular comprise an adjusting member which cooperates with the conveying rotor or, in the case of pumps having a plurality of conveying rotors, with at least one of the plurality of conveying rotors for adjusting the conveying volume.
  • the adjusting member may in particular be an adjusting ring surrounding the delivery rotor, which is arranged to be linearly movable or pivotable in the pump housing, so that during an adjusting movement of the adjusting member the eccentricity between the axis of rotation the delivery rotor and a central longitudinal axis of the adjusting ring and thereby the delivery volume is adjusted.
  • the delivery volume of internal gear pumps and pendulum slide pumps can be adjusted.
  • the internally toothed ring gear can form the adjusting member and can be arranged to be linearly movable or pivotable for the adjustment.
  • the pump is designed as an external gear pump, it has at least two conveyor rotors, which are toothed on the outer circumference, so-called external gears.
  • the external gears are meshed with each other.
  • the adjustable external gear is part of an axially displaceable adjusting unit comprising axially displaceable piston, between which the adjustable external gear is rotatably mounted.
  • the interconnected pistons form the adjustment of the adjustment in such pump designs.
  • FIG. 1 shows a pump 1, for example in vane-type.
  • the pump 1 comprises a pump housing with a housing structure 2 and a lid.
  • the housing structure 2 accommodates components of the pump and / or supports components of the pump 1 movable.
  • the housing structure 2 is open at an axial end face, whereby the arrangement of components of the pump in or on the housing structure 2 is facilitated.
  • the lid is mounted on the housing structure 2 and closes in the assembled state at the relevant end face the housing structure 2.
  • the cover is in FIG. 1 removed, so that in the illustrated plan view of the open housing structure 2 functional components of the pump can be seen.
  • the housing structure 2 surrounds a delivery chamber 5 in which a delivery rotor 10 is rotatably arranged about an axis of rotation R 10 .
  • the pump housing has on a low-pressure side a housing inlet for connecting the pump 1 to a reservoir R and on a high-pressure side a housing outlet for the removal of a fluid to be pumped, for example engine lubricating oil, to an aggregate to be supplied with the fluid.
  • the delivery chamber 5 includes a low pressure side and a high pressure side.
  • a rotational drive of the conveyor rotor 10 in the illustrated direction of rotation, counterclockwise fluid flows through the housing inlet into the pump housing and the pump housing on the low pressure side through a feed chamber inlet 4 in the delivery chamber 5 and is increasing the pressure on the high pressure side of the pump by a winningsteinlass 6 ejected and discharged via the housing outlet.
  • a suction region is formed on its low-pressure side, through which the fluid conveyed by the pump flows on its flow path from the housing inlet to the delivery chamber inlet 4.
  • the suction region extends into the delivery chamber 5 and also still includes the region of the delivery chamber 5 in which the delivery cells 10 increase as the delivery rotor 10 rotates.
  • a high-pressure region of the pump housing which encompasses the region of the delivery chamber 5 in which the delivery cells shrink, and which extends from this subregion of the delivery chamber 5 via the delivery chamber outlet 6 up to and including the housing outlet, adjoins the suction region.
  • the conveyor rotor 10 is an impeller with a central rotor structure 11 with respect to the axis of rotation R 10 and vanes 12 distributed over the circumference of the rotor structure 11.
  • the vanes 12 are radially or at least substantially open in slots of the rotor structure 11 open to the outer circumference of the rotor structure 11 Slidably guided radially sliding direction.
  • Radially inside the wings 12 are supported on a transverse to the rotation axis R 10 movable support structure 13.
  • the conveyor rotor 10 is surrounded at its outer periphery by an adjusting member 20, which is exemplified as an adjusting ring. Slide with rotary drive of the conveyor rotor 10 the rotation axis R 10 of the conveyor rotor 10 is arranged eccentrically to a parallel, with respect to the inner peripheral surface of the adjusting central axis 20, so that formed by the conveyor rotor 10 and the adjusting member 20 conveying cells upon rotation of the Increase delivery rotor 10 on the low pressure side of the delivery chamber 5 in the direction of rotation and reduce again on the high pressure side. Due to this with the speed of the conveyor rotor 10 periodic increase and decrease in the delivery cells, the fluid from the low pressure side to the high pressure side and there with increased pressure through the delivery chamber outlet 6 and then through the housing outlet promoted.
  • the so-called specific delivery volume can be adjusted. If the fluid is a liquid and thus incompressible to a good approximation, the absolute delivery volume is directly proportional to the speed of the delivery rotor 10. For compressible fluids, such as air, the relationship between flow rate and speed is not linear, but the absolute flow rate or mass also increases with the speed.
  • the specific delivery volume depends on the eccentricity, ie the distance between the central axis of the adjusting member 20 and the axis of rotation R 10 of the conveyor rotor 10.
  • the adjusting member 20 is movably arranged in the pump housing, for example, pivotable about a pivot axis R 20 .
  • a modified adjusting member in the pump housing can also be arranged linearly movable.
  • a mobility transverse to the axis of rotation R 10 of the conveyor rotor 10 is preferred.
  • an axial adjustability would also be conceivable by which an axial width of the delivery cells can be adjusted.
  • a pivot bearing portion of the adjusting member 20 is designated 21.
  • the pivot bearing is designed as a sliding bearing by the adjusting member 20 is in its pivot bearing portion 21 with a mating surface of the housing structure 2 directly in sliding contact.
  • the adjusting member 20 is acted upon by a control pressure of a control fluid.
  • the fluidic actuating pressure counteracts a restoring force in the opposite direction, the return direction.
  • the restoring force is provided by a spring device 25 with one or more mechanical spring members, in the embodiment generates a single spring member.
  • the spring member is designed and arranged as a helical compression spring.
  • a first actuating chamber K 1 is formed in the pump housing into which the actuating fluid can be introduced to exert on the Verstellorgan-Einwirk Scheme 22 and thus on the adjusting member 20 acting in the direction of adjustment V first actuating force.
  • the restoring force of the spring device 25 also acts, for example, directly on the adjusting member-action region 22.
  • the first control chamber K 1 is fed with the pumped by the pump 1 actuating fluid to pressurize the adjusting member 20 against the force of the spring means 25 in the direction V with the first control pressure.
  • the adjustment direction V is chosen so that the eccentricity between the conveyor rotor 10 and adjusting member 20 and thereby reduces the specific delivery volume of the pump 1, when the adjusting member 20 moves in the direction of adjustment V.
  • the adjusting member 20 forms with the housing structure 2 a sealing gap which separates the first actuating chamber K 1 in the direction of adjustment V from the low-pressure region.
  • a sealing element 24 is arranged for better sealing of the sealing gap.
  • the sealing element 24 is arranged in a receptacle of the adjusting member 20.
  • a second actuating chamber K 2 is formed, in which also a control fluid can be introduced under pressure to be able to exert on the adjusting member 20 in the second control chamber K 2, a second, second control pressure.
  • the adjusting chambers K 1 and K 2 are formed on an outer circumference of the adjusting member 20 in the circumferential direction next to each other and sealed from each other by means of another sealing element. In the two actuating chambers K 1 and K 2, the respective actuating fluid acts directly on the adjusting member 20.
  • the adjusting device may comprise a further adjusting chamber, possibly also a plurality of further adjusting chambers, in which or a control fluid directly or indirectly indirectly acts on the adjusting member 20 via a respective adjusting piston.
  • the first control pressure prevailing in the first control chamber K 1 and the second control pressure prevailing in the second control chamber K 2 are variable by the control chambers K 1 and K 2 each being acted upon by an associated valve with the respective control fluid.
  • One of the actuating chambers K 1 and K 2 is acted upon by a fluidic valve with actuating fluid, while the other of the actuating chambers K 1 and K 2 is acted upon by a solenoid valve with actuating fluid.
  • the fluidic valve of the first actuating chamber K 1 and the solenoid valve of the second actuating chamber K 2 is assigned.
  • FIG. 2 a pump 1 containing fluid conveying circuit.
  • the pump 1 is shown schematically as the other components of the fluid circuit. So belong to the pump 1, as out FIG. 1 can be seen, the adjusting device with the adjusting member 20, the spring means 25 and the adjusting chambers K 1 and K 2nd
  • the fluidic valve 30 is also an integral part of the pump housing in preferred embodiments in that the fluidic valve 30 is arranged in or on the pump housing.
  • the solenoid valve 40 is also considered as belonging to the pump 1, although the solenoid valve 40 may be located a distance from the pump housing.
  • An external arrangement relative to the pump housing may be particularly advantageous if the electrical insulation of a supply line for electrical energy and / or control signals in the immediate vicinity of the pump housing causes problems.
  • the pump 1 delivers fluid from a reservoir R to an aggregate M to be supplied with the fluid, for example lubricating oil, to an internal combustion engine forming the unit M for driving a motor vehicle.
  • An aggregate M to be supplied with the fluid which is formed by an internal combustion engine, can drive the pump 1, as in FIG FIG. 2 illustrated so that the conveying rotor 10 is rotationally driven in fixed speed relation to an output shaft of the unit M.
  • the pump 1 conveys the fluid from the reservoir R through a supply line, the housing inlet and the suction region of the pump housing into the delivery chamber 5 (FIG. Fig. 1 ) from which it is ejected with increased pressure.
  • a pumped by the pump 1 main flow 50 is conveyed to the unit M. After flowing through the unit M, the fluid flows in pressure relieved back into the reservoir R.
  • the adjusting member 20 is in FIG. 2 representative of the other components of the adjusting device, such as the spring device 25 and the adjusting chambers K 1 , K 2 and optionally one or more further adjusting chambers.
  • the fluidic valve 30 further includes a discharge port S for the actuating fluid.
  • the discharge port S is connected via a discharge channel 35 directly to the suction region of the pump housing.
  • the reservoir R is bypassed.
  • the relief channel 35 preferably extends in or on the pump housing directly from the fluidic valve 30 to directly into the suction region of the pump housing.
  • the pressurized actuating fluid is energy-efficiently returned to the suction area of the pump housing via the discharge port S.
  • the pump 1 does not have to suck in again from the reservoir R to relieve the pressure of the adjusting member 20.
  • the trapped recirculating fluid has a higher pressure than the fluid in the reservoir R and contains less air. Both contribute to the improvement of the efficiency of the pump 1.
  • the fluidic valve 30 can be relieved of pressure via its discharge port S to the reservoir R in modified embodiments.
  • the fluidic valve 30 is actuated with a likewise branched off from the high pressure side of the pump 1 control fluid, which is guided to a control port C of the fluidic valve 30.
  • the solenoid valve 40 may be a proportional valve with which the control pressure in the second control chamber K 2 (FIG. Fig. 1 ) can be adjusted continuously. In particular, however, it may also be a multi-way switching valve which is between two, three or optionally also more switching states and thus piston positions can be switched. In the exemplary embodiment is such a switching valve that connects the second actuating chamber K 2 in a first switching state with the high pressure side of the pump 1 and in a second switching state of the high pressure side of the pump 1 and instead via a return line 45, bypassing the reservoir R. with the low pressure side of the pump 1 connects.
  • the second actuating chamber K 2 is therefore connected to the high pressure side of the pump 1 and in the second switching state with its low pressure side. If the solenoid valve 40 assumes the first switching state, the actuating pressures in the actuating chambers K 1 and K 2 act together on the adjusting element 20. If the solenoid valve 40 assumes the second switching state, only the actuating pressure in the first actuating chamber K 1 acts on the adjusting element 20 while in the second actuating chamber K 2, the comparatively low pressure of the suction region of the pump housing prevails. Accordingly, this first control pressure must be higher in order to move the adjusting member 20 against the restoring elastic force of the spring device 25 in the direction of adjustment V.
  • the solenoid valve 40 has a signal port 41 where it is connected to an external controller.
  • the unit M is a drive motor of a vehicle, in particular a motor control can form the external control.
  • Such engine controls are typically formed as characteristic or map controls.
  • an engine map control the demand of the drive motor in a map of different engine sizes, such as an engine temperature and / or an engine speed and / or a lubricating oil pressure at a critical point of the engine and / or the load state of the engine and the like stored in an electronic memory of the controller his.
  • the external control unit forms the output signal with which it activates the solenoid valve 40 in order to modulate the delivery pressure of the pump 1.
  • the modulation is that by means of the solenoid valve 40, the size of that discharge pressure can be changed, when it reaches the specific delivery volume of the pump 1 is reduced by adjusting the adjusting member 20.
  • the fluidic valve 30 is shown in a longitudinal section. Recognizable are the ports A, P and S for the actuating fluid and the port C for the control fluid.
  • the fluid valve 30 is an integral part of the pump 1 in that the pump housing also forms the housing of the fluidic valve 30.
  • the pump 1 can be mounted as a unit including the fluidic valve 30.
  • the conveying and adjusting components, such as in particular the conveying rotor 10 and the adjusting member 20, and the fluidic valve 30 are combined by means of the common pump housing to form a mounting unit.
  • the valve chamber 31 is formed in the housing structure 2, for example as an axial blind bore. It is open at one of the two ends of the control piston 32. A closure member 37 closes the valve space 31 at the open end. In an axial end region of the valve chamber 31, a clamping chamber 34 is formed, in which the clamping device 33 acts on the control piston 32.
  • the discharge channel 35 ( FIG. 2 ) opens into the clamping chamber 34, so that the clamping chamber 34 in each state of the fluidic valve 30, that is, regardless of the position of the control piston 32, is connected to the suction region of the pump housing.
  • FIG. 3 extends the discharge channel perpendicular to a displacement axis of the control piston 32 from the clamping chamber 34.
  • the discharge channel can extend obliquely, parallel or in extension to the displacement axis of the control piston 32 from the clamping chamber 34.
  • the control piston 32 is reciprocable in the valve space 31 between a first piston position and a second piston position.
  • the control piston 32 assumes the second piston position.
  • the actuating fluid can flow via the working port A into the valve chamber 31 and flow out of this via the discharge port S into the suction region of the pump housing.
  • the first actuating chamber K 1 is in this state of the fluidic valve 30, with the control piston 32 located in the second piston position, under the comparatively low pressure of the suction region, whereby an effective pressure relief of the adjusting member 20 is achieved.
  • the control piston 32 moves from the second piston position to the first piston position, in FIG FIG. 3 to the right, the pressure port P is connected to the working port A and via this with the first control chamber K 1 , so that the adjusting member 20 with the control pressure, a pressure of the high pressure side of the pump 1, is applied.
  • the adjusting device is designed so that an increase in the setting pressure causes a reduction of the specific delivery volume of the pump 1.
  • control port P can also simultaneously form the control port C.
  • the fluidic valve 30 is permanently connected with its inlet C to the high-pressure side of the pump 1.
  • On the control piston 32 acts during operation of the pump 1 is constantly a control pressure and thus a control force against the clamping device 33.
  • the clamping device 33 of the fluidic valve 30 is biased. It permanently exerts a force acting against the control force clamping force on the control piston 32, which is greater than a maximum occurring at proper function and active control of the solenoid valve 40 acting on the control piston 32 control force.
  • a properly functioning and active solenoid valve 40 controls the pump 1 during operation via the second control chamber K 2 in the manner so that a maximum of a control piston acting on the control force 32 results, which is smaller than the clamping force of the clamping device 33 of the fluidic valve 30 and thus smaller than the control force necessary for switching the first switching position and thus the first piston position.
  • the fluidic valve 30 is always switched in its second switching position and thus in the second piston position in operating states in which the solenoid valve 40 is functioning properly and active, since the solenoid valve 40 controls the pump 1 to a maximum flow rate through the one on the control piston 32 resulting from the maximum flow rate acting on the control piston 32 of the fluidic valve 30 control force is not sufficient to the fluidic valve 30 from the second switching state to the first switching state to switch or to move the control piston 32 from the second piston position to the first piston position.
  • the control force acting on the control piston 32 and the tensioning device 33 give the fluidic valve 30 a fail -Safe property in case of failure of the solenoid valve 40.
  • the force acting on the control piston 32 control force and the clamping device 33 serve as backup loading of the adjusting member 20 in the event that the solenoid valve 40 or the associated control device fails due to a defect, for example due to a cable break or a disconnected electrical connector, or when the solenoid valve 40 is deactivated in certain operating conditions.
  • the fluidic valve 30, in particular the clamping device 33, is designed so that in the event of failure or deactivation of the solenoid valve 40, the delivery volume of the pump 1 is displaced from maximum to minimum only upon reaching a pump outlet pressure which is greater than a maximum pump outlet pressure, the occurs with proper and active operation of the solenoid valve 40, and is less than a pump output pressure, which would lead to damage of at least one component.
  • the fluidic valve 30 and the first control chamber K 1 serve as Schutzabregelung the pump 1 when the solenoid valve 40 fails due to a defect or deactivation.
  • the control piston 32 has a first annular portion 51 and a second annular portion 52, which are axially spaced from each other.
  • the first ring section 51 fluidly separates the control chamber 36 and the clamping chamber 34 from each other.
  • the first annular section 51 separates the pressure port P and the working port A, thereby connecting the discharge port S to the working port A.
  • the first piston position the first annular section 51 separates the working port A and the discharge port S, thereby connecting the pressure port P with the working port A.
  • the first ring portion 51 has a single sealing surface, which is designed in the circumferential direction and axially continuous and thus uninterrupted.
  • the first ring portion 51 bears with its sealing surface sealingly against the housing structure 2. It has a constant diameter.
  • the first ring portion 51 is formed as a solid body and thus not hollow.
  • the second ring portion 52 is disposed in the control chamber 36.
  • the second ring portion 52 is disposed axially between the pressure port P and the inlet C and the first ring portion 51, respectively.
  • the second ring portion 52 has axial through holes 53 fluidly connecting the pressure port P and the inlet C to the first ring portion 51. With this, the through holes 53 connect a control surface of the first ring portion 51 to the pressure port P and the inlet C.
  • the through holes 53 are formed as bores.
  • the first ring portion 51 has a diameter which is smaller than the diameter of the second ring portion 52, whereby a correct mounting of the control piston 32 can be ensured.
  • the first ring section 51 has a diameter which is greater than the diameter of the second ring section 52.
  • the housing of the fluidic valve 30 has a stepped design in its inside diameter.
  • the housing of the fluidic valve 30 has two different in their inner diameter areas.
  • the ring sections 51, 52 each abut with their diameter on the inner diameter of the housing.
  • the housing structure 2 has a stepped bore.
  • the housing structure 2 forms the housing of the fluidic valve 30.
  • the control piston 32 has a first axial projection 54 on which the clamping device 33, in particular the coil spring, is arranged or plugged.
  • the first axial projection 54 forms a spring seat.
  • the tensioning device 33 in particular the helical spring, surrounds the first axial projection 54.
  • the first axial projection 54 extends axially from the first ring section 51 into the tensioning chamber 34.
  • the tensioning device 33 in particular the helical spring, is supported at one end on the first ring section 51 off.
  • the control piston 32 has a second axial projection 55 at a second axial end.
  • the second axial projection 55 forms a stop in the second piston position, in which the pressure port P and the working port A are separated from each other.
  • the second axial projection 55 abuts in the second piston position on a counter-stop.
  • the counter-stop is formed by the closure part 37.
  • the second axial protrusion 55 extends axially from the second annular portion 52 toward the closure portion 37.
  • the axial protrusions 54, 55 have a diameter that is smaller than the diameters of the annular portions 51, 52, respectively.

Description

Die Erfindung betrifft eine Pumpe mit verstellbarem Fördervolumen, die zur Verstellung des Fördervolumens eine Verstelleinrichtung und zugeordnete Ventile umfasst. Im Besonderen betrifft die Erfindung eine Pumpe, die eine Verstelleinrichtung zur Verstellung des spezifischen Fördervolumens der Pumpe umfasst. Die Ventile sind mit der Verstelleinrichtung fluidisch verbunden, um durch Beaufschlagung der Verstelleinrichtung mit unter Druck stehendem Stellfluid das Fördervolumen der Pumpe verstellen zu können. Die Pumpe kann dazu dienen, ein Aggregat, insbesondere ein Aggregat eines Fahrzeugs, wie etwa eines Kraftfahrzeugs, mit Schmieröl, Arbeitsfluid oder Kühlfluid zu versorgen. Die Pumpe ist zweckmäßigerweise eine Verdrängerpumpe. In bevorzugten Anwendungen dient die Pumpe als Schmierölpumpe zur Versorgung eines Verbrennungsmotors eines Fahrzeugs mit Schmieröl, ist also eine Motorschmierölpumpe.The invention relates to a pump with adjustable delivery volume, which includes an adjustment and associated valves for adjusting the delivery volume. In particular, the invention relates to a pump comprising an adjusting device for adjusting the specific delivery volume of the pump. The valves are fluidically connected to the adjusting device in order to be able to adjust the delivery volume of the pump by acting on the adjusting device with pressurized actuating fluid. The pump can serve to supply an assembly, in particular an aggregate of a vehicle, such as a motor vehicle, with lubricating oil, working fluid or cooling fluid. The pump is expediently a positive displacement pump. In preferred applications, the pump serves as a lubricating oil pump for supplying a combustion engine of a vehicle with lubricating oil, so is an engine lubricating oil pump.

Bei Motorschmierölpumpen entspricht es einer üblichen Bauart, dass ein der Beeinflussung des Fördervolumens dienendes Verstellorgan, wie etwa ein schwenkbarer Stellring, mit dem von der Pumpe geförderten Öl, d. h. dem Öl von der Hochdruckseite des von der Pumpe versorgten Ölkreislaufs, beaufschlagt wird. Auf diese Weise wird der Fördervolumenstrom bei Erreichen einer bestimmten Druckschwelle begrenzt. In Abhängigkeit von den motorischen Randbedingungen, wie etwa Motordrehzahl, Motortemperatur, Notwendigkeit einer Kolbenkühlung und dergleichen mehr, kommt oftmals eine Verstellung des Fördervolumens, bevorzugt des spezifischen Fördervolumens, in Form von zwei oder gegebenenfalls auch mehr Druckstufen zum Einsatz. Alternativ oder ergänzend kann dabei eine Regelung der Pumpe in Abhängigkeit von einem Motorkennfeld, d. h. eine Kennfeldregelung, verwirklicht sein. Die Druckbeaufschlagung des Verstellorgans kann in einfachen Fällen direkt über ein von der Motorsteuerung angesteuertes Mehrwegeventil erfolgen. Kann das elektromagnetisch betätigbare Mehrwegeventil nicht in oder an einem Gehäuse der Pumpe angeordnet werden und/oder kann eine für eine schnelle Verstellung ausreichende Dimensionierung der Strömungsquerschnitte im Ventil oder auf dem Weg zum oder vom Ventil aus konstruktiven Gründen nicht umgesetzt werden, kann ein Hydraulikventil vorgesehen werden, das die Druckbeaufschlagung oder Druckentlastung des üblicherweise gegen die Kraft einer Feder beweglichen Verstellorgans steuert. Über das elektromagnetisch ansteuerbare Mehrwegeventil wird zumindest in derartigen Ausführungen ein Druck moduliert, der auf eine Teilfläche eines typischerweise als Stufenkolben ausgebildeten Vorsteuerkolbens des Hydraulikventils wirkt.In engine lubricating oil pumps, it is a common design that an adjusting element serving to influence the delivery volume, such as a pivotable adjusting ring, is charged with the oil delivered by the pump, ie the oil from the high pressure side of the oil circuit supplied by the pump. In this way, the delivery volume flow is limited when reaching a certain pressure threshold. Depending on the engine boundary conditions, such as engine speed, engine temperature, necessity of piston cooling and the like, often an adjustment of the delivery volume, preferably the specific delivery volume, in the form of two or possibly more pressure stages is used. Alternatively or additionally, a control of the pump in dependence on an engine map, ie a map control, be realized. The pressurization of the adjusting can be done in simple cases directly via a controlled by the engine control multi-way valve. If the electromagnetically operable multi-way valve can not be arranged in or on a housing of the pump and / or sufficient dimensioning of the flow cross sections in the valve or on the way to or from the valve for structural reasons can not be implemented for rapid adjustment, a hydraulic valve can be provided , which controls the pressurization or depressurization of the usually movable against the force of a spring adjusting. At least in such embodiments, a pressure which acts on a partial surface of a pilot piston, which is typically designed as a stepped piston, of the hydraulic valve is modulated by way of the electromagnetically controllable multiway valve.

Aus der WO 2006/066405 A1 ist eine Pumpe bekannt, die ein zur Verstellung des Fördervolumens hin und her verstellbares Verstellorgan aufweist, das in zwei Stellkammern mit jeweils einem Stelldruck in eine Stellrichtung beaufschlagt wird. Eine Federeinrichtung wirkt den Stelldrücken entgegen in eine Rückstellrichtung auf das Verstellorgan. In der ersten Stellkammer wird das Verstellorgan mit einem von der Hochdruckseite der Pumpe abgezweigten Stellfluid direkt beaufschlagt. Der in der zweiten Stellkammer herrschende Stelldruck ist mittels eines Elektromagnetventils verstellbar. In Bezug auf die erste Stellkammer wird noch erwähnt, dass in modifizierten Ausführungen alternativ auch deren Stelldruck mittels eines Elektromagnetventils verstellt werden könne.From the WO 2006/066405 A1 a pump is known, which has a variable adjustment of the delivery volume adjustable forth and forth, which is acted upon in two adjusting chambers, each with a setting pressure in a direction of adjustment. A spring device counteracts the setting pressures in a return direction to the adjusting member. In the first control chamber, the adjusting member is acted upon directly by a branched off from the high pressure side of the pump actuating fluid. The pressure prevailing in the second control chamber actuating pressure is adjustable by means of a solenoid valve. With regard to the first adjusting chamber, it is also mentioned that in modified embodiments, alternatively, its setting pressure can also be adjusted by means of a solenoid valve.

Aus der WO 2008/037070 A1 ist eine Pumpe mit einem zur Verstellung des Fördervolumens verstellbaren Verstellorgan bekannt, das in einer ersten Stellkammer mit einem ersten Stelldruck und in einer zweiten Stellkammer mit einem zweiten Stelldruck jeweils in eine Stellrichtung beaufschlagt wird. Den Stelldrücken wirkt in die Rückstellrichtung eine Federeinrichtung entgegen. Beiden Stellkammern ist jeweils ein fluidisch betätigbares Ventil vorgeschaltet, um den Stelldruck der jeweiligen Stellkammer verändern zu können. Den fluidisch betätigbaren Ventilen wird jeweils von der Hochdruckseite der Pumpe abgezweigtes Stellfluid zugeführt. Das Stellfluid kann über die Ventile der jeweils zugeordneten Stellkammer zugeführt oder in ein Reservoir abgeführt werden. Eines der zwei Ventile wird unmittelbar mit einem von der Hochdruckseite der Pumpe abgezweigten Steuerfluid betätigt. Das andere der zwei Ventile wird mittels eines Elektromagnetventils fluidisch betätigt.From the WO 2008/037070 A1 is a pump with a variable adjustment of the delivery volume adjustment known, which is acted upon in a first actuating chamber with a first control pressure and in a second control chamber with a second control pressure in each case in a direction of adjustment. The set pressures counteract a spring device in the return direction. Both actuating chambers are each preceded by a fluidically actuable valve in order to be able to change the control pressure of the respective control chamber. The fluidically actuated valves are each supplied from the high pressure side of the pump branched actuating fluid. The actuating fluid can be supplied via the valves of the respective associated adjusting chamber or discharged into a reservoir. One of the two valves is actuated directly with a control fluid diverted from the high pressure side of the pump. The other of the two valves is fluidly actuated by means of a solenoid valve.

Die US 2015/252 803 A1 betrifft eine weitere verstellbare Förderpumpe mit einem Verstellring, der mittels einer Federeinrichtung in eine erste Endposition vorgespannt wird. Am Verstellring sind drei Druckkammern gebildet, von den eine dauerhaft mit dem Fluid der Druckseite der Pumpe beaufschlagt wird und gegen die Kraft der Federeinrichtung wirkt. Die zweite und die dritte Druckkammer sind jeweils über ein Fluid- respektive Magnetventil mit Druckfluid beaufschlagbar und wirken in Richtung der Federeinrichtung. Die US 2013/195 705 A1 betrifft eine verstellbare Flügelzellenpumpe, die in einer Ausführung zwei Stellkammern umfasst, die beide gegen die Kraft eines Rückstellelements wirken. Eine der Stellkammern ist dabei direkt mit einer Hochdruckseite der Pumpe oder einer Ölgalerie verbunden, die zweite Stellkammer wird über eine Elektromagnetventil mit Stellfluid versorgt.The US 2015/252803 A1 relates to a further adjustable feed pump with an adjusting ring, which is biased by means of a spring device in a first end position. At the adjusting ring three pressure chambers are formed, one of which is permanently acted upon by the fluid of the pressure side of the pump and acts against the force of the spring means. The second and the third pressure chamber can be acted upon by a fluid respectively solenoid valve with pressurized fluid and act in the direction of the spring means. The US 2013/195 705 A1 relates to an adjustable vane pump, which in one embodiment comprises two adjusting chambers, both acting against the force of a return element. One of the control chambers is connected directly to a high pressure side of the pump or an oil gallery, the second control chamber is supplied via a solenoid valve with actuating fluid.

Es ist eine Aufgabe der Erfindung, eine im Fördervolumen verstellbare Pumpe bereitzustellen, die in Bezug auf der Verstellung dienende Ventile vereinfacht, im Fördervolumen aber dennoch an den Bedarf eines zu versorgenden Aggregats flexibel anpassbar ist.It is an object of the invention to provide a pump which is adjustable in delivery volume, which simplifies valves which are used with respect to the adjustment, but is nevertheless flexibly adaptable in the delivery volume to the demand of an aggregate to be supplied.

Die Erfindung geht von einer Pumpe mit verstellbarem Fördervolumen aus, die ein Pumpengehäuse mit einer Förderkammer, einen in der Förderkammer um eine Rotationsachse drehbaren Förderrotor, eine Verstelleinrichtung zur Verstellung des Fördervolumens der Pumpe, einer im Pumpengehäuse angeordneten Rückstelleinrichtung zur Erzeugung einer in Rückstellrichtung auf das Verstellorgan wirkenden Rückstellkraft, ein fluidisch betätigbares Ventil zur gesteuerten Beaufschlagung der Verstelleinrichtung mit einem Stellfluid und ein Elektromagnetventil ebenfalls zur Beaufschlagung der Verstelleinrichtung mit einem Stellfluid umfasst. Die Förderkammer weist auf einer Niederdruckseite einen Förderkammereinlass und auf einer Hochdruckseite einen Förderkammerauslass für ein mittels des Förderrotors zu förderndes Fluid auf.The invention is based on a pump with adjustable delivery volume, comprising a pump housing with a delivery chamber, a rotatable in the delivery chamber conveyor rotor, an adjustment for adjusting the delivery volume of the pump, a pump housing arranged in the return device for generating a return in the direction of the adjustment acting restoring force, a fluidically actuated valve for controlled actuation of the adjusting device with a control fluid and a solenoid valve also includes for acting on the adjusting device with a control fluid. The delivery chamber has a delivery chamber inlet on a low-pressure side and a delivery chamber outlet on a high-pressure side for fluid to be delivered by means of the delivery rotor.

Ist die Pumpe in einem Pumpenkreislauf angeordnet, erstreckt sich die Niederdruckseite der Pumpe von einem Reservoir, aus dem die Pumpe das Fluid ansaugt, über einen Einlass des Pumpengehäuses bis wenigstens zum Förderkammereinlass. Findet der Übergang von Niederdruck auf Hochdruck in der Förderkammer statt, umfasst die Niederdruckseite der Pumpe auch die Niederdruckseite der Förderkammer, erstreckt sich also auf der Niederdruckseite bis in die Förderkammer. Die Hochdruckseite der Pumpe umfasst den im Pumpengehäuse erstreckten Hochdruckbereich und erstreckt sich ferner über einen Auslass des Pumpengehäuses bis wenigstens zu dem mit dem Fluid zu versorgenden Aggregat oder, falls die Pumpe mehrere Aggregate mit dem Fluid versorgt, bis zu jedem dieser Aggregate. Im Unterschied zu den Begriffen "Niederdruckseite der Pumpe" und "Hochdruckseite der Pumpe" soll der Begriff "Saugbereich" einen auf der Niederdruckseite der Pumpe nur innerhalb des Pumpengehäuses erstreckten Strömungsbereich bezeichnen. Andererseits ist der Begriff "Saugbereich" nicht so auszulegen, dass die erfindungsgemäße Pumpe das Fluid aus dem Reservoir gegen die Schwerkraft ansaugen muss. Die Pumpe kann in ihrem Förderkreis auch an einer Stelle angeordnet sein, die tiefer als das Reservoir liegt, so dass die Pumpe das Fluid mit Unterstützung der Schwerkraft ansaugt. Die Pumpe kann auch vorgeladen werden, d. h. der Pumpe kann eine Vorladepumpe vorgeschaltet sein.When the pump is disposed in a pump circuit, the low pressure side of the pump extends from a reservoir from which the pump sucks the fluid, through an inlet of the pump housing to at least the delivery chamber inlet. If the transition from low pressure to high pressure takes place in the delivery chamber, the low-pressure side of the pump also includes the low-pressure side of the delivery chamber, thus extending on the low-pressure side into the delivery chamber. The high pressure side of the pump includes the high pressure area extended within the pump housing and further extends beyond an outlet of the pump housing to at least the unit to be supplied with the fluid or, if the pump supplies multiple units with the fluid, to each of these units. In contrast to the terms "low-pressure side of the pump" and "high-pressure side of the pump", the term "suction region" is intended to designate a flow region extending on the low-pressure side of the pump only within the pump housing. On the other hand, the term "suction area" is not to be interpreted so that the pump according to the invention must suck the fluid from the reservoir against gravity. The pump can also be arranged in its delivery circuit at a location which is lower than the reservoir, so that the pump sucks the fluid with the aid of gravity. The pump can also be pre-charged, d. H. The pump may be preceded by a pre-charge pump.

Die Verstelleinrichtung umfasst ein Verstellorgan, das zur Verstellung des Fördervolumens der Pumpe im Pumpengehäuse in eine Stellrichtung und eine Rückstellrichtung hin und her beweglich ist, und umfasst ferner eine erste Stellkammer zur Erzeugung eines ersten Stelldrucks zur Verstellung des Verstellorgans und eine weitere, zweite Stellkammer zur Erzeugung eines zweiten Stelldrucks zur Verstellung des Verstellorgans. Der erste Stelldruck wird von einem in der ersten Stellkammer befindlichen ersten Stellfluid und der zweite Stelldruck wird von einem in der zweiten Stellkammer befindlichen zweiten Stellfluid erzeugt, wobei der erste Stelldruck und der zweite Stelldruck in die Stellrichtung auf das Verstellorgan wirken oder jeweils wirken. Vorzugsweise werden das erste Stellfluid und das zweite Stellfluid von der Hochdruckseite der Pumpe abgezweigt.The adjusting device comprises an adjusting member, which is movable for adjusting the delivery volume of the pump in the pump housing in a setting direction and a return direction and further comprises a first actuating chamber for generating a first control pressure for adjusting the adjusting and a further, second actuating chamber for generating a second actuating pressure for adjusting the adjusting member. The first actuating pressure is generated by a first actuating fluid located in the first actuating chamber and the second actuating pressure is generated by a second actuating fluid located in the second actuating chamber, wherein the first actuating pressure and the second actuating pressure act in the direction of adjustment to the adjusting member or each act. Preferably, the first actuating fluid and the second actuating fluid are diverted from the high pressure side of the pump.

In ersten Ausführungen wirken der erste Stelldruck in der ersten Stellkammer und der zweite Stelldruck in der zweiten Stellkammer jeweils direkt auf das Verstellorgan, das dementsprechend sowohl die erste Stellkammer als auch die zweite Stellkammer begrenzt. In zweiten Ausführungen wirken sowohl der erste Stelldruck in der ersten Stellkammer als auch der zweite Stelldruck in der zweiten Stellkammer über jeweils einen Stellkolben und dementsprechend jeweils indirekt auf das Verstellorgan.In first embodiments, the first control pressure in the first control chamber and the second control pressure in the second control chamber each act directly on the adjusting member, which accordingly limits both the first control chamber and the second control chamber. In second embodiments, both the first control pressure in the first control chamber and the second control pressure in the second control chamber via a respective actuating piston and, accordingly, each act indirectly on the adjusting member.

Das fluidisch betätigbare Ventil dient der Verstellung des Stelldrucks der ersten Stellkammer, und das Elektromagnetventil dient der Verstellung des Stelldrucks der zweiten Stellkammer. Das fluidisch betätigbare Ventil weist einen Steuerkolben auf, der mittels eines unter Druck stehenden Steuerfluids verstellbar ist. In bevorzugten Ausführungen ist dieses Ventil nur fluidisch betätigbar. Dem Druck des Steuerfluids wirkt die Spannkraft einer Spanneinrichtung des Ventils entgegen. Das fluidisch betätigbare Ventil wird im Folgenden als "Fluidikventil" bezeichnet. Es kann insbesondere ein Hydraulikventil sein. Das Elektromagnetventil weist einen Druckanschluss für ein vom Fluid der Hochdruckseite der Pumpe abgezweigtes Stellfluid, einen Arbeitsanschluss für das Stellfluid und einen Entlastungsanschluss für das Stellfluid auf. Das Elektromagnetventil ist elektromagnetisch betätigbar, vorzugsweise ist es nur elektromagnetisch betätigbar. Der Elektromagnetkraft wirkt die Spannkraft einer Spanneinrichtung des Elektromagnetventils entgegen.The fluid-operated valve serves to adjust the control pressure of the first control chamber, and the solenoid valve is used to adjust the control pressure of the second control chamber. The fluidically operable valve has a control piston which is adjustable by means of a pressurized control fluid. In preferred embodiments, this valve is only fluidic actuated. The pressure of the control fluid counteracts the clamping force of a clamping device of the valve. The fluidically operable valve is referred to below as "fluidic valve". It may in particular be a hydraulic valve. The electromagnetic valve has a pressure port for a control fluid branched from the high-pressure side fluid of the pump, a working port for the actuating fluid, and a discharge port for the actuating fluid. The solenoid valve is electromagnetically actuated, preferably it is only electromagnetically actuated. The electromagnetic force counteracts the clamping force of a clamping device of the solenoid valve.

Nach der Erfindung ist der Arbeitsanschluss des Elektromagnetventils zur Verstellung des Stelldrucks der zweiten Stellkammer mit der zweiten Stellkammer verbunden. Aufgrund der erfindungsgemäßen Kombination eines Fluidikventils zur Verstellung des ersten Stelldrucks und eines Elektromagnetventils, das über seinen Arbeitsanschluss fluidisch mit der zweiten Stellkammer verbunden ist, wird eine Pumpe erhalten, die in Bezug auf die Verstellung mittels der Ventile gegenüber dem Stand der Technik vereinfacht ist, deren Fördervolumen aber dennoch dem Bedarf eines zu versorgenden Aggregats oder Systems mehrerer Aggregate flexibel angepasst werden kann. Durch das Hydraulikventil wird ein maximales Druckniveau vorgegeben, bei dessen Erreichen das Fördervolumen der Pumpe abgeregelt wird. Da Fluidikventile besonders robust und zuverlässig, zudem unabhängig von elektrischer Energie und/oder Steuersignalen sind, wird eine einfache, preiswerte und zuverlässige Abregelung bei Erreichen des maximalen Druckniveaus gewährleistet. Mittels des Elektromagnetventils kann das maximale Druckniveau, bei dessen Erreichen das Fördervolumen der Pumpe abgeregelt wird, in Abhängigkeit von der Bauart des Elektromagnetventils in einer oder mehreren Stufen oder aber kontinuierlich, grundsätzlich beliebig, bis zu dem vom Fluidikventil vorgegebenen Maximum verstellt werden.According to the invention, the working port of the solenoid valve for adjusting the control pressure of the second actuating chamber is connected to the second actuating chamber. Due to the inventive combination of a fluidic valve for adjusting the first control pressure and a solenoid valve, which is fluidly connected via its working port to the second actuating chamber, a pump is obtained, which is simplified with respect to the adjustment by means of the valves over the prior art, the Delivery volume but still the need of a supplied unit or system of multiple units can be flexibly adjusted. By the hydraulic valve, a maximum pressure level is set, when it reaches the delivery volume of the pump is stopped. Since fluidic valves are particularly robust and reliable, and also independent of electrical energy and / or control signals, a simple, inexpensive and reliable shutdown is guaranteed when the maximum pressure level is reached. By means of the solenoid valve, the maximum pressure level at which the delivery volume of the pump is stopped, depending on the type of Solenoid valve in one or more stages or continuously, basically arbitrarily, be adjusted to the maximum predetermined by the fluidic valve.

Das Fluidikventil umfasst den bereits erwähnten Steuerkolben, der in einem Ventilraum des Fluidikventils zwischen einer ersten Kolbenposition und einer zweiten Kolbenposition hin und her beweglich ist, und eine Spanneinrichtung zur Erzeugung einer auf den Steuerkolben in Richtung auf eine der Kolbenpositionen wirkenden Spannkraft. Die Spanneinrichtung kann eine oder mehrere Federn zur Erzeugung der Spannkraft aufweisen. Die Spanneinrichtung kann insbesondere von einer im Ventilraum angeordneten, auf Druck beanspruchten Schraubenfeder gebildet werden. Ferner umfasst das Fluidikventil einen Druckanschluss für ein vom Fluid der Hochdruckseite abgezweigtes Stellfluid, einen mit der ersten Stellkammer verbundenen Arbeitsanschluss für das Stellfluid und einen Entlastungsanschluss für das Stellfluid.The fluidic valve comprises the already mentioned control piston, which is movable in a valve chamber of the fluidic valve between a first piston position and a second piston position and a clamping device for generating a force acting on the control piston in the direction of one of the piston positions clamping force. The clamping device may have one or more springs for generating the clamping force. The tensioning device can be formed, in particular, by a helical spring, which is arranged in the valve space and subjected to pressure. Furthermore, the fluidic valve comprises a pressure connection for a control fluid branched off from the high-pressure side fluid, a working connection for the actuating fluid connected to the first control chamber and a discharge connection for the actuating fluid.

Die Spanneinrichtung des fluidisch betätigbaren Ventils ist vorzugsweise zur Einstellung einer Kolbenposition vorgesehen, in der die erste Stellkammer mit dem Entlastungsanschluss des fluidisch betätigbaren Ventils verbunden ist. Die der Spanneinrichtung entgegenwirkende Steuerkraft ist vorzugsweise zur Einstellung einer Kolbenposition vorgesehen, in der der Druckanschluss des fluidisch betätigbaren Ventils mit der ersten Stellkammer verbunden ist. Zur Erzeugung der Steuerkraft weist das fluidisch betätigbare Ventil einen Einlass für an der Hochdruckseite der Pumpe abgezweigtes Steuerfluid auf. Der Einlass des fluidisch betätigbaren Ventils ist permanent an die Hochdruckseite der Pumpe angebunden, wodurch permanent eine durch das Steuerfluid resultierende Steuerkraft gegen die Spanneinrichtung des fluidisch betätigbaren Ventils wirkt.The clamping device of the fluid-actuated valve is preferably provided for setting a piston position, in which the first actuating chamber is connected to the discharge port of the fluid-actuated valve. The control force counteracting the tensioning device is preferably provided for setting a piston position, in which the pressure connection of the fluidically actuatable valve is connected to the first setting chamber. In order to generate the control force, the fluidically actuatable valve has an inlet for control fluid branched off at the high-pressure side of the pump. The inlet of the fluidically operable valve is permanently connected to the high-pressure side of the pump, whereby permanently acting through the control fluid control force acts against the clamping device of the fluidic valve.

Vorteilhaft wird der Druckanschluss des fluidisch betätigbaren Ventils mit dem Arbeitsanschluss des fluidisch betätigbaren Ventils und damit mit der ersten Stellkammer verbunden, wenn die Steuerkraft einen Wert erreicht, durch den der Steuerkolben des fluidisch betätigbaren Ventils gegen die Spanneinrichtung in die Kolbenposition bewegt wird, in der der Druckanschluss des fluidisch betätigbaren Ventils mit dem Arbeitsanschluss des fluidisch betätigbaren Ventils verbunden ist.Advantageously, the pressure connection of the fluidic valve is connected to the working port of the fluidic valve and thus to the first actuating chamber, when the control force reaches a value by which the control piston of the fluidic valve is moved against the clamping device in the piston position, in which Pressure port of the fluidic valve is connected to the working port of the fluidic valve operable.

Die Spanneinrichtung des fluidisch betätigbaren Ventils übt eine Spannkraft auf den Steuerkolben des fluidisch betätigbaren Ventils aus, die größer ist als eine bei ordnungsgemäßer und/oder aktiver Funktion des Elektromagnetventils auftretende oder resultierende, gegen die Spanneinrichtung des fluidisch betätigbaren Ventils wirkende Steuerkraft. Die Spannkraft wirkt der fluidischen Einstellung der Kolbenposition, in der der Druckanschluss des fluidisch betätigbaren Ventils mit dem Arbeitsanschluss des fluidisch betätigbaren Ventils verbunden ist, entgegen. Die Spannkraft der Spanneinrichtung des fluidisch betätigbaren Ventils ist so ausgelegt, dass die Kolbenposition, in der der Druckanschluss des fluidisch betätigbaren Ventils mit dem Arbeitsanschluss des fluidisch betätigbaren Ventils verbunden ist, erst eingestellt ist, wenn ein vorgegebenes Druckniveau erreicht ist, welches höher ist als ein maximales Druckniveau, auf das das aktive und/oder ordnungsgemäß arbeitende Elektromagnetventil abregelt.The clamping device of the fluid-actuated valve exerts a clamping force on the control piston of the fluid-actuated valve, which is greater than a occurring at proper and / or active function of the solenoid valve or resulting, acting against the clamping device of the fluid-operated valve control force. The clamping force counteracts the fluidic adjustment of the piston position, in which the pressure connection of the fluid-actuated valve is connected to the working port of the fluid-actuated valve. The clamping force of the clamping device of the fluidic actuated valve is designed so that the piston position, in which the pressure port of the fluidic valve is connected to the working port of the fluidic valve, is set only when a predetermined pressure level is reached, which is higher than a maximum pressure level to which the active and / or properly functioning solenoid valve regulates.

Bei ordnungsgemäßer Funktion des Elektromagnetventils und/oder bei aktivem Elektromagnetventil wird die Pumpe durch das Elektromagnetventil auf einen maximalen Pumpenausgangsdruck abgeregelt. Durch diesen maximalen Pumpenausgangsdruck resultiert eine gegen die Spanneinrichtung des Fluidikventils wirkende Steuerkraft, die kleiner ist als die Spannkraft der Spanneinrichtung des Fluidikventils und damit vorzugsweise kleiner ist als eine notwendige Steuerkraft, die mindestens notwendig ist, um die Kolbenposition einzustellen, in der der Druckanschluss des Fluidikventils mit dem Arbeitsanschluss des Fluidikventils und damit mit der ersten Stellkammer verbunden ist. Fällt das Elektromagnetventil durch einen Defekt aus oder wird die Ansteuerung des Elektromagnetventils in ausgewählten Betriebszuständen deaktiviert, erfolgt keine Abregelung der Pumpe durch das Elektromagnetventil, wodurch der Pumpenausgangsdruck über den maximalen Pumpenausgangsdruck ansteigen kann. Das Fluidikventil begrenzt diesen Anstieg auf einen Fail-Safe-Pumpenausgangsdruck. Der Fail-Safe-Pumpenausgangsdruck ist größer als der maximale Pumpenausgangsdruck aber kleiner als ein kritischer Pumpenausgangsdruck, bei dem eine Beschädigung von Bauteilen erfolgen könnte.When the solenoid valve is functioning correctly and / or the solenoid valve is active, the pump is stopped by the solenoid valve to a maximum pump outlet pressure. By this maximum pump output pressure results against the clamping device of the fluidic valve acting control force which is smaller than the clamping force of the clamping device of the fluidic valve and thus preferably smaller than a necessary control force which is at least necessary to adjust the piston position, in which the pressure port of the fluidic valve is connected to the working port of the fluidic valve and thus to the first actuating chamber. If the solenoid valve fails due to a defect or if the activation of the solenoid valve is deactivated in selected operating states, the pump will not be regulated by the solenoid valve, whereby the pump output pressure may rise above the maximum pump output pressure. The fluidic valve limits this increase to a fail-safe pump outlet pressure. The fail-safe pump outlet pressure is greater than the maximum pump outlet pressure but less than a critical pump outlet pressure which could result in component damage.

Durch den Fail-Safe-Pumpenausgangsdruck resultiert eine gegen die Spanneinrichtung des Fluidikventils wirkende Steuerkraft, die größer ist als die Spannkraft der Spanneinrichtung des Fluidikventils und damit vorzugsweise größer ist als die notwendige Steuerkraft, um die Kolbenposition einzustellen, in der der Druckanschluss des Fluidikventils mit dem Arbeitsanschluss des Fluidikventils verbunden ist. Dadurch wird ein sicherer Betrieb gewährleistet, auch wenn das Elektromagnetventil ausfällt oder in bestimmten Betriebszuständen nicht angesteuert wird. Es kann dadurch eine genaue und flexible Anpassbarkeit an den Bedarf mit einer auch bei Ausfall des Elektromagnetventils gewährleisteten Versorgungssicherheit realisiert werden. Es kann eine sogenannte Second-Level-Steuerung oder -regelung für das Fördervolumen der Pumpe realisiert werden.Due to the fail-safe pump output pressure results against the clamping device of the fluidic valve acting control force which is greater than the clamping force of the clamping device of the fluidic valve and thus preferably greater than the necessary control force to adjust the piston position in which the pressure port of the fluidic valve with the Working connection of the fluidic valve is connected. This ensures safe operation, even if the solenoid valve fails or is not activated in certain operating states. It can thereby an accurate and flexible adaptability to the needs with a failure of the solenoid valve ensured security of supply can be realized. It can be realized a so-called second-level control or regulation for the delivery volume of the pump.

Der Steuerkolben weist vorzugsweise zumindest einen ersten Ringabschnitt und einen zweiten Ringabschnitt auf, die axial voneinander beabstandet sind. Der erste Ringabschnitt trennt in einer der Kolbenpositionen den Druckanschluss und den Arbeitsanschluss voneinander und verbindet dabei den Arbeitsanschluss mit dem Entlastungsanschluss. In der anderen Kolbenposition trennt der erste Ringabschnitt den Arbeitsanschluss und den Entlastungsanschluss voneinander und verbindet dabei den Druckanschluss mit dem Arbeitsanschluss. Der zweite Ringabschnitt ist axial zwischen dem Druckanschluss und dem ersten Ringabschnitt angeordnet. Er ist axial zwischen dem Druckanschluss und dem Arbeitsanschluss angeordnet. Der zweite Ringabschnitt weist zumindest eine axiale Durchgangsöffnung auf, die den Druckanschluss und den ersten Ringabschnitt fluidtechnisch miteinander verbindet. Um den Steuerkolben fluidisch gegen die Spanneinrichtung zu bewegen, weist der Steuerkolben zumindest eine Steuerfläche auf, auf die das Steuerfluid wirkt und dadurch die Steuerkraft resultiert. Die Steuerfläche ist vorzugsweise durch den ersten Ringabschnitt gebildet. Die zumindest eine Durchgangsöffnung des zweiten Ringabschnitts verbindet fluidtechnisch die Steuerfläche und den Einlass für das Steuerfluid des Fluidikventils. In der Kolbenposition, in der der Druckanschluss und der Arbeitsanschluss miteinander verbunden sind, verbindet die zumindest eine Durchgangsöffnung den Druckanschluss und den Arbeitsanschluss fluidtechnisch miteinander. Der Begriff "axial" ist insbesondere auf eine Längsachse und/oder Verschiebeachse des Steuerkolbens des Fluidikventils bezogen, sodass der Ausdruck "axial" eine Richtung bezeichnet, die auf der Längsachse bzw. Verschiebeachse oder parallel zu dieser verläuft.The control piston preferably has at least a first ring portion and a second ring portion, which are axially spaced from each other. The first ring section separates the pressure port and the working port from each other in one of the piston positions, thereby connecting the working port to the discharge port. In the other piston position, the first ring section separates the working port and the discharge port from each other, thereby connecting the pressure port to the working port. The second ring portion is disposed axially between the pressure port and the first ring portion. It is arranged axially between the pressure connection and the working connection. The second ring section has at least one axial passage opening, which fluidly connects the pressure connection and the first ring section to one another. In order to move the control piston fluidically against the tensioning device, the control piston has at least one control surface on which the control fluid acts, thereby resulting in the control force. The control surface is preferably formed by the first ring portion. The at least one passage opening of the second annular section fluidly connects the control surface and the inlet for the control fluid of the fluidic valve. In the piston position, in which the pressure connection and the working connection are connected to one another, the at least one through-opening fluidly connects the pressure connection and the working connection with one another. The term "axial" is particularly related to a longitudinal axis and / or displacement axis of the control piston of the fluidic valve, so that the term "axially" denotes a direction which extends on the longitudinal axis or displacement axis or parallel thereto.

Vorzugsweise weist der Steuerkolben an einem ersten axialen Ende einen ersten axialen Vorsprung zur Anordnung der Spanneinrichtung und an einem zweiten axialen Ende einen zweiten axialen Vorsprung zur Ausbildung eines Anschlags auf. Die Spanneinrichtung, insbesondere die Schraubenfeder, ist vorzugsweise auf dem ersten axialen Vorsprung angeordnet oder aufgesteckt. Der erste axiale Vorsprung bildet vorzugsweise einen Federsitz. Die Spanneinrichtung umgibt den ersten axialen Vorsprung. Der zweite axiale Vorsprung bildet in der Kolbenposition, in der der Druckanschluss und der Arbeitsanschluss voneinander getrennt sind, einen Anschlag. Der zweite axiale Vorsprung liegt in der Kolbenposition, in der der Druckanschluss und der Arbeitsanschluss voneinander getrennt sind, an einem Gegenanschlag an. Die axialen Vorsprünge weisen einen Durchmesser auf, der jeweils kleiner ist als die Durchmesser der Ringabschnitte.Preferably, the control piston has at a first axial end a first axial projection for arranging the clamping device and at a second axial end a second axial projection for forming a stop. The tensioning device, in particular the helical spring, is preferably arranged or plugged on the first axial projection. The first axial projection preferably forms a spring seat. The tensioning device surrounds the first axial projection. The second axial projection forms a stop in the piston position in which the pressure port and the working port are separated from each other. The second axial projection is in the piston position, in which the pressure port and the working port are separated from each other are at a counter-attack. The axial projections have a diameter which is smaller than the diameter of the ring sections.

Der erste Ringabschnitt ist als ein Vollkörper gebildet und damit nicht hohl ausgeführt. Vorzugsweise ist der gesamte Steuerkolben als ein Vollkörper gebildet. Um zu gewährleisten, dass der Steuerkolben richtig eingebaut wird, unterscheiden sich die Ringabschnitte in ihrem Durchmesser voneinander. Vorzugsweise weist der erste Ringabschnitt einen Durchmesser auf, der kleiner ist als der Durchmesser des zweiten Ringabschnitts. Des Weiteren weist das Fluidikventil ein Gehäuse auf, das zumindest zwei in ihrem Innendurchmesser voneinander unterschiedliche Bereiche umfasst. Das Gehäuse des Fluidikventils weist einen gestuften Innendurchmesser auf. Die Ringabschnitte liegen jeweils mit ihrem Durchmesser an dem Innendurchmesser des Gehäuses an und werden vorzugsweise an dem Innendurchmesser geführt. Das Gehäuse des Fluidikventils ist vorteilhaft durch das Pumpengehäuse gebildet. Dabei ist das Gehäuse des Fluidikventils bzw. eine Aufnahme des Steuerkolbens des Fluidikventils durch eine Stufenbohrung gebildet.The first ring portion is formed as a solid body and thus not executed hollow. Preferably, the entire control piston is formed as a solid body. To ensure that the control piston is installed correctly, the ring sections differ in their diameter from each other. Preferably, the first ring portion has a diameter which is smaller than the diameter of the second ring portion. Furthermore, the fluidic valve has a housing which comprises at least two regions which are different from one another in their inner diameter. The housing of the fluidic valve has a stepped inner diameter. The ring sections are in each case with their diameter on the inner diameter of the housing and are preferably guided on the inner diameter. The housing of the fluidic valve is advantageously formed by the pump housing. In this case, the housing of the fluidic valve or a receptacle of the control piston of the fluidic valve is formed by a stepped bore.

Das Fluidikventil und/oder das Elektromagnetventil kann oder können jeweils einen oder mehrere weitere Ventilanschlüsse aufweisen, beispielsweise einen weiteren Druckanschluss und/oder einen weiteren Arbeitsanschluss und/oder einen weiteren Entlastungsanschluss. In einfachen und nicht zuletzt deshalb bevorzugten Ausführungen weist das Fluidikventil und/oder das Elektromagnetventil jedoch nur die drei genannten Ventilanschlüsse auf.The fluidic valve and / or the solenoid valve may or may each have one or more further valve connections, for example a further pressure connection and / or a further working connection and / or a further discharge connection. In simple and not least therefore preferred embodiments, the fluidic valve and / or the solenoid valve, however, only the three valve connections mentioned.

Der Steuerkolben und die Ventilanschlüsse des Fluidikventils und/oder des Elektromagnetventils können so angeordnet sein, dass der Arbeitsanschluss mit dem Druckanschluss verbunden ist, wenn der jeweilige Steuerkolben die erste Kolbenposition einnimmt, und der Arbeitsanschluss vom Druckanschluss getrennt und mit dem Entlastungsanschluss verbunden ist, wenn der jeweilige Steuerkolben die zweite Kolbenposition einnimmt. Das Fluidikventil und/oder das Elektromagnetventil kann ferner so eingerichtet sein, dass der Steuerkolben eine dritte Kolbenposition einnehmen kann und der Arbeitsanschluss sowohl vom Druckanschluss als auch vom Entlastungsanschluss getrennt ist, wenn der Steuerkolben die dritte Kolbenposition einnimmt. Die dritte Kolbenposition kann insbesondere eine Zwischenposition sein, die der Steuerkolben in Bewegungsrichtung zwischen der ersten und der zweiten Kolbenposition einnehmen kann. Grundsätzlich kann aber auch die erste Kolbenposition oder stattdessen die zweite Kolbenposition von den optional drei unterschiedlichen Kolbenpositionen die Zwischenposition sein. Es sind auch Ausführungen möglich, in denen das Fluidikventil und/oder das Elektromagnetventil den Arbeitsanschluss in keiner Kolbenposition vollständig sowohl vom Druckanschluss als auch vom Entlastungsanschluss trennt, sondern den Arbeitsanschluss entweder nur vom Druckanschluss trennt, aber einen vergleichsweise geringen Fluss zwischen Arbeitsanschluss und Entlastungsanschluss zulässt, oder aber den Arbeitsanschluss vom Entlastungsanschluss trennt und gleichzeitig einen vergleichsweise geringen Fluss zwischen dem Arbeitsanschluss und dem Druckanschluss zulässt. Das Fluidikventil und/oder das Elektromagnetventil ist vorzugsweise ein Schaltventil und zwischen den genannten Zuständen umschaltbar. Das jeweilige Ventil kann insbesondere mit nur zwei Schaltzuständen oder genau drei Schaltzuständen ausgeführt sein. Vorzugsweise sind die Schaltzustände durch die Kolbenpositionen definiert.The spool and the valve ports of the fluidic valve and / or the solenoid valve may be arranged so that the working port is connected to the pressure port when the respective spool occupies the first piston position and the working port is disconnected from the pressure port and connected to the unload port when the spool valve respective control piston occupies the second piston position. The fluidic valve and / or the solenoid valve may further be arranged so that the control piston can assume a third piston position and the working port is separated from both the pressure port and the discharge port when the spool occupies the third piston position. In particular, the third piston position may be an intermediate position which the control piston can assume in the direction of movement between the first and the second piston positions. Basically, but also the first piston position or instead the second piston position of the optionally be three different piston positions the intermediate position. Embodiments are also possible in which the fluidic valve and / or the electromagnetic valve completely disconnects the working connection in each piston position from both the pressure connection and the discharge connection, but separates the working connection only from the pressure connection, but permits a comparatively low flow between the working connection and the discharge connection. or separates the working port from the discharge port while allowing a comparatively low flow between the working port and the pressure port. The fluidic valve and / or the solenoid valve is preferably a switching valve and switchable between said states. The respective valve can be designed in particular with only two switching states or exactly three switching states. Preferably, the switching states are defined by the piston positions.

Das Fluidikventil ist vorzugsweise im oder am Pumpengehäuse angeordnet. Ist es außerhalb des Saugbereichs des Pumpengehäuses angeordnet, kann das Fluid widerstandsarm durch den Saugbereich strömen, da die Strömung im Saugbereich nicht durch das Fluidikventil behindert wird. In bevorzugten Ausführungen ist das Fluidikventil nicht nur außerhalb des Saugbereichs, sondern außerhalb der Hauptströmung durch das Pumpengehäuse angeordnet. In den bevorzugten Ausführungen behindert das Fluidikventil daher auch nicht das Abströmen des Fluids auf der Hochdruckseite des Pumpengehäuses.The fluidic valve is preferably arranged in or on the pump housing. If it is arranged outside the suction region of the pump housing, the fluid can flow through the suction region with little resistance, since the flow in the suction region is not hindered by the fluidic valve. In preferred embodiments, the fluidic valve is arranged not only outside the suction area but outside the main flow through the pump housing. Therefore, in the preferred embodiments, the fluidic valve does not interfere with the outflow of fluid on the high pressure side of the pump housing.

Ist die Pumpe in einem Fluidförderkreis angeordnet, ist das Fluidikventil in bevorzugten Ausführungen außerhalb der Hauptströmung des Förderkreises in einem Nebenstromzweig angeordnet. Das Fluidikventil kann somit frei von der Forderung nach einer widerstandsarmen Hauptströmung gestaltet werden. Das Fluidikventil kann entsprechend klein dimensioniert sein und gezielt auf die Erfüllung seiner Funktion, der Steuerung des Stellfluids für die erste Stellkammer, optimiert werden. Die Hauptströmung des Förderkreises reicht auf der Niederdruckseite der Pumpe vom Reservoir bis in das Pumpengehäuse und umfasst den Saugbereich des Pumpengehäuses. Auf der Hochdruckseite umfasst die Hauptströmung den Hochdruckbereich des Pumpengehäuses, den das Fluid von der Förderkammer bis einschließlich zu einem Auslass des Pumpengehäuses durchströmt, und den sich anschließenden Hochdruckbereich außerhalb des Pumpengehäuses bis wenigstens zu einem von der Pumpe mit dem Fluid zu versorgenden Aggregat. Versorgt die Pumpe mehrere Aggregate, wird als die Hauptströmung die Strömung zu dem Aggregat verstanden, das den höchsten Volumenbedarf, gemessen als Durchflussrate, hat oder mit dem höchsten Druck versorgt werden muss.If the pump is arranged in a fluid conveying circuit, the fluidic valve is arranged in preferred embodiments outside of the main flow of the delivery circuit in a bypass branch. The fluidic valve can thus be designed free of the requirement for a low-resistance main flow. The fluidic valve can be dimensioned correspondingly small and targeted to the fulfillment of its function, the control of the actuating fluid for the first control chamber, optimized. The main flow of the delivery circuit extends from the reservoir to the pump housing on the low-pressure side of the pump and includes the suction area of the pump housing. On the high pressure side, the main flow includes the high pressure area of the pump housing through which the fluid passes from the delivery chamber to an outlet of the pump housing and the subsequent high pressure area outside the pump housing to at least one unit to be supplied by the pump with the fluid. When the pump supplies several units, the flow becomes the aggregate as the main flow understood that has the highest volume requirement, measured as flow rate, or has to be supplied with the highest pressure.

Der Entlastungsanschluss des Fluidikventils und/oder des Elektromagnetventils kann unter Umgehung des Reservoirs mit dem Saugbereich der Pumpe verbunden sein. Durch den Entlastungsanschluss vom Ventil abströmendes Stellfluid kann in einem Entlastungskanal stromab des Reservoirs in den Fluidförderkreis der Pumpe zurückgeführt werden. Das durch den Entlastungsanschluss vom Ventil abströmende Stellfluid kann an einer Verbindungsstelle zwischen dem Reservoir und dem Pumpengehäuse in den Hauptstrom zurückgeführt werden, wobei solch eine Verbindungsstelle dem Pumpengehäuse bevorzugt näher als dem Reservoir ist. Der Entlastungskanal erstreckt sich vom Entlastungsanschluss bis zur Verbindungsstelle mit dem Hauptstrom. Das Fluidikventil und/oder das Elektromagnetventil steht über den Entlastungsanschluss vorteilhafterweise nicht in Fluidverbindung mit dem Reservoir. Über den Entlastungsanschluss strömt vom Reservoir kein Fluid in den Ventilraum des Fluidikventils und/oder des Elektromagnetventils, und insbesondere strömt vom Fluidikventil und/oder vom Elektromagnetventil kein Fluid über den Entlastungsanschluss zum Reservoir.The discharge port of the fluidic valve and / or the solenoid valve may be connected to the suction region of the pump, bypassing the reservoir. Control fluid flowing from the valve through the relief port may be returned to the pump's fluid delivery circuit in a relief passage downstream of the reservoir. The actuating fluid flowing out of the valve through the discharge port can be returned to the main flow at a connection point between the reservoir and the pump housing, such a connection point preferably being closer to the pump housing than to the reservoir. The discharge channel extends from the discharge port to the junction with the main stream. The fluidic valve and / or the solenoid valve is advantageously not in fluid communication with the reservoir via the discharge port. No fluid flows from the reservoir into the valve space of the fluidic valve and / or the electromagnetic valve via the discharge connection, and in particular no fluid flows from the fluidic valve and / or from the solenoid valve via the discharge connection to the reservoir.

In bevorzugten Ausführungen wird das Stellfluid direkt in den Saugbereich des Pumpengehäuses zurückgeführt. Der Entlastungskanal mündet in solchen Ausführungen in den Saugbereich, ist also direkt an den Saugbereich angeschlossen. Die Mündung in den Saugbereich bildet die genannte Verbindungsstelle.In preferred embodiments, the actuating fluid is returned directly into the suction region of the pump housing. The discharge channel opens in such embodiments in the suction area, so it is connected directly to the suction area. The mouth in the suction area forms said connection point.

Durch die Rückführung des abgesteuerten Stellfluids direkt in den Saugbereich des Pumpengehäuses oder zumindest zu einer Verbindungsstelle, die stromaufwärts vom Pumpenanschluss der Niederdruckseite, aber stromabwärts vom Reservoir gebildet ist, wird einer unerwünschten Verschäumung entgegengewirkt, die bei Rückführung in das Reservoir üblicherweise auftritt. Die zum Antreiben der Pumpe erforderliche Energie wird gesenkt, da das zurückgeführte Stellfluid noch immer einen höheren Druck als das im Reservoir befindliche Fluid hat. Insbesondere in Ausführungen, in denen das Stellfluid direkt in den Saugbereich des Pumpengehäuses zurückgeführt wird, findet auf der Niederdruckseite der Pumpe eine gewisse Vorladung statt. Ist das Fluid wie bevorzugt eine Flüssigkeit, wie etwa ein Schmieröl oder ein Hydrauliköl, kann der Kavitation entgegengewirkt werden. Würde das Stellfluid durch den Entlastungsanschluss unmittelbar in die Umgebung abgegeben, würde das zum Reservoir zurückströmende Stellfluid zusätzlich verschmutzt werden. Ferner bestünde die Gefahr, dass über den Entlastungsanschluss aus der Umgebung Luft in das Fluidikventil und/oder das Elektromagnetventil gesaugt wird, die über Leckagen zum Arbeitsanschluss und von dort in den das Pumpengehäuse durchströmenden Hauptstrom gelangt. Diese beiden Nachteile werden durch die Erfindung ebenfalls eliminiert. Ein weiterer positiver Effekt ist die Abschottung des Ventils vom Reservoir. Wird die Pumpe als Schmierölpumpe oder Arbeitsölpumpe eingesetzt, kommt es im Bereich des Reservoirs typischerweise zu einer Luft- und Ölzirkulation, was auf das Fluidikventil zurückwirken kann. Auch dies wird durch die Erfindung verhindert. Sind das Fluidikventil im oder am Pumpengehäuse angeordnet und der Entlastungskanal vom Fluidikventil bis in den Saugbereich durch das Pumpengehäuse und/oder am Pumpengehäuse geführt, kann die Pumpe mitsamt Fluidikventil als Montageeinheit einfacher montiert und die Gefahr von Montagefehlern verringert werden, da der Entlastungsanschluss nicht extra mit dem Förderkreis verbunden werden muss. Grundsätzlich ist es denkbar, dass das abgesteuerte Stellfluid direkt in das Reservoir zurückgeführt wird.By the return of the controlled actuating fluid directly into the suction region of the pump housing or at least to a junction which is formed upstream of the pump port of the low pressure side, but downstream of the reservoir, an undesirable foaming is counteracted, which usually occurs when returned to the reservoir. The energy required to drive the pump is lowered because the returned control fluid is still at a higher pressure than the fluid in the reservoir. In particular, in embodiments in which the actuating fluid is recirculated directly into the suction region of the pump housing, a certain precharge takes place on the low pressure side of the pump. If the fluid is preferably a liquid, such as a lubricating oil or a hydraulic oil, cavitation can be counteracted. If the actuating fluid were discharged directly into the environment through the discharge connection, the actuating fluid flowing back to the reservoir would be additionally contaminated. Further there would be the danger that air is sucked into the fluidic valve and / or the electromagnetic valve via the discharge connection from the surroundings, which air reaches the working connection via leakages and from there into the main flow flowing through the pump housing. These two disadvantages are also eliminated by the invention. Another positive effect is the sealing off of the valve from the reservoir. If the pump is used as a lubricating oil pump or working oil pump, there is typically an air and oil circulation in the region of the reservoir, which can react on the fluidic valve. This is also prevented by the invention. Are the fluidic valve arranged in or on the pump housing and the discharge channel from the fluidic valve led to the suction through the pump housing and / or pump housing, the pump can be mounted together with fluidic valve as a mounting unit easier and the risk of assembly errors can be reduced because the discharge connection not with must be connected to the support circle. In principle, it is conceivable that the controlled adjusting fluid is fed back directly into the reservoir.

Das Fluidikventil kann separat von dem Pumpengehäuse ausgeführt sein und bei Anordnung der Pumpe in einem Fluidförderkreis entfernt vom Pumpengehäuse oder am Pumpengehäuse angeordnet werden. Bevorzugt ist das Fluidikventil jedoch, wie bereits erwähnt, integraler Bestandteil der Pumpe, indem das Pumpengehäuse auch das Gehäuse für das Fluidikventil bildet. Das Pumpengehäuse kann insbesondere den Ventilraum für den Steuerkolben bilden. Das Pumpengehäuse kann bei integriertem oder am Pumpengehäuse angeordnetem Fluidikventil den Druckanschluss, den Arbeitsanschluss und den Entlastungsanschluss des Fluidikventils bilden. Der bevorzugte Entlastungskanal kann sich am Pumpengehäuse und/oder im Pumpengehäuse erstrecken, so dass bei integriertem oder am Pumpengehäuse befestigtem Fluidikventil keine zusätzliche Verbindung für die Druckentlastung hergestellt werden muss. Die Pumpe kann einschließlich des Fluidikventils eine Montageeinheit bilden, so dass mit der Montage des Pumpengehäuses im Fluidförderkreis automatisch auch das Fluidikventil zumindest mechanisch montiert ist. In Bezug auf die Montage im Förderkreis ist ferner von Vorteil, wenn die Verbindungen für die drei genannten Anschlüsse des Fluidikventils im und/oder am Pumpengehäuse gebildet sind und es keiner Verbindungsleitung und keines Anschlusses für das Stellfluid losgelöst vom Pumpengehäuse bedarf. So kann beispielsweise das Stellfluid für den Druckanschluss vom Hauptstrom im Pumpengehäuse an dessen Hochdruckseite abgezweigt werden. Falls das Stellfluid jedoch auf der Hochdruckseite stromabwärts vom Pumpengehäuse abgezweigt wird, ist die Abzweigung vorzugsweise stromabwärts von einem Filter zur Reinigung des Fluids angeordnet, um dem Fluidikventil gereinigtes Stellfluid zuzuführen.The fluidic valve can be designed separately from the pump housing and, when the pump is arranged in a fluid conveying circuit, can be arranged away from the pump housing or on the pump housing. However, as already mentioned, the fluidic valve is preferably an integral part of the pump in that the pump housing also forms the housing for the fluidic valve. The pump housing can in particular form the valve space for the control piston. With the fluidic valve integrated or mounted on the pump housing, the pump housing can form the pressure connection, the working connection and the discharge connection of the fluidic valve. The preferred discharge channel may extend to the pump housing and / or in the pump housing, so that no additional connection for the pressure relief must be made with integrated or attached to the pump housing fluidic valve. The pump, including the fluidic valve form a mounting unit, so that automatically with the assembly of the pump housing in the fluid conveying circuit and the fluidic valve is at least mechanically mounted. With regard to the assembly in the delivery circuit is also advantageous if the connections for the three mentioned connections of the fluidic valve are formed in and / or on the pump housing and it requires no connection line and no connection for the actuating fluid detached from the pump housing. For example, the actuating fluid for the pressure connection can be branched off from the main flow in the pump housing at its high pressure side. However, if the actuating fluid diverted on the high pressure side downstream of the pump housing Preferably, the branch is located downstream of a filter for cleaning the fluid to supply purified actuating fluid to the fluidic valve.

Das Steuerfluid für das Fluidikventil kann ebenfalls von der Hochdruckseite der Pumpe abgezweigt werden. Das Steuerfluid kann insbesondere stromabwärts von einem Filter zur Reinigung des von der Pumpe geförderten Fluids abgezweigt werden, um einer am Steuerkolben gebildeten Steuerkammer gereinigtes Fluid zuzuführen. Durch die Abzweigung stromabwärts von dem Filter kann vorteilhaft genau auf einen Druck geregelt werden, der in einem Verbrennungsmotor für die Fluidversorgung verwendet wird. Variierende Druckverluste, beispielsweise über einen Kühler und/oder einen Filter, spielen keine Rolle. Grundsätzlich kann das Steuerfluid jedoch an der Hochdruckseite noch innerhalb des Pumpengehäuses abgezweigt werden.The control fluid for the fluidic valve may also be diverted from the high pressure side of the pump. Specifically, the control fluid may be diverted downstream of a filter for purifying the fluid delivered by the pump to supply purified fluid to a control chamber formed on the control piston. Advantageously, the branch downstream of the filter can be used to precisely control the pressure used in an internal combustion engine for the fluid supply. Varying pressure losses, for example via a cooler and / or a filter, are irrelevant. In principle, however, the control fluid can be diverted on the high pressure side still within the pump housing.

Das vom Fluidikventil gesteuerte Stellfluid kann insbesondere auch das Steuerfluid zur Betätigung des Fluidikventils bilden, indem das über den Druckanschluss in den Ventilraum des Fluidikventils geführte Stellfluid zugleich auch einen auf den Steuerkolben wirkenden Steuerdruck erzeugt. Der Druckanschluss kann dementsprechend auch einen Steueranschluss des Fluidikventils bilden.The actuating fluid controlled by the fluidic valve can in particular also form the control fluid for actuating the fluidic valve, in that the actuating fluid guided via the pressure port into the valve chamber of the fluidic valve at the same time also generates a control pressure acting on the control piston. The pressure connection can accordingly also form a control connection of the fluidic valve.

Das Elektromagnetventil weist einen Signalanschluss für eine Verbindung mit einer externen Steuerung, beispielsweise einer Motorsteuerung auf. Der Signalanschluss des Elektromagnetventils oder eine der Spanneinrichtung des Elektromagnetventils entgegenwirkende Magnetkraft ist vorzugsweise zur Einstellung einer Kolbenposition vorgesehen, in der der Arbeitsanschluss des Elektromagnetventils und damit die zweite Stellkammer mit dem Druckanschluss des Elektromagnetventils verbunden ist. Die Spannkraft der Spanneinrichtung des Elektromagnetventils ist vorzugsweise zur Einstellung einer Kolbenposition vorgesehen, in der der Arbeitsanschluss des Elektromagnetventils und damit die zweite Stellkammer mit dem Entlastungsanschluss des Elektromagnetventils verbunden ist. Das Elektromagnetventil kann ebenfalls im oder am Pumpengehäuse, also integriert angeordnet sein. Alternativ kann das Elektromagnetventil jedoch ohne Weiteres ein Stück weit vom Pumpengehäuse entfernt angeordnet sein, was insbesondere dann von Vorteil sein kann, wenn eine elektrische Verbindungsleitung bei Anordnung im oder am Pumpengehäuse durch Öl geführt werden müsste. Unter "vorgesehen" soll insbesondere speziell programmiert, ausgebildet, ausgelegt, ausgestaltet, ausgestattet und/oder angeordnet verstanden werden.The solenoid valve has a signal port for connection to an external controller, such as a motor controller. The signal connection of the solenoid valve or a magnetic force counteracting the tensioning device of the solenoid valve is preferably provided for setting a piston position, in which the working port of the solenoid valve and thus the second actuating chamber is connected to the pressure port of the solenoid valve. The clamping force of the clamping device of the solenoid valve is preferably provided for setting a piston position in which the working port of the solenoid valve and thus the second actuating chamber is connected to the discharge port of the solenoid valve. The solenoid valve may also be arranged in or on the pump housing, that is integrated. Alternatively, however, the solenoid valve may readily be located a distance away from the pump housing, which may be particularly advantageous if an electrical connection line would have to be guided by oil in the arrangement in or on the pump housing. By "provided" is intended to be understood in particular specially programmed, designed, designed, configured, equipped and / or arranged.

Bei der Pumpe handelt es sich in bevorzugten Ausführungen um eine Verdrängerpumpe. Bei Verdrängerpumpen steigt das Fördervolumen proportional zur Fördergeschwindigkeit des Förderrotors, wenn keine das Fördervolumen verstellenden Maßnahmen getroffen werden. Handelt es sich bei der Pumpe wie bevorzugt um eine Rotationspumpe, steigt das Fördervolumen mit der Drehzahl des bei einer Rotationspumpe in der Förderkammer um eine Rotationsachse drehbaren Förderrotors. Grundsätzlich betrifft die Erfindung jedoch auch Linearhubpumpen. Das Fördervolumen ist daher, verallgemeinert ausgedrückt, proportional zur Hubfrequenz, der Drehhub- oder Linearhubfrequenz, der Pumpe. Man spricht bei Verdrängerpumpen daher auch vom spezifischen Fördervolumen, dem Fördervolumen pro Drehhub oder Linearhub. Die Proportionalität ist in vielen Anwendungen störend, insbesondere dann, wenn die Geschwindigkeit, mit der die Pumpe angetrieben wird, dem Bedarf des zu versorgenden Aggregats nicht angepasst werden kann. So werden in Fahrzeugen verwendete Pumpen, wie Schmierölpumpen, Servopumpen, wie etwa Getriebepumpen und Kühlmittelpumpen, in vielen Fällen mechanisch vom Antriebsmotor des Fahrzeugs angetrieben. Die Antriebsgeschwindigkeit der Pumpe ist in diesen Anwendungsfällen abhängig von der Drehzahl des Antriebsmotors und steht zumeist in einer festen Drehzahlbeziehung zur Drehzahl des Antriebsmotors. Auf derartige Anwendungen ist die Erfindung insbesondere gerichtet.The pump is in preferred embodiments to a positive displacement pump. In positive displacement pumps, the delivery volume increases proportionally to the conveying speed of the delivery rotor, if no measures adjusting the delivery volume are taken. If the pump is preferably a rotary pump, the delivery volume increases with the rotational speed of the delivery rotor which is rotatable about a rotation axis in the delivery chamber in the case of a rotary pump. Basically, however, the invention also relates to Linearhubpumpen. The delivery volume is therefore, in general terms, proportional to the stroke frequency, the Drehhub- or Linearhubfrequenz, the pump. With positive displacement pumps, this is also referred to as the specific delivery volume, the delivery volume per rotary stroke or linear stroke. Proportionality is troublesome in many applications, especially when the speed at which the pump is driven can not be adjusted to the needs of the unit to be supplied. For example, pumps used in vehicles, such as lubricating oil pumps, power-assisted pumps such as transmission pumps, and coolant pumps, are in many cases driven mechanically by the vehicle's propulsion engine. The drive speed of the pump in these applications depends on the speed of the drive motor and is usually in a fixed speed relationship to the speed of the drive motor. The invention is particularly directed to such applications.

Die Verstelleinrichtung ist in bevorzugten Ausführungen dafür eingerichtet, das spezifische Fördervolumen einer Verdrängerpumpe zu verstellen. Im eingangs diskutierten Stand der Technik werden Verdrängerpumpen und Verstelleinrichtungen, wie die Erfindung sie insbesondere auch betrifft, offenbart. Über die dort beschriebenen Flügelzellenpumpen und Außenzahnradpumpen hinaus betrifft die Erfindung aber auch im Fördervolumen verstellbare Innenzahnradpumpen und Pendelschieberpumpen und grundsätzlich auch andere, im Fördervolumen verstellbare Pumpenbauarten.The adjusting device is set up in preferred embodiments for adjusting the specific delivery volume of a positive displacement pump. In the prior art discussed at the beginning, positive displacement pumps and adjusting devices, such as the invention in particular, are disclosed. In addition to the vane pumps and external gear pumps described therein, the invention also relates to adjustable internal gear pumps and pendulum slide pumps in the delivery volume and, in principle, also other pump types which can be adjusted in the delivery volume.

Die Verstelleinrichtung kann insbesondere ein Verstellorgan umfassen, das mit dem Förderrotor oder bei Pumpen mit mehreren Förderrotoren mit wenigstens einem der mehreren Förderrotoren zur Verstellung des Fördervolumens zusammenwirkt. Ist die Pumpe als Flügelzellenpumpe mit einem in der Förderkammer drehbaren Förderrotor ausgeführt, kann das Verstellorgan insbesondere ein den Förderrotor umgebender Verstellring sein, der im Pumpengehäuse linearbeweglich oder schwenkbeweglich angeordnet ist, so dass bei einer Verstellbewegung des Verstellorgans die Exzentrizität zwischen der Rotationsachse des Förderrotors und einer zentralen Längsachse des Verstellrings und dadurch das Fördervolumen verstellt wird. In ähnlicher Weise kann auch das Fördervolumen von Innenzahnringpumpen und Pendelschieberpumpen verstellt werden. Bei einer Innenzahnringpumpe kann insbesondere das innenverzahnte Hohlrad das Verstellorgan bilden und für die Verstellung linearbeweglich oder schwenkbeweglich angeordnet sein. Ist die Pumpe als Außenzahnradpumpe ausgeführt, weist sie wenigstens zwei Förderrotoren auf, die am Außenumfang verzahnt sind, sogenannte Außenzahnräder. Die Außenzahnräder stehen miteinander im Zahneingriff. Zur Verstellung des spezifischen Fördervolumens ist eines der Außenzahnräder relativ zum anderen axial verstellbar, so dass die Eingriffslänge der Außenzahnräder und dadurch das Fördervolumen der Pumpe verstellt werden kann. Das verstellbare Außenzahnrad ist Bestandteil einer axial verschiebbaren Verstelleinheit, die axial verschiebbare Kolben umfasst, zwischen denen das verstellbare Außenzahnrad drehbar gelagert ist. Die miteinander verbundenen Kolben bilden in derartigen Pumpenausführungen das Verstellorgan der Verstelleinrichtung.The adjusting device may in particular comprise an adjusting member which cooperates with the conveying rotor or, in the case of pumps having a plurality of conveying rotors, with at least one of the plurality of conveying rotors for adjusting the conveying volume. If the pump is designed as a vane pump with a conveying rotor rotatable in the delivery chamber, the adjusting member may in particular be an adjusting ring surrounding the delivery rotor, which is arranged to be linearly movable or pivotable in the pump housing, so that during an adjusting movement of the adjusting member the eccentricity between the axis of rotation the delivery rotor and a central longitudinal axis of the adjusting ring and thereby the delivery volume is adjusted. Similarly, the delivery volume of internal gear pumps and pendulum slide pumps can be adjusted. In an internal gear pump, in particular the internally toothed ring gear can form the adjusting member and can be arranged to be linearly movable or pivotable for the adjustment. If the pump is designed as an external gear pump, it has at least two conveyor rotors, which are toothed on the outer circumference, so-called external gears. The external gears are meshed with each other. To adjust the specific delivery volume of one of the outer gears is axially adjustable relative to the other, so that the engagement length of the outer gears and thereby the delivery volume of the pump can be adjusted. The adjustable external gear is part of an axially displaceable adjusting unit comprising axially displaceable piston, between which the adjustable external gear is rotatably mounted. The interconnected pistons form the adjustment of the adjustment in such pump designs.

Vorteilhafte Merkmale der Erfindung werden auch in den Unteransprüchen und in den Kombinationen der Unteransprüche beschrieben.Advantageous features of the invention are also described in the subclaims and in the combinations of the subclaims.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand von Figuren erläutert. Am Ausführungsbeispiel offenbar werdende Merkmale bilden jeweils einzeln und in jeder Merkmalskombination die Gegenstände der Ansprüche und die vorstehend erläuterten Ausgestaltungen und auch die Gegenstände der Aspekte vorteilhaft weiter. Es zeigen:

Figur 1
eine im Fördervolumen verstellbare Pumpe mit einem Verstellorgan und mehreren Stellkammern zur Beaufschlagung des Verstellorgans mit unter Druck stehendem Stellfluid,
Figur 2
die Pumpe mit zugeordneten Ventilen zur Verstellung des Fördervolumens und einer Fördercharakteristik der Pumpe, und
Figur 3
eines der zugeordneten Ventile in einem Längsschnitt.
Hereinafter, an embodiment of the invention will be explained with reference to figures. The features disclosed in the exemplary embodiment advantageously each individually and in each combination of features, the objects of the claims and the embodiments described above and also the objects of the aspects advantageously. Show it:
FIG. 1
an adjustable in the flow pump with an adjusting member and a plurality of adjusting chambers for acting on the adjusting with pressurized actuating fluid,
FIG. 2
the pump with associated valves for adjusting the delivery volume and a delivery characteristic of the pump, and
FIG. 3
one of the associated valves in a longitudinal section.

Figur 1 zeigt eine Pumpe 1, beispielhaft in Flügelzellenbauart. Die Pumpe 1 umfasst ein Pumpengehäuse mit einer Gehäusestruktur 2 und einem Deckel. Die Gehäusestruktur 2 nimmt Komponenten der Pumpe auf und/oder lagert Komponenten der Pumpe 1 beweglich. Die Gehäusestruktur 2 ist an einer axialen Stirnseite offen, wodurch die Anordnung von Komponenten der Pumpe in oder an der Gehäusestruktur 2 erleichtert wird. Der Deckel ist an der Gehäusestruktur 2 montierbar und verschließt im montierten Zustand an der betreffenden Stirnseite die Gehäusestruktur 2. Der Deckel ist in Figur 1 abgenommen, so dass in der dargestellten Draufsicht auf die offene Gehäusestruktur 2 Funktionskomponenten der Pumpe erkennbar sind. FIG. 1 shows a pump 1, for example in vane-type. The pump 1 comprises a pump housing with a housing structure 2 and a lid. The housing structure 2 accommodates components of the pump and / or supports components of the pump 1 movable. The housing structure 2 is open at an axial end face, whereby the arrangement of components of the pump in or on the housing structure 2 is facilitated. The lid is mounted on the housing structure 2 and closes in the assembled state at the relevant end face the housing structure 2. The cover is in FIG. 1 removed, so that in the illustrated plan view of the open housing structure 2 functional components of the pump can be seen.

Die Gehäusestruktur 2 umgibt eine Förderkammer 5, in der ein Förderrotor 10 um eine Rotationsachse R10 drehbar angeordnet ist. Das Pumpengehäuse weist auf einer Niederdruckseite einen Gehäuseeinlass für den Anschluss der Pumpe 1 an ein Reservoir R und auf einer Hochdruckseite einen Gehäuseauslass für die Abförderung eines zu fördernden Fluids, beispielsweise Motorschmieröl, zu einem mit dem Fluid zu versorgenden Aggregat auf. Die Förderkammer 5 umfasst eine Niederdruckseite und eine Hochdruckseite. Bei einem Rotationsantrieb des Förderrotors 10 in die eingezeichnete Drehrichtung, gegen den Uhrzeigersinn, strömt Fluid durch den Gehäuseeinlass in das Pumpengehäuse und im Pumpengehäuse auf der Niederdruckseite durch einen Förderkammereinlass 4 in die Förderkammer 5 und wird unter Erhöhung des Drucks auf der Hochdruckseite der Pumpe durch einen Förderkammerauslass 6 ausgestoßen und über den Gehäuseauslass abgefördert. Im Pumpengehäuse ist auf dessen Niederdruckseite ein Saugbereich gebildet, den das von der Pumpe geförderte Fluid auf seinem Strömungsweg vom Gehäuseeinlass zum Förderkammereinlass 4 durchströmt. Der Saugbereich erstreckt sich bis in die Förderkammer 5 und umfasst auch noch den Bereich der Förderkammer 5, in dem sich die Förderzellen bei Drehung des Förderrotors 10 vergrößern. An den Saugbereich schließt sich auf dem Weg der Strömung ein Hochdruckbereich des Pumpengehäuses an, der den Bereich der Förderkammer 5 umfasst, in dem sich die Förderzellen verkleinern, und der von diesem Teilbereich der Förderkammer 5 über den Förderkammerauslass 6 bis einschließlich zum Gehäuseauslass reicht.The housing structure 2 surrounds a delivery chamber 5 in which a delivery rotor 10 is rotatably arranged about an axis of rotation R 10 . The pump housing has on a low-pressure side a housing inlet for connecting the pump 1 to a reservoir R and on a high-pressure side a housing outlet for the removal of a fluid to be pumped, for example engine lubricating oil, to an aggregate to be supplied with the fluid. The delivery chamber 5 includes a low pressure side and a high pressure side. In a rotational drive of the conveyor rotor 10 in the illustrated direction of rotation, counterclockwise, fluid flows through the housing inlet into the pump housing and the pump housing on the low pressure side through a feed chamber inlet 4 in the delivery chamber 5 and is increasing the pressure on the high pressure side of the pump by a Förderkammerauslass 6 ejected and discharged via the housing outlet. In the pump housing, a suction region is formed on its low-pressure side, through which the fluid conveyed by the pump flows on its flow path from the housing inlet to the delivery chamber inlet 4. The suction region extends into the delivery chamber 5 and also still includes the region of the delivery chamber 5 in which the delivery cells 10 increase as the delivery rotor 10 rotates. On the path of the flow, a high-pressure region of the pump housing, which encompasses the region of the delivery chamber 5 in which the delivery cells shrink, and which extends from this subregion of the delivery chamber 5 via the delivery chamber outlet 6 up to and including the housing outlet, adjoins the suction region.

Der Förderrotor 10 ist ein Flügelrad mit einer bezüglich der Rotationsachse R10 zentralen Rotorstruktur 11 und über den Umfang der Rotorstruktur 11 verteilt angeordneten Flügeln 12. Die Flügel 12 sind in zum äußeren Umfang der Rotorstruktur 11 offenen Schlitzen der Rotorstruktur 11 in radialer oder zumindest im Wesentlichen radialer Richtung gleitend verschieblich geführt. Radial innen sind die Flügel 12 an einer quer zur Rotationsachse R10 beweglichen Stützstruktur 13 abgestützt.The conveyor rotor 10 is an impeller with a central rotor structure 11 with respect to the axis of rotation R 10 and vanes 12 distributed over the circumference of the rotor structure 11. The vanes 12 are radially or at least substantially open in slots of the rotor structure 11 open to the outer circumference of the rotor structure 11 Slidably guided radially sliding direction. Radially inside the wings 12 are supported on a transverse to the rotation axis R 10 movable support structure 13.

Der Förderrotor 10 wird an seinem äußeren Umfang von einem Verstellorgan 20 umgeben, das beispielhaft als Verstellring geformt ist. Bei Rotationsantrieb des Förderrotors 10 gleiten dessen Flügel 12 über eine Innenumfangsfläche des Verstellorgans 20. Die Rotationsachse R10 des Förderrotors 10 ist zu einer parallelen, in Bezug auf die Innenumfangsfläche zentralen Achse des Verstellorgans 20 exzentrisch angeordnet, so dass vom Förderrotor 10 und dem Verstellorgan 20 gebildete Förderzellen sich bei Drehung des Förderrotors 10 auf der Niederdruckseite der Förderkammer 5 in Drehrichtung vergrößern und auf der Hochdruckseite wieder verkleinern. Aufgrund dieser mit der Drehzahl des Förderrotors 10 periodischen Vergrößerung und Verkleinerung der Förderzellen wird das Fluid von der Niederdruckseite zur Hochdruckseite und dort mit erhöhtem Druck durch den Förderkammerauslass 6 und dann durch den Gehäuseauslass gefördert.The conveyor rotor 10 is surrounded at its outer periphery by an adjusting member 20, which is exemplified as an adjusting ring. Slide with rotary drive of the conveyor rotor 10 the rotation axis R 10 of the conveyor rotor 10 is arranged eccentrically to a parallel, with respect to the inner peripheral surface of the adjusting central axis 20, so that formed by the conveyor rotor 10 and the adjusting member 20 conveying cells upon rotation of the Increase delivery rotor 10 on the low pressure side of the delivery chamber 5 in the direction of rotation and reduce again on the high pressure side. Due to this with the speed of the conveyor rotor 10 periodic increase and decrease in the delivery cells, the fluid from the low pressure side to the high pressure side and there with increased pressure through the delivery chamber outlet 6 and then through the housing outlet promoted.

Das pro Umdrehung des Förderrotors 10 geförderte Fluidvolumen, das sogenannte spezifische Fördervolumen, kann verstellt werden. Ist das Fluid eine Flüssigkeit und somit in guter Näherung inkompressibel, ist das absolute Fördervolumen der Drehzahl des Förderrotors 10 direkt proportional. Bei kompressiblen Fluiden, beispielsweise Luft, ist der Zusammenhang von Fördermenge und Drehzahl zwar nicht linear, die absolute Fördermenge bzw. -masse steigt jedoch ebenfalls mit der Drehzahl.The per volume revolution of the conveyor rotor 10 funded fluid volume, the so-called specific delivery volume can be adjusted. If the fluid is a liquid and thus incompressible to a good approximation, the absolute delivery volume is directly proportional to the speed of the delivery rotor 10. For compressible fluids, such as air, the relationship between flow rate and speed is not linear, but the absolute flow rate or mass also increases with the speed.

Das spezifische Fördervolumen hängt von der Exzentrizität, also dem Abstand zwischen der zentralen Achse des Verstellorgans 20 und der Rotationsachse R10 des Förderrotors 10 ab. Um diesen Achsabstand ändern zu können, ist das Verstellorgan 20 im Pumpengehäuse beweglich angeordnet, beispielhaft um eine Schwenkachse R20 schwenkbeweglich. In Variationen kann ein modifiziertes Verstellorgan im Pumpengehäuse auch linear beweglich angeordnet sein. Zur Verstellung des spezifischen Fördervolumens bzw. der Exzentrizität wird eine Beweglichkeit quer zur Rotationsachse R10 des Förderrotors 10 bevorzugt. Grundsätzlich wäre auch eine axiale Verstellbarkeit denkbar, durch die eine axiale Weite der Förderzellen verstellt werden kann.The specific delivery volume depends on the eccentricity, ie the distance between the central axis of the adjusting member 20 and the axis of rotation R 10 of the conveyor rotor 10. In order to change this center distance, the adjusting member 20 is movably arranged in the pump housing, for example, pivotable about a pivot axis R 20 . In variations, a modified adjusting member in the pump housing can also be arranged linearly movable. To adjust the specific delivery volume or the eccentricity, a mobility transverse to the axis of rotation R 10 of the conveyor rotor 10 is preferred. In principle, an axial adjustability would also be conceivable by which an axial width of the delivery cells can be adjusted.

Ein Schwenklagerbereich des Verstellorgans 20 ist mit 21 bezeichnet. Die Schwenklagerung ist als Gleitlager ausgeführt, indem das Verstellorgan 20 in seinem Schwenklagerbereich 21 mit einer Gegenfläche der Gehäusestruktur 2 direkt in Gleitkontakt steht.A pivot bearing portion of the adjusting member 20 is designated 21. The pivot bearing is designed as a sliding bearing by the adjusting member 20 is in its pivot bearing portion 21 with a mating surface of the housing structure 2 directly in sliding contact.

Für die Verstellung in eine Stellrichtung V, im Ausführungsbeispiel Schwenkrichtung, wird das Verstellorgan 20 mit einem Stelldruck eines Stellfluids beaufschlagt. Dem fluidischen Stelldruck wirkt in die Gegenrichtung, der Rückstellrichtung, eine Rückstellkraft entgegen. Die Rückstellkraft wird von einer Federeinrichtung 25 mit einem oder mehreren mechanischen Federgliedern, im Ausführungsbeispiel einem einzigen Federglied erzeugt. Das Federglied ist als Schraubendruckfeder ausgeführt und angeordnet. Für die Druckbeaufschlagung mit dem Stellfluid weist das Verstellorgan 20 an seiner von der Schwenkachse R20 aus über die Rotationsachse R10 des Förderrotors 10 gesehen gegenüberliegenden Seite einen funktional als Verstellkolben wirkenden Verstellorgan-Einwirkbereich 22 auf. Zur einen Seite des Verstellorgan-Einwirkbereichs 22 ist im Pumpengehäuse eine erste Stellkammer K1 gebildet, in die das Stellfluid einleitbar ist, um auf den Verstellorgan-Einwirkbereich 22 und somit auf das Verstellorgan 20 eine in die Stellrichtung V wirkende erste Stellkraft auszuüben. Die Rückstellkraft der Federeinrichtung 25 wirkt beispielhaft ebenfalls unmittelbar auf den Verstellorgan-Einwirkbereich 22.For the adjustment in a direction V, in the exemplary embodiment pivoting direction, the adjusting member 20 is acted upon by a control pressure of a control fluid. The fluidic actuating pressure counteracts a restoring force in the opposite direction, the return direction. The restoring force is provided by a spring device 25 with one or more mechanical spring members, in the embodiment generates a single spring member. The spring member is designed and arranged as a helical compression spring. For the pressurization with the actuating fluid, the adjusting member 20 on its viewed from the pivot axis R 20 on the axis of rotation R 10 of the conveyor rotor 10 opposite side on a functionally acting as an adjusting Verstellorgan-Einwirkbereich 22. To one side of the adjusting member-Einwirkbereichs 22 a first actuating chamber K 1 is formed in the pump housing into which the actuating fluid can be introduced to exert on the Verstellorgan-Einwirkbereich 22 and thus on the adjusting member 20 acting in the direction of adjustment V first actuating force. The restoring force of the spring device 25 also acts, for example, directly on the adjusting member-action region 22.

Die erste Stellkammer K1 wird mit dem von der Pumpe 1 geförderten Stellfluid gespeist, um das Verstellorgan 20 gegen die Kraft der Federeinrichtung 25 in die Stellrichtung V mit dem ersten Stelldruck zu beaufschlagen. Die Stellrichtung V ist so gewählt, dass sich die Exzentrizität zwischen Förderrotor 10 und Verstellorgan 20 und dadurch das spezifische Fördervolumen der Pumpe 1 verkleinert, wenn sich das Verstellorgan 20 in die Stellrichtung V bewegt.The first control chamber K 1 is fed with the pumped by the pump 1 actuating fluid to pressurize the adjusting member 20 against the force of the spring means 25 in the direction V with the first control pressure. The adjustment direction V is chosen so that the eccentricity between the conveyor rotor 10 and adjusting member 20 and thereby reduces the specific delivery volume of the pump 1, when the adjusting member 20 moves in the direction of adjustment V.

Das Verstellorgan 20 bildet mit der Gehäusestruktur 2 einen Dichtspalt, der die erste Stellkammer K1 in Stellrichtung V vom Niederdruckbereich trennt. Im Dichtspalt ist ein Dichtelement 24 zur besseren Abdichtung des Dichtspalts angeordnet. Das Dichtelement 24 ist in einer Aufnahme des Verstellorgans 20 angeordnet.The adjusting member 20 forms with the housing structure 2 a sealing gap which separates the first actuating chamber K 1 in the direction of adjustment V from the low-pressure region. In the sealing gap, a sealing element 24 is arranged for better sealing of the sealing gap. The sealing element 24 is arranged in a receptacle of the adjusting member 20.

Im Pumpengehäuse ist eine zweite Stellkammer K2 gebildet, in die ebenfalls ein Stellfluid unter Druck einleitbar ist, um auf das Verstellorgan 20 in der zweiten Stellkammer K2 einen weiteren, zweiten Stelldruck ausüben zu können. Die Stellkammern K1 und K2 sind an einem äußeren Umfang des Verstellorgans 20 in Umfangsrichtung nebeneinander gebildet und mittels eines weiteren Dichtelements voneinander abgedichtet. In den beiden Stellkammern K1 und K2 wirkt das jeweilige Stellfluid direkt auf das Verstellorgan 20. In modifizierten Ausführungen könnte anstelle einer direkten Druckbeaufschlagung eine indirekte Beaufschlagung des Verstellorgans 20 mit zwei oder mehr Stellkolben vorgesehen sein, wobei auf wenigstens einen solchen Stellkolben der erste Stelldruck und auf wenigstens einen anderen Stellkolben der zweite Stelldruck wirken würde. Die Verstelleinrichtung kann eine weitere Stellkammer, gegebenenfalls auch mehrere weitere Stellkammern umfassen, in der oder denen ein Stellfluid direkt oder stattdessen indirekt über jeweils einen Stellkolben auf das Verstellorgan 20 wirkt.In the pump housing, a second actuating chamber K 2 is formed, in which also a control fluid can be introduced under pressure to be able to exert on the adjusting member 20 in the second control chamber K 2, a second, second control pressure. The adjusting chambers K 1 and K 2 are formed on an outer circumference of the adjusting member 20 in the circumferential direction next to each other and sealed from each other by means of another sealing element. In the two actuating chambers K 1 and K 2, the respective actuating fluid acts directly on the adjusting member 20. In modified embodiments, instead of a direct pressurization, indirect loading of the adjusting member 20 with two or more adjusting pistons could be provided, with the first actuating pressure acting on at least one such adjusting piston and would act on at least one other actuator piston, the second control pressure. The adjusting device may comprise a further adjusting chamber, possibly also a plurality of further adjusting chambers, in which or a control fluid directly or indirectly indirectly acts on the adjusting member 20 via a respective adjusting piston.

Der in der ersten Stellkammer K1 herrschende erste Stelldruck und der in der zweiten Stellkammer K2 herrschende zweite Stelldruck sind veränderbar, indem die Stellkammern K1 und K2 jeweils über ein zugeordnetes Ventil mit dem jeweiligen Stellfluid beaufschlagt werden. Eine der Stellkammern K1 und K2 wird über ein Fluidikventil mit Stellfluid beaufschlagt, während die andere der Stellkammern K1 und K2 über ein Elektromagnetventil mit Stellfluid beaufschlagt wird. Im Ausführungsbeispiel ist das Fluidikventil der ersten Stellkammer K1 und das Elektromagnetventil der zweiten Stellkammer K2 zugeordnet.The first control pressure prevailing in the first control chamber K 1 and the second control pressure prevailing in the second control chamber K 2 are variable by the control chambers K 1 and K 2 each being acted upon by an associated valve with the respective control fluid. One of the actuating chambers K 1 and K 2 is acted upon by a fluidic valve with actuating fluid, while the other of the actuating chambers K 1 and K 2 is acted upon by a solenoid valve with actuating fluid. In the exemplary embodiment, the fluidic valve of the first actuating chamber K 1 and the solenoid valve of the second actuating chamber K 2 is assigned.

In Figur 2 ist ein die Pumpe 1 enthaltender Fluidförderkreis dargestellt. Die Pumpe 1 ist wie die anderen Komponenten des Fluidkreises schematisch dargestellt. So gehören zur Pumpe 1, wie aus Figur 1 ersichtlich, die Verstelleinrichtung mit dem Verstellorgan 20, der Federeinrichtung 25 und den Stellkammern K1 und K2. Das Fluidikventil 30 ist in bevorzugten Ausführungen ebenfalls integraler Bestandteil des Pumpengehäuses, indem das Fluidikventil 30 im oder am Pumpengehäuse angeordnet ist. Das Elektromagnetventil 40 wird ebenfalls als zur Pumpe 1 gehörig betrachtet, obgleich das Elektromagnetventil 40 ein Stück weit vom Pumpengehäuse entfernt angeordnet sein kann. Eine in Bezug auf das Pumpengehäuse externe Anordnung kann insbesondere dann von Vorteil sein, wenn die elektrische Isolierung einer Zuführleitung für elektrische Energie und/oder Steuersignale in der unmittelbaren Umgebung des Pumpengehäuses Probleme bereitet.In FIG. 2 is shown a pump 1 containing fluid conveying circuit. The pump 1 is shown schematically as the other components of the fluid circuit. So belong to the pump 1, as out FIG. 1 can be seen, the adjusting device with the adjusting member 20, the spring means 25 and the adjusting chambers K 1 and K 2nd The fluidic valve 30 is also an integral part of the pump housing in preferred embodiments in that the fluidic valve 30 is arranged in or on the pump housing. The solenoid valve 40 is also considered as belonging to the pump 1, although the solenoid valve 40 may be located a distance from the pump housing. An external arrangement relative to the pump housing may be particularly advantageous if the electrical insulation of a supply line for electrical energy and / or control signals in the immediate vicinity of the pump housing causes problems.

Die Pumpe 1 fördert Fluid aus einem Reservoir R zu einem mit dem Fluid zu versorgenden Aggregat M, beispielsweise Schmieröl zu einem das Aggregat M bildenden Verbrennungsmotor zum Antrieb eines Kraftfahrzeugs. Ein von einem Verbrennungsmotor gebildetes, mit dem Fluid zu versorgendes Aggregat M kann die Pumpe 1 antreiben, wie in Figur 2 illustriert, so dass der Förderrotor 10 in fester Drehzahlbeziehung zu einer Abtriebswelle des Aggregats M drehangetrieben wird. Auf der Niederdruckseite fördert die Pumpe 1 das Fluid vom Reservoir R durch eine Zuführleitung, den Gehäuseeinlass und den Saugbereich des Pumpengehäuses in die Förderkammer 5 (Fig. 1), aus der es mit erhöhtem Druck ausgestoßen wird. Auf der Hochdruckseite wird ein von der Pumpe 1 geförderter Hauptstrom 50 zum Aggregat M gefördert. Nach Durchströmen des Aggregats M strömt das Fluid im Druck entlastet zurück in das Reservoir R.The pump 1 delivers fluid from a reservoir R to an aggregate M to be supplied with the fluid, for example lubricating oil, to an internal combustion engine forming the unit M for driving a motor vehicle. An aggregate M to be supplied with the fluid, which is formed by an internal combustion engine, can drive the pump 1, as in FIG FIG. 2 illustrated so that the conveying rotor 10 is rotationally driven in fixed speed relation to an output shaft of the unit M. On the low-pressure side, the pump 1 conveys the fluid from the reservoir R through a supply line, the housing inlet and the suction region of the pump housing into the delivery chamber 5 (FIG. Fig. 1 ) from which it is ejected with increased pressure. On the high pressure side, a pumped by the pump 1 main flow 50 is conveyed to the unit M. After flowing through the unit M, the fluid flows in pressure relieved back into the reservoir R.

Vom Hauptstrom 50 wird ein kleinerer Teil abgezweigt und als Stellfluid zu einem Druckanschluss P des Fluidikventils 30 geführt. Der Druckanschluss P ist entsprechend über eine Nebenstromleitung mit dem Hauptstrom 50 verbunden. Das Fluidikventil 30 ist über einen Arbeitsanschluss A mit der ersten Stellkammer K1 (Fig. 1) verbunden. Das Verstellorgan 20 steht in Figur 2 stellvertretend für die anderen Komponenten der Verstelleinrichtung, wie etwa die Federeinrichtung 25 und die Stellkammern K1, K2 und optional eine oder mehrere weitere Stellkammern.From the main flow 50, a smaller part is branched off and guided as actuating fluid to a pressure port P of the fluidic valve 30. The pressure port P is connected via a bypass line to the main flow 50 accordingly. The fluidic valve 30 is connected via a working port A to the first actuating chamber K 1 (FIG. Fig. 1 ) connected. The adjusting member 20 is in FIG. 2 representative of the other components of the adjusting device, such as the spring device 25 and the adjusting chambers K 1 , K 2 and optionally one or more further adjusting chambers.

Das Fluidikventil 30 weist ferner einen Entlastungsanschluss S für das Stellfluid auf. Der Entlastungsanschluss S ist über einen Entlastungskanal 35 direkt mit dem Saugbereich des Pumpengehäuses verbunden. Das Reservoir R wird umgangen. Der Entlastungskanal 35 erstreckt sich vorzugsweise im oder am Pumpengehäuse unmittelbar vom Fluidikventil 30 bis unmittelbar in den Saugbereich des Pumpengehäuses. Durch den Entlastungsanschluss S strömt kein Fluid direkt zum Reservoir R, und es strömt auch kein Fluid vom Reservoir R durch den Entlastungsanschluss S zum Fluidikventil 30. Zwischen dem Entlastungsanschluss S und dem Reservoir R besteht daher keine direkte Fluidverbindung. Das unter Druck stehende Stellfluid wird über den Entlastungsanschluss S energieeffizient in den Saugbereich des Pumpengehäuses zurückgeführt. Die Pumpe 1 muss zur Druckentlastung des Verstellorgans 20 zurückgeführtes Stellfluid nicht erst wieder vom Reservoir R ansaugen. Das auf kurzem Wege zurückgeführte Stellfluid weist einen höheren Druck als das im Reservoir R befindliche Fluid auf und enthält weniger Luft. Beides trägt zur Verbesserung des Wirkungsgrads der Pumpe 1 bei.The fluidic valve 30 further includes a discharge port S for the actuating fluid. The discharge port S is connected via a discharge channel 35 directly to the suction region of the pump housing. The reservoir R is bypassed. The relief channel 35 preferably extends in or on the pump housing directly from the fluidic valve 30 to directly into the suction region of the pump housing. Through the discharge port S, no fluid flows directly to the reservoir R, and no fluid flows from the reservoir R through the discharge port S to the fluidic valve 30. There is therefore no direct fluid connection between the discharge port S and the reservoir R. The pressurized actuating fluid is energy-efficiently returned to the suction area of the pump housing via the discharge port S. The pump 1 does not have to suck in again from the reservoir R to relieve the pressure of the adjusting member 20. The trapped recirculating fluid has a higher pressure than the fluid in the reservoir R and contains less air. Both contribute to the improvement of the efficiency of the pump 1.

Obgleich eine Druckentlastung in den Saugbereich des Pumpengehäuses gegenüber einer Druckentlastung in das Reservoir R eine ganze Reihe von Vorteilen bietet, kann in abgewandelten Ausführungen das Fluidikventil 30 über seinen Entlastungsanschluss S zum Reservoir R hin druckentlastet werden.Although a pressure relief in the suction region of the pump housing against a pressure relief in the reservoir R offers a whole series of advantages, the fluidic valve 30 can be relieved of pressure via its discharge port S to the reservoir R in modified embodiments.

Das Fluidikventil 30 wird mit einem ebenfalls von der Hochdruckseite der Pumpe 1 abgezweigten Steuerfluid betätigt, das zu einem Steueranschluss C des Fluidikventils 30 geführt wird.The fluidic valve 30 is actuated with a likewise branched off from the high pressure side of the pump 1 control fluid, which is guided to a control port C of the fluidic valve 30.

Das Elektromagnetventil 40 kann ein Proportionalventil sein, mit dem der Stelldruck in der zweiten Stellkammer K2 (Fig. 1) kontinuierlich verstellt werden kann. Es kann insbesondere aber auch ein Mehrwege-Schaltventil sein, das zwischen zwei, drei oder gegebenenfalls auch mehr Schaltzuständen und damit Kolbenpositionen umschaltbar ist. Im Ausführungsbeispiel handelt es sich um solch ein Schaltventil, das die zweite Stellkammer K2 in einem ersten Schaltzustand mit der Hochdruckseite der Pumpe 1 verbindet und in einem zweiten Schaltzustand von der Hochdruckseite der Pumpe 1 trennt und stattdessen über eine Rückführleitung 45 unter Umgehung des Reservoirs R mit der Niederdruckseite der Pumpe 1 verbindet. Im ersten Schaltzustand des Elektromagnetventils 40 ist die zweite Stellkammer K2 daher mit der Hochdruckseite der Pumpe 1 verbunden und im zweiten Schaltzustand mit deren Niederdruckseite. Nimmt das Elektromagnetventil 40 den ersten Schaltzustand ein, wirken die Stelldrücke in den Stellkammern K1 und K2 gemeinsam auf das Verstellorgan 20. Nimmt das Elektromagnetventil 40 den zweiten Schaltzustand ein, wirkt nur noch der Stelldruck in der ersten Stellkammer K1 auf das Verstellorgan 20, während in der zweiten Stellkammer K2 der vergleichsweise niedrige Druck des Saugbereichs des Pumpengehäuse herrscht. Entsprechend höher muss dieser erste Stelldruck sein, um das Verstellorgan 20 gegen die rückstellende Spannkraft der Federeinrichtung 25 in die Stellrichtung V zu bewegen.The solenoid valve 40 may be a proportional valve with which the control pressure in the second control chamber K 2 (FIG. Fig. 1 ) can be adjusted continuously. In particular, however, it may also be a multi-way switching valve which is between two, three or optionally also more switching states and thus piston positions can be switched. In the exemplary embodiment is such a switching valve that connects the second actuating chamber K 2 in a first switching state with the high pressure side of the pump 1 and in a second switching state of the high pressure side of the pump 1 and instead via a return line 45, bypassing the reservoir R. with the low pressure side of the pump 1 connects. In the first switching state of the solenoid valve 40, the second actuating chamber K 2 is therefore connected to the high pressure side of the pump 1 and in the second switching state with its low pressure side. If the solenoid valve 40 assumes the first switching state, the actuating pressures in the actuating chambers K 1 and K 2 act together on the adjusting element 20. If the solenoid valve 40 assumes the second switching state, only the actuating pressure in the first actuating chamber K 1 acts on the adjusting element 20 while in the second actuating chamber K 2, the comparatively low pressure of the suction region of the pump housing prevails. Accordingly, this first control pressure must be higher in order to move the adjusting member 20 against the restoring elastic force of the spring device 25 in the direction of adjustment V.

Auch für das Elektromagnetventil 40 gilt, dass dessen Entlastungsanschluss S zwar bevorzugt direkt mit dem Saugbereich des Pumpengehäuses verbunden ist, dass aber eine alternative Druckentlastung des Elektromagnetventils 40 in das Reservoir R nicht ausgeschlossen werden soll.Also applies to the solenoid valve 40 that its discharge port S is preferably connected directly to the suction of the pump housing, but that an alternative pressure relief of the solenoid valve 40 in the reservoir R should not be excluded.

Das Elektromagnetventil 40 weist einen Signalanschluss 41 auf, an dem es mit einer externen Steuerung verbunden ist. Handelt es sich bei dem Aggregat M um einen Antriebsmotor eines Fahrzeugs, kann insbesondere eine Motorsteuerung die externe Steuerung bilden. Derartige Motorsteuerungen sind typischerweise als Kennlinien- oder Kennfeldsteuerungen gebildet. Bei einer Motorkennfeldsteuerung kann der Bedarf des Antriebsmotors in einem Kennfeld unterschiedlicher Motorgrößen, etwa einer Motortemperatur und/oder einer Motordrehzahl und/oder eines Schmieröldrucks an einer kritischen Stelle des Motors und/oder des Lastzustandes des Motors und dergleichen mehr in einem elektronischen Speicher der Steuerung abgelegt sein. Die externe Steuerung bildet auf der Basis entsprechender Messgrößen und des abgespeicherten Kennfelds das Ausgangssignal, mit dem sie das Elektromagnetventil 40 ansteuert, um den Förderdruck der Pumpe 1 zu modulieren. Die Modulation besteht darin, dass mittels des Elektromagnetventils 40 die Größe desjenigen Förderdrucks verändert werden kann, bei dessen Erreichen das spezifische Fördervolumen der Pumpe 1 durch Verstellung des Verstellorgans 20 verringert wird.The solenoid valve 40 has a signal port 41 where it is connected to an external controller. If the unit M is a drive motor of a vehicle, in particular a motor control can form the external control. Such engine controls are typically formed as characteristic or map controls. In an engine map control, the demand of the drive motor in a map of different engine sizes, such as an engine temperature and / or an engine speed and / or a lubricating oil pressure at a critical point of the engine and / or the load state of the engine and the like stored in an electronic memory of the controller his. On the basis of corresponding measured variables and the stored characteristic map, the external control unit forms the output signal with which it activates the solenoid valve 40 in order to modulate the delivery pressure of the pump 1. The modulation is that by means of the solenoid valve 40, the size of that discharge pressure can be changed, when it reaches the specific delivery volume of the pump 1 is reduced by adjusting the adjusting member 20.

In Figur 3 ist das Fluidikventil 30 in einem Längsschnitt dargestellt. Erkennbar sind die Anschlüsse A, P und S für das Stellfluid und der Anschluss C für das Steuerfluid. Das Fluidventil 30 ist integraler Bestandteil der Pumpe 1, indem das Pumpengehäuse auch das Gehäuse des Fluidikventils 30 bildet. Die Pumpe 1 kann einschließlich des Fluidikventils 30 als Einheit montiert werden. Die Förder- und Verstellkomponenten, wie insbesondere der Förderrotor 10 und das Verstellorgan 20, und das Fluidikventil 30 sind mittels des gemeinsamen Pumpengehäuses zu einer Montageeinheit zusammengefasst.In FIG. 3 the fluidic valve 30 is shown in a longitudinal section. Recognizable are the ports A, P and S for the actuating fluid and the port C for the control fluid. The fluid valve 30 is an integral part of the pump 1 in that the pump housing also forms the housing of the fluidic valve 30. The pump 1 can be mounted as a unit including the fluidic valve 30. The conveying and adjusting components, such as in particular the conveying rotor 10 and the adjusting member 20, and the fluidic valve 30 are combined by means of the common pump housing to form a mounting unit.

Der Ventilraum 31 ist in der Gehäusestruktur 2 geformt, beispielhaft als axiale Sackbohrung. Er ist an einem der beiden Stirnenden des Steuerkolbens 32 offen. Ein Verschlussteil 37 verschließt den Ventilraum 31 an dem offenen Ende. In einem axialen Endbereich des Ventilraums 31 ist eine Spannkammer 34 gebildet, in der die Spanneinrichtung 33 auf den Steuerkolben 32 wirkt.The valve chamber 31 is formed in the housing structure 2, for example as an axial blind bore. It is open at one of the two ends of the control piston 32. A closure member 37 closes the valve space 31 at the open end. In an axial end region of the valve chamber 31, a clamping chamber 34 is formed, in which the clamping device 33 acts on the control piston 32.

Der Entlastungskanal 35 (Figur 2) mündet in die Spannkammer 34, so dass die Spannkammer 34 in jedem Zustand des Fluidikventils 30, d.h. ungeachtet der Position des Steuerkolbens 32, mit dem Saugbereich des Pumpengehäuses verbunden ist. In der Figur 3 verläuft der Entlastungskanal senkrecht zu einer Verschiebeachse des Steuerkolbens 32 aus der Spannkammer 34. Alternativ oder zusätzlich kann der Entlastungskanal schräg, parallel oder in Verlängerung zur Verschiebeachse des Steuerkolbens 32 aus der Spannkammer 34 verlaufen.The discharge channel 35 ( FIG. 2 ) opens into the clamping chamber 34, so that the clamping chamber 34 in each state of the fluidic valve 30, that is, regardless of the position of the control piston 32, is connected to the suction region of the pump housing. In the FIG. 3 extends the discharge channel perpendicular to a displacement axis of the control piston 32 from the clamping chamber 34. Alternatively or additionally, the discharge channel can extend obliquely, parallel or in extension to the displacement axis of the control piston 32 from the clamping chamber 34.

Der Steuerkolben 32 ist im Ventilraum 31 zwischen einer ersten Kolbenposition und einer zweiten Kolbenposition hin und her beweglich. In Figur 3 nimmt der Steuerkolben 32 die zweite Kolbenposition ein. In der zweiten Kolbenposition ist der Arbeitsanschluss A mit dem Entlastungsanschluss S verbunden. Das Stellfluid kann über den Arbeitsanschluss A in den Ventilraum 31 strömen und aus diesem über den Entlastungsanschluss S in den Saugbereich des Pumpengehäuses abströmen. Die erste Stellkammer K1 steht in diesem Zustand des Fluidikventils 30, bei in der zweiten Kolbenposition befindlichem Steuerkolben 32, unter dem vergleichsweise niederen Druck des Saugbereichs, wodurch eine effektive Druckentlastung des Verstellorgans 20 erzielt wird.The control piston 32 is reciprocable in the valve space 31 between a first piston position and a second piston position. In FIG. 3 the control piston 32 assumes the second piston position. In the second piston position of the working port A is connected to the discharge port S. The actuating fluid can flow via the working port A into the valve chamber 31 and flow out of this via the discharge port S into the suction region of the pump housing. The first actuating chamber K 1 is in this state of the fluidic valve 30, with the control piston 32 located in the second piston position, under the comparatively low pressure of the suction region, whereby an effective pressure relief of the adjusting member 20 is achieved.

Bewegt sich der Steuerkolben 32 aus der zweiten Kolbenposition in die erste Kolbenposition, in Figur 3 nach rechts, wird der Druckanschluss P mit dem Arbeitsanschluss A und über diesen mit der ersten Stellkammer K1 verbunden, so dass das Verstellorgan 20 mit dem Stelldruck, einem Druck der Hochdruckseite der Pumpe 1, beaufschlagt wird. Die Verstelleinrichtung ist dabei so ausgelegt, dass eine Erhöhung des Stelldrucks eine Verringerung des spezifischen Fördervolumens der Pumpe 1 bewirkt.The control piston 32 moves from the second piston position to the first piston position, in FIG FIG. 3 to the right, the pressure port P is connected to the working port A and via this with the first control chamber K 1 , so that the adjusting member 20 with the control pressure, a pressure of the high pressure side of the pump 1, is applied. The adjusting device is designed so that an increase in the setting pressure causes a reduction of the specific delivery volume of the pump 1.

Der im Schemabild der Figur 2 beim Fluidikventil 30 eingezeichnete Steueranschluss C kann, wie in Figur 3 erkennbar, mit dem Druckanschluss P zusammengefasst sein. Der Druckanschluss P kann dementsprechend auch gleichzeitig den Steueranschluss C bilden. Eine im Ventilraum 31 gebildete Steuerkammer 36, in welcher der Steuerkolben 32 der Spannkraft der Spanneinrichtung 33 entgegen mit der fluidischen Steuerkraft beaufschlagt wird, bildet bei in der ersten Kolbenposition befindlichem Steuerkolben 32 auch eine Verbindungskammer für die Anschlüsse P und A.The in the picture of the FIG. 2 at the fluidic valve 30 drawn control terminal C, as in FIG. 3 recognizable be summarized with the pressure port P. Accordingly, the pressure port P can also simultaneously form the control port C. A control chamber 36 formed in the valve chamber 31, in which the control piston 32 is acted upon by the clamping force of the tensioning device 33 against the fluidic control force, also forms a connection chamber for the connections P and A when the control piston 32 is in the first piston position.

Das Fluidikventil 30 ist mit seinem Einlass C permanent an die Hochdruckseite der Pumpe 1 angebunden. Auf den Steuerkolben 32 wirkt während des Betriebs der Pumpe 1 ständig ein Steuerdruck und damit eine Steuerkraft gegen die Spanneinrichtung 33. Die Spanneinrichtung 33 des Fluidikventils 30 ist vorgespannt. Sie übt permanent eine gegen die Steuerkraft wirkende Spannkraft auf den Steuerkolben 32 aus, die größer ist als eine bei ordnungsgemäßer Funktion und aktiver Ansteuerung des Elektromagnetventils 40 maximal auftretende auf den Steuerkolben 32 wirkende Steuerkraft. Ein ordnungsgemäß funktionierendes und aktives Elektromagnetventil 40 regelt die Pumpe 1 während des Betriebs über die zweite Stellkammer K2 in der Art, so dass maximal eine auf den Steuerkolben 32 wirkende Steuerkraft resultiert, die kleiner ist als die Spannkraft der Spanneinrichtung 33 des Fluidikventils 30 und damit kleiner ist als die zur Schaltung der ersten Schaltstellung und damit der ersten Kolbenposition notwendige Steuerkraft. Das Fluidikventil 30 ist in Betriebszuständen, in denen das Elektromagnetventil 40 ordnungsgemäß funktioniert und aktiv ist, stets in seiner zweiten Schaltstellung und damit in der zweiten Kolbenposition geschaltet, da das Elektromagnetventil 40 die Pumpe 1 auf eine maximale Förderleistung regelt, durch die eine auf den Steuerkolben 32 des Fluidikventils 30 wirkende Steuerkraft resultiert, die kleiner ist als die entgegenwirkende Spannkraft der Spanneinrichtung 33. Die durch die maximale Förderleistung resultierende auf den Steuerkolben 32 des Fluidikventils 30 wirkende Steuerkraft reicht nicht aus, um das Fluidikventil 30 aus dem zweiten Schaltzustand in den ersten Schaltzustand zu schalten oder den Steuerkolben 32 aus der zweiten Kolbenposition in die erste Kolbenposition zu verschieben.The fluidic valve 30 is permanently connected with its inlet C to the high-pressure side of the pump 1. On the control piston 32 acts during operation of the pump 1 is constantly a control pressure and thus a control force against the clamping device 33. The clamping device 33 of the fluidic valve 30 is biased. It permanently exerts a force acting against the control force clamping force on the control piston 32, which is greater than a maximum occurring at proper function and active control of the solenoid valve 40 acting on the control piston 32 control force. A properly functioning and active solenoid valve 40 controls the pump 1 during operation via the second control chamber K 2 in the manner so that a maximum of a control piston acting on the control force 32 results, which is smaller than the clamping force of the clamping device 33 of the fluidic valve 30 and thus smaller than the control force necessary for switching the first switching position and thus the first piston position. The fluidic valve 30 is always switched in its second switching position and thus in the second piston position in operating states in which the solenoid valve 40 is functioning properly and active, since the solenoid valve 40 controls the pump 1 to a maximum flow rate through the one on the control piston 32 resulting from the maximum flow rate acting on the control piston 32 of the fluidic valve 30 control force is not sufficient to the fluidic valve 30 from the second switching state to the first switching state to switch or to move the control piston 32 from the second piston position to the first piston position.

Die auf den Steuerkolben 32 wirkende Steuerkraft und die Spannkraft der Spanneinrichtung 33 des Fluidikventils 30 allein bestimmen bei ordnungsgemäßer und aktiver Funktion des Elektromagnetventils 40 nicht die Schaltstellung des Fluidikventils 30. Die auf den Steuerkolben 32 wirkende Steuerkraft und die Spanneinrichtung 33 verleihen dem Fluidikventil 30 eine Fail-Safe-Eigenschaft bei Ausfall des Elektromagnetventils 40. Die auf den Steuerkolben 32 wirkende Steuerkraft und die Spanneinrichtung 33 dienen als Backup-Beaufschlagung des Verstellorgans 20 für den Fall, dass das Elektromagnetventil 40 oder die zugeordnete Steuerungseinrichtung aufgrund eines Defekts ausfällt, beispielsweise wegen eines Kabelbruchs oder einer gelösten elektrischen Steckverbindung, oder wenn das Elektromagnetventil 40 in bestimmten Betriebszuständen deaktiviert ist. Das Fluidikventil 30, insbesondere die Spanneinrichtung 33, ist so ausgelegt, dass im Falle eines Ausfalls oder Deaktivierung des Elektromagnetventils 40 das Fördervolumen der Pumpe 1 von Maximal in Richtung Minimal erst bei Erreichen eines Pumpenausgangsdrucks verstellt wird, der größer ist als ein größter Pumpenausgangsdruck, der sich bei ordnungsgemäßer und aktiver Funktion des Elektromagnetventils 40 einstellt, und kleiner ist als ein Pumpenausgangsdruck, der zu einer Beschädigung zumindest eines Bauteils führen würde. Das Fluidikventil 30 und die erste Stellkammer K1 dienen als Schutzabregelung der Pumpe 1, wenn das Elektromagnetventil 40 durch einen Defekt oder eine Deaktivierung ausfällt.The control force acting on the control piston 32 and the clamping force of the tensioning device 33 of the fluidic valve 30 alone do not determine the switching position of the fluidic valve 30 when the solenoid valve 40 is functioning properly and actively. The control force acting on the control piston 32 and the tensioning device 33 give the fluidic valve 30 a fail -Safe property in case of failure of the solenoid valve 40. The force acting on the control piston 32 control force and the clamping device 33 serve as backup loading of the adjusting member 20 in the event that the solenoid valve 40 or the associated control device fails due to a defect, for example due to a cable break or a disconnected electrical connector, or when the solenoid valve 40 is deactivated in certain operating conditions. The fluidic valve 30, in particular the clamping device 33, is designed so that in the event of failure or deactivation of the solenoid valve 40, the delivery volume of the pump 1 is displaced from maximum to minimum only upon reaching a pump outlet pressure which is greater than a maximum pump outlet pressure, the occurs with proper and active operation of the solenoid valve 40, and is less than a pump output pressure, which would lead to damage of at least one component. The fluidic valve 30 and the first control chamber K 1 serve as Schutzabregelung the pump 1 when the solenoid valve 40 fails due to a defect or deactivation.

Der Steuerkolben 32 weist einen ersten Ringabschnitt 51 und einen zweiten Ringabschnitt 52 auf, die axial voneinander beabstandet sind. Der erste Ringabschnitt 51 trennt die Steuerkammer 36 und die Spannkammer 34 fluidtechnisch voneinander. Der erste Ringabschnitt 51 trennt in der zweiten Kolbenposition den Druckanschluss P und den Arbeitsanschluss A voneinander und verbindet dabei den Entlastungsanschluss S mit dem Arbeitsanschluss A. In der ersten Kolbenposition trennt der erste Ringabschnitt 51 den Arbeitsanschluss A und den Entlastungsanschluss S voneinander und verbindet dabei den Druckanschluss P mit dem Arbeitsanschluss A. Der erste Ringabschnitt 51 weist eine einzige Dichtfläche auf, die in Umfangsrichtung und axial durchgehend und damit ununterbrochen ausgeführt ist. Der erste Ringabschnitt 51 liegt mit seiner Dichtfläche dichtend an der Gehäusestruktur 2 an. Er weist einen konstanten Durchmesser auf. Der erste Ringabschnitt 51 ist als ein Vollkörper gebildet und damit nicht hohl ausgeführt.The control piston 32 has a first annular portion 51 and a second annular portion 52, which are axially spaced from each other. The first ring section 51 fluidly separates the control chamber 36 and the clamping chamber 34 from each other. In the second piston position, the first annular section 51 separates the pressure port P and the working port A, thereby connecting the discharge port S to the working port A. In the first piston position, the first annular section 51 separates the working port A and the discharge port S, thereby connecting the pressure port P with the working port A. The first ring portion 51 has a single sealing surface, which is designed in the circumferential direction and axially continuous and thus uninterrupted. The first ring portion 51 bears with its sealing surface sealingly against the housing structure 2. It has a constant diameter. The first ring portion 51 is formed as a solid body and thus not hollow.

Der zweite Ringabschnitt 52 ist in der Steuerkammer 36 angeordnet. Der zweite Ringabschnitt 52 ist axial zwischen dem Druckanschluss P bzw. dem Einlass C und dem ersten Ringabschnitt 51 angeordnet. Der zweite Ringabschnitt 52 weist axiale Durchgangsöffnungen 53 auf, die den Druckanschluss P und den Einlass C mit dem ersten Ringabschnitt 51 fluidisch verbinden. Damit verbinden die Durchgangslöcher 53 eine Steuerfläche des ersten Ringabschnitts 51 mit dem Druckanschluss P und dem Einlass C. Die Durchgangslöcher 53 sind als Bohrungen ausgebildet. Der erste Ringabschnitt 51 weist einen Durchmesser auf, der kleiner ist als der Durchmesser des zweiten Ringabschnitts 52, wodurch eine korrekte Montage des Steuerkolbens 32 sichergestellt werden kann. Grundsätzlich ist es denkbar, dass der erste Ringabschnitt 51 einen Durchmesser aufweist, der größer ist als der Durchmesser des zweiten Ringabschnitts 52. Das Gehäuse des Fluidikventils 30 ist in seinem Innendurchmesser entsprechend gestuft ausgeführt. Das Gehäuse des Fluidikventils 30 weist zwei in ihrem Innendurchmesser voneinander unterschiedliche Bereiche auf. Die Ringabschnitte 51, 52 liegen jeweils mit ihrem Durchmesser an dem Innendurchmesser des Gehäuses an. Zur Ausbildung des Gehäuses des Fluidikventils 30 weist die Gehäusestruktur 2 eine Stufenbohrung auf. Die Gehäusestruktur 2 bildet das Gehäuse des Fluidikventils 30.The second ring portion 52 is disposed in the control chamber 36. The second ring portion 52 is disposed axially between the pressure port P and the inlet C and the first ring portion 51, respectively. The second ring portion 52 has axial through holes 53 fluidly connecting the pressure port P and the inlet C to the first ring portion 51. With this, the through holes 53 connect a control surface of the first ring portion 51 to the pressure port P and the inlet C. The through holes 53 are formed as bores. The first ring portion 51 has a diameter which is smaller than the diameter of the second ring portion 52, whereby a correct mounting of the control piston 32 can be ensured. In principle, it is conceivable for the first ring section 51 to have a diameter which is greater than the diameter of the second ring section 52. The housing of the fluidic valve 30 has a stepped design in its inside diameter. The housing of the fluidic valve 30 has two different in their inner diameter areas. The ring sections 51, 52 each abut with their diameter on the inner diameter of the housing. To form the housing of the fluidic valve 30, the housing structure 2 has a stepped bore. The housing structure 2 forms the housing of the fluidic valve 30.

Zur Anordnung der Spanneinrichtung 33 weist der Steuerkolben 32 einen ersten axialen Vorsprung 54 auf, auf dem die Spanneinrichtung 33, insbesondere die Schraubenfeder, angeordnet oder aufgesteckt ist. Der erste axiale Vorsprung 54 bildet einen Federsitz. Die Spanneinrichtung 33, insbesondere die Schraubenfeder, umgibt den ersten axialen Vorsprung 54. Der erste axiale Vorsprung 54 erstreckt sich von dem ersten Ringabschnitt 51 axial in die Spannkammer 34. Die Spanneinrichtung 33, insbesondere die Schraubenfeder, stützt sich mit einem Ende an dem ersten Ringabschnitt 51 ab.For the arrangement of the clamping device 33, the control piston 32 has a first axial projection 54 on which the clamping device 33, in particular the coil spring, is arranged or plugged. The first axial projection 54 forms a spring seat. The tensioning device 33, in particular the helical spring, surrounds the first axial projection 54. The first axial projection 54 extends axially from the first ring section 51 into the tensioning chamber 34. The tensioning device 33, in particular the helical spring, is supported at one end on the first ring section 51 off.

Zur Ausbildung eines Anschlags für die zweite Kolbenposition weist der Steuerkolben 32 an einem zweiten axialen Ende einen zweiten axialen Vorsprung 55 auf. Der zweite axiale Vorsprung 55 bildet in der zweiten Kolbenposition, in der der Druckanschluss P und der Arbeitsanschluss A voneinander getrennt sind, einen Anschlag. Der zweite axiale Vorsprung 55 liegt in der zweiten Kolbenposition an einem Gegenanschlag an. Der Gegenanschlag ist durch das Verschlussteil 37 gebildet. Der zweite axiale Vorsprung 55 erstreckt sich von dem zweiten Ringabschnitt 52 axial in Richtung des Verschlussteils 37. Die axialen Vorsprünge 54, 55 weisen einen Durchmesser auf, der jeweils kleiner ist als die Durchmesser der Ringabschnitte 51, 52.To form a stop for the second piston position, the control piston 32 has a second axial projection 55 at a second axial end. The second axial projection 55 forms a stop in the second piston position, in which the pressure port P and the working port A are separated from each other. The second axial projection 55 abuts in the second piston position on a counter-stop. The counter-stop is formed by the closure part 37. The second axial protrusion 55 extends axially from the second annular portion 52 toward the closure portion 37. The axial protrusions 54, 55 have a diameter that is smaller than the diameters of the annular portions 51, 52, respectively.

Claims (14)

  1. A pump which exhibits an adjustable delivery volume, the pump (1) comprising:
    (a) a pump housing (2) comprising a delivery chamber (5) which comprises a delivery chamber inlet (4) on a low-pressure side of the pump (1), and a delivery chamber outlet (6) on a high-pressure side of the pump, for a fluid;
    (b) a delivery rotor (10) which can be rotated about a rotary axis (R10) within the delivery chamber (5), for delivering the fluid;
    (c) an adjusting device, comprising:
    (c1) an adjusting member (20) which can be adjusted back and forth in the pump housing (2) in a setting direction (V) and a restoring direction in order to adjust the delivery volume of the pump (1);
    (c2) a first setting chamber (K1) for generating a first setting pressure for adjusting the adjusting member (20);
    (c3) and a second setting chamber (K2) for generating a second setting pressure for adjusting the adjusting member (20); and
    (c4) a restoring device (25), arranged in the pump housing (2), for generating a restoring force which acts on the adjusting member (20) in a restoring direction;
    (d) a fluidically operable valve (30) for adjusting the setting pressure of the first setting chamber (K1);
    (e) and an electromagnetic valve (40), comprising: a pressure port (P) for a setting fluid which is diverted from the high-pressure side; and a relief port (S) for the setting fluid,
    (f) wherein the electromagnetic valve (40) comprises a working port (A) for the setting fluid, which is connected to the second setting chamber (K2), in order to adjust the setting pressure of the second setting chamber (K2),
    characterised in that
    (g) the first setting pressure and the second setting pressure acts or respectively act on the adjusting member (20) in the setting direction (V), and
    (h) the fluidically operable valve (30) is permanently connected to the high-pressure side of the pump (1), hence a control force resulting from the control fluid is permanently acting against the tensing device of the fluidically operable valve.
  2. The pump according to the preceding claim, wherein the fluidically operable valve (30) comprises: a pressure port (P) for a setting fluid which is diverted from the fluid of the high-pressure side; a working port (A), connected to the first setting chamber (K1), for the setting fluid; and a relief port (S) for the setting fluid.
  3. The pump according to any one of the preceding claims, wherein the relief port (S) of the fluidically operable valve (30) of Claim 2 and/or the relief port (S) of the electromagnetic valve (40) is/are connected to the low-pressure side of the pump (1), preferably directly connected to a suction region of the pump housing (2), at a point downstream of a reservoir (R) for the fluid.
  4. The pump according to any one of the preceding claims, wherein the fluidically operable valve (30) comprises: a valve space (31); a control piston (32) which can be moved back and forth within the valve space (31) between a first piston position and a second piston position; a tensing device (33) for generating a tensing force which acts on the control piston (32) in the direction of one of the piston positions; and a control chamber (36) for generating a control force which acts on the control piston (32) counter to the tensing force of the tensing device (33); and the control chamber (36) comprises an inlet (C), which is permanently attached to the high-pressure side of the pump (1), for a control fluid.
  5. The pump according to Claim 4, wherein the tensing device (33) of the fluidically operable valve (30) exerts a tensing force which is greater than a control force which occurs when the electromagnetic valve (40) is properly and/or actively functioning.
  6. The pump according to Claim 4 or 5, wherein the control piston (32) comprises at least a first annular portion (51), which separates the pressure port (P) and the working port (A) from each other in one piston position and separates the working port (A) and the relief port (S) from each other in another piston position, and a second annular portion (52) which comprises at least one passage opening (53) and is arranged axially between the pressure port (P) and the first annular portion (52).
  7. The pump according to Claim 6, wherein one axial end of the control piston (32) comprises a first axial protrusion (54) for arranging the tensing device (33), and another axial end of the control piston (32) comprises a second axial protrusion (55) for forming an abutment.
  8. The pump according to Claim 6 or 7, wherein at least the first annular portion (51) is formed as a solid body.
  9. The pump according to any one of Claims 6 to 8, wherein the annular portions (51, 52) differ from each other in their diameter.
  10. The pump according to any one of Claims 4 to 9, wherein the pressure port (P) of the fluidically operable valve (30) also forms the inlet (C) into the control chamber (36) of the fluidically operable valve (30).
  11. The pump according to any one of the preceding claims, wherein the fluidically operable valve (30) comprises a housing which comprises at least two regions which differ from each other in their inner diameter.
  12. The pump according to any one of the preceding claims, wherein the electromagnetic valve (40) comprises: a valve space; a control piston which can be moved back and forth within the valve space between a first piston position and a second piston position; a tensing device (43) for generating a tensing force which acts on the control piston in the direction of one of the piston positions; and an electromagnetic device (46) for generating an electromagnetic force which acts on the control piston counter to the tensing force of the tensing device (43); and the electromagnetic device (46) comprises a port (41) for connecting to an external controller, preferably an engine controller.
  13. The pump according to Claim 12, wherein the tensing device (43) of the electromagnetic device (46) is provided for setting a piston position in which the second setting chamber (K2) is connected to the relief port (S) of the electromagnetic device (46).
  14. The pump according to any one of the preceding claims, wherein the pump (1) is arranged in a fluid cycle, and a filter (48) for cleaning the fluid delivered by the pump (1) is arranged in the fluid cycle at a point downstream of the pump (1), and the setting fluid for at least one of the setting chambers (K1, K2) and/or the control fluid for the fluidically operable valve (30) is/are diverted at a point downstream of the filter (48).
EP16203242.9A 2015-12-11 2016-12-09 Pump with adjustable transport volume Active EP3179108B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015121672.8A DE102015121672B3 (en) 2015-12-11 2015-12-11 Pump with adjustable delivery volume

Publications (3)

Publication Number Publication Date
EP3179108A2 EP3179108A2 (en) 2017-06-14
EP3179108A3 EP3179108A3 (en) 2017-07-12
EP3179108B1 true EP3179108B1 (en) 2019-07-31

Family

ID=57542818

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16203242.9A Active EP3179108B1 (en) 2015-12-11 2016-12-09 Pump with adjustable transport volume

Country Status (4)

Country Link
US (1) US10473100B2 (en)
EP (1) EP3179108B1 (en)
CN (1) CN106870359B (en)
DE (1) DE102015121672B3 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015109156B4 (en) * 2015-06-10 2019-11-07 Schwäbische Hüttenwerke Automotive GmbH Pump with adjusting device and control valve for adjusting the delivery volume of the pump
IT201800003344A1 (en) * 2018-03-07 2019-09-07 O M P Officine Mazzocco Pagnoni S R L Variable displacement rotary vane pump
IT201800003345A1 (en) * 2018-03-07 2019-09-07 O M P Officine Mazzocco Pagnoni S R L Variable displacement oil pump
CN110107497A (en) * 2019-04-29 2019-08-09 刘书明 A kind of variable pump housing
DE102019112599A1 (en) * 2019-05-14 2020-11-19 Schwäbische Hüttenwerke Automotive GmbH Pump with adjustable delivery volume
DE102020103081A1 (en) * 2020-02-06 2021-08-12 Schwäbische Hüttenwerke Automotive GmbH Rotary pump with adjustable specific delivery volume and a pressure compensation surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195705A1 (en) * 2004-12-22 2013-08-01 Magna Powertrain, Inc. Vane Pump with Multiple Control Chambers

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1020785C (en) * 1990-06-25 1993-05-19 华中理工大学 Vane pump system
EP1828610B1 (en) * 2004-12-22 2016-12-21 Magna Powertrain Inc. Variable capacity vane pump with dual control chambers
EP2066904B1 (en) * 2006-09-26 2017-03-22 Magna Powertrain Inc. Control system and method for pump output pressure control
JP5174720B2 (en) * 2009-03-09 2013-04-03 日立オートモティブシステムズ株式会社 Variable displacement pump
JP5679958B2 (en) * 2011-12-21 2015-03-04 日立オートモティブシステムズ株式会社 Variable displacement pump
JP6082548B2 (en) * 2012-09-07 2017-02-15 日立オートモティブシステムズ株式会社 Variable displacement pump
JP6050640B2 (en) * 2012-09-07 2016-12-21 日立オートモティブシステムズ株式会社 Variable displacement oil pump
JP6154386B2 (en) * 2012-09-07 2017-06-28 日立オートモティブシステムズ株式会社 Variable displacement oil pump and oil supply system using the same
JP6004919B2 (en) * 2012-11-27 2016-10-12 日立オートモティブシステムズ株式会社 Variable displacement oil pump
JP6006098B2 (en) * 2012-11-27 2016-10-12 日立オートモティブシステムズ株式会社 Variable displacement pump
CN203655624U (en) * 2013-12-05 2014-06-18 宁波圣龙汽车动力系统股份有限公司 Variable displacement vane pump
JP6289943B2 (en) * 2014-03-10 2018-03-07 日立オートモティブシステムズ株式会社 Variable displacement pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130195705A1 (en) * 2004-12-22 2013-08-01 Magna Powertrain, Inc. Vane Pump with Multiple Control Chambers

Also Published As

Publication number Publication date
CN106870359A (en) 2017-06-20
EP3179108A3 (en) 2017-07-12
US20170167484A1 (en) 2017-06-15
EP3179108A2 (en) 2017-06-14
DE102015121672B3 (en) 2017-05-04
US10473100B2 (en) 2019-11-12
CN106870359B (en) 2020-07-10

Similar Documents

Publication Publication Date Title
EP3179108B1 (en) Pump with adjustable transport volume
DE102015109156B4 (en) Pump with adjusting device and control valve for adjusting the delivery volume of the pump
DE3142604C2 (en)
DE102013018205B3 (en) Adjustable coolant pump for cooling circuit of internal combustion engine, has pilot valve arranged at impeller-side end of pump shaft to close valve piston centrally in pump shaft, and to open cross bores in pressure chamber
DE102015204061A1 (en) Variable displacement pump
EP2743506B1 (en) Gas pump with a sealing oil groove
WO2017157606A1 (en) Hydraulic system for a transmission of a motor vehicle
DE102016218186A1 (en) Vane pump, pump system, automatic transmission and motor vehicle
EP2698541A2 (en) Rotary pump with adjustable delivery volume, especially for adjusting a coolant pump
WO2000039465A1 (en) Pump assembly comprising two hydraulic pumps
DE102015119095B4 (en) Coolant pump for an internal combustion engine
EP0561304B1 (en) Inlet controlled gear pump
EP3877676B1 (en) System pressure valve for a hydraulic system of a motor vehicle transmission
EP3412944B1 (en) Control valve
DE102009060189B4 (en) Regulating device for adjusting the delivery volume of a pump
DE102006055845A1 (en) Multi-stage pump arrangement, has three pumps whose pressure sides are connected with common load line for adjusting high volume flow, where two of pumps are parallely connected for adjusting high pressurizing medium volume flow
EP3848592A1 (en) Fluid supply system for supplying multiple fluid consumers of a motor vehicle with fluid
DE102007018692A1 (en) Controllable pump e.g. lubricant pump, for internal combustion engine, has adjusting ring surrounding rotor, and hydraulic connection provided between chamber and effective surface acting on ring in direction
DE102014207070B4 (en) pump
DE102009060188B4 (en) Adjustment valve for adjusting the delivery volume of a positive displacement pump with cold start function
DE102019112599A1 (en) Pump with adjustable delivery volume
EP3708837A1 (en) Control valve with a connection surface for a plurality of valve ports
DE102021101830A1 (en) Control valve with optimized cross section
DE102022116714A1 (en) Variable mechanical automotive fluid pump
DE102013006374A1 (en) Vane pump with an adjustable spool

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 2/344 20060101ALI20170608BHEP

Ipc: F04C 14/22 20060101AFI20170608BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180111

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180613

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190322

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016005786

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1161181

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190731

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191202

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191101

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191130

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016005786

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191209

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161209

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231207

Year of fee payment: 8

Ref country code: IT

Payment date: 20231228

Year of fee payment: 8

Ref country code: DE

Payment date: 20231214

Year of fee payment: 8

Ref country code: AT

Payment date: 20231221

Year of fee payment: 8